Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.g (of order \(27\), degree \(18\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{27})\) |
Twist minimal: | no (minimal twist has level 81) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −2.23053 | + | 1.46704i | 0 | 2.03089 | − | 4.70814i | −1.73981 | + | 1.84410i | 0 | −0.507474 | − | 0.0593153i | 1.44988 | + | 8.22270i | 0 | 1.17534 | − | 6.66569i | ||||||
28.2 | −1.76769 | + | 1.16263i | 0 | 0.980860 | − | 2.27389i | 2.67150 | − | 2.83162i | 0 | 3.31264 | + | 0.387192i | 0.175036 | + | 0.992677i | 0 | −1.43025 | + | 8.11138i | ||||||
28.3 | −1.00769 | + | 0.662771i | 0 | −0.215977 | + | 0.500690i | −2.69736 | + | 2.85904i | 0 | −1.84676 | − | 0.215855i | −0.533084 | − | 3.02327i | 0 | 0.823230 | − | 4.66877i | ||||||
28.4 | −0.652974 | + | 0.429468i | 0 | −0.550227 | + | 1.27557i | −1.01614 | + | 1.07704i | 0 | 3.77556 | + | 0.441300i | −0.459961 | − | 2.60857i | 0 | 0.200956 | − | 1.13968i | ||||||
28.5 | −0.474230 | + | 0.311906i | 0 | −0.664551 | + | 1.54060i | 1.99266 | − | 2.11209i | 0 | −3.10865 | − | 0.363349i | −0.362501 | − | 2.05585i | 0 | −0.286203 | + | 1.62314i | ||||||
28.6 | 0.695972 | − | 0.457748i | 0 | −0.517316 | + | 1.19927i | −0.827713 | + | 0.877324i | 0 | 1.30600 | + | 0.152650i | 0.478230 | + | 2.71217i | 0 | −0.174471 | + | 0.989477i | ||||||
28.7 | 1.29056 | − | 0.848814i | 0 | 0.152898 | − | 0.354458i | −0.349244 | + | 0.370177i | 0 | −3.96148 | − | 0.463031i | 0.432916 | + | 2.45519i | 0 | −0.136509 | + | 0.774179i | ||||||
28.8 | 1.81786 | − | 1.19562i | 0 | 1.08293 | − | 2.51052i | 0.443651 | − | 0.470242i | 0 | 1.81697 | + | 0.212373i | −0.277373 | − | 1.57306i | 0 | 0.244261 | − | 1.38527i | ||||||
55.1 | −1.03275 | + | 2.39419i | 0 | −3.29308 | − | 3.49047i | 0.0188451 | + | 0.323558i | 0 | −3.75109 | − | 0.889024i | 6.85740 | − | 2.49589i | 0 | −0.794122 | − | 0.289037i | ||||||
55.2 | −0.614147 | + | 1.42375i | 0 | −0.277410 | − | 0.294037i | 0.184768 | + | 3.17234i | 0 | 0.284960 | + | 0.0675368i | −2.32510 | + | 0.846267i | 0 | −4.63010 | − | 1.68522i | ||||||
55.3 | −0.311913 | + | 0.723096i | 0 | 0.946905 | + | 1.00366i | −0.161980 | − | 2.78108i | 0 | 4.84803 | + | 1.14900i | −2.50111 | + | 0.910331i | 0 | 2.06152 | + | 0.750330i | ||||||
55.4 | 0.0800459 | − | 0.185567i | 0 | 1.34446 | + | 1.42504i | 0.0529885 | + | 0.909778i | 0 | 0.159621 | + | 0.0378310i | 0.751874 | − | 0.273660i | 0 | 0.173067 | + | 0.0629911i | ||||||
55.5 | 0.314515 | − | 0.729128i | 0 | 0.939775 | + | 0.996103i | −0.127484 | − | 2.18881i | 0 | −3.45959 | − | 0.819939i | 2.51422 | − | 0.915103i | 0 | −1.63602 | − | 0.595462i | ||||||
55.6 | 0.588281 | − | 1.36379i | 0 | −0.141360 | − | 0.149832i | 0.0932044 | + | 1.60026i | 0 | −1.85061 | − | 0.438602i | 2.50387 | − | 0.911335i | 0 | 2.23724 | + | 0.814290i | ||||||
55.7 | 0.880274 | − | 2.04070i | 0 | −2.01711 | − | 2.13801i | −0.171269 | − | 2.94057i | 0 | 2.87602 | + | 0.681629i | −1.96178 | + | 0.714030i | 0 | −6.15160 | − | 2.23900i | ||||||
55.8 | 0.964822 | − | 2.23671i | 0 | −2.69950 | − | 2.86130i | 0.171598 | + | 2.94623i | 0 | 2.22815 | + | 0.528081i | −4.42639 | + | 1.61107i | 0 | 6.75541 | + | 2.45877i | ||||||
109.1 | −1.82254 | − | 1.93178i | 0 | −0.293829 | + | 5.04485i | −2.82892 | + | 0.330653i | 0 | 1.70942 | + | 0.858501i | 6.21207 | − | 5.21255i | 0 | 5.79455 | + | 4.86220i | ||||||
109.2 | −1.40463 | − | 1.48883i | 0 | −0.127314 | + | 2.18589i | 0.0206552 | − | 0.00241424i | 0 | −1.34442 | − | 0.675193i | 0.297287 | − | 0.249453i | 0 | −0.0326074 | − | 0.0273608i | ||||||
109.3 | −1.01387 | − | 1.07464i | 0 | −0.0106282 | + | 0.182479i | 2.58446 | − | 0.302080i | 0 | −0.442742 | − | 0.222353i | −2.05667 | + | 1.72575i | 0 | −2.94494 | − | 2.47110i | ||||||
109.4 | −0.209640 | − | 0.222205i | 0 | 0.110863 | − | 1.90345i | −2.61158 | + | 0.305250i | 0 | 3.25303 | + | 1.63373i | −0.914234 | + | 0.767134i | 0 | 0.615319 | + | 0.516314i | ||||||
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.g.b | 144 | |
3.b | odd | 2 | 1 | 729.2.g.c | 144 | ||
9.c | even | 3 | 1 | 243.2.g.a | 144 | ||
9.c | even | 3 | 1 | 729.2.g.a | 144 | ||
9.d | odd | 6 | 1 | 81.2.g.a | ✓ | 144 | |
9.d | odd | 6 | 1 | 729.2.g.d | 144 | ||
81.g | even | 27 | 1 | 243.2.g.a | 144 | ||
81.g | even | 27 | 1 | 729.2.g.a | 144 | ||
81.g | even | 27 | 1 | inner | 729.2.g.b | 144 | |
81.g | even | 27 | 1 | 6561.2.a.d | 72 | ||
81.h | odd | 54 | 1 | 81.2.g.a | ✓ | 144 | |
81.h | odd | 54 | 1 | 729.2.g.c | 144 | ||
81.h | odd | 54 | 1 | 729.2.g.d | 144 | ||
81.h | odd | 54 | 1 | 6561.2.a.c | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
81.2.g.a | ✓ | 144 | 9.d | odd | 6 | 1 | |
81.2.g.a | ✓ | 144 | 81.h | odd | 54 | 1 | |
243.2.g.a | 144 | 9.c | even | 3 | 1 | ||
243.2.g.a | 144 | 81.g | even | 27 | 1 | ||
729.2.g.a | 144 | 9.c | even | 3 | 1 | ||
729.2.g.a | 144 | 81.g | even | 27 | 1 | ||
729.2.g.b | 144 | 1.a | even | 1 | 1 | trivial | |
729.2.g.b | 144 | 81.g | even | 27 | 1 | inner | |
729.2.g.c | 144 | 3.b | odd | 2 | 1 | ||
729.2.g.c | 144 | 81.h | odd | 54 | 1 | ||
729.2.g.d | 144 | 9.d | odd | 6 | 1 | ||
729.2.g.d | 144 | 81.h | odd | 54 | 1 | ||
6561.2.a.c | 72 | 81.h | odd | 54 | 1 | ||
6561.2.a.d | 72 | 81.g | even | 27 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{144} + 9 T_{2}^{143} + 36 T_{2}^{142} + 75 T_{2}^{141} + 45 T_{2}^{140} - 144 T_{2}^{139} + \cdots + 13966276041 \) acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).