Properties

Label 729.2.g.a.703.8
Level $729$
Weight $2$
Character 729.703
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 703.8
Character \(\chi\) \(=\) 729.703
Dual form 729.2.g.a.28.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.76633 + 1.16173i) q^{2} +(0.978129 + 2.26756i) q^{4} +(2.05186 + 2.17484i) q^{5} +(3.48897 - 0.407803i) q^{7} +(-0.172370 + 0.977557i) q^{8} +O(q^{10})\) \(q+(1.76633 + 1.16173i) q^{2} +(0.978129 + 2.26756i) q^{4} +(2.05186 + 2.17484i) q^{5} +(3.48897 - 0.407803i) q^{7} +(-0.172370 + 0.977557i) q^{8} +(1.09767 + 6.22518i) q^{10} +(-0.562324 - 1.87829i) q^{11} +(-0.0969288 - 1.66420i) q^{13} +(6.63642 + 3.33294i) q^{14} +(1.94926 - 2.06610i) q^{16} +(-3.65626 - 1.33077i) q^{17} +(-0.0155726 + 0.00566795i) q^{19} +(-2.92460 + 6.77998i) q^{20} +(1.18882 - 3.97095i) q^{22} +(-7.67257 - 0.896795i) q^{23} +(-0.229093 + 3.93338i) q^{25} +(1.76215 - 3.05213i) q^{26} +(4.33738 + 7.51257i) q^{28} +(-4.12997 + 2.07415i) q^{29} +(-6.12985 + 8.23381i) q^{31} +(7.77505 - 1.84272i) q^{32} +(-4.91215 - 6.59816i) q^{34} +(8.04578 + 6.75121i) q^{35} +(5.48325 - 4.60100i) q^{37} +(-0.0340908 - 0.00807968i) q^{38} +(-2.47971 + 1.63093i) q^{40} +(-4.72613 + 3.10842i) q^{41} +(-4.44056 - 1.05243i) q^{43} +(3.70912 - 3.11232i) q^{44} +(-12.5104 - 10.4975i) q^{46} +(1.71778 + 2.30738i) q^{47} +(5.19533 - 1.23132i) q^{49} +(-4.97418 + 6.68148i) q^{50} +(3.67887 - 1.84760i) q^{52} +(1.40413 + 2.43202i) q^{53} +(2.93118 - 5.07695i) q^{55} +(-0.202743 + 3.48096i) q^{56} +(-9.70447 - 1.13429i) q^{58} +(-1.42165 + 4.74864i) q^{59} +(3.71633 - 8.61543i) q^{61} +(-20.3928 + 7.42236i) q^{62} +(10.5356 + 3.83466i) q^{64} +(3.42049 - 3.62551i) q^{65} +(-4.00634 - 2.01206i) q^{67} +(-0.558696 - 9.59244i) q^{68} +(6.36838 + 21.2719i) q^{70} +(1.33743 + 7.58494i) q^{71} +(-0.696188 + 3.94828i) q^{73} +(15.0303 - 1.75679i) q^{74} +(-0.0280844 - 0.0297677i) q^{76} +(-2.72791 - 6.32400i) q^{77} +(-6.81054 - 4.47936i) q^{79} +8.49305 q^{80} -11.9590 q^{82} +(4.30784 + 2.83331i) q^{83} +(-4.60790 - 10.6823i) q^{85} +(-6.62083 - 7.01767i) q^{86} +(1.93307 - 0.225943i) q^{88} +(-0.829745 + 4.70572i) q^{89} +(-1.01685 - 5.76683i) q^{91} +(-5.47123 - 18.2752i) q^{92} +(0.353607 + 6.07119i) q^{94} +(-0.0442795 - 0.0222380i) q^{95} +(7.98151 - 8.45991i) q^{97} +(10.6071 + 3.86067i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.76633 + 1.16173i 1.24898 + 0.821468i 0.989535 0.144290i \(-0.0460898\pi\)
0.259446 + 0.965758i \(0.416460\pi\)
\(3\) 0 0
\(4\) 0.978129 + 2.26756i 0.489065 + 1.13378i
\(5\) 2.05186 + 2.17484i 0.917618 + 0.972618i 0.999712 0.0240065i \(-0.00764223\pi\)
−0.0820939 + 0.996625i \(0.526161\pi\)
\(6\) 0 0
\(7\) 3.48897 0.407803i 1.31871 0.154135i 0.572532 0.819883i \(-0.305961\pi\)
0.746177 + 0.665748i \(0.231887\pi\)
\(8\) −0.172370 + 0.977557i −0.0609419 + 0.345618i
\(9\) 0 0
\(10\) 1.09767 + 6.22518i 0.347113 + 1.96858i
\(11\) −0.562324 1.87829i −0.169547 0.566327i −0.999958 0.00917522i \(-0.997079\pi\)
0.830411 0.557152i \(-0.188106\pi\)
\(12\) 0 0
\(13\) −0.0969288 1.66420i −0.0268832 0.461567i −0.984708 0.174214i \(-0.944262\pi\)
0.957825 0.287353i \(-0.0927754\pi\)
\(14\) 6.63642 + 3.33294i 1.77366 + 0.890765i
\(15\) 0 0
\(16\) 1.94926 2.06610i 0.487316 0.516525i
\(17\) −3.65626 1.33077i −0.886772 0.322759i −0.141833 0.989891i \(-0.545300\pi\)
−0.744940 + 0.667132i \(0.767522\pi\)
\(18\) 0 0
\(19\) −0.0155726 + 0.00566795i −0.00357259 + 0.00130032i −0.343806 0.939041i \(-0.611716\pi\)
0.340233 + 0.940341i \(0.389494\pi\)
\(20\) −2.92460 + 6.77998i −0.653960 + 1.51605i
\(21\) 0 0
\(22\) 1.18882 3.97095i 0.253458 0.846609i
\(23\) −7.67257 0.896795i −1.59984 0.186995i −0.731103 0.682267i \(-0.760994\pi\)
−0.868738 + 0.495272i \(0.835068\pi\)
\(24\) 0 0
\(25\) −0.229093 + 3.93338i −0.0458186 + 0.786675i
\(26\) 1.76215 3.05213i 0.345586 0.598572i
\(27\) 0 0
\(28\) 4.33738 + 7.51257i 0.819689 + 1.41974i
\(29\) −4.12997 + 2.07415i −0.766916 + 0.385159i −0.788839 0.614600i \(-0.789317\pi\)
0.0219232 + 0.999760i \(0.493021\pi\)
\(30\) 0 0
\(31\) −6.12985 + 8.23381i −1.10095 + 1.47884i −0.239571 + 0.970879i \(0.577007\pi\)
−0.861382 + 0.507957i \(0.830401\pi\)
\(32\) 7.77505 1.84272i 1.37445 0.325750i
\(33\) 0 0
\(34\) −4.91215 6.59816i −0.842426 1.13157i
\(35\) 8.04578 + 6.75121i 1.35998 + 1.14116i
\(36\) 0 0
\(37\) 5.48325 4.60100i 0.901441 0.756399i −0.0690302 0.997615i \(-0.521990\pi\)
0.970472 + 0.241215i \(0.0775460\pi\)
\(38\) −0.0340908 0.00807968i −0.00553026 0.00131070i
\(39\) 0 0
\(40\) −2.47971 + 1.63093i −0.392076 + 0.257873i
\(41\) −4.72613 + 3.10842i −0.738097 + 0.485454i −0.862043 0.506835i \(-0.830815\pi\)
0.123946 + 0.992289i \(0.460445\pi\)
\(42\) 0 0
\(43\) −4.44056 1.05243i −0.677179 0.160494i −0.122386 0.992483i \(-0.539054\pi\)
−0.554793 + 0.831988i \(0.687203\pi\)
\(44\) 3.70912 3.11232i 0.559170 0.469199i
\(45\) 0 0
\(46\) −12.5104 10.4975i −1.84456 1.54777i
\(47\) 1.71778 + 2.30738i 0.250564 + 0.336566i 0.909554 0.415586i \(-0.136423\pi\)
−0.658990 + 0.752152i \(0.729016\pi\)
\(48\) 0 0
\(49\) 5.19533 1.23132i 0.742190 0.175902i
\(50\) −4.97418 + 6.68148i −0.703455 + 0.944904i
\(51\) 0 0
\(52\) 3.67887 1.84760i 0.510167 0.256216i
\(53\) 1.40413 + 2.43202i 0.192872 + 0.334063i 0.946201 0.323580i \(-0.104887\pi\)
−0.753329 + 0.657644i \(0.771553\pi\)
\(54\) 0 0
\(55\) 2.93118 5.07695i 0.395240 0.684576i
\(56\) −0.202743 + 3.48096i −0.0270927 + 0.465163i
\(57\) 0 0
\(58\) −9.70447 1.13429i −1.27426 0.148940i
\(59\) −1.42165 + 4.74864i −0.185083 + 0.618221i 0.814208 + 0.580573i \(0.197172\pi\)
−0.999291 + 0.0376473i \(0.988014\pi\)
\(60\) 0 0
\(61\) 3.71633 8.61543i 0.475828 1.10309i −0.496196 0.868211i \(-0.665270\pi\)
0.972024 0.234882i \(-0.0754705\pi\)
\(62\) −20.3928 + 7.42236i −2.58989 + 0.942641i
\(63\) 0 0
\(64\) 10.5356 + 3.83466i 1.31695 + 0.479332i
\(65\) 3.42049 3.62551i 0.424260 0.449689i
\(66\) 0 0
\(67\) −4.00634 2.01206i −0.489453 0.245812i 0.186916 0.982376i \(-0.440151\pi\)
−0.676368 + 0.736564i \(0.736447\pi\)
\(68\) −0.558696 9.59244i −0.0677518 1.16325i
\(69\) 0 0
\(70\) 6.36838 + 21.2719i 0.761167 + 2.54247i
\(71\) 1.33743 + 7.58494i 0.158724 + 0.900166i 0.955302 + 0.295631i \(0.0955300\pi\)
−0.796578 + 0.604535i \(0.793359\pi\)
\(72\) 0 0
\(73\) −0.696188 + 3.94828i −0.0814827 + 0.462111i 0.916578 + 0.399857i \(0.130940\pi\)
−0.998060 + 0.0622545i \(0.980171\pi\)
\(74\) 15.0303 1.75679i 1.74724 0.204223i
\(75\) 0 0
\(76\) −0.0280844 0.0297677i −0.00322150 0.00341459i
\(77\) −2.72791 6.32400i −0.310874 0.720687i
\(78\) 0 0
\(79\) −6.81054 4.47936i −0.766245 0.503967i 0.105205 0.994451i \(-0.466450\pi\)
−0.871451 + 0.490483i \(0.836820\pi\)
\(80\) 8.49305 0.949552
\(81\) 0 0
\(82\) −11.9590 −1.32065
\(83\) 4.30784 + 2.83331i 0.472846 + 0.310996i 0.763472 0.645841i \(-0.223493\pi\)
−0.290626 + 0.956837i \(0.593863\pi\)
\(84\) 0 0
\(85\) −4.60790 10.6823i −0.499797 1.15866i
\(86\) −6.62083 7.01767i −0.713943 0.756735i
\(87\) 0 0
\(88\) 1.93307 0.225943i 0.206066 0.0240856i
\(89\) −0.829745 + 4.70572i −0.0879528 + 0.498805i 0.908727 + 0.417390i \(0.137055\pi\)
−0.996680 + 0.0814153i \(0.974056\pi\)
\(90\) 0 0
\(91\) −1.01685 5.76683i −0.106595 0.604528i
\(92\) −5.47123 18.2752i −0.570415 1.90532i
\(93\) 0 0
\(94\) 0.353607 + 6.07119i 0.0364717 + 0.626196i
\(95\) −0.0442795 0.0222380i −0.00454298 0.00228157i
\(96\) 0 0
\(97\) 7.98151 8.45991i 0.810400 0.858974i −0.181838 0.983329i \(-0.558205\pi\)
0.992238 + 0.124355i \(0.0396861\pi\)
\(98\) 10.6071 + 3.86067i 1.07148 + 0.389986i
\(99\) 0 0
\(100\) −9.14325 + 3.32787i −0.914325 + 0.332787i
\(101\) −1.13250 + 2.62543i −0.112688 + 0.261240i −0.965222 0.261431i \(-0.915805\pi\)
0.852534 + 0.522672i \(0.175065\pi\)
\(102\) 0 0
\(103\) 0.820517 2.74072i 0.0808479 0.270051i −0.908002 0.418966i \(-0.862393\pi\)
0.988850 + 0.148915i \(0.0475780\pi\)
\(104\) 1.64356 + 0.192105i 0.161164 + 0.0188374i
\(105\) 0 0
\(106\) −0.345206 + 5.92695i −0.0335293 + 0.575676i
\(107\) 7.89300 13.6711i 0.763045 1.32163i −0.178229 0.983989i \(-0.557037\pi\)
0.941274 0.337644i \(-0.109630\pi\)
\(108\) 0 0
\(109\) 0.145393 + 0.251828i 0.0139261 + 0.0241207i 0.872904 0.487891i \(-0.162234\pi\)
−0.858978 + 0.512012i \(0.828900\pi\)
\(110\) 11.0755 5.56231i 1.05600 0.530346i
\(111\) 0 0
\(112\) 5.95837 8.00349i 0.563013 0.756258i
\(113\) 3.14646 0.745724i 0.295994 0.0701518i −0.0799359 0.996800i \(-0.525472\pi\)
0.375930 + 0.926648i \(0.377323\pi\)
\(114\) 0 0
\(115\) −13.7926 18.5267i −1.28617 1.72762i
\(116\) −8.74289 7.33616i −0.811757 0.681145i
\(117\) 0 0
\(118\) −8.02774 + 6.73608i −0.739014 + 0.620106i
\(119\) −13.2993 3.15199i −1.21914 0.288942i
\(120\) 0 0
\(121\) 5.97859 3.93218i 0.543508 0.357471i
\(122\) 16.5731 10.9003i 1.50046 0.986865i
\(123\) 0 0
\(124\) −24.6664 5.84605i −2.21511 0.524991i
\(125\) 2.42779 2.03716i 0.217149 0.182209i
\(126\) 0 0
\(127\) 10.0576 + 8.43933i 0.892468 + 0.748870i 0.968704 0.248220i \(-0.0798457\pi\)
−0.0762356 + 0.997090i \(0.524290\pi\)
\(128\) 4.61142 + 6.19421i 0.407596 + 0.547496i
\(129\) 0 0
\(130\) 10.2536 2.43014i 0.899297 0.213137i
\(131\) 0.000192729 0 0.000258880i 1.68388e−5 0 2.26184e-5i −0.802115 0.597170i \(-0.796292\pi\)
0.802132 + 0.597147i \(0.203699\pi\)
\(132\) 0 0
\(133\) −0.0520209 + 0.0261259i −0.00451078 + 0.00226540i
\(134\) −4.73903 8.20825i −0.409390 0.709085i
\(135\) 0 0
\(136\) 1.93113 3.34481i 0.165593 0.286815i
\(137\) 0.749748 12.8727i 0.0640553 1.09979i −0.801181 0.598422i \(-0.795794\pi\)
0.865236 0.501365i \(-0.167168\pi\)
\(138\) 0 0
\(139\) −0.637020 0.0744569i −0.0540313 0.00631535i 0.0890343 0.996029i \(-0.471622\pi\)
−0.143066 + 0.989713i \(0.545696\pi\)
\(140\) −7.43895 + 24.8478i −0.628706 + 2.10003i
\(141\) 0 0
\(142\) −6.44932 + 14.9512i −0.541215 + 1.25468i
\(143\) −3.07136 + 1.11788i −0.256840 + 0.0934820i
\(144\) 0 0
\(145\) −12.9850 4.72617i −1.07835 0.392487i
\(146\) −5.81653 + 6.16517i −0.481380 + 0.510233i
\(147\) 0 0
\(148\) 15.7964 + 7.93323i 1.29845 + 0.652108i
\(149\) 0.751391 + 12.9009i 0.0615563 + 1.05688i 0.877755 + 0.479110i \(0.159041\pi\)
−0.816199 + 0.577772i \(0.803922\pi\)
\(150\) 0 0
\(151\) 4.81347 + 16.0781i 0.391714 + 1.30842i 0.895682 + 0.444695i \(0.146688\pi\)
−0.503968 + 0.863722i \(0.668127\pi\)
\(152\) −0.00285650 0.0162000i −0.000231693 0.00131400i
\(153\) 0 0
\(154\) 2.52841 14.3393i 0.203745 1.15550i
\(155\) −30.4848 + 3.56316i −2.44860 + 0.286200i
\(156\) 0 0
\(157\) 5.90236 + 6.25613i 0.471059 + 0.499294i 0.918720 0.394910i \(-0.129224\pi\)
−0.447660 + 0.894204i \(0.647743\pi\)
\(158\) −6.82582 15.8240i −0.543033 1.25889i
\(159\) 0 0
\(160\) 19.9609 + 13.1285i 1.57805 + 1.03790i
\(161\) −27.1351 −2.13855
\(162\) 0 0
\(163\) 0.674482 0.0528295 0.0264148 0.999651i \(-0.491591\pi\)
0.0264148 + 0.999651i \(0.491591\pi\)
\(164\) −11.6713 7.67634i −0.911376 0.599421i
\(165\) 0 0
\(166\) 4.31750 + 10.0091i 0.335103 + 0.776856i
\(167\) −11.0620 11.7251i −0.856004 0.907312i 0.140565 0.990071i \(-0.455108\pi\)
−0.996570 + 0.0827597i \(0.973627\pi\)
\(168\) 0 0
\(169\) 10.1519 1.18659i 0.780917 0.0912761i
\(170\) 4.27092 24.2216i 0.327565 1.85771i
\(171\) 0 0
\(172\) −1.95699 11.0986i −0.149219 0.846263i
\(173\) 4.62618 + 15.4525i 0.351722 + 1.17483i 0.932621 + 0.360858i \(0.117516\pi\)
−0.580898 + 0.813976i \(0.697299\pi\)
\(174\) 0 0
\(175\) 0.804742 + 13.8169i 0.0608327 + 1.04446i
\(176\) −4.97686 2.49947i −0.375145 0.188405i
\(177\) 0 0
\(178\) −6.93238 + 7.34790i −0.519604 + 0.550748i
\(179\) −7.45990 2.71518i −0.557579 0.202942i 0.0478318 0.998855i \(-0.484769\pi\)
−0.605411 + 0.795913i \(0.706991\pi\)
\(180\) 0 0
\(181\) 13.0001 4.73166i 0.966292 0.351702i 0.189796 0.981824i \(-0.439217\pi\)
0.776496 + 0.630122i \(0.216995\pi\)
\(182\) 4.90342 11.3674i 0.363466 0.842609i
\(183\) 0 0
\(184\) 2.19919 7.34579i 0.162126 0.541539i
\(185\) 21.2573 + 2.48462i 1.56287 + 0.182673i
\(186\) 0 0
\(187\) −0.443573 + 7.61585i −0.0324372 + 0.556926i
\(188\) −3.55191 + 6.15209i −0.259050 + 0.448687i
\(189\) 0 0
\(190\) −0.0523775 0.0907205i −0.00379986 0.00658155i
\(191\) 12.8453 6.45115i 0.929453 0.466789i 0.0813890 0.996682i \(-0.474064\pi\)
0.848064 + 0.529893i \(0.177768\pi\)
\(192\) 0 0
\(193\) −2.49845 + 3.35600i −0.179842 + 0.241570i −0.882898 0.469564i \(-0.844411\pi\)
0.703056 + 0.711135i \(0.251818\pi\)
\(194\) 23.9261 5.67059i 1.71779 0.407125i
\(195\) 0 0
\(196\) 7.87378 + 10.5763i 0.562413 + 0.755452i
\(197\) 0.181162 + 0.152013i 0.0129073 + 0.0108305i 0.649218 0.760602i \(-0.275096\pi\)
−0.636311 + 0.771432i \(0.719541\pi\)
\(198\) 0 0
\(199\) 19.9860 16.7702i 1.41677 1.18881i 0.463726 0.885979i \(-0.346512\pi\)
0.953044 0.302832i \(-0.0979322\pi\)
\(200\) −3.80561 0.901946i −0.269097 0.0637772i
\(201\) 0 0
\(202\) −5.05042 + 3.32171i −0.355346 + 0.233715i
\(203\) −13.5635 + 8.92086i −0.951972 + 0.626122i
\(204\) 0 0
\(205\) −16.4577 3.90054i −1.14945 0.272425i
\(206\) 4.63328 3.88778i 0.322816 0.270874i
\(207\) 0 0
\(208\) −3.62735 3.04371i −0.251511 0.211043i
\(209\) 0.0194029 + 0.0260626i 0.00134213 + 0.00180279i
\(210\) 0 0
\(211\) −11.4811 + 2.72107i −0.790390 + 0.187326i −0.605934 0.795515i \(-0.707200\pi\)
−0.184456 + 0.982841i \(0.559052\pi\)
\(212\) −4.14133 + 5.56277i −0.284427 + 0.382052i
\(213\) 0 0
\(214\) 29.8237 14.9780i 2.03871 1.02388i
\(215\) −6.82251 11.8169i −0.465292 0.805909i
\(216\) 0 0
\(217\) −18.0291 + 31.2273i −1.22390 + 2.11985i
\(218\) −0.0357450 + 0.613717i −0.00242095 + 0.0415662i
\(219\) 0 0
\(220\) 14.3794 + 1.68071i 0.969456 + 0.113313i
\(221\) −1.86027 + 6.21374i −0.125135 + 0.417982i
\(222\) 0 0
\(223\) −10.4312 + 24.1822i −0.698524 + 1.61936i 0.0837965 + 0.996483i \(0.473295\pi\)
−0.782320 + 0.622877i \(0.785964\pi\)
\(224\) 26.3755 9.59989i 1.76229 0.641420i
\(225\) 0 0
\(226\) 6.42400 + 2.33814i 0.427318 + 0.155531i
\(227\) −0.699631 + 0.741565i −0.0464361 + 0.0492194i −0.750175 0.661239i \(-0.770031\pi\)
0.703739 + 0.710458i \(0.251512\pi\)
\(228\) 0 0
\(229\) 23.3073 + 11.7054i 1.54019 + 0.773512i 0.997780 0.0666015i \(-0.0212156\pi\)
0.542410 + 0.840114i \(0.317512\pi\)
\(230\) −2.83922 48.7475i −0.187213 3.21432i
\(231\) 0 0
\(232\) −1.31572 4.39480i −0.0863810 0.288533i
\(233\) −0.779551 4.42105i −0.0510701 0.289633i 0.948567 0.316577i \(-0.102533\pi\)
−0.999637 + 0.0269441i \(0.991422\pi\)
\(234\) 0 0
\(235\) −1.49355 + 8.47032i −0.0974282 + 0.552543i
\(236\) −12.1584 + 1.42111i −0.791443 + 0.0925065i
\(237\) 0 0
\(238\) −19.8291 21.0176i −1.28533 1.36237i
\(239\) 0.604016 + 1.40027i 0.0390706 + 0.0905757i 0.936634 0.350310i \(-0.113924\pi\)
−0.897563 + 0.440886i \(0.854664\pi\)
\(240\) 0 0
\(241\) −0.703622 0.462779i −0.0453243 0.0298102i 0.526645 0.850086i \(-0.323450\pi\)
−0.571969 + 0.820275i \(0.693820\pi\)
\(242\) 15.1283 0.972482
\(243\) 0 0
\(244\) 23.1711 1.48337
\(245\) 13.3380 + 8.77253i 0.852132 + 0.560456i
\(246\) 0 0
\(247\) 0.0109420 + 0.0253665i 0.000696225 + 0.00161403i
\(248\) −6.99242 7.41153i −0.444019 0.470633i
\(249\) 0 0
\(250\) 6.65491 0.777848i 0.420894 0.0491954i
\(251\) −2.59126 + 14.6958i −0.163559 + 0.927590i 0.786978 + 0.616980i \(0.211644\pi\)
−0.950538 + 0.310609i \(0.899467\pi\)
\(252\) 0 0
\(253\) 2.63003 + 14.9156i 0.165348 + 0.937737i
\(254\) 7.96078 + 26.5908i 0.499503 + 1.66846i
\(255\) 0 0
\(256\) −0.354552 6.08743i −0.0221595 0.380464i
\(257\) 8.24289 + 4.13974i 0.514178 + 0.258230i 0.686914 0.726738i \(-0.258965\pi\)
−0.172737 + 0.984968i \(0.555261\pi\)
\(258\) 0 0
\(259\) 17.2546 18.2888i 1.07215 1.13641i
\(260\) 11.5667 + 4.20995i 0.717339 + 0.261090i
\(261\) 0 0
\(262\) 0.000641171 0 0.000233367i 3.96117e−5 0 1.44175e-5i
\(263\) −0.0942800 + 0.218566i −0.00581355 + 0.0134773i −0.921098 0.389330i \(-0.872706\pi\)
0.915285 + 0.402808i \(0.131966\pi\)
\(264\) 0 0
\(265\) −2.40819 + 8.04390i −0.147934 + 0.494133i
\(266\) −0.122237 0.0142875i −0.00749483 0.000876020i
\(267\) 0 0
\(268\) 0.643745 11.0527i 0.0393230 0.675150i
\(269\) −7.21026 + 12.4885i −0.439617 + 0.761439i −0.997660 0.0683731i \(-0.978219\pi\)
0.558043 + 0.829812i \(0.311553\pi\)
\(270\) 0 0
\(271\) −8.33200 14.4314i −0.506133 0.876648i −0.999975 0.00709598i \(-0.997741\pi\)
0.493842 0.869552i \(-0.335592\pi\)
\(272\) −9.87651 + 4.96017i −0.598851 + 0.300755i
\(273\) 0 0
\(274\) 16.2789 21.8663i 0.983444 1.32099i
\(275\) 7.51686 1.78153i 0.453284 0.107430i
\(276\) 0 0
\(277\) 14.8198 + 19.9065i 0.890436 + 1.19606i 0.979783 + 0.200063i \(0.0641146\pi\)
−0.0893469 + 0.996001i \(0.528478\pi\)
\(278\) −1.03869 0.871561i −0.0622962 0.0522727i
\(279\) 0 0
\(280\) −7.98654 + 6.70150i −0.477287 + 0.400491i
\(281\) 18.8042 + 4.45667i 1.12176 + 0.265862i 0.749330 0.662197i \(-0.230376\pi\)
0.372432 + 0.928059i \(0.378524\pi\)
\(282\) 0 0
\(283\) −0.932620 + 0.613394i −0.0554385 + 0.0364625i −0.576926 0.816797i \(-0.695748\pi\)
0.521487 + 0.853259i \(0.325377\pi\)
\(284\) −15.8911 + 10.4517i −0.942964 + 0.620197i
\(285\) 0 0
\(286\) −6.72369 1.59354i −0.397580 0.0942283i
\(287\) −15.2217 + 12.7725i −0.898510 + 0.753939i
\(288\) 0 0
\(289\) −1.42549 1.19613i −0.0838523 0.0703605i
\(290\) −17.4453 23.4331i −1.02442 1.37604i
\(291\) 0 0
\(292\) −9.63392 + 2.28328i −0.563783 + 0.133619i
\(293\) 4.79976 6.44720i 0.280405 0.376650i −0.639500 0.768792i \(-0.720858\pi\)
0.919905 + 0.392142i \(0.128266\pi\)
\(294\) 0 0
\(295\) −13.2446 + 6.65167i −0.771128 + 0.387275i
\(296\) 3.55259 + 6.15326i 0.206490 + 0.357651i
\(297\) 0 0
\(298\) −13.6602 + 23.6601i −0.791311 + 1.37059i
\(299\) −0.748755 + 12.8556i −0.0433016 + 0.743461i
\(300\) 0 0
\(301\) −15.9222 1.86104i −0.917739 0.107268i
\(302\) −10.1763 + 33.9911i −0.585579 + 1.95597i
\(303\) 0 0
\(304\) −0.0186445 + 0.0432228i −0.00106933 + 0.00247900i
\(305\) 26.3626 9.59519i 1.50952 0.549419i
\(306\) 0 0
\(307\) −15.7796 5.74331i −0.900590 0.327788i −0.150101 0.988671i \(-0.547960\pi\)
−0.750489 + 0.660883i \(0.770182\pi\)
\(308\) 11.6718 12.3714i 0.665062 0.704925i
\(309\) 0 0
\(310\) −57.9855 29.1214i −3.29336 1.65399i
\(311\) −0.299735 5.14625i −0.0169964 0.291817i −0.996086 0.0883881i \(-0.971828\pi\)
0.979090 0.203429i \(-0.0652086\pi\)
\(312\) 0 0
\(313\) −8.01329 26.7663i −0.452938 1.51292i −0.814273 0.580483i \(-0.802864\pi\)
0.361334 0.932436i \(-0.382321\pi\)
\(314\) 3.15754 + 17.9073i 0.178191 + 1.01057i
\(315\) 0 0
\(316\) 3.49563 19.8247i 0.196644 1.11523i
\(317\) −9.13214 + 1.06739i −0.512912 + 0.0599508i −0.368612 0.929583i \(-0.620167\pi\)
−0.144300 + 0.989534i \(0.546093\pi\)
\(318\) 0 0
\(319\) 6.21824 + 6.59095i 0.348155 + 0.369022i
\(320\) 13.2778 + 30.7815i 0.742254 + 1.72074i
\(321\) 0 0
\(322\) −47.9295 31.5237i −2.67100 1.75675i
\(323\) 0.0644800 0.00358776
\(324\) 0 0
\(325\) 6.56814 0.364335
\(326\) 1.19136 + 0.783567i 0.0659831 + 0.0433978i
\(327\) 0 0
\(328\) −2.22402 5.15586i −0.122801 0.284685i
\(329\) 6.93426 + 7.34988i 0.382298 + 0.405212i
\(330\) 0 0
\(331\) −16.8364 + 1.96789i −0.925411 + 0.108165i −0.565431 0.824795i \(-0.691290\pi\)
−0.359979 + 0.932960i \(0.617216\pi\)
\(332\) −2.21107 + 12.5396i −0.121348 + 0.688201i
\(333\) 0 0
\(334\) −5.91777 33.5613i −0.323806 1.83640i
\(335\) −3.84453 12.8416i −0.210049 0.701613i
\(336\) 0 0
\(337\) −0.758539 13.0236i −0.0413203 0.709442i −0.953823 0.300370i \(-0.902890\pi\)
0.912502 0.409071i \(-0.134147\pi\)
\(338\) 19.3101 + 9.69790i 1.05033 + 0.527496i
\(339\) 0 0
\(340\) 19.7157 20.8974i 1.06923 1.13332i
\(341\) 18.9125 + 6.88358i 1.02417 + 0.372767i
\(342\) 0 0
\(343\) −5.48195 + 1.99527i −0.295997 + 0.107734i
\(344\) 1.79423 4.15949i 0.0967383 0.224265i
\(345\) 0 0
\(346\) −9.78033 + 32.6686i −0.525794 + 1.75627i
\(347\) −14.2961 1.67098i −0.767457 0.0897029i −0.276650 0.960971i \(-0.589224\pi\)
−0.490808 + 0.871268i \(0.663298\pi\)
\(348\) 0 0
\(349\) −0.472908 + 8.11951i −0.0253142 + 0.434627i 0.961711 + 0.274064i \(0.0883681\pi\)
−0.987026 + 0.160563i \(0.948669\pi\)
\(350\) −14.6301 + 25.3400i −0.782010 + 1.35448i
\(351\) 0 0
\(352\) −7.83327 13.5676i −0.417515 0.723157i
\(353\) 24.2226 12.1651i 1.28924 0.647481i 0.333795 0.942646i \(-0.391671\pi\)
0.955446 + 0.295165i \(0.0953745\pi\)
\(354\) 0 0
\(355\) −13.7518 + 18.4719i −0.729871 + 0.980386i
\(356\) −11.4821 + 2.72131i −0.608550 + 0.144229i
\(357\) 0 0
\(358\) −10.0223 13.4623i −0.529695 0.711504i
\(359\) −19.0992 16.0261i −1.00802 0.845828i −0.0199431 0.999801i \(-0.506349\pi\)
−0.988075 + 0.153974i \(0.950793\pi\)
\(360\) 0 0
\(361\) −14.5546 + 12.2128i −0.766033 + 0.642778i
\(362\) 28.4594 + 6.74500i 1.49579 + 0.354509i
\(363\) 0 0
\(364\) 12.0820 7.94647i 0.633270 0.416508i
\(365\) −10.0154 + 6.58720i −0.524228 + 0.344790i
\(366\) 0 0
\(367\) 12.7392 + 3.01925i 0.664982 + 0.157604i 0.549226 0.835674i \(-0.314923\pi\)
0.115756 + 0.993278i \(0.463071\pi\)
\(368\) −16.8087 + 14.1042i −0.876216 + 0.735232i
\(369\) 0 0
\(370\) 34.6608 + 29.0839i 1.80193 + 1.51200i
\(371\) 5.89074 + 7.91264i 0.305832 + 0.410804i
\(372\) 0 0
\(373\) −27.9998 + 6.63609i −1.44978 + 0.343604i −0.878732 0.477315i \(-0.841610\pi\)
−0.571045 + 0.820919i \(0.693462\pi\)
\(374\) −9.63106 + 12.9368i −0.498010 + 0.668944i
\(375\) 0 0
\(376\) −2.55169 + 1.28151i −0.131593 + 0.0660887i
\(377\) 3.85211 + 6.67206i 0.198394 + 0.343628i
\(378\) 0 0
\(379\) 10.4915 18.1718i 0.538912 0.933422i −0.460051 0.887892i \(-0.652169\pi\)
0.998963 0.0455300i \(-0.0144977\pi\)
\(380\) 0.00711490 0.122158i 0.000364987 0.00626658i
\(381\) 0 0
\(382\) 30.1835 + 3.52794i 1.54432 + 0.180505i
\(383\) 7.02527 23.4660i 0.358974 1.19906i −0.567714 0.823226i \(-0.692172\pi\)
0.926688 0.375832i \(-0.122643\pi\)
\(384\) 0 0
\(385\) 8.15642 18.9087i 0.415690 0.963677i
\(386\) −8.31185 + 3.02526i −0.423062 + 0.153982i
\(387\) 0 0
\(388\) 26.9903 + 9.82366i 1.37022 + 0.498721i
\(389\) −10.8199 + 11.4684i −0.548589 + 0.581470i −0.941037 0.338304i \(-0.890147\pi\)
0.392448 + 0.919774i \(0.371628\pi\)
\(390\) 0 0
\(391\) 26.8595 + 13.4893i 1.35834 + 0.682184i
\(392\) 0.308164 + 5.29097i 0.0155646 + 0.267234i
\(393\) 0 0
\(394\) 0.143393 + 0.478966i 0.00722403 + 0.0241300i
\(395\) −4.23235 24.0028i −0.212953 1.20771i
\(396\) 0 0
\(397\) −4.48471 + 25.4340i −0.225081 + 1.27650i 0.637449 + 0.770492i \(0.279989\pi\)
−0.862530 + 0.506005i \(0.831122\pi\)
\(398\) 54.7843 6.40337i 2.74609 0.320972i
\(399\) 0 0
\(400\) 7.68019 + 8.14052i 0.384009 + 0.407026i
\(401\) −6.48724 15.0391i −0.323957 0.751017i −0.999901 0.0140640i \(-0.995523\pi\)
0.675944 0.736953i \(-0.263736\pi\)
\(402\) 0 0
\(403\) 14.2969 + 9.40321i 0.712179 + 0.468407i
\(404\) −7.06106 −0.351301
\(405\) 0 0
\(406\) −34.3212 −1.70333
\(407\) −11.7254 7.71191i −0.581206 0.382265i
\(408\) 0 0
\(409\) −10.0430 23.2823i −0.496596 1.15124i −0.963688 0.267030i \(-0.913958\pi\)
0.467093 0.884208i \(-0.345301\pi\)
\(410\) −24.5382 26.0090i −1.21186 1.28449i
\(411\) 0 0
\(412\) 7.01731 0.820206i 0.345718 0.0404086i
\(413\) −3.02359 + 17.1476i −0.148781 + 0.843781i
\(414\) 0 0
\(415\) 2.67707 + 15.1824i 0.131412 + 0.745275i
\(416\) −3.82029 12.7606i −0.187305 0.625642i
\(417\) 0 0
\(418\) 0.00399410 + 0.0685760i 0.000195358 + 0.00335416i
\(419\) 5.68329 + 2.85426i 0.277647 + 0.139440i 0.582174 0.813064i \(-0.302202\pi\)
−0.304527 + 0.952504i \(0.598498\pi\)
\(420\) 0 0
\(421\) −18.0240 + 19.1043i −0.878434 + 0.931086i −0.998093 0.0617290i \(-0.980339\pi\)
0.119658 + 0.992815i \(0.461820\pi\)
\(422\) −23.4405 8.53163i −1.14106 0.415313i
\(423\) 0 0
\(424\) −2.61946 + 0.953407i −0.127212 + 0.0463015i
\(425\) 6.07204 14.0766i 0.294537 0.682814i
\(426\) 0 0
\(427\) 9.45280 31.5746i 0.457453 1.52800i
\(428\) 38.7203 + 4.52576i 1.87162 + 0.218761i
\(429\) 0 0
\(430\) 1.67732 28.7985i 0.0808876 1.38879i
\(431\) −6.16440 + 10.6771i −0.296929 + 0.514296i −0.975432 0.220302i \(-0.929296\pi\)
0.678503 + 0.734598i \(0.262629\pi\)
\(432\) 0 0
\(433\) 3.37556 + 5.84664i 0.162219 + 0.280972i 0.935664 0.352891i \(-0.114802\pi\)
−0.773445 + 0.633863i \(0.781468\pi\)
\(434\) −68.1230 + 34.2127i −3.27001 + 1.64226i
\(435\) 0 0
\(436\) −0.428821 + 0.576007i −0.0205368 + 0.0275857i
\(437\) 0.124564 0.0295223i 0.00595873 0.00141224i
\(438\) 0 0
\(439\) −2.66717 3.58263i −0.127297 0.170989i 0.733905 0.679252i \(-0.237695\pi\)
−0.861202 + 0.508262i \(0.830288\pi\)
\(440\) 4.45776 + 3.74051i 0.212516 + 0.178322i
\(441\) 0 0
\(442\) −10.5045 + 8.81436i −0.499650 + 0.419256i
\(443\) −27.4508 6.50597i −1.30423 0.309108i −0.480952 0.876747i \(-0.659709\pi\)
−0.823277 + 0.567639i \(0.807857\pi\)
\(444\) 0 0
\(445\) −11.9367 + 7.85090i −0.565854 + 0.372168i
\(446\) −46.5181 + 30.5954i −2.20269 + 1.44873i
\(447\) 0 0
\(448\) 38.3224 + 9.08256i 1.81056 + 0.429111i
\(449\) 20.0933 16.8603i 0.948260 0.795685i −0.0307434 0.999527i \(-0.509787\pi\)
0.979004 + 0.203842i \(0.0653430\pi\)
\(450\) 0 0
\(451\) 8.49615 + 7.12912i 0.400068 + 0.335697i
\(452\) 4.76862 + 6.40536i 0.224297 + 0.301283i
\(453\) 0 0
\(454\) −2.09728 + 0.497063i −0.0984300 + 0.0233283i
\(455\) 10.4555 14.0442i 0.490162 0.658402i
\(456\) 0 0
\(457\) −21.5678 + 10.8317i −1.00890 + 0.506687i −0.874905 0.484295i \(-0.839076\pi\)
−0.133992 + 0.990982i \(0.542780\pi\)
\(458\) 27.5698 + 47.7523i 1.28825 + 2.23132i
\(459\) 0 0
\(460\) 28.5194 49.3971i 1.32972 2.30315i
\(461\) −1.09933 + 18.8747i −0.0512007 + 0.879082i 0.870738 + 0.491747i \(0.163641\pi\)
−0.921939 + 0.387335i \(0.873396\pi\)
\(462\) 0 0
\(463\) −1.68749 0.197239i −0.0784242 0.00916647i 0.0767903 0.997047i \(-0.475533\pi\)
−0.155215 + 0.987881i \(0.549607\pi\)
\(464\) −3.76500 + 12.5760i −0.174786 + 0.583825i
\(465\) 0 0
\(466\) 3.75913 8.71465i 0.174138 0.403698i
\(467\) 1.44533 0.526058i 0.0668820 0.0243431i −0.308362 0.951269i \(-0.599781\pi\)
0.375245 + 0.926926i \(0.377559\pi\)
\(468\) 0 0
\(469\) −14.7986 5.38623i −0.683334 0.248713i
\(470\) −12.4783 + 13.2262i −0.575582 + 0.610081i
\(471\) 0 0
\(472\) −4.39702 2.20827i −0.202389 0.101644i
\(473\) 0.520258 + 8.93248i 0.0239215 + 0.410716i
\(474\) 0 0
\(475\) −0.0187266 0.0625512i −0.000859236 0.00287005i
\(476\) −5.86110 33.2399i −0.268643 1.52355i
\(477\) 0 0
\(478\) −0.559844 + 3.17503i −0.0256067 + 0.145223i
\(479\) 15.7830 1.84476i 0.721142 0.0842895i 0.252398 0.967623i \(-0.418781\pi\)
0.468744 + 0.883334i \(0.344707\pi\)
\(480\) 0 0
\(481\) −8.18848 8.67928i −0.373362 0.395741i
\(482\) −0.705200 1.63484i −0.0321210 0.0744648i
\(483\) 0 0
\(484\) 14.7643 + 9.71062i 0.671104 + 0.441392i
\(485\) 34.7759 1.57909
\(486\) 0 0
\(487\) 39.0750 1.77066 0.885330 0.464964i \(-0.153933\pi\)
0.885330 + 0.464964i \(0.153933\pi\)
\(488\) 7.78149 + 5.11797i 0.352251 + 0.231679i
\(489\) 0 0
\(490\) 13.3679 + 30.9903i 0.603900 + 1.40000i
\(491\) −26.4780 28.0650i −1.19494 1.26656i −0.955281 0.295700i \(-0.904447\pi\)
−0.239655 0.970858i \(-0.577034\pi\)
\(492\) 0 0
\(493\) 17.8604 2.08758i 0.804393 0.0940201i
\(494\) −0.0101418 + 0.0575172i −0.000456303 + 0.00258782i
\(495\) 0 0
\(496\) 5.06319 + 28.7147i 0.227344 + 1.28933i
\(497\) 7.75941 + 25.9182i 0.348057 + 1.16259i
\(498\) 0 0
\(499\) −0.309871 5.32027i −0.0138717 0.238168i −0.998116 0.0613544i \(-0.980458\pi\)
0.984244 0.176814i \(-0.0565790\pi\)
\(500\) 6.99408 + 3.51256i 0.312785 + 0.157086i
\(501\) 0 0
\(502\) −21.6496 + 22.9472i −0.966267 + 1.02418i
\(503\) −21.2859 7.74742i −0.949090 0.345440i −0.179341 0.983787i \(-0.557396\pi\)
−0.769749 + 0.638347i \(0.779619\pi\)
\(504\) 0 0
\(505\) −8.03363 + 2.92400i −0.357492 + 0.130116i
\(506\) −12.6825 + 29.4012i −0.563804 + 1.30704i
\(507\) 0 0
\(508\) −9.29904 + 31.0610i −0.412578 + 1.37811i
\(509\) 31.0714 + 3.63172i 1.37721 + 0.160973i 0.772270 0.635294i \(-0.219121\pi\)
0.604945 + 0.796268i \(0.293195\pi\)
\(510\) 0 0
\(511\) −0.818864 + 14.0594i −0.0362244 + 0.621949i
\(512\) 14.1680 24.5396i 0.626141 1.08451i
\(513\) 0 0
\(514\) 9.75038 + 16.8881i 0.430071 + 0.744904i
\(515\) 7.64420 3.83906i 0.336844 0.169169i
\(516\) 0 0
\(517\) 3.36799 4.52400i 0.148124 0.198965i
\(518\) 51.7240 12.2588i 2.27262 0.538622i
\(519\) 0 0
\(520\) 2.95455 + 3.96865i 0.129566 + 0.174037i
\(521\) 22.0317 + 18.4868i 0.965226 + 0.809921i 0.981795 0.189942i \(-0.0608300\pi\)
−0.0165695 + 0.999863i \(0.505274\pi\)
\(522\) 0 0
\(523\) −5.64380 + 4.73571i −0.246786 + 0.207078i −0.757787 0.652502i \(-0.773719\pi\)
0.511001 + 0.859580i \(0.329275\pi\)
\(524\) 0.000775539 0 0.000183806i 3.38796e−5 0 8.02961e-6i
\(525\) 0 0
\(526\) −0.420443 + 0.276530i −0.0183322 + 0.0120573i
\(527\) 33.3696 21.9475i 1.45360 0.956049i
\(528\) 0 0
\(529\) 35.6840 + 8.45727i 1.55148 + 0.367707i
\(530\) −13.5985 + 11.4105i −0.590680 + 0.495640i
\(531\) 0 0
\(532\) −0.110125 0.0924059i −0.00477453 0.00400630i
\(533\) 5.63115 + 7.56394i 0.243912 + 0.327631i
\(534\) 0 0
\(535\) 45.9277 10.8851i 1.98563 0.470602i
\(536\) 2.65748 3.56961i 0.114785 0.154184i
\(537\) 0 0
\(538\) −27.2440 + 13.6824i −1.17457 + 0.589892i
\(539\) −5.23423 9.06595i −0.225454 0.390498i
\(540\) 0 0
\(541\) 12.6202 21.8588i 0.542583 0.939782i −0.456171 0.889892i \(-0.650780\pi\)
0.998755 0.0498899i \(-0.0158870\pi\)
\(542\) 2.04843 35.1702i 0.0879876 1.51069i
\(543\) 0 0
\(544\) −30.8798 3.60933i −1.32396 0.154749i
\(545\) −0.249360 + 0.832920i −0.0106814 + 0.0356784i
\(546\) 0 0
\(547\) 7.17326 16.6295i 0.306706 0.711025i −0.693247 0.720700i \(-0.743820\pi\)
0.999953 + 0.00967491i \(0.00307967\pi\)
\(548\) 29.9229 10.8910i 1.27824 0.465242i
\(549\) 0 0
\(550\) 15.3469 + 5.58581i 0.654393 + 0.238180i
\(551\) 0.0525580 0.0557082i 0.00223905 0.00237325i
\(552\) 0 0
\(553\) −25.5885 12.8510i −1.08813 0.546481i
\(554\) 3.05067 + 52.3779i 0.129610 + 2.22533i
\(555\) 0 0
\(556\) −0.454252 1.51731i −0.0192646 0.0643482i
\(557\) −1.58101 8.96634i −0.0669894 0.379916i −0.999808 0.0195708i \(-0.993770\pi\)
0.932819 0.360345i \(-0.117341\pi\)
\(558\) 0 0
\(559\) −1.32104 + 7.49200i −0.0558741 + 0.316878i
\(560\) 29.6320 3.46349i 1.25218 0.146359i
\(561\) 0 0
\(562\) 28.0368 + 29.7173i 1.18266 + 1.25355i
\(563\) 7.00644 + 16.2428i 0.295286 + 0.684550i 0.999681 0.0252581i \(-0.00804074\pi\)
−0.704395 + 0.709808i \(0.748781\pi\)
\(564\) 0 0
\(565\) 8.07791 + 5.31292i 0.339840 + 0.223516i
\(566\) −2.35991 −0.0991944
\(567\) 0 0
\(568\) −7.64524 −0.320787
\(569\) −34.9033 22.9563i −1.46322 0.962377i −0.996975 0.0777237i \(-0.975235\pi\)
−0.466249 0.884654i \(-0.654395\pi\)
\(570\) 0 0
\(571\) 7.80567 + 18.0956i 0.326657 + 0.757276i 0.999842 + 0.0178017i \(0.00566675\pi\)
−0.673184 + 0.739475i \(0.735074\pi\)
\(572\) −5.53905 5.87105i −0.231599 0.245481i
\(573\) 0 0
\(574\) −41.7248 + 4.87693i −1.74156 + 0.203559i
\(575\) 5.28516 29.9737i 0.220407 1.24999i
\(576\) 0 0
\(577\) −1.35567 7.68841i −0.0564374 0.320073i 0.943499 0.331376i \(-0.107513\pi\)
−0.999936 + 0.0113037i \(0.996402\pi\)
\(578\) −1.12830 3.76879i −0.0469311 0.156761i
\(579\) 0 0
\(580\) −1.98418 34.0671i −0.0823888 1.41456i
\(581\) 16.1854 + 8.12859i 0.671482 + 0.337231i
\(582\) 0 0
\(583\) 3.77847 4.00494i 0.156488 0.165868i
\(584\) −3.73967 1.36113i −0.154748 0.0563238i
\(585\) 0 0
\(586\) 15.9679 5.81183i 0.659626 0.240084i
\(587\) −8.30634 + 19.2563i −0.342839 + 0.794791i 0.656347 + 0.754459i \(0.272101\pi\)
−0.999186 + 0.0403319i \(0.987158\pi\)
\(588\) 0 0
\(589\) 0.0487886 0.162965i 0.00201030 0.00671486i
\(590\) −31.1217 3.63760i −1.28126 0.149758i
\(591\) 0 0
\(592\) 1.18220 20.2975i 0.0485879 0.834222i
\(593\) 11.8196 20.4722i 0.485373 0.840691i −0.514485 0.857499i \(-0.672017\pi\)
0.999859 + 0.0168078i \(0.00535033\pi\)
\(594\) 0 0
\(595\) −20.4331 35.3912i −0.837677 1.45090i
\(596\) −28.5186 + 14.3226i −1.16817 + 0.586675i
\(597\) 0 0
\(598\) −16.2573 + 21.8374i −0.664812 + 0.892997i
\(599\) 1.55457 0.368441i 0.0635182 0.0150541i −0.198734 0.980053i \(-0.563683\pi\)
0.262252 + 0.964999i \(0.415535\pi\)
\(600\) 0 0
\(601\) 18.9415 + 25.4429i 0.772641 + 1.03784i 0.997978 + 0.0635563i \(0.0202443\pi\)
−0.225337 + 0.974281i \(0.572348\pi\)
\(602\) −25.9617 21.7845i −1.05812 0.887869i
\(603\) 0 0
\(604\) −31.7498 + 26.6413i −1.29188 + 1.08402i
\(605\) 20.8191 + 4.93421i 0.846415 + 0.200604i
\(606\) 0 0
\(607\) −8.88733 + 5.84529i −0.360726 + 0.237253i −0.716915 0.697161i \(-0.754446\pi\)
0.356189 + 0.934414i \(0.384076\pi\)
\(608\) −0.110633 + 0.0727644i −0.00448676 + 0.00295099i
\(609\) 0 0
\(610\) 57.7119 + 13.6780i 2.33669 + 0.553805i
\(611\) 3.67345 3.08239i 0.148612 0.124700i
\(612\) 0 0
\(613\) −34.7629 29.1695i −1.40406 1.17815i −0.959263 0.282513i \(-0.908832\pi\)
−0.444796 0.895632i \(-0.646724\pi\)
\(614\) −21.1998 28.4762i −0.855553 1.14921i
\(615\) 0 0
\(616\) 6.65228 1.57662i 0.268028 0.0635238i
\(617\) −13.7903 + 18.5236i −0.555178 + 0.745733i −0.987781 0.155851i \(-0.950188\pi\)
0.432603 + 0.901585i \(0.357595\pi\)
\(618\) 0 0
\(619\) 1.75718 0.882490i 0.0706271 0.0354703i −0.413135 0.910670i \(-0.635566\pi\)
0.483762 + 0.875200i \(0.339270\pi\)
\(620\) −37.8977 65.6408i −1.52201 2.63620i
\(621\) 0 0
\(622\) 5.44913 9.43817i 0.218490 0.378436i
\(623\) −0.975956 + 16.7565i −0.0391008 + 0.671335i
\(624\) 0 0
\(625\) 28.9790 + 3.38716i 1.15916 + 0.135486i
\(626\) 16.9411 56.5872i 0.677103 2.26168i
\(627\) 0 0
\(628\) −8.41288 + 19.5033i −0.335711 + 0.778264i
\(629\) −26.1710 + 9.52548i −1.04351 + 0.379806i
\(630\) 0 0
\(631\) −45.7709 16.6593i −1.82211 0.663195i −0.994848 0.101382i \(-0.967673\pi\)
−0.827265 0.561812i \(-0.810104\pi\)
\(632\) 5.55276 5.88558i 0.220877 0.234116i
\(633\) 0 0
\(634\) −17.3704 8.72372i −0.689865 0.346463i
\(635\) 2.28256 + 39.1900i 0.0905805 + 1.55521i
\(636\) 0 0
\(637\) −2.55274 8.52673i −0.101143 0.337841i
\(638\) 3.32653 + 18.8657i 0.131699 + 0.746899i
\(639\) 0 0
\(640\) −4.00945 + 22.7387i −0.158487 + 0.898827i
\(641\) −24.5011 + 2.86377i −0.967737 + 0.113112i −0.585254 0.810850i \(-0.699005\pi\)
−0.382483 + 0.923962i \(0.624931\pi\)
\(642\) 0 0
\(643\) 7.26830 + 7.70395i 0.286634 + 0.303814i 0.854651 0.519202i \(-0.173771\pi\)
−0.568018 + 0.823016i \(0.692289\pi\)
\(644\) −26.5416 61.5305i −1.04589 2.42464i
\(645\) 0 0
\(646\) 0.113893 + 0.0749084i 0.00448105 + 0.00294723i
\(647\) 12.2785 0.482716 0.241358 0.970436i \(-0.422407\pi\)
0.241358 + 0.970436i \(0.422407\pi\)
\(648\) 0 0
\(649\) 9.71877 0.381495
\(650\) 11.6015 + 7.63041i 0.455048 + 0.299289i
\(651\) 0 0
\(652\) 0.659731 + 1.52943i 0.0258371 + 0.0598970i
\(653\) −1.96487 2.08264i −0.0768914 0.0815001i 0.687786 0.725914i \(-0.258583\pi\)
−0.764677 + 0.644414i \(0.777101\pi\)
\(654\) 0 0
\(655\) 0.000958475 0 0.000112030i 3.74507e−5 0 4.37736e-6i
\(656\) −2.79016 + 15.8238i −0.108938 + 0.617815i
\(657\) 0 0
\(658\) 3.70957 + 21.0380i 0.144614 + 0.820148i
\(659\) −13.3973 44.7501i −0.521885 1.74322i −0.658488 0.752591i \(-0.728804\pi\)
0.136603 0.990626i \(-0.456381\pi\)
\(660\) 0 0
\(661\) −1.38632 23.8022i −0.0539215 0.925797i −0.911463 0.411382i \(-0.865046\pi\)
0.857542 0.514415i \(-0.171991\pi\)
\(662\) −32.0247 16.0834i −1.24467 0.625099i
\(663\) 0 0
\(664\) −3.51226 + 3.72278i −0.136302 + 0.144472i
\(665\) −0.163559 0.0595306i −0.00634254 0.00230850i
\(666\) 0 0
\(667\) 33.5475 12.2103i 1.29897 0.472785i
\(668\) 15.7672 36.5524i 0.610050 1.41425i
\(669\) 0 0
\(670\) 8.12781 27.1488i 0.314005 1.04885i
\(671\) −18.2721 2.13570i −0.705386 0.0824479i
\(672\) 0 0
\(673\) −0.262422 + 4.50561i −0.0101156 + 0.173679i 0.989466 + 0.144764i \(0.0462422\pi\)
−0.999582 + 0.0289148i \(0.990795\pi\)
\(674\) 13.7901 23.8852i 0.531175 0.920023i
\(675\) 0 0
\(676\) 12.6206 + 21.8594i 0.485406 + 0.840748i
\(677\) −11.2705 + 5.66027i −0.433162 + 0.217542i −0.652000 0.758219i \(-0.726070\pi\)
0.218838 + 0.975761i \(0.429773\pi\)
\(678\) 0 0
\(679\) 24.3973 32.7713i 0.936283 1.25765i
\(680\) 11.2368 2.66318i 0.430913 0.102128i
\(681\) 0 0
\(682\) 25.4087 + 34.1299i 0.972951 + 1.30690i
\(683\) 13.8210 + 11.5972i 0.528845 + 0.443754i 0.867702 0.497084i \(-0.165596\pi\)
−0.338857 + 0.940838i \(0.610040\pi\)
\(684\) 0 0
\(685\) 29.5344 24.7823i 1.12845 0.946883i
\(686\) −12.0009 2.84426i −0.458195 0.108594i
\(687\) 0 0
\(688\) −10.8303 + 7.12317i −0.412899 + 0.271568i
\(689\) 3.91127 2.57248i 0.149008 0.0980038i
\(690\) 0 0
\(691\) −32.3764 7.67336i −1.23166 0.291908i −0.437276 0.899327i \(-0.644057\pi\)
−0.794382 + 0.607419i \(0.792205\pi\)
\(692\) −30.5145 + 25.6047i −1.15999 + 0.973345i
\(693\) 0 0
\(694\) −23.3104 19.5598i −0.884852 0.742479i
\(695\) −1.14514 1.53819i −0.0434377 0.0583469i
\(696\) 0 0
\(697\) 21.4165 5.07581i 0.811209 0.192260i
\(698\) −10.2680 + 13.7923i −0.388649 + 0.522047i
\(699\) 0 0
\(700\) −30.5434 + 15.3395i −1.15443 + 0.579778i
\(701\) 9.13385 + 15.8203i 0.344981 + 0.597524i 0.985350 0.170543i \(-0.0545522\pi\)
−0.640370 + 0.768067i \(0.721219\pi\)
\(702\) 0 0
\(703\) −0.0593101 + 0.102728i −0.00223692 + 0.00387446i
\(704\) 1.27817 21.9453i 0.0481729 0.827096i
\(705\) 0 0
\(706\) 56.9176 + 6.65272i 2.14212 + 0.250378i
\(707\) −2.88061 + 9.62191i −0.108337 + 0.361869i
\(708\) 0 0
\(709\) 0.783606 1.81660i 0.0294290 0.0682240i −0.902868 0.429918i \(-0.858542\pi\)
0.932297 + 0.361694i \(0.117802\pi\)
\(710\) −45.7496 + 16.6515i −1.71695 + 0.624919i
\(711\) 0 0
\(712\) −4.45709 1.62225i −0.167036 0.0607963i
\(713\) 54.4157 57.6773i 2.03788 2.16003i
\(714\) 0 0
\(715\) −8.73320 4.38598i −0.326603 0.164026i
\(716\) −1.13991 19.5716i −0.0426006 0.731423i
\(717\) 0 0
\(718\) −15.1174 50.4955i −0.564175 1.88448i
\(719\) −2.42853 13.7729i −0.0905690 0.513642i −0.996015 0.0891816i \(-0.971575\pi\)
0.905446 0.424461i \(-0.139536\pi\)
\(720\) 0 0
\(721\) 1.74509 9.89690i 0.0649906 0.368580i
\(722\) −39.8962 + 4.66320i −1.48478 + 0.173546i
\(723\) 0 0
\(724\) 23.4451 + 24.8504i 0.871332 + 0.923558i
\(725\) −7.21226 16.7199i −0.267856 0.620961i
\(726\) 0 0
\(727\) −31.2308 20.5408i −1.15829 0.761817i −0.183077 0.983099i \(-0.558606\pi\)
−0.975210 + 0.221281i \(0.928976\pi\)
\(728\) 5.81268 0.215432
\(729\) 0 0
\(730\) −25.3429 −0.937984
\(731\) 14.8353 + 9.75731i 0.548702 + 0.360887i
\(732\) 0 0
\(733\) 10.5389 + 24.4320i 0.389265 + 0.902417i 0.994340 + 0.106248i \(0.0338838\pi\)
−0.605075 + 0.796168i \(0.706857\pi\)
\(734\) 18.9941 + 20.1325i 0.701084 + 0.743105i
\(735\) 0 0
\(736\) −61.3071 + 7.16578i −2.25981 + 0.264134i
\(737\) −1.52638 + 8.65652i −0.0562249 + 0.318867i
\(738\) 0 0
\(739\) 7.56956 + 42.9291i 0.278451 + 1.57917i 0.727782 + 0.685808i \(0.240551\pi\)
−0.449332 + 0.893365i \(0.648338\pi\)
\(740\) 15.1583 + 50.6324i 0.557232 + 1.86128i
\(741\) 0 0
\(742\) 1.21261 + 20.8198i 0.0445164 + 0.764317i
\(743\) −45.4564 22.8291i −1.66763 0.837517i −0.995254 0.0973110i \(-0.968976\pi\)
−0.672380 0.740206i \(-0.734728\pi\)
\(744\) 0 0
\(745\) −26.5156 + 28.1049i −0.971457 + 1.02968i
\(746\) −57.1662 20.8068i −2.09300 0.761791i
\(747\) 0 0
\(748\) −17.7033 + 6.44346i −0.647295 + 0.235596i
\(749\) 21.9634 50.9168i 0.802524 1.86046i
\(750\) 0 0
\(751\) −3.63443 + 12.1398i −0.132622 + 0.442989i −0.998343 0.0575375i \(-0.981675\pi\)
0.865721 + 0.500527i \(0.166860\pi\)
\(752\) 8.11570 + 0.948589i 0.295949 + 0.0345915i
\(753\) 0 0
\(754\) −0.947046 + 16.2602i −0.0344894 + 0.592160i
\(755\) −25.0908 + 43.4585i −0.913146 + 1.58162i
\(756\) 0 0
\(757\) 7.49384 + 12.9797i 0.272368 + 0.471756i 0.969468 0.245219i \(-0.0788598\pi\)
−0.697100 + 0.716974i \(0.745526\pi\)
\(758\) 39.6421 19.9090i 1.43987 0.723128i
\(759\) 0 0
\(760\) 0.0293714 0.0394526i 0.00106541 0.00143110i
\(761\) −10.2662 + 2.43313i −0.372149 + 0.0882010i −0.412435 0.910987i \(-0.635321\pi\)
0.0402853 + 0.999188i \(0.487173\pi\)
\(762\) 0 0
\(763\) 0.609968 + 0.819329i 0.0220823 + 0.0296617i
\(764\) 27.1927 + 22.8174i 0.983798 + 0.825505i
\(765\) 0 0
\(766\) 39.6701 33.2872i 1.43334 1.20271i
\(767\) 8.04050 + 1.90563i 0.290326 + 0.0688085i
\(768\) 0 0
\(769\) 32.8627 21.6141i 1.18506 0.779426i 0.205123 0.978736i \(-0.434240\pi\)
0.979936 + 0.199310i \(0.0638701\pi\)
\(770\) 36.3737 23.9234i 1.31082 0.862139i
\(771\) 0 0
\(772\) −10.0537 2.38278i −0.361842 0.0857581i
\(773\) 37.1233 31.1502i 1.33523 1.12039i 0.352409 0.935846i \(-0.385363\pi\)
0.982824 0.184547i \(-0.0590818\pi\)
\(774\) 0 0
\(775\) −30.9824 25.9973i −1.11292 0.933851i
\(776\) 6.89427 + 9.26061i 0.247490 + 0.332437i
\(777\) 0 0
\(778\) −32.4346 + 7.68714i −1.16284 + 0.275597i
\(779\) 0.0559795 0.0751936i 0.00200568 0.00269409i
\(780\) 0 0
\(781\) 13.4947 6.77728i 0.482877 0.242510i
\(782\) 31.7716 + 55.0300i 1.13615 + 1.96787i
\(783\) 0