[N,k,chi] = [729,2,Mod(28,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([44]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.28");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{144} + 9 T_{2}^{143} + 36 T_{2}^{142} + 75 T_{2}^{141} + 45 T_{2}^{140} - 144 T_{2}^{139} - 141 T_{2}^{138} + 1413 T_{2}^{137} + 5841 T_{2}^{136} + 12471 T_{2}^{135} + 24705 T_{2}^{134} + 71928 T_{2}^{133} + 222291 T_{2}^{132} + \cdots + 13966276041 \)
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).