Properties

Label 729.2.g.b.109.4
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.4
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.b.622.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.209640 - 0.222205i) q^{2} +(0.110863 - 1.90345i) q^{4} +(-2.61158 + 0.305250i) q^{5} +(3.25303 + 1.63373i) q^{7} +(-0.914234 + 0.767134i) q^{8} +O(q^{10})\) \(q+(-0.209640 - 0.222205i) q^{2} +(0.110863 - 1.90345i) q^{4} +(-2.61158 + 0.305250i) q^{5} +(3.25303 + 1.63373i) q^{7} +(-0.914234 + 0.767134i) q^{8} +(0.615319 + 0.516314i) q^{10} +(0.993292 + 2.30271i) q^{11} +(3.58046 + 0.848584i) q^{13} +(-0.318940 - 1.06533i) q^{14} +(-3.42545 - 0.400377i) q^{16} +(0.339876 - 1.92753i) q^{17} +(0.311537 + 1.76682i) q^{19} +(0.291500 + 5.00486i) q^{20} +(0.303440 - 0.703454i) q^{22} +(7.59313 - 3.81342i) q^{23} +(1.86197 - 0.441294i) q^{25} +(-0.562046 - 0.973492i) q^{26} +(3.47037 - 6.01086i) q^{28} +(-0.589089 + 1.96770i) q^{29} +(-1.09276 - 0.718719i) q^{31} +(2.05450 + 2.75967i) q^{32} +(-0.499558 + 0.328565i) q^{34} +(-8.99425 - 3.27364i) q^{35} +(4.98391 - 1.81400i) q^{37} +(0.327285 - 0.439620i) q^{38} +(2.15343 - 2.28250i) q^{40} +(4.33403 - 4.59381i) q^{41} +(6.02768 - 8.09658i) q^{43} +(4.49321 - 1.63540i) q^{44} +(-2.43918 - 0.887789i) q^{46} +(7.71104 - 5.07163i) q^{47} +(3.73300 + 5.01429i) q^{49} +(-0.488400 - 0.321226i) q^{50} +(2.01218 - 6.72114i) q^{52} +(-6.60535 + 11.4408i) q^{53} +(-3.29697 - 5.71052i) q^{55} +(-4.22732 + 1.00189i) q^{56} +(0.560728 - 0.281608i) q^{58} +(0.370314 - 0.858484i) q^{59} +(0.114814 + 1.97128i) q^{61} +(0.0693827 + 0.393489i) q^{62} +(-1.01524 + 5.75769i) q^{64} +(-9.60969 - 1.12321i) q^{65} +(-1.71264 - 5.72061i) q^{67} +(-3.63128 - 0.860629i) q^{68} +(1.15813 + 2.68485i) q^{70} +(-4.97716 - 4.17634i) q^{71} +(-5.04878 + 4.23643i) q^{73} +(-1.44790 - 0.727165i) q^{74} +(3.39758 - 0.397121i) q^{76} +(-0.530804 + 9.11355i) q^{77} +(7.97870 + 8.45693i) q^{79} +9.06806 q^{80} -1.92935 q^{82} +(11.7053 + 12.4069i) q^{83} +(-0.299234 + 5.13765i) q^{85} +(-3.06274 + 0.357983i) q^{86} +(-2.67459 - 1.34323i) q^{88} +(3.64757 - 3.06067i) q^{89} +(10.2610 + 8.60997i) q^{91} +(-6.41685 - 14.8759i) q^{92} +(-2.74348 - 0.650217i) q^{94} +(-1.35293 - 4.51909i) q^{95} +(-9.02241 - 1.05457i) q^{97} +(0.331615 - 1.88068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} + 63 q^{20} + 9 q^{22} - 36 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} + 45 q^{29} + 9 q^{31} - 63 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} + 9 q^{38} + 9 q^{40} + 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} - 63 q^{47} + 9 q^{49} + 225 q^{50} + 27 q^{52} - 45 q^{53} - 9 q^{55} - 99 q^{56} + 9 q^{58} + 117 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} - 81 q^{65} + 36 q^{67} + 18 q^{68} + 63 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} + 90 q^{76} - 81 q^{77} + 63 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} + 63 q^{85} - 81 q^{86} + 90 q^{88} + 81 q^{89} - 18 q^{91} + 63 q^{92} + 63 q^{94} - 153 q^{95} + 36 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.209640 0.222205i −0.148238 0.157123i 0.649000 0.760789i \(-0.275188\pi\)
−0.797237 + 0.603666i \(0.793706\pi\)
\(3\) 0 0
\(4\) 0.110863 1.90345i 0.0554317 0.951725i
\(5\) −2.61158 + 0.305250i −1.16794 + 0.136512i −0.677876 0.735177i \(-0.737099\pi\)
−0.490060 + 0.871689i \(0.663025\pi\)
\(6\) 0 0
\(7\) 3.25303 + 1.63373i 1.22953 + 0.617493i 0.940489 0.339824i \(-0.110368\pi\)
0.289040 + 0.957317i \(0.406664\pi\)
\(8\) −0.914234 + 0.767134i −0.323231 + 0.271223i
\(9\) 0 0
\(10\) 0.615319 + 0.516314i 0.194581 + 0.163273i
\(11\) 0.993292 + 2.30271i 0.299489 + 0.694293i 0.999809 0.0195355i \(-0.00621873\pi\)
−0.700320 + 0.713829i \(0.746959\pi\)
\(12\) 0 0
\(13\) 3.58046 + 0.848584i 0.993040 + 0.235355i 0.694852 0.719152i \(-0.255470\pi\)
0.298188 + 0.954507i \(0.403618\pi\)
\(14\) −0.318940 1.06533i −0.0852403 0.284722i
\(15\) 0 0
\(16\) −3.42545 0.400377i −0.856362 0.100094i
\(17\) 0.339876 1.92753i 0.0824319 0.467495i −0.915449 0.402433i \(-0.868165\pi\)
0.997881 0.0650615i \(-0.0207243\pi\)
\(18\) 0 0
\(19\) 0.311537 + 1.76682i 0.0714716 + 0.405335i 0.999464 + 0.0327364i \(0.0104222\pi\)
−0.927992 + 0.372599i \(0.878467\pi\)
\(20\) 0.291500 + 5.00486i 0.0651814 + 1.11912i
\(21\) 0 0
\(22\) 0.303440 0.703454i 0.0646937 0.149977i
\(23\) 7.59313 3.81342i 1.58328 0.795152i 0.583423 0.812169i \(-0.301713\pi\)
0.999855 + 0.0170164i \(0.00541675\pi\)
\(24\) 0 0
\(25\) 1.86197 0.441294i 0.372393 0.0882589i
\(26\) −0.562046 0.973492i −0.110226 0.190917i
\(27\) 0 0
\(28\) 3.47037 6.01086i 0.655838 1.13595i
\(29\) −0.589089 + 1.96770i −0.109391 + 0.365392i −0.995103 0.0988436i \(-0.968486\pi\)
0.885712 + 0.464235i \(0.153671\pi\)
\(30\) 0 0
\(31\) −1.09276 0.718719i −0.196265 0.129086i 0.447573 0.894248i \(-0.352289\pi\)
−0.643838 + 0.765162i \(0.722659\pi\)
\(32\) 2.05450 + 2.75967i 0.363188 + 0.487846i
\(33\) 0 0
\(34\) −0.499558 + 0.328565i −0.0856735 + 0.0563484i
\(35\) −8.99425 3.27364i −1.52031 0.553346i
\(36\) 0 0
\(37\) 4.98391 1.81400i 0.819351 0.298219i 0.101870 0.994798i \(-0.467517\pi\)
0.717481 + 0.696579i \(0.245295\pi\)
\(38\) 0.327285 0.439620i 0.0530926 0.0713157i
\(39\) 0 0
\(40\) 2.15343 2.28250i 0.340487 0.360896i
\(41\) 4.33403 4.59381i 0.676862 0.717432i −0.294337 0.955702i \(-0.595099\pi\)
0.971199 + 0.238270i \(0.0765802\pi\)
\(42\) 0 0
\(43\) 6.02768 8.09658i 0.919213 1.23472i −0.0525162 0.998620i \(-0.516724\pi\)
0.971729 0.236097i \(-0.0758685\pi\)
\(44\) 4.49321 1.63540i 0.677378 0.246545i
\(45\) 0 0
\(46\) −2.43918 0.887789i −0.359638 0.130897i
\(47\) 7.71104 5.07163i 1.12477 0.739773i 0.156006 0.987756i \(-0.450138\pi\)
0.968764 + 0.247983i \(0.0797677\pi\)
\(48\) 0 0
\(49\) 3.73300 + 5.01429i 0.533286 + 0.716327i
\(50\) −0.488400 0.321226i −0.0690702 0.0454282i
\(51\) 0 0
\(52\) 2.01218 6.72114i 0.279039 0.932055i
\(53\) −6.60535 + 11.4408i −0.907314 + 1.57151i −0.0895334 + 0.995984i \(0.528538\pi\)
−0.817781 + 0.575530i \(0.804796\pi\)
\(54\) 0 0
\(55\) −3.29697 5.71052i −0.444563 0.770006i
\(56\) −4.22732 + 1.00189i −0.564900 + 0.133884i
\(57\) 0 0
\(58\) 0.560728 0.281608i 0.0736272 0.0369770i
\(59\) 0.370314 0.858484i 0.0482107 0.111765i −0.892409 0.451228i \(-0.850986\pi\)
0.940619 + 0.339463i \(0.110245\pi\)
\(60\) 0 0
\(61\) 0.114814 + 1.97128i 0.0147004 + 0.252397i 0.997650 + 0.0685200i \(0.0218277\pi\)
−0.982949 + 0.183877i \(0.941135\pi\)
\(62\) 0.0693827 + 0.393489i 0.00881161 + 0.0499731i
\(63\) 0 0
\(64\) −1.01524 + 5.75769i −0.126904 + 0.719711i
\(65\) −9.60969 1.12321i −1.19194 0.139317i
\(66\) 0 0
\(67\) −1.71264 5.72061i −0.209232 0.698884i −0.996599 0.0823999i \(-0.973742\pi\)
0.787367 0.616484i \(-0.211444\pi\)
\(68\) −3.63128 0.860629i −0.440357 0.104367i
\(69\) 0 0
\(70\) 1.15813 + 2.68485i 0.138423 + 0.320901i
\(71\) −4.97716 4.17634i −0.590681 0.495640i 0.297754 0.954643i \(-0.403762\pi\)
−0.888435 + 0.459003i \(0.848207\pi\)
\(72\) 0 0
\(73\) −5.04878 + 4.23643i −0.590915 + 0.495837i −0.888511 0.458855i \(-0.848260\pi\)
0.297596 + 0.954692i \(0.403815\pi\)
\(74\) −1.44790 0.727165i −0.168316 0.0845312i
\(75\) 0 0
\(76\) 3.39758 0.397121i 0.389730 0.0455529i
\(77\) −0.530804 + 9.11355i −0.0604907 + 1.03859i
\(78\) 0 0
\(79\) 7.97870 + 8.45693i 0.897674 + 0.951479i 0.999059 0.0433680i \(-0.0138088\pi\)
−0.101385 + 0.994847i \(0.532327\pi\)
\(80\) 9.06806 1.01384
\(81\) 0 0
\(82\) −1.92935 −0.213061
\(83\) 11.7053 + 12.4069i 1.28482 + 1.36183i 0.898195 + 0.439597i \(0.144879\pi\)
0.386628 + 0.922236i \(0.373640\pi\)
\(84\) 0 0
\(85\) −0.299234 + 5.13765i −0.0324565 + 0.557257i
\(86\) −3.06274 + 0.357983i −0.330264 + 0.0386023i
\(87\) 0 0
\(88\) −2.67459 1.34323i −0.285112 0.143189i
\(89\) 3.64757 3.06067i 0.386641 0.324430i −0.428662 0.903465i \(-0.641015\pi\)
0.815303 + 0.579035i \(0.196570\pi\)
\(90\) 0 0
\(91\) 10.2610 + 8.60997i 1.07564 + 0.902570i
\(92\) −6.41685 14.8759i −0.669003 1.55092i
\(93\) 0 0
\(94\) −2.74348 0.650217i −0.282968 0.0670647i
\(95\) −1.35293 4.51909i −0.138807 0.463649i
\(96\) 0 0
\(97\) −9.02241 1.05457i −0.916087 0.107075i −0.355032 0.934854i \(-0.615530\pi\)
−0.561055 + 0.827779i \(0.689604\pi\)
\(98\) 0.331615 1.88068i 0.0334982 0.189978i
\(99\) 0 0
\(100\) −0.633558 3.59309i −0.0633558 0.359309i
\(101\) 0.00860629 + 0.147764i 0.000856358 + 0.0147031i 0.998709 0.0507917i \(-0.0161745\pi\)
−0.997853 + 0.0654948i \(0.979137\pi\)
\(102\) 0 0
\(103\) −5.40424 + 12.5284i −0.532495 + 1.23446i 0.413566 + 0.910474i \(0.364283\pi\)
−0.946061 + 0.323989i \(0.894976\pi\)
\(104\) −3.92435 + 1.97088i −0.384815 + 0.193261i
\(105\) 0 0
\(106\) 3.92694 0.930703i 0.381418 0.0903978i
\(107\) 0.424082 + 0.734532i 0.0409976 + 0.0710098i 0.885796 0.464075i \(-0.153613\pi\)
−0.844799 + 0.535085i \(0.820280\pi\)
\(108\) 0 0
\(109\) −2.42376 + 4.19808i −0.232154 + 0.402103i −0.958442 0.285288i \(-0.907911\pi\)
0.726288 + 0.687391i \(0.241244\pi\)
\(110\) −0.577730 + 1.92975i −0.0550844 + 0.183995i
\(111\) 0 0
\(112\) −10.4890 6.89870i −0.991114 0.651866i
\(113\) −5.46439 7.33995i −0.514046 0.690484i 0.467000 0.884257i \(-0.345335\pi\)
−0.981046 + 0.193773i \(0.937927\pi\)
\(114\) 0 0
\(115\) −18.6661 + 12.2769i −1.74062 + 1.14482i
\(116\) 3.68010 + 1.33945i 0.341689 + 0.124365i
\(117\) 0 0
\(118\) −0.268392 + 0.0976866i −0.0247075 + 0.00899278i
\(119\) 4.25469 5.71504i 0.390027 0.523897i
\(120\) 0 0
\(121\) 3.23281 3.42658i 0.293892 0.311507i
\(122\) 0.413959 0.438771i 0.0374781 0.0397244i
\(123\) 0 0
\(124\) −1.48919 + 2.00033i −0.133734 + 0.179635i
\(125\) 7.62598 2.77563i 0.682089 0.248260i
\(126\) 0 0
\(127\) −0.721881 0.262743i −0.0640566 0.0233147i 0.309793 0.950804i \(-0.399740\pi\)
−0.373850 + 0.927489i \(0.621962\pi\)
\(128\) 7.24114 4.76257i 0.640033 0.420956i
\(129\) 0 0
\(130\) 1.76499 + 2.37079i 0.154800 + 0.207932i
\(131\) 6.76737 + 4.45097i 0.591268 + 0.388883i 0.809592 0.586993i \(-0.199689\pi\)
−0.218324 + 0.975876i \(0.570059\pi\)
\(132\) 0 0
\(133\) −1.87306 + 6.25647i −0.162415 + 0.542505i
\(134\) −0.912112 + 1.57982i −0.0787945 + 0.136476i
\(135\) 0 0
\(136\) 1.16795 + 2.02294i 0.100151 + 0.173466i
\(137\) −8.98007 + 2.12831i −0.767219 + 0.181834i −0.595547 0.803320i \(-0.703065\pi\)
−0.171671 + 0.985154i \(0.554917\pi\)
\(138\) 0 0
\(139\) −8.93500 + 4.48733i −0.757857 + 0.380610i −0.785382 0.619011i \(-0.787534\pi\)
0.0275254 + 0.999621i \(0.491237\pi\)
\(140\) −7.22834 + 16.7572i −0.610907 + 1.41624i
\(141\) 0 0
\(142\) 0.115408 + 1.98148i 0.00968481 + 0.166282i
\(143\) 1.60240 + 9.08765i 0.133999 + 0.759947i
\(144\) 0 0
\(145\) 0.937816 5.31862i 0.0778814 0.441687i
\(146\) 1.99978 + 0.233741i 0.165503 + 0.0193445i
\(147\) 0 0
\(148\) −2.90032 9.68774i −0.238405 0.796327i
\(149\) 1.59949 + 0.379087i 0.131036 + 0.0310560i 0.295610 0.955309i \(-0.404477\pi\)
−0.164575 + 0.986365i \(0.552625\pi\)
\(150\) 0 0
\(151\) −5.90832 13.6970i −0.480812 1.11465i −0.970139 0.242548i \(-0.922017\pi\)
0.489327 0.872100i \(-0.337242\pi\)
\(152\) −1.64020 1.37629i −0.133038 0.111632i
\(153\) 0 0
\(154\) 2.13635 1.79261i 0.172152 0.144453i
\(155\) 3.07322 + 1.54343i 0.246847 + 0.123971i
\(156\) 0 0
\(157\) 0.269384 0.0314865i 0.0214992 0.00251290i −0.105337 0.994437i \(-0.533592\pi\)
0.126836 + 0.991924i \(0.459518\pi\)
\(158\) 0.206520 3.54582i 0.0164299 0.282090i
\(159\) 0 0
\(160\) −6.20789 6.57998i −0.490777 0.520193i
\(161\) 30.9308 2.43769
\(162\) 0 0
\(163\) −1.95301 −0.152972 −0.0764858 0.997071i \(-0.524370\pi\)
−0.0764858 + 0.997071i \(0.524370\pi\)
\(164\) −8.26360 8.75890i −0.645278 0.683955i
\(165\) 0 0
\(166\) 0.302979 5.20195i 0.0235157 0.403750i
\(167\) −7.60986 + 0.889465i −0.588869 + 0.0688289i −0.405309 0.914180i \(-0.632836\pi\)
−0.183560 + 0.983009i \(0.558762\pi\)
\(168\) 0 0
\(169\) 0.482351 + 0.242246i 0.0371039 + 0.0186343i
\(170\) 1.20434 1.01056i 0.0923689 0.0775067i
\(171\) 0 0
\(172\) −14.7432 12.3710i −1.12416 0.943281i
\(173\) 2.39938 + 5.56239i 0.182422 + 0.422901i 0.984748 0.173984i \(-0.0556641\pi\)
−0.802327 + 0.596885i \(0.796405\pi\)
\(174\) 0 0
\(175\) 6.77799 + 1.60641i 0.512368 + 0.121433i
\(176\) −2.48052 8.28550i −0.186976 0.624543i
\(177\) 0 0
\(178\) −1.44477 0.168869i −0.108290 0.0126573i
\(179\) −0.479893 + 2.72161i −0.0358689 + 0.203423i −0.997476 0.0710082i \(-0.977378\pi\)
0.961607 + 0.274431i \(0.0884895\pi\)
\(180\) 0 0
\(181\) 1.53100 + 8.68276i 0.113799 + 0.645384i 0.987338 + 0.158631i \(0.0507080\pi\)
−0.873539 + 0.486754i \(0.838181\pi\)
\(182\) −0.237926 4.08503i −0.0176362 0.302803i
\(183\) 0 0
\(184\) −4.01651 + 9.31131i −0.296101 + 0.686439i
\(185\) −12.4622 + 6.25875i −0.916238 + 0.460152i
\(186\) 0 0
\(187\) 4.77614 1.13197i 0.349266 0.0827775i
\(188\) −8.79872 15.2398i −0.641713 1.11148i
\(189\) 0 0
\(190\) −0.720537 + 1.24801i −0.0522733 + 0.0905400i
\(191\) 0.531278 1.77459i 0.0384419 0.128405i −0.936615 0.350361i \(-0.886059\pi\)
0.975057 + 0.221956i \(0.0712441\pi\)
\(192\) 0 0
\(193\) −0.288860 0.189986i −0.0207926 0.0136755i 0.539070 0.842261i \(-0.318776\pi\)
−0.559863 + 0.828585i \(0.689146\pi\)
\(194\) 1.65712 + 2.22590i 0.118975 + 0.159811i
\(195\) 0 0
\(196\) 9.95831 6.54968i 0.711308 0.467834i
\(197\) −21.2308 7.72738i −1.51263 0.550553i −0.553336 0.832958i \(-0.686646\pi\)
−0.959295 + 0.282405i \(0.908868\pi\)
\(198\) 0 0
\(199\) −13.8558 + 5.04311i −0.982214 + 0.357497i −0.782700 0.622399i \(-0.786158\pi\)
−0.199513 + 0.979895i \(0.563936\pi\)
\(200\) −1.36374 + 1.83182i −0.0964312 + 0.129530i
\(201\) 0 0
\(202\) 0.0310297 0.0328896i 0.00218324 0.00231410i
\(203\) −5.13101 + 5.43855i −0.360126 + 0.381712i
\(204\) 0 0
\(205\) −9.91643 + 13.3201i −0.692593 + 0.930314i
\(206\) 3.91682 1.42561i 0.272898 0.0993267i
\(207\) 0 0
\(208\) −11.9249 4.34031i −0.826844 0.300947i
\(209\) −3.75902 + 2.47234i −0.260017 + 0.171016i
\(210\) 0 0
\(211\) −7.75451 10.4161i −0.533843 0.717075i 0.450611 0.892720i \(-0.351206\pi\)
−0.984453 + 0.175645i \(0.943799\pi\)
\(212\) 21.0447 + 13.8413i 1.44536 + 0.950625i
\(213\) 0 0
\(214\) 0.0743122 0.248220i 0.00507988 0.0169680i
\(215\) −13.2703 + 22.9849i −0.905028 + 1.56755i
\(216\) 0 0
\(217\) −2.38058 4.12329i −0.161604 0.279907i
\(218\) 1.44095 0.341511i 0.0975934 0.0231301i
\(219\) 0 0
\(220\) −11.2352 + 5.64253i −0.757477 + 0.380419i
\(221\) 2.85258 6.61303i 0.191885 0.444840i
\(222\) 0 0
\(223\) 0.862925 + 14.8159i 0.0577858 + 0.992143i 0.895226 + 0.445613i \(0.147014\pi\)
−0.837440 + 0.546530i \(0.815949\pi\)
\(224\) 2.17478 + 12.3338i 0.145309 + 0.824086i
\(225\) 0 0
\(226\) −0.485421 + 2.75296i −0.0322897 + 0.183124i
\(227\) −5.56455 0.650403i −0.369332 0.0431687i −0.0705973 0.997505i \(-0.522491\pi\)
−0.298735 + 0.954336i \(0.596565\pi\)
\(228\) 0 0
\(229\) 5.71315 + 19.0833i 0.377536 + 1.26106i 0.910001 + 0.414605i \(0.136080\pi\)
−0.532466 + 0.846452i \(0.678734\pi\)
\(230\) 6.64112 + 1.57398i 0.437903 + 0.103785i
\(231\) 0 0
\(232\) −0.970920 2.25084i −0.0637440 0.147775i
\(233\) 4.48492 + 3.76330i 0.293817 + 0.246542i 0.777765 0.628555i \(-0.216353\pi\)
−0.483948 + 0.875097i \(0.660798\pi\)
\(234\) 0 0
\(235\) −18.5899 + 15.5988i −1.21267 + 1.01755i
\(236\) −1.59303 0.800048i −0.103697 0.0520787i
\(237\) 0 0
\(238\) −2.16186 + 0.252686i −0.140133 + 0.0163792i
\(239\) 0.867269 14.8904i 0.0560990 0.963182i −0.846416 0.532523i \(-0.821244\pi\)
0.902515 0.430659i \(-0.141719\pi\)
\(240\) 0 0
\(241\) 0.154366 + 0.163618i 0.00994358 + 0.0105396i 0.732326 0.680954i \(-0.238435\pi\)
−0.722383 + 0.691493i \(0.756953\pi\)
\(242\) −1.43913 −0.0925107
\(243\) 0 0
\(244\) 3.76497 0.241027
\(245\) −11.2797 11.9557i −0.720631 0.763824i
\(246\) 0 0
\(247\) −0.383846 + 6.59037i −0.0244235 + 0.419335i
\(248\) 1.55039 0.181215i 0.0984500 0.0115072i
\(249\) 0 0
\(250\) −2.21547 1.11265i −0.140118 0.0703701i
\(251\) −0.0887945 + 0.0745074i −0.00560466 + 0.00470286i −0.645586 0.763688i \(-0.723387\pi\)
0.639981 + 0.768391i \(0.278942\pi\)
\(252\) 0 0
\(253\) 16.3234 + 13.6970i 1.02624 + 0.861120i
\(254\) 0.0929519 + 0.215487i 0.00583232 + 0.0135208i
\(255\) 0 0
\(256\) 8.80153 + 2.08600i 0.550096 + 0.130375i
\(257\) 2.56548 + 8.56931i 0.160030 + 0.534539i 0.999967 0.00814612i \(-0.00259302\pi\)
−0.839936 + 0.542685i \(0.817408\pi\)
\(258\) 0 0
\(259\) 19.1764 + 2.24140i 1.19156 + 0.139274i
\(260\) −3.20334 + 18.1671i −0.198663 + 1.12667i
\(261\) 0 0
\(262\) −0.429681 2.43684i −0.0265458 0.150549i
\(263\) −0.918483 15.7697i −0.0566361 0.972404i −0.900228 0.435419i \(-0.856600\pi\)
0.843592 0.536985i \(-0.180437\pi\)
\(264\) 0 0
\(265\) 13.7581 31.8949i 0.845154 1.95929i
\(266\) 1.78289 0.895400i 0.109316 0.0549005i
\(267\) 0 0
\(268\) −11.0788 + 2.62572i −0.676744 + 0.160391i
\(269\) −12.1223 20.9965i −0.739111 1.28018i −0.952896 0.303298i \(-0.901912\pi\)
0.213784 0.976881i \(-0.431421\pi\)
\(270\) 0 0
\(271\) 7.20041 12.4715i 0.437394 0.757588i −0.560094 0.828429i \(-0.689235\pi\)
0.997488 + 0.0708408i \(0.0225682\pi\)
\(272\) −1.93597 + 6.46657i −0.117385 + 0.392094i
\(273\) 0 0
\(274\) 2.35550 + 1.54924i 0.142301 + 0.0935928i
\(275\) 2.86565 + 3.84924i 0.172805 + 0.232118i
\(276\) 0 0
\(277\) 23.2263 15.2762i 1.39553 0.917858i 0.395535 0.918451i \(-0.370559\pi\)
1.00000 0.000593349i \(0.000188869\pi\)
\(278\) 2.87024 + 1.04468i 0.172145 + 0.0626558i
\(279\) 0 0
\(280\) 10.7342 3.90692i 0.641490 0.233483i
\(281\) −6.08566 + 8.17446i −0.363040 + 0.487648i −0.945687 0.325078i \(-0.894610\pi\)
0.582647 + 0.812725i \(0.302017\pi\)
\(282\) 0 0
\(283\) −19.8426 + 21.0320i −1.17952 + 1.25022i −0.217860 + 0.975980i \(0.569908\pi\)
−0.961661 + 0.274240i \(0.911574\pi\)
\(284\) −8.50123 + 9.01078i −0.504455 + 0.534692i
\(285\) 0 0
\(286\) 1.68339 2.26119i 0.0995412 0.133707i
\(287\) 21.6038 7.86313i 1.27523 0.464146i
\(288\) 0 0
\(289\) 12.3749 + 4.50410i 0.727936 + 0.264947i
\(290\) −1.37843 + 0.906606i −0.0809440 + 0.0532377i
\(291\) 0 0
\(292\) 7.50411 + 10.0798i 0.439145 + 0.589874i
\(293\) −24.7672 16.2897i −1.44692 0.951653i −0.998321 0.0579180i \(-0.981554\pi\)
−0.448596 0.893735i \(-0.648076\pi\)
\(294\) 0 0
\(295\) −0.705053 + 2.35504i −0.0410498 + 0.137116i
\(296\) −3.16489 + 5.48175i −0.183955 + 0.318620i
\(297\) 0 0
\(298\) −0.251082 0.434887i −0.0145448 0.0251923i
\(299\) 30.4229 7.21036i 1.75940 0.416986i
\(300\) 0 0
\(301\) 32.8359 16.4908i 1.89263 0.950514i
\(302\) −1.80493 + 4.18430i −0.103862 + 0.240779i
\(303\) 0 0
\(304\) −0.359762 6.17687i −0.0206337 0.354268i
\(305\) −0.901581 5.11312i −0.0516244 0.292776i
\(306\) 0 0
\(307\) 1.79762 10.1948i 0.102595 0.581848i −0.889558 0.456822i \(-0.848988\pi\)
0.992154 0.125026i \(-0.0399013\pi\)
\(308\) 17.2884 + 2.02072i 0.985095 + 0.115141i
\(309\) 0 0
\(310\) −0.301311 1.00645i −0.0171133 0.0571625i
\(311\) −7.82499 1.85456i −0.443715 0.105162i 0.00268428 0.999996i \(-0.499146\pi\)
−0.446399 + 0.894834i \(0.647294\pi\)
\(312\) 0 0
\(313\) 1.33728 + 3.10017i 0.0755878 + 0.175232i 0.951820 0.306656i \(-0.0992103\pi\)
−0.876232 + 0.481889i \(0.839951\pi\)
\(314\) −0.0634701 0.0532577i −0.00358182 0.00300551i
\(315\) 0 0
\(316\) 16.9819 14.2495i 0.955306 0.801597i
\(317\) 9.93585 + 4.98997i 0.558053 + 0.280265i 0.705387 0.708822i \(-0.250773\pi\)
−0.147335 + 0.989087i \(0.547069\pi\)
\(318\) 0 0
\(319\) −5.11617 + 0.597994i −0.286451 + 0.0334813i
\(320\) 0.893837 15.3466i 0.0499670 0.857900i
\(321\) 0 0
\(322\) −6.48432 6.87297i −0.361357 0.383016i
\(323\) 3.51148 0.195384
\(324\) 0 0
\(325\) 7.04117 0.390574
\(326\) 0.409428 + 0.433969i 0.0226761 + 0.0240353i
\(327\) 0 0
\(328\) −0.438258 + 7.52460i −0.0241987 + 0.415476i
\(329\) 33.3699 3.90038i 1.83974 0.215035i
\(330\) 0 0
\(331\) −18.9468 9.51544i −1.04141 0.523016i −0.155966 0.987762i \(-0.549849\pi\)
−0.885444 + 0.464746i \(0.846145\pi\)
\(332\) 24.9136 20.9050i 1.36731 1.14731i
\(333\) 0 0
\(334\) 1.79297 + 1.50448i 0.0981071 + 0.0823216i
\(335\) 6.21892 + 14.4171i 0.339776 + 0.787689i
\(336\) 0 0
\(337\) −12.8257 3.03974i −0.698658 0.165585i −0.134087 0.990970i \(-0.542810\pi\)
−0.564571 + 0.825384i \(0.690958\pi\)
\(338\) −0.0472916 0.157965i −0.00257233 0.00859217i
\(339\) 0 0
\(340\) 9.74609 + 1.13916i 0.528556 + 0.0617794i
\(341\) 0.569573 3.23021i 0.0308441 0.174926i
\(342\) 0 0
\(343\) −0.473286 2.68414i −0.0255550 0.144930i
\(344\) 0.700447 + 12.0262i 0.0377656 + 0.648410i
\(345\) 0 0
\(346\) 0.732986 1.69925i 0.0394056 0.0913524i
\(347\) 10.3023 5.17399i 0.553055 0.277754i −0.150244 0.988649i \(-0.548006\pi\)
0.703299 + 0.710895i \(0.251710\pi\)
\(348\) 0 0
\(349\) 7.74090 1.83463i 0.414361 0.0982053i −0.0181475 0.999835i \(-0.505777\pi\)
0.432508 + 0.901630i \(0.357629\pi\)
\(350\) −1.06398 1.84287i −0.0568722 0.0985056i
\(351\) 0 0
\(352\) −4.31401 + 7.47208i −0.229937 + 0.398263i
\(353\) −0.766919 + 2.56169i −0.0408190 + 0.136345i −0.975970 0.217904i \(-0.930078\pi\)
0.935151 + 0.354249i \(0.115263\pi\)
\(354\) 0 0
\(355\) 14.2731 + 9.38757i 0.757538 + 0.498241i
\(356\) −5.42145 7.28228i −0.287336 0.385960i
\(357\) 0 0
\(358\) 0.705360 0.463922i 0.0372794 0.0245191i
\(359\) −18.3022 6.66145i −0.965952 0.351578i −0.189589 0.981864i \(-0.560715\pi\)
−0.776363 + 0.630286i \(0.782938\pi\)
\(360\) 0 0
\(361\) 14.8296 5.39752i 0.780504 0.284080i
\(362\) 1.60839 2.16045i 0.0845353 0.113551i
\(363\) 0 0
\(364\) 17.5262 18.5767i 0.918624 0.973684i
\(365\) 11.8921 12.6049i 0.622463 0.659772i
\(366\) 0 0
\(367\) −6.29899 + 8.46101i −0.328805 + 0.441661i −0.935528 0.353251i \(-0.885076\pi\)
0.606724 + 0.794913i \(0.292483\pi\)
\(368\) −27.5367 + 10.0225i −1.43545 + 0.522461i
\(369\) 0 0
\(370\) 4.00329 + 1.45708i 0.208121 + 0.0757499i
\(371\) −40.1786 + 26.4259i −2.08597 + 1.37196i
\(372\) 0 0
\(373\) −11.2482 15.1089i −0.582409 0.782311i 0.409081 0.912498i \(-0.365849\pi\)
−0.991489 + 0.130188i \(0.958442\pi\)
\(374\) −1.25280 0.823977i −0.0647806 0.0426068i
\(375\) 0 0
\(376\) −3.15908 + 10.5521i −0.162917 + 0.544181i
\(377\) −3.77896 + 6.54536i −0.194626 + 0.337103i
\(378\) 0 0
\(379\) 4.33052 + 7.50069i 0.222444 + 0.385285i 0.955550 0.294830i \(-0.0952632\pi\)
−0.733105 + 0.680115i \(0.761930\pi\)
\(380\) −8.75186 + 2.07423i −0.448961 + 0.106406i
\(381\) 0 0
\(382\) −0.505700 + 0.253972i −0.0258739 + 0.0129943i
\(383\) 11.9841 27.7823i 0.612360 1.41961i −0.276313 0.961068i \(-0.589113\pi\)
0.888673 0.458542i \(-0.151628\pi\)
\(384\) 0 0
\(385\) −1.39568 23.9628i −0.0711303 1.22126i
\(386\) 0.0183406 + 0.104015i 0.000933511 + 0.00529420i
\(387\) 0 0
\(388\) −3.00757 + 17.0568i −0.152686 + 0.865928i
\(389\) 16.1739 + 1.89045i 0.820047 + 0.0958498i 0.515763 0.856731i \(-0.327509\pi\)
0.304285 + 0.952581i \(0.401583\pi\)
\(390\) 0 0
\(391\) −4.76975 15.9321i −0.241217 0.805720i
\(392\) −7.25947 1.72053i −0.366659 0.0868997i
\(393\) 0 0
\(394\) 2.73375 + 6.33755i 0.137724 + 0.319281i
\(395\) −23.4185 19.6505i −1.17831 0.988723i
\(396\) 0 0
\(397\) 22.8963 19.2123i 1.14913 0.964236i 0.149433 0.988772i \(-0.452255\pi\)
0.999699 + 0.0245358i \(0.00781077\pi\)
\(398\) 4.02533 + 2.02160i 0.201772 + 0.101334i
\(399\) 0 0
\(400\) −6.55476 + 0.766141i −0.327738 + 0.0383071i
\(401\) −1.81797 + 31.2134i −0.0907852 + 1.55872i 0.578479 + 0.815697i \(0.303646\pi\)
−0.669264 + 0.743024i \(0.733391\pi\)
\(402\) 0 0
\(403\) −3.30268 3.50064i −0.164518 0.174379i
\(404\) 0.282216 0.0140408
\(405\) 0 0
\(406\) 2.28414 0.113360
\(407\) 9.12759 + 9.67468i 0.452438 + 0.479556i
\(408\) 0 0
\(409\) 1.53256 26.3131i 0.0757803 1.30110i −0.719345 0.694653i \(-0.755558\pi\)
0.795125 0.606445i \(-0.207405\pi\)
\(410\) 5.03866 0.588935i 0.248842 0.0290854i
\(411\) 0 0
\(412\) 23.2481 + 11.6756i 1.14535 + 0.575218i
\(413\) 2.60717 2.18768i 0.128291 0.107649i
\(414\) 0 0
\(415\) −34.3566 28.8286i −1.68650 1.41514i
\(416\) 5.01423 + 11.6243i 0.245843 + 0.569928i
\(417\) 0 0
\(418\) 1.33741 + 0.316971i 0.0654147 + 0.0155036i
\(419\) 4.50019 + 15.0317i 0.219849 + 0.734346i 0.994757 + 0.102272i \(0.0326111\pi\)
−0.774908 + 0.632074i \(0.782204\pi\)
\(420\) 0 0
\(421\) 22.6407 + 2.64632i 1.10344 + 0.128974i 0.648255 0.761423i \(-0.275499\pi\)
0.455185 + 0.890397i \(0.349573\pi\)
\(422\) −0.688860 + 3.90672i −0.0335332 + 0.190176i
\(423\) 0 0
\(424\) −2.73779 15.5268i −0.132959 0.754046i
\(425\) −0.217771 3.73898i −0.0105634 0.181367i
\(426\) 0 0
\(427\) −2.84705 + 6.60021i −0.137779 + 0.319407i
\(428\) 1.44516 0.725786i 0.0698544 0.0350822i
\(429\) 0 0
\(430\) 7.88933 1.86981i 0.380457 0.0901701i
\(431\) −17.0699 29.5659i −0.822227 1.42414i −0.904020 0.427490i \(-0.859398\pi\)
0.0817934 0.996649i \(-0.473935\pi\)
\(432\) 0 0
\(433\) −11.6224 + 20.1306i −0.558539 + 0.967417i 0.439080 + 0.898448i \(0.355304\pi\)
−0.997619 + 0.0689692i \(0.978029\pi\)
\(434\) −0.417151 + 1.39338i −0.0200239 + 0.0668845i
\(435\) 0 0
\(436\) 7.72213 + 5.07892i 0.369823 + 0.243236i
\(437\) 9.10315 + 12.2277i 0.435463 + 0.584928i
\(438\) 0 0
\(439\) −5.76713 + 3.79310i −0.275250 + 0.181035i −0.679627 0.733557i \(-0.737859\pi\)
0.404378 + 0.914592i \(0.367488\pi\)
\(440\) 7.39493 + 2.69154i 0.352540 + 0.128314i
\(441\) 0 0
\(442\) −2.06746 + 0.752494i −0.0983391 + 0.0357925i
\(443\) −9.62688 + 12.9311i −0.457387 + 0.614377i −0.969664 0.244443i \(-0.921395\pi\)
0.512277 + 0.858821i \(0.328802\pi\)
\(444\) 0 0
\(445\) −8.59165 + 9.10662i −0.407283 + 0.431695i
\(446\) 3.11125 3.29774i 0.147322 0.156152i
\(447\) 0 0
\(448\) −12.7091 + 17.0713i −0.600449 + 0.806543i
\(449\) −20.7990 + 7.57021i −0.981565 + 0.357261i −0.782449 0.622715i \(-0.786029\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(450\) 0 0
\(451\) 14.8832 + 5.41703i 0.700821 + 0.255078i
\(452\) −14.5770 + 9.58746i −0.685646 + 0.450956i
\(453\) 0 0
\(454\) 1.02203 + 1.37282i 0.0479661 + 0.0644297i
\(455\) −29.4256 19.3535i −1.37949 0.907306i
\(456\) 0 0
\(457\) 7.44649 24.8730i 0.348332 1.16351i −0.586954 0.809620i \(-0.699673\pi\)
0.935287 0.353891i \(-0.115142\pi\)
\(458\) 3.04269 5.27010i 0.142176 0.246255i
\(459\) 0 0
\(460\) 21.2990 + 36.8910i 0.993072 + 1.72005i
\(461\) 2.21895 0.525901i 0.103347 0.0244936i −0.178617 0.983919i \(-0.557162\pi\)
0.281964 + 0.959425i \(0.409014\pi\)
\(462\) 0 0
\(463\) 4.93891 2.48041i 0.229530 0.115275i −0.330318 0.943870i \(-0.607156\pi\)
0.559848 + 0.828595i \(0.310860\pi\)
\(464\) 2.80571 6.50438i 0.130252 0.301958i
\(465\) 0 0
\(466\) −0.103994 1.78551i −0.00481743 0.0827120i
\(467\) 4.62726 + 26.2425i 0.214124 + 1.21436i 0.882420 + 0.470463i \(0.155913\pi\)
−0.668296 + 0.743896i \(0.732976\pi\)
\(468\) 0 0
\(469\) 3.77469 21.4073i 0.174299 0.988498i
\(470\) 7.36331 + 0.860647i 0.339644 + 0.0396987i
\(471\) 0 0
\(472\) 0.320018 + 1.06894i 0.0147300 + 0.0492018i
\(473\) 24.6313 + 5.83774i 1.13255 + 0.268419i
\(474\) 0 0
\(475\) 1.35976 + 3.15227i 0.0623900 + 0.144636i
\(476\) −10.4066 8.73219i −0.476986 0.400239i
\(477\) 0 0
\(478\) −3.49054 + 2.92891i −0.159654 + 0.133965i
\(479\) −17.2897 8.68320i −0.789985 0.396745i 0.00758547 0.999971i \(-0.497585\pi\)
−0.797570 + 0.603226i \(0.793882\pi\)
\(480\) 0 0
\(481\) 19.3840 2.26567i 0.883835 0.103306i
\(482\) 0.00399560 0.0686017i 0.000181994 0.00312472i
\(483\) 0 0
\(484\) −6.16393 6.53338i −0.280178 0.296972i
\(485\) 23.8847 1.08455
\(486\) 0 0
\(487\) −23.9390 −1.08478 −0.542390 0.840127i \(-0.682480\pi\)
−0.542390 + 0.840127i \(0.682480\pi\)
\(488\) −1.61720 1.71414i −0.0732074 0.0775953i
\(489\) 0 0
\(490\) −0.291962 + 5.01279i −0.0131895 + 0.226455i
\(491\) −27.1437 + 3.17264i −1.22498 + 0.143179i −0.703880 0.710319i \(-0.748551\pi\)
−0.521096 + 0.853498i \(0.674477\pi\)
\(492\) 0 0
\(493\) 3.59257 + 1.80426i 0.161801 + 0.0812597i
\(494\) 1.54488 1.29631i 0.0695076 0.0583238i
\(495\) 0 0
\(496\) 3.45543 + 2.89945i 0.155153 + 0.130189i
\(497\) −9.36784 21.7171i −0.420205 0.974145i
\(498\) 0 0
\(499\) −9.28432 2.20042i −0.415623 0.0985045i 0.0174836 0.999847i \(-0.494435\pi\)
−0.433107 + 0.901343i \(0.642583\pi\)
\(500\) −4.43783 14.8234i −0.198466 0.662923i
\(501\) 0 0
\(502\) 0.0351707 + 0.00411087i 0.00156975 + 0.000183477i
\(503\) −6.80145 + 38.5730i −0.303262 + 1.71988i 0.328314 + 0.944569i \(0.393520\pi\)
−0.631575 + 0.775314i \(0.717591\pi\)
\(504\) 0 0
\(505\) −0.0675811 0.383272i −0.00300732 0.0170554i
\(506\) −0.378498 6.49856i −0.0168263 0.288896i
\(507\) 0 0
\(508\) −0.580149 + 1.34494i −0.0257399 + 0.0596719i
\(509\) −0.950909 + 0.477564i −0.0421483 + 0.0211677i −0.469749 0.882800i \(-0.655655\pi\)
0.427600 + 0.903968i \(0.359359\pi\)
\(510\) 0 0
\(511\) −23.3450 + 5.53287i −1.03272 + 0.244760i
\(512\) −10.0486 17.4047i −0.444089 0.769185i
\(513\) 0 0
\(514\) 1.36632 2.36653i 0.0602656 0.104383i
\(515\) 10.2893 34.3687i 0.453401 1.51447i
\(516\) 0 0
\(517\) 19.3378 + 12.7187i 0.850476 + 0.559367i
\(518\) −3.52208 4.73098i −0.154751 0.207867i
\(519\) 0 0
\(520\) 9.64717 6.34504i 0.423056 0.278248i
\(521\) 42.0204 + 15.2942i 1.84095 + 0.670050i 0.989293 + 0.145946i \(0.0466226\pi\)
0.851654 + 0.524104i \(0.175600\pi\)
\(522\) 0 0
\(523\) −27.5645 + 10.0326i −1.20531 + 0.438697i −0.865075 0.501643i \(-0.832729\pi\)
−0.340236 + 0.940340i \(0.610507\pi\)
\(524\) 9.22245 12.3879i 0.402885 0.541168i
\(525\) 0 0
\(526\) −3.31156 + 3.51005i −0.144391 + 0.153046i
\(527\) −1.75676 + 1.86205i −0.0765255 + 0.0811123i
\(528\) 0 0
\(529\) 29.3789 39.4627i 1.27734 1.71577i
\(530\) −9.97144 + 3.62931i −0.433132 + 0.157647i
\(531\) 0 0
\(532\) 11.7012 + 4.25890i 0.507313 + 0.184647i
\(533\) 19.4160 12.7701i 0.841002 0.553136i
\(534\) 0 0
\(535\) −1.33174 1.78884i −0.0575762 0.0773383i
\(536\) 5.95423 + 3.91616i 0.257184 + 0.169152i
\(537\) 0 0
\(538\) −2.12420 + 7.09534i −0.0915810 + 0.305902i
\(539\) −7.83850 + 13.5767i −0.337628 + 0.584789i
\(540\) 0 0
\(541\) −14.0760 24.3804i −0.605176 1.04820i −0.992024 0.126052i \(-0.959769\pi\)
0.386848 0.922144i \(-0.373564\pi\)
\(542\) −4.28072 + 1.01455i −0.183873 + 0.0435786i
\(543\) 0 0
\(544\) 6.01762 3.02216i 0.258004 0.129574i
\(545\) 5.04839 11.7035i 0.216249 0.501322i
\(546\) 0 0
\(547\) −0.295527 5.07399i −0.0126358 0.216948i −0.998715 0.0506736i \(-0.983863\pi\)
0.986079 0.166275i \(-0.0531739\pi\)
\(548\) 3.05558 + 17.3291i 0.130528 + 0.740261i
\(549\) 0 0
\(550\) 0.254566 1.44371i 0.0108547 0.0615602i
\(551\) −3.66008 0.427802i −0.155925 0.0182250i
\(552\) 0 0
\(553\) 12.1386 + 40.5457i 0.516185 + 1.72418i
\(554\) −8.26360 1.95851i −0.351087 0.0832091i
\(555\) 0 0
\(556\) 7.55084 + 17.5048i 0.320227 + 0.742369i
\(557\) 15.3731 + 12.8995i 0.651378 + 0.546571i 0.907489 0.420076i \(-0.137997\pi\)
−0.256111 + 0.966647i \(0.582441\pi\)
\(558\) 0 0
\(559\) 28.4525 23.8745i 1.20341 1.00978i
\(560\) 29.4986 + 14.8148i 1.24655 + 0.626039i
\(561\) 0 0
\(562\) 3.09220 0.361427i 0.130437 0.0152459i
\(563\) −2.00185 + 34.3704i −0.0843677 + 1.44854i 0.644878 + 0.764286i \(0.276908\pi\)
−0.729246 + 0.684252i \(0.760129\pi\)
\(564\) 0 0
\(565\) 16.5112 + 17.5009i 0.694633 + 0.736267i
\(566\) 8.83320 0.371287
\(567\) 0 0
\(568\) 7.75410 0.325355
\(569\) −9.36443 9.92572i −0.392577 0.416108i 0.500695 0.865624i \(-0.333078\pi\)
−0.893272 + 0.449516i \(0.851596\pi\)
\(570\) 0 0
\(571\) −1.27488 + 21.8888i −0.0533519 + 0.916016i 0.860368 + 0.509673i \(0.170233\pi\)
−0.913720 + 0.406344i \(0.866804\pi\)
\(572\) 17.4755 2.04260i 0.730689 0.0854053i
\(573\) 0 0
\(574\) −6.27623 3.15204i −0.261965 0.131564i
\(575\) 12.4553 10.4513i 0.519423 0.435848i
\(576\) 0 0
\(577\) −4.05986 3.40663i −0.169014 0.141820i 0.554357 0.832279i \(-0.312964\pi\)
−0.723371 + 0.690459i \(0.757409\pi\)
\(578\) −1.59344 3.69401i −0.0662783 0.153650i
\(579\) 0 0
\(580\) −10.0198 2.37473i −0.416048 0.0986052i
\(581\) 17.8081 + 59.4833i 0.738805 + 2.46778i
\(582\) 0 0
\(583\) −32.9059 3.84615i −1.36282 0.159291i
\(584\) 1.36586 7.74618i 0.0565197 0.320539i
\(585\) 0 0
\(586\) 1.57255 + 8.91836i 0.0649614 + 0.368414i
\(587\) −0.257492 4.42097i −0.0106278 0.182473i −0.999444 0.0333349i \(-0.989387\pi\)
0.988816 0.149138i \(-0.0476498\pi\)
\(588\) 0 0
\(589\) 0.929409 2.15461i 0.0382956 0.0887793i
\(590\) 0.671109 0.337044i 0.0276291 0.0138759i
\(591\) 0 0
\(592\) −17.7984 + 4.21830i −0.731511 + 0.173371i
\(593\) −1.66347 2.88121i −0.0683104 0.118317i 0.829847 0.557991i \(-0.188428\pi\)
−0.898158 + 0.439673i \(0.855094\pi\)
\(594\) 0 0
\(595\) −9.36697 + 16.2241i −0.384008 + 0.665122i
\(596\) 0.898899 3.00253i 0.0368203 0.122988i
\(597\) 0 0
\(598\) −7.98002 5.24854i −0.326327 0.214629i
\(599\) 6.36334 + 8.54745i 0.259999 + 0.349239i 0.912885 0.408217i \(-0.133849\pi\)
−0.652886 + 0.757456i \(0.726442\pi\)
\(600\) 0 0
\(601\) −4.74246 + 3.11917i −0.193449 + 0.127233i −0.642539 0.766253i \(-0.722119\pi\)
0.449090 + 0.893487i \(0.351748\pi\)
\(602\) −10.5480 3.83917i −0.429906 0.156473i
\(603\) 0 0
\(604\) −26.7266 + 9.72770i −1.08749 + 0.395814i
\(605\) −7.39680 + 9.93562i −0.300722 + 0.403940i
\(606\) 0 0
\(607\) 2.11017 2.23665i 0.0856490 0.0907827i −0.683131 0.730295i \(-0.739382\pi\)
0.768780 + 0.639513i \(0.220864\pi\)
\(608\) −4.23578 + 4.48966i −0.171784 + 0.182080i
\(609\) 0 0
\(610\) −0.947154 + 1.27225i −0.0383491 + 0.0515118i
\(611\) 31.9127 11.6153i 1.29105 0.469904i
\(612\) 0 0
\(613\) −14.0676 5.12017i −0.568184 0.206802i 0.0419236 0.999121i \(-0.486651\pi\)
−0.610107 + 0.792319i \(0.708874\pi\)
\(614\) −2.64219 + 1.73779i −0.106630 + 0.0701316i
\(615\) 0 0
\(616\) −6.50604 8.73912i −0.262136 0.352109i
\(617\) −17.9829 11.8275i −0.723963 0.476158i 0.133275 0.991079i \(-0.457451\pi\)
−0.857237 + 0.514921i \(0.827821\pi\)
\(618\) 0 0
\(619\) −12.0899 + 40.3832i −0.485936 + 1.62314i 0.266050 + 0.963959i \(0.414281\pi\)
−0.751986 + 0.659179i \(0.770904\pi\)
\(620\) 3.27855 5.67862i 0.131670 0.228059i
\(621\) 0 0
\(622\) 1.22834 + 2.12754i 0.0492518 + 0.0853066i
\(623\) 16.8659 3.99730i 0.675720 0.160149i
\(624\) 0 0
\(625\) −27.6187 + 13.8706i −1.10475 + 0.554825i
\(626\) 0.408526 0.947070i 0.0163280 0.0378525i
\(627\) 0 0
\(628\) −0.0300682 0.516250i −0.00119985 0.0206006i
\(629\) −1.80262 10.2232i −0.0718753 0.407625i
\(630\) 0 0
\(631\) −0.662591 + 3.75774i −0.0263773 + 0.149593i −0.995152 0.0983500i \(-0.968644\pi\)
0.968775 + 0.247943i \(0.0797547\pi\)
\(632\) −13.7820 1.61089i −0.548219 0.0640776i
\(633\) 0 0
\(634\) −0.974150 3.25389i −0.0386885 0.129228i
\(635\) 1.96545 + 0.465821i 0.0779967 + 0.0184856i
\(636\) 0 0
\(637\) 9.11080 + 21.1212i 0.360983 + 0.836853i
\(638\) 1.20543 + 1.01148i 0.0477234 + 0.0400447i
\(639\) 0 0
\(640\) −17.4571 + 14.6482i −0.690051 + 0.579022i
\(641\) −41.6396 20.9122i −1.64467 0.825983i −0.998000 0.0632098i \(-0.979866\pi\)
−0.646666 0.762773i \(-0.723837\pi\)
\(642\) 0 0
\(643\) −7.06749 + 0.826071i −0.278714 + 0.0325770i −0.254302 0.967125i \(-0.581846\pi\)
−0.0244127 + 0.999702i \(0.507772\pi\)
\(644\) 3.42909 58.8752i 0.135125 2.32001i
\(645\) 0 0
\(646\) −0.736144 0.780267i −0.0289632 0.0306992i
\(647\) −25.9024 −1.01833 −0.509164 0.860670i \(-0.670045\pi\)
−0.509164 + 0.860670i \(0.670045\pi\)
\(648\) 0 0
\(649\) 2.34467 0.0920363
\(650\) −1.47611 1.56458i −0.0578977 0.0613680i
\(651\) 0 0
\(652\) −0.216517 + 3.71746i −0.00847947 + 0.145587i
\(653\) −25.5536 + 2.98679i −0.999991 + 0.116882i −0.600306 0.799770i \(-0.704955\pi\)
−0.399685 + 0.916653i \(0.630881\pi\)
\(654\) 0 0
\(655\) −19.0322 9.55834i −0.743650 0.373475i
\(656\) −16.6853 + 14.0006i −0.651450 + 0.546631i
\(657\) 0 0
\(658\) −7.86234 6.59728i −0.306506 0.257189i
\(659\) 10.4490 + 24.2234i 0.407034 + 0.943610i 0.991248 + 0.132011i \(0.0421434\pi\)
−0.584215 + 0.811599i \(0.698597\pi\)
\(660\) 0 0
\(661\) −27.2864 6.46701i −1.06132 0.251537i −0.337357 0.941377i \(-0.609533\pi\)
−0.723962 + 0.689839i \(0.757681\pi\)
\(662\) 1.85762 + 6.20489i 0.0721985 + 0.241160i
\(663\) 0 0
\(664\) −20.2191 2.36328i −0.784654 0.0917129i
\(665\) 2.98187 16.9110i 0.115632 0.655782i
\(666\) 0 0
\(667\) 3.03061 + 17.1874i 0.117346 + 0.665499i
\(668\) 0.849398 + 14.5836i 0.0328642 + 0.564257i
\(669\) 0 0
\(670\) 1.89981 4.40427i 0.0733963 0.170152i
\(671\) −4.42525 + 2.22244i −0.170835 + 0.0857964i
\(672\) 0 0
\(673\) −36.1124 + 8.55879i −1.39203 + 0.329917i −0.857174 0.515027i \(-0.827782\pi\)
−0.534855 + 0.844944i \(0.679634\pi\)
\(674\) 2.01332 + 3.48718i 0.0775503 + 0.134321i
\(675\) 0 0
\(676\) 0.514578 0.891275i 0.0197915 0.0342798i
\(677\) −0.454363 + 1.51768i −0.0174626 + 0.0583291i −0.966277 0.257506i \(-0.917099\pi\)
0.948814 + 0.315835i \(0.102285\pi\)
\(678\) 0 0
\(679\) −27.6273 18.1707i −1.06024 0.697329i
\(680\) −3.66770 4.92657i −0.140650 0.188925i
\(681\) 0 0
\(682\) −0.837173 + 0.550617i −0.0320570 + 0.0210842i
\(683\) 2.52567 + 0.919268i 0.0966420 + 0.0351748i 0.389889 0.920862i \(-0.372513\pi\)
−0.293247 + 0.956037i \(0.594736\pi\)
\(684\) 0 0
\(685\) 22.8025 8.29944i 0.871240 0.317105i
\(686\) −0.497209 + 0.667868i −0.0189835 + 0.0254993i
\(687\) 0 0
\(688\) −23.8892 + 25.3211i −0.910767 + 0.965357i
\(689\) −33.3586 + 35.3581i −1.27086 + 1.34704i
\(690\) 0 0
\(691\) 14.4189 19.3680i 0.548522 0.736793i −0.438260 0.898848i \(-0.644405\pi\)
0.986782 + 0.162056i \(0.0518124\pi\)
\(692\) 10.8537 3.95044i 0.412598 0.150173i
\(693\) 0 0
\(694\) −3.30945 1.20454i −0.125625 0.0457237i
\(695\) 21.9647 14.4464i 0.833170 0.547985i
\(696\) 0 0
\(697\) −7.38167 9.91530i −0.279601 0.375569i
\(698\) −2.03046 1.33546i −0.0768541 0.0505477i
\(699\) 0 0
\(700\) 3.80916 12.7235i 0.143973 0.480902i
\(701\) 14.6288 25.3379i 0.552523 0.956998i −0.445568 0.895248i \(-0.646998\pi\)
0.998092 0.0617504i \(-0.0196683\pi\)
\(702\) 0 0
\(703\) 4.75767 + 8.24053i 0.179439 + 0.310798i
\(704\) −14.2667 + 3.38127i −0.537697 + 0.127437i
\(705\) 0 0
\(706\) 0.729996 0.366618i 0.0274738 0.0137978i
\(707\) −0.213411 + 0.494742i −0.00802614 + 0.0186067i
\(708\) 0 0
\(709\) −0.469838 8.06680i −0.0176451 0.302955i −0.995572 0.0940059i \(-0.970033\pi\)
0.977927 0.208949i \(-0.0670043\pi\)
\(710\) −0.906243 5.13956i −0.0340107 0.192884i
\(711\) 0 0
\(712\) −0.986786 + 5.59634i −0.0369814 + 0.209732i
\(713\) −11.0382 1.29019i −0.413386 0.0483178i
\(714\) 0 0
\(715\) −6.95880 23.2440i −0.260244 0.869277i
\(716\) 5.12725 + 1.21518i 0.191614 + 0.0454134i
\(717\) 0 0
\(718\) 2.35665 + 5.46334i 0.0879495 + 0.203890i
\(719\) 24.5961 + 20.6385i 0.917278 + 0.769688i 0.973490 0.228731i \(-0.0734577\pi\)
−0.0562116 + 0.998419i \(0.517902\pi\)
\(720\) 0 0
\(721\) −38.0482 + 31.9263i −1.41699 + 1.18900i
\(722\) −4.30822 2.16367i −0.160335 0.0805235i
\(723\) 0 0
\(724\) 16.6969 1.95159i 0.620537 0.0725303i
\(725\) −0.228532 + 3.92375i −0.00848747 + 0.145724i
\(726\) 0 0
\(727\) −11.1487 11.8170i −0.413484 0.438268i 0.486838 0.873493i \(-0.338150\pi\)
−0.900322 + 0.435225i \(0.856669\pi\)
\(728\) −15.9859 −0.592478
\(729\) 0 0
\(730\) −5.29394 −0.195938
\(731\) −13.5577 14.3704i −0.501451 0.531507i
\(732\) 0 0
\(733\) 0.549456 9.43380i 0.0202946 0.348445i −0.972841 0.231475i \(-0.925645\pi\)
0.993135 0.116970i \(-0.0373182\pi\)
\(734\) 3.20060 0.374096i 0.118136 0.0138081i
\(735\) 0 0
\(736\) 26.1239 + 13.1199i 0.962938 + 0.483606i
\(737\) 11.4718 9.62596i 0.422568 0.354577i
\(738\) 0 0
\(739\) −0.162054 0.135979i −0.00596124 0.00500207i 0.639802 0.768540i \(-0.279016\pi\)
−0.645763 + 0.763538i \(0.723461\pi\)
\(740\) 10.5316 + 24.4150i 0.387150 + 0.897514i
\(741\) 0 0
\(742\) 14.2950 + 3.38797i 0.524785 + 0.124376i
\(743\) −10.9870 36.6993i −0.403076 1.34637i −0.883130 0.469128i \(-0.844568\pi\)
0.480054 0.877239i \(-0.340617\pi\)
\(744\) 0 0
\(745\) −4.29293 0.501772i −0.157281 0.0183835i
\(746\) −0.999215 + 5.66683i −0.0365839 + 0.207477i
\(747\) 0 0
\(748\) −1.62514 9.21664i −0.0594211 0.336994i
\(749\) 0.179523 + 3.08229i 0.00655962 + 0.112624i
\(750\) 0 0
\(751\) 12.8067 29.6894i 0.467325 1.08338i −0.507750 0.861504i \(-0.669523\pi\)
0.975075 0.221876i \(-0.0712180\pi\)
\(752\) −28.4443 + 14.2853i −1.03726 + 0.520930i
\(753\) 0 0
\(754\) 2.24663 0.532461i 0.0818175 0.0193911i
\(755\) 19.6111 + 33.9674i 0.713721 + 1.23620i
\(756\) 0 0
\(757\) 16.7349 28.9858i 0.608242 1.05351i −0.383289 0.923629i \(-0.625209\pi\)
0.991530 0.129877i \(-0.0414581\pi\)
\(758\) 0.758841 2.53471i 0.0275623 0.0920646i
\(759\) 0 0
\(760\) 4.70364 + 3.09363i 0.170619 + 0.112218i
\(761\) 1.07825 + 1.44834i 0.0390865 + 0.0525023i 0.821237 0.570588i \(-0.193284\pi\)
−0.782150 + 0.623090i \(0.785877\pi\)
\(762\) 0 0
\(763\) −14.7431 + 9.69669i −0.533736 + 0.351044i
\(764\) −3.31895 1.20800i −0.120075 0.0437038i
\(765\) 0 0
\(766\) −8.68571 + 3.16134i −0.313827 + 0.114224i
\(767\) 2.05439 2.75952i 0.0741797 0.0996406i
\(768\) 0 0
\(769\) 23.3103 24.7075i 0.840593 0.890976i −0.154693 0.987963i \(-0.549439\pi\)
0.995286 + 0.0969864i \(0.0309203\pi\)
\(770\) −5.03207 + 5.33369i −0.181343 + 0.192213i
\(771\) 0 0
\(772\) −0.393653 + 0.528767i −0.0141679 + 0.0190308i
\(773\) 0.0917313 0.0333874i 0.00329934 0.00120086i −0.340370 0.940292i \(-0.610552\pi\)
0.343669 + 0.939091i \(0.388330\pi\)
\(774\) 0 0
\(775\) −2.35185 0.856003i −0.0844809 0.0307485i
\(776\) 9.05759 5.95727i 0.325149 0.213854i
\(777\) 0 0
\(778\) −2.97061 3.99023i −0.106502 0.143057i
\(779\) 9.46662 + 6.22630i 0.339177 + 0.223080i
\(780\) 0 0
\(781\) 4.67311 15.6093i 0.167217 0.558544i
\(782\) −2.54026 + 4.39986i −0.0908395 + 0.157339i