Properties

Label 729.2.g.a.622.2
Level $729$
Weight $2$
Character 729.622
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 622.2
Character \(\chi\) \(=\) 729.622
Dual form 729.2.g.a.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38579 + 1.46885i) q^{2} +(-0.120822 - 2.07444i) q^{4} +(-2.74943 - 0.321362i) q^{5} +(-0.546257 + 0.274341i) q^{7} +(0.120591 + 0.101188i) q^{8} +(4.28217 - 3.59317i) q^{10} +(1.48325 - 3.43857i) q^{11} +(3.32773 - 0.788687i) q^{13} +(0.354033 - 1.18255i) q^{14} +(3.81206 - 0.445566i) q^{16} +(1.31516 + 7.45862i) q^{17} +(0.132568 - 0.751830i) q^{19} +(-0.334454 + 5.74235i) q^{20} +(2.99528 + 6.94383i) q^{22} +(-1.94270 - 0.975661i) q^{23} +(2.59085 + 0.614044i) q^{25} +(-3.45308 + 5.98091i) q^{26} +(0.635103 + 1.10003i) q^{28} +(-1.30287 - 4.35188i) q^{29} +(-6.83895 + 4.49805i) q^{31} +(-4.81627 + 6.46937i) q^{32} +(-12.7782 - 8.40432i) q^{34} +(1.59006 - 0.578734i) q^{35} +(3.96908 + 1.44463i) q^{37} +(0.920617 + 1.23660i) q^{38} +(-0.299038 - 0.316962i) q^{40} +(6.20503 + 6.57695i) q^{41} +(1.04785 + 1.40751i) q^{43} +(-7.31231 - 2.66146i) q^{44} +(4.12528 - 1.50148i) q^{46} +(9.82847 + 6.46428i) q^{47} +(-3.95698 + 5.31514i) q^{49} +(-4.49233 + 2.95465i) q^{50} +(-2.03815 - 6.80788i) q^{52} +(2.80062 + 4.85082i) q^{53} +(-5.18313 + 8.97744i) q^{55} +(-0.0936337 - 0.0221916i) q^{56} +(8.19779 + 4.11708i) q^{58} +(-0.599347 - 1.38944i) q^{59} +(-0.175804 + 3.01844i) q^{61} +(2.87039 - 16.2788i) q^{62} +(-1.49529 - 8.48019i) q^{64} +(-9.40281 + 1.09903i) q^{65} +(2.19466 - 7.33068i) q^{67} +(15.3135 - 3.62938i) q^{68} +(-1.35341 + 3.13757i) q^{70} +(5.19850 - 4.36206i) q^{71} +(0.438511 + 0.367955i) q^{73} +(-7.62227 + 3.82805i) q^{74} +(-1.57564 - 0.184166i) q^{76} +(0.133101 + 2.28526i) q^{77} +(-6.32380 + 6.70284i) q^{79} -10.6242 q^{80} -18.2595 q^{82} +(-4.24676 + 4.50130i) q^{83} +(-1.21901 - 20.9296i) q^{85} +(-3.51954 - 0.411375i) q^{86} +(0.526809 - 0.264573i) q^{88} +(3.52742 + 2.95986i) q^{89} +(-1.60143 + 1.34376i) q^{91} +(-1.78923 + 4.14790i) q^{92} +(-23.1153 + 5.47843i) q^{94} +(-0.606095 + 2.02450i) q^{95} +(10.4458 - 1.22093i) q^{97} +(-2.32362 - 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{20}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38579 + 1.46885i −0.979903 + 1.03864i 0.0193427 + 0.999813i \(0.493843\pi\)
−0.999246 + 0.0388240i \(0.987639\pi\)
\(3\) 0 0
\(4\) −0.120822 2.07444i −0.0604111 1.03722i
\(5\) −2.74943 0.321362i −1.22958 0.143717i −0.523610 0.851958i \(-0.675415\pi\)
−0.705971 + 0.708241i \(0.749489\pi\)
\(6\) 0 0
\(7\) −0.546257 + 0.274341i −0.206466 + 0.103691i −0.549027 0.835804i \(-0.685002\pi\)
0.342562 + 0.939495i \(0.388705\pi\)
\(8\) 0.120591 + 0.101188i 0.0426353 + 0.0357753i
\(9\) 0 0
\(10\) 4.28217 3.59317i 1.35414 1.13626i
\(11\) 1.48325 3.43857i 0.447218 1.03677i −0.534282 0.845306i \(-0.679418\pi\)
0.981500 0.191462i \(-0.0613228\pi\)
\(12\) 0 0
\(13\) 3.32773 0.788687i 0.922947 0.218742i 0.258442 0.966027i \(-0.416791\pi\)
0.664504 + 0.747284i \(0.268643\pi\)
\(14\) 0.354033 1.18255i 0.0946193 0.316050i
\(15\) 0 0
\(16\) 3.81206 0.445566i 0.953016 0.111392i
\(17\) 1.31516 + 7.45862i 0.318972 + 1.80898i 0.549030 + 0.835803i \(0.314997\pi\)
−0.230058 + 0.973177i \(0.573891\pi\)
\(18\) 0 0
\(19\) 0.132568 0.751830i 0.0304132 0.172482i −0.965818 0.259222i \(-0.916534\pi\)
0.996231 + 0.0867403i \(0.0276450\pi\)
\(20\) −0.334454 + 5.74235i −0.0747861 + 1.28403i
\(21\) 0 0
\(22\) 2.99528 + 6.94383i 0.638595 + 1.48043i
\(23\) −1.94270 0.975661i −0.405081 0.203439i 0.234579 0.972097i \(-0.424629\pi\)
−0.639660 + 0.768658i \(0.720925\pi\)
\(24\) 0 0
\(25\) 2.59085 + 0.614044i 0.518171 + 0.122809i
\(26\) −3.45308 + 5.98091i −0.677205 + 1.17295i
\(27\) 0 0
\(28\) 0.635103 + 1.10003i 0.120023 + 0.207886i
\(29\) −1.30287 4.35188i −0.241937 0.808124i −0.989575 0.144018i \(-0.953998\pi\)
0.747639 0.664106i \(-0.231188\pi\)
\(30\) 0 0
\(31\) −6.83895 + 4.49805i −1.22831 + 0.807873i −0.986708 0.162502i \(-0.948044\pi\)
−0.241603 + 0.970375i \(0.577673\pi\)
\(32\) −4.81627 + 6.46937i −0.851404 + 1.14363i
\(33\) 0 0
\(34\) −12.7782 8.40432i −2.19143 1.44133i
\(35\) 1.59006 0.578734i 0.268769 0.0978239i
\(36\) 0 0
\(37\) 3.96908 + 1.44463i 0.652513 + 0.237495i 0.647001 0.762489i \(-0.276023\pi\)
0.00551256 + 0.999985i \(0.498245\pi\)
\(38\) 0.920617 + 1.23660i 0.149344 + 0.200604i
\(39\) 0 0
\(40\) −0.299038 0.316962i −0.0472821 0.0501161i
\(41\) 6.20503 + 6.57695i 0.969063 + 1.02715i 0.999619 + 0.0276134i \(0.00879075\pi\)
−0.0305559 + 0.999533i \(0.509728\pi\)
\(42\) 0 0
\(43\) 1.04785 + 1.40751i 0.159796 + 0.214644i 0.874809 0.484468i \(-0.160987\pi\)
−0.715013 + 0.699111i \(0.753579\pi\)
\(44\) −7.31231 2.66146i −1.10237 0.401231i
\(45\) 0 0
\(46\) 4.12528 1.50148i 0.608240 0.221381i
\(47\) 9.82847 + 6.46428i 1.43363 + 0.942913i 0.999107 + 0.0422515i \(0.0134531\pi\)
0.434522 + 0.900661i \(0.356917\pi\)
\(48\) 0 0
\(49\) −3.95698 + 5.31514i −0.565282 + 0.759306i
\(50\) −4.49233 + 2.95465i −0.635311 + 0.417851i
\(51\) 0 0
\(52\) −2.03815 6.80788i −0.282640 0.944084i
\(53\) 2.80062 + 4.85082i 0.384695 + 0.666312i 0.991727 0.128366i \(-0.0409732\pi\)
−0.607032 + 0.794678i \(0.707640\pi\)
\(54\) 0 0
\(55\) −5.18313 + 8.97744i −0.698893 + 1.21052i
\(56\) −0.0936337 0.0221916i −0.0125123 0.00296548i
\(57\) 0 0
\(58\) 8.19779 + 4.11708i 1.07642 + 0.540599i
\(59\) −0.599347 1.38944i −0.0780283 0.180890i 0.874737 0.484599i \(-0.161034\pi\)
−0.952765 + 0.303709i \(0.901775\pi\)
\(60\) 0 0
\(61\) −0.175804 + 3.01844i −0.0225094 + 0.386471i 0.968173 + 0.250281i \(0.0805229\pi\)
−0.990683 + 0.136190i \(0.956514\pi\)
\(62\) 2.87039 16.2788i 0.364540 2.06741i
\(63\) 0 0
\(64\) −1.49529 8.48019i −0.186911 1.06002i
\(65\) −9.40281 + 1.09903i −1.16628 + 0.136318i
\(66\) 0 0
\(67\) 2.19466 7.33068i 0.268121 0.895585i −0.712831 0.701335i \(-0.752588\pi\)
0.980952 0.194250i \(-0.0622272\pi\)
\(68\) 15.3135 3.62938i 1.85704 0.440126i
\(69\) 0 0
\(70\) −1.35341 + 3.13757i −0.161764 + 0.375011i
\(71\) 5.19850 4.36206i 0.616948 0.517681i −0.279895 0.960031i \(-0.590299\pi\)
0.896843 + 0.442350i \(0.145855\pi\)
\(72\) 0 0
\(73\) 0.438511 + 0.367955i 0.0513238 + 0.0430658i 0.668089 0.744082i \(-0.267113\pi\)
−0.616765 + 0.787147i \(0.711557\pi\)
\(74\) −7.62227 + 3.82805i −0.886071 + 0.445002i
\(75\) 0 0
\(76\) −1.57564 0.184166i −0.180739 0.0211253i
\(77\) 0.133101 + 2.28526i 0.0151683 + 0.260430i
\(78\) 0 0
\(79\) −6.32380 + 6.70284i −0.711483 + 0.754128i −0.977751 0.209771i \(-0.932728\pi\)
0.266267 + 0.963899i \(0.414210\pi\)
\(80\) −10.6242 −1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) −4.24676 + 4.50130i −0.466143 + 0.494082i −0.917208 0.398409i \(-0.869563\pi\)
0.451065 + 0.892491i \(0.351044\pi\)
\(84\) 0 0
\(85\) −1.21901 20.9296i −0.132220 2.27013i
\(86\) −3.51954 0.411375i −0.379522 0.0443597i
\(87\) 0 0
\(88\) 0.526809 0.264573i 0.0561580 0.0282036i
\(89\) 3.52742 + 2.95986i 0.373906 + 0.313744i 0.810304 0.586009i \(-0.199302\pi\)
−0.436399 + 0.899753i \(0.643746\pi\)
\(90\) 0 0
\(91\) −1.60143 + 1.34376i −0.167875 + 0.140864i
\(92\) −1.78923 + 4.14790i −0.186540 + 0.432448i
\(93\) 0 0
\(94\) −23.1153 + 5.47843i −2.38416 + 0.565057i
\(95\) −0.606095 + 2.02450i −0.0621841 + 0.207709i
\(96\) 0 0
\(97\) 10.4458 1.22093i 1.06061 0.123967i 0.432142 0.901806i \(-0.357758\pi\)
0.628464 + 0.777839i \(0.283684\pi\)
\(98\) −2.32362 13.1779i −0.234721 1.33117i
\(99\) 0 0
\(100\) 0.960763 5.44876i 0.0960763 0.544876i
\(101\) 0.142370 2.44440i 0.0141663 0.243227i −0.983790 0.179325i \(-0.942609\pi\)
0.997956 0.0639015i \(-0.0203544\pi\)
\(102\) 0 0
\(103\) 6.75628 + 15.6628i 0.665716 + 1.54330i 0.830527 + 0.556978i \(0.188039\pi\)
−0.164811 + 0.986325i \(0.552701\pi\)
\(104\) 0.481100 + 0.241617i 0.0471757 + 0.0236925i
\(105\) 0 0
\(106\) −11.0062 2.60853i −1.06902 0.253362i
\(107\) −0.402056 + 0.696381i −0.0388682 + 0.0673217i −0.884805 0.465961i \(-0.845709\pi\)
0.845937 + 0.533283i \(0.179042\pi\)
\(108\) 0 0
\(109\) 2.11135 + 3.65696i 0.202230 + 0.350273i 0.949247 0.314532i \(-0.101848\pi\)
−0.747016 + 0.664806i \(0.768514\pi\)
\(110\) −6.00381 20.0541i −0.572441 1.91209i
\(111\) 0 0
\(112\) −1.96013 + 1.28920i −0.185215 + 0.121818i
\(113\) 7.37084 9.90076i 0.693390 0.931385i −0.306399 0.951903i \(-0.599124\pi\)
0.999789 + 0.0205182i \(0.00653160\pi\)
\(114\) 0 0
\(115\) 5.02778 + 3.30682i 0.468842 + 0.308363i
\(116\) −8.87030 + 3.22852i −0.823586 + 0.299761i
\(117\) 0 0
\(118\) 2.87146 + 1.04513i 0.264339 + 0.0962116i
\(119\) −2.76462 3.71352i −0.253432 0.340418i
\(120\) 0 0
\(121\) −2.07506 2.19944i −0.188642 0.199949i
\(122\) −4.19002 4.44116i −0.379346 0.402083i
\(123\) 0 0
\(124\) 10.1572 + 13.6435i 0.912145 + 1.22522i
\(125\) 6.07999 + 2.21294i 0.543811 + 0.197931i
\(126\) 0 0
\(127\) −9.37360 + 3.41171i −0.831772 + 0.302740i −0.722586 0.691281i \(-0.757047\pi\)
−0.109186 + 0.994021i \(0.534824\pi\)
\(128\) 1.05138 + 0.691505i 0.0929300 + 0.0611210i
\(129\) 0 0
\(130\) 11.4160 15.3344i 1.00125 1.34491i
\(131\) 4.58946 3.01853i 0.400983 0.263731i −0.332961 0.942941i \(-0.608048\pi\)
0.733944 + 0.679210i \(0.237677\pi\)
\(132\) 0 0
\(133\) 0.133841 + 0.447061i 0.0116055 + 0.0387651i
\(134\) 7.72636 + 13.3824i 0.667456 + 1.15607i
\(135\) 0 0
\(136\) −0.596125 + 1.03252i −0.0511173 + 0.0885378i
\(137\) 14.8200 + 3.51241i 1.26616 + 0.300086i 0.808211 0.588893i \(-0.200436\pi\)
0.457949 + 0.888978i \(0.348584\pi\)
\(138\) 0 0
\(139\) 14.3127 + 7.18809i 1.21398 + 0.609686i 0.936373 0.351008i \(-0.114161\pi\)
0.277612 + 0.960693i \(0.410457\pi\)
\(140\) −1.39266 3.22855i −0.117701 0.272863i
\(141\) 0 0
\(142\) −0.796812 + 13.6807i −0.0668670 + 1.14806i
\(143\) 2.22392 12.6125i 0.185973 1.05471i
\(144\) 0 0
\(145\) 2.18361 + 12.3839i 0.181339 + 1.02842i
\(146\) −1.14816 + 0.134200i −0.0950222 + 0.0111065i
\(147\) 0 0
\(148\) 2.51724 8.40816i 0.206916 0.691147i
\(149\) −8.60207 + 2.03873i −0.704709 + 0.167019i −0.567319 0.823498i \(-0.692019\pi\)
−0.137390 + 0.990517i \(0.543871\pi\)
\(150\) 0 0
\(151\) 0.391266 0.907056i 0.0318408 0.0738152i −0.901554 0.432667i \(-0.857572\pi\)
0.933394 + 0.358852i \(0.116832\pi\)
\(152\) 0.0920625 0.0772496i 0.00746726 0.00626577i
\(153\) 0 0
\(154\) −3.54117 2.97139i −0.285355 0.239442i
\(155\) 20.2487 10.1693i 1.62641 0.816816i
\(156\) 0 0
\(157\) −18.0755 2.11272i −1.44258 0.168613i −0.641478 0.767141i \(-0.721679\pi\)
−0.801102 + 0.598528i \(0.795753\pi\)
\(158\) −1.08202 18.5775i −0.0860805 1.47795i
\(159\) 0 0
\(160\) 15.3210 16.2393i 1.21123 1.28383i
\(161\) 1.32888 0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) 12.8938 13.6666i 1.00683 1.06718i
\(165\) 0 0
\(166\) −0.726629 12.4757i −0.0563974 0.968306i
\(167\) 5.86126 + 0.685083i 0.453558 + 0.0530133i 0.339805 0.940496i \(-0.389639\pi\)
0.113753 + 0.993509i \(0.463713\pi\)
\(168\) 0 0
\(169\) −1.16546 + 0.585314i −0.0896505 + 0.0450242i
\(170\) 32.4318 + 27.2135i 2.48740 + 2.08718i
\(171\) 0 0
\(172\) 2.79319 2.34377i 0.212979 0.178711i
\(173\) −3.56184 + 8.25726i −0.270801 + 0.627788i −0.998298 0.0583234i \(-0.981425\pi\)
0.727496 + 0.686111i \(0.240684\pi\)
\(174\) 0 0
\(175\) −1.58373 + 0.375351i −0.119719 + 0.0283739i
\(176\) 4.12215 13.7689i 0.310719 1.03787i
\(177\) 0 0
\(178\) −9.23587 + 1.07952i −0.692258 + 0.0809134i
\(179\) −0.223820 1.26935i −0.0167291 0.0948754i 0.975300 0.220884i \(-0.0708943\pi\)
−0.992029 + 0.126009i \(0.959783\pi\)
\(180\) 0 0
\(181\) 0.645386 3.66017i 0.0479712 0.272058i −0.951382 0.308013i \(-0.900336\pi\)
0.999353 + 0.0359546i \(0.0114472\pi\)
\(182\) 0.245463 4.21444i 0.0181949 0.312395i
\(183\) 0 0
\(184\) −0.135547 0.314234i −0.00999267 0.0231656i
\(185\) −10.4485 5.24741i −0.768186 0.385797i
\(186\) 0 0
\(187\) 27.5977 + 6.54077i 2.01814 + 0.478309i
\(188\) 12.2223 21.1696i 0.891400 1.54395i
\(189\) 0 0
\(190\) −2.13377 3.69580i −0.154800 0.268122i
\(191\) 2.09081 + 6.98378i 0.151285 + 0.505328i 0.999712 0.0239841i \(-0.00763509\pi\)
−0.848427 + 0.529313i \(0.822450\pi\)
\(192\) 0 0
\(193\) 8.04337 5.29021i 0.578974 0.380797i −0.225982 0.974131i \(-0.572559\pi\)
0.804956 + 0.593334i \(0.202189\pi\)
\(194\) −12.6823 + 17.0352i −0.910534 + 1.22306i
\(195\) 0 0
\(196\) 11.5040 + 7.56632i 0.821716 + 0.540451i
\(197\) −4.63898 + 1.68845i −0.330513 + 0.120297i −0.501946 0.864899i \(-0.667383\pi\)
0.171433 + 0.985196i \(0.445160\pi\)
\(198\) 0 0
\(199\) −2.36550 0.860973i −0.167686 0.0610327i 0.256813 0.966461i \(-0.417328\pi\)
−0.424499 + 0.905428i \(0.639550\pi\)
\(200\) 0.250300 + 0.336211i 0.0176989 + 0.0237737i
\(201\) 0 0
\(202\) 3.39317 + 3.59655i 0.238743 + 0.253052i
\(203\) 1.90560 + 2.01982i 0.133747 + 0.141763i
\(204\) 0 0
\(205\) −14.9467 20.0769i −1.04392 1.40223i
\(206\) −32.3692 11.7814i −2.25527 0.820851i
\(207\) 0 0
\(208\) 12.3341 4.48925i 0.855217 0.311273i
\(209\) −2.38859 1.57100i −0.165222 0.108668i
\(210\) 0 0
\(211\) 4.17283 5.60508i 0.287269 0.385870i −0.634939 0.772562i \(-0.718975\pi\)
0.922209 + 0.386692i \(0.126382\pi\)
\(212\) 9.72436 6.39581i 0.667872 0.439266i
\(213\) 0 0
\(214\) −0.465716 1.55560i −0.0318357 0.106339i
\(215\) −2.42868 4.20659i −0.165634 0.286887i
\(216\) 0 0
\(217\) 2.50183 4.33330i 0.169835 0.294163i
\(218\) −8.29743 1.96653i −0.561973 0.133190i
\(219\) 0 0
\(220\) 19.2494 + 9.66740i 1.29779 + 0.651776i
\(221\) 10.2590 + 23.7830i 0.690095 + 1.59982i
\(222\) 0 0
\(223\) 1.04650 17.9678i 0.0700790 1.20321i −0.761635 0.648006i \(-0.775603\pi\)
0.831714 0.555204i \(-0.187360\pi\)
\(224\) 0.856110 4.85524i 0.0572012 0.324404i
\(225\) 0 0
\(226\) 4.32831 + 24.5471i 0.287915 + 1.63285i
\(227\) −0.609362 + 0.0712243i −0.0404448 + 0.00472732i −0.136291 0.990669i \(-0.543518\pi\)
0.0958464 + 0.995396i \(0.469444\pi\)
\(228\) 0 0
\(229\) 1.43265 4.78538i 0.0946720 0.316227i −0.897515 0.440983i \(-0.854630\pi\)
0.992187 + 0.124757i \(0.0398150\pi\)
\(230\) −11.8247 + 2.80250i −0.779697 + 0.184792i
\(231\) 0 0
\(232\) 0.283243 0.656632i 0.0185958 0.0431100i
\(233\) −10.0792 + 8.45747i −0.660311 + 0.554067i −0.910180 0.414213i \(-0.864057\pi\)
0.249869 + 0.968280i \(0.419613\pi\)
\(234\) 0 0
\(235\) −24.9453 20.9316i −1.62725 1.36543i
\(236\) −2.80990 + 1.41118i −0.182909 + 0.0918603i
\(237\) 0 0
\(238\) 9.28581 + 1.08536i 0.601910 + 0.0703531i
\(239\) −0.529012 9.08278i −0.0342189 0.587517i −0.971219 0.238188i \(-0.923447\pi\)
0.937000 0.349329i \(-0.113590\pi\)
\(240\) 0 0
\(241\) 9.77902 10.3652i 0.629922 0.667679i −0.331277 0.943534i \(-0.607479\pi\)
0.961199 + 0.275855i \(0.0889609\pi\)
\(242\) 6.10626 0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) 12.5875 13.3420i 0.804186 0.852387i
\(246\) 0 0
\(247\) −0.151808 2.60644i −0.00965931 0.165844i
\(248\) −1.27986 0.149595i −0.0812714 0.00949926i
\(249\) 0 0
\(250\) −11.6761 + 5.86395i −0.738461 + 0.370869i
\(251\) −6.58379 5.52445i −0.415565 0.348700i 0.410908 0.911677i \(-0.365212\pi\)
−0.826473 + 0.562976i \(0.809656\pi\)
\(252\) 0 0
\(253\) −6.23640 + 5.23296i −0.392079 + 0.328993i
\(254\) 7.97856 18.4964i 0.500619 1.16057i
\(255\) 0 0
\(256\) 14.2851 3.38562i 0.892817 0.211602i
\(257\) −6.36608 + 21.2642i −0.397105 + 1.32642i 0.492746 + 0.870173i \(0.335993\pi\)
−0.889851 + 0.456251i \(0.849192\pi\)
\(258\) 0 0
\(259\) −2.56446 + 0.299743i −0.159348 + 0.0186251i
\(260\) 3.41594 + 19.3728i 0.211848 + 1.20145i
\(261\) 0 0
\(262\) −1.92625 + 10.9243i −0.119004 + 0.674906i
\(263\) 0.305988 5.25362i 0.0188681 0.323952i −0.975646 0.219350i \(-0.929606\pi\)
0.994514 0.104602i \(-0.0333568\pi\)
\(264\) 0 0
\(265\) −6.14124 14.2370i −0.377254 0.874572i
\(266\) −0.842145 0.422941i −0.0516352 0.0259322i
\(267\) 0 0
\(268\) −15.4722 3.66698i −0.945116 0.223997i
\(269\) 3.11423 5.39401i 0.189878 0.328878i −0.755331 0.655343i \(-0.772524\pi\)
0.945209 + 0.326465i \(0.105857\pi\)
\(270\) 0 0
\(271\) −3.65935 6.33818i −0.222290 0.385017i 0.733213 0.679999i \(-0.238020\pi\)
−0.955503 + 0.294982i \(0.904686\pi\)
\(272\) 8.33676 + 27.8467i 0.505490 + 1.68846i
\(273\) 0 0
\(274\) −25.6967 + 16.9010i −1.55239 + 1.02103i
\(275\) 5.95433 7.99805i 0.359060 0.482301i
\(276\) 0 0
\(277\) 15.5663 + 10.2381i 0.935287 + 0.615148i 0.923010 0.384776i \(-0.125721\pi\)
0.0122776 + 0.999925i \(0.496092\pi\)
\(278\) −30.3926 + 11.0620i −1.82283 + 0.663456i
\(279\) 0 0
\(280\) 0.250307 + 0.0911045i 0.0149587 + 0.00544453i
\(281\) 0.610261 + 0.819722i 0.0364051 + 0.0489005i 0.819953 0.572431i \(-0.193999\pi\)
−0.783548 + 0.621331i \(0.786592\pi\)
\(282\) 0 0
\(283\) 7.52347 + 7.97442i 0.447224 + 0.474030i 0.911287 0.411773i \(-0.135090\pi\)
−0.464063 + 0.885802i \(0.653609\pi\)
\(284\) −9.67691 10.2569i −0.574219 0.608637i
\(285\) 0 0
\(286\) 15.4440 + 20.7449i 0.913222 + 1.22667i
\(287\) −5.19387 1.89041i −0.306584 0.111588i
\(288\) 0 0
\(289\) −37.9265 + 13.8041i −2.23097 + 0.812008i
\(290\) −21.2161 13.9541i −1.24585 0.819412i
\(291\) 0 0
\(292\) 0.710317 0.954122i 0.0415682 0.0558357i
\(293\) 20.2853 13.3418i 1.18508 0.779438i 0.205138 0.978733i \(-0.434236\pi\)
0.979939 + 0.199295i \(0.0638654\pi\)
\(294\) 0 0
\(295\) 1.20135 + 4.01278i 0.0699451 + 0.233633i
\(296\) 0.332457 + 0.575832i 0.0193237 + 0.0334696i
\(297\) 0 0
\(298\) 8.92609 15.4604i 0.517075 0.895599i
\(299\) −7.23428 1.71456i −0.418369 0.0991553i
\(300\) 0 0
\(301\) −0.958536 0.481395i −0.0552491 0.0277471i
\(302\) 0.790120 + 1.83170i 0.0454663 + 0.105403i
\(303\) 0 0
\(304\) 0.170367 2.92509i 0.00977123 0.167765i
\(305\) 1.45337 8.24247i 0.0832198 0.471963i
\(306\) 0 0
\(307\) −4.31169 24.4528i −0.246081 1.39560i −0.817968 0.575264i \(-0.804899\pi\)
0.571887 0.820333i \(-0.306212\pi\)
\(308\) 4.72455 0.552221i 0.269206 0.0314657i
\(309\) 0 0
\(310\) −13.1233 + 43.8349i −0.745354 + 2.48966i
\(311\) −1.80082 + 0.426803i −0.102115 + 0.0242018i −0.281356 0.959604i \(-0.590784\pi\)
0.179241 + 0.983805i \(0.442636\pi\)
\(312\) 0 0
\(313\) −2.75336 + 6.38301i −0.155629 + 0.360789i −0.978136 0.207966i \(-0.933316\pi\)
0.822507 + 0.568755i \(0.192575\pi\)
\(314\) 28.1521 23.6225i 1.58872 1.33309i
\(315\) 0 0
\(316\) 14.6687 + 12.3085i 0.825178 + 0.692406i
\(317\) −23.2678 + 11.6855i −1.30685 + 0.656324i −0.959578 0.281441i \(-0.909188\pi\)
−0.347270 + 0.937765i \(0.612891\pi\)
\(318\) 0 0
\(319\) −16.8967 1.97495i −0.946036 0.110576i
\(320\) 1.38597 + 23.7962i 0.0774781 + 1.33025i
\(321\) 0 0
\(322\) −1.84155 + 1.95193i −0.102626 + 0.108777i
\(323\) 5.78196 0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) −23.7620 + 25.1863i −1.31606 + 1.39494i
\(327\) 0 0
\(328\) 0.0827635 + 1.42099i 0.00456985 + 0.0784613i
\(329\) −7.14229 0.834814i −0.393767 0.0460248i
\(330\) 0 0
\(331\) −23.2661 + 11.6847i −1.27882 + 0.642249i −0.952939 0.303161i \(-0.901958\pi\)
−0.325884 + 0.945410i \(0.605662\pi\)
\(332\) 9.85078 + 8.26579i 0.540632 + 0.453644i
\(333\) 0 0
\(334\) −9.12878 + 7.65996i −0.499505 + 0.419134i
\(335\) −8.38987 + 19.4499i −0.458387 + 1.06266i
\(336\) 0 0
\(337\) −14.6259 + 3.46641i −0.796726 + 0.188828i −0.608767 0.793349i \(-0.708335\pi\)
−0.187959 + 0.982177i \(0.560187\pi\)
\(338\) 0.755339 2.52301i 0.0410850 0.137234i
\(339\) 0 0
\(340\) −43.2698 + 5.05752i −2.34663 + 0.274282i
\(341\) 5.32295 + 30.1880i 0.288254 + 1.63477i
\(342\) 0 0
\(343\) 1.44640 8.20293i 0.0780981 0.442917i
\(344\) −0.0160614 + 0.275763i −0.000865972 + 0.0148682i
\(345\) 0 0
\(346\) −7.19275 16.6747i −0.386685 0.896436i
\(347\) 22.7180 + 11.4094i 1.21957 + 0.612490i 0.937861 0.347011i \(-0.112803\pi\)
0.281706 + 0.959501i \(0.409100\pi\)
\(348\) 0 0
\(349\) −28.4767 6.74910i −1.52432 0.361271i −0.618793 0.785554i \(-0.712378\pi\)
−0.905530 + 0.424283i \(0.860526\pi\)
\(350\) 1.64339 2.84643i 0.0878427 0.152148i
\(351\) 0 0
\(352\) 15.1016 + 26.1568i 0.804920 + 1.39416i
\(353\) 8.22886 + 27.4863i 0.437978 + 1.46295i 0.837608 + 0.546272i \(0.183954\pi\)
−0.399629 + 0.916677i \(0.630861\pi\)
\(354\) 0 0
\(355\) −15.6947 + 10.3226i −0.832988 + 0.547865i
\(356\) 5.71385 7.67504i 0.302834 0.406776i
\(357\) 0 0
\(358\) 2.17465 + 1.43029i 0.114934 + 0.0755932i
\(359\) −19.5984 + 7.13322i −1.03436 + 0.376477i −0.802740 0.596329i \(-0.796625\pi\)
−0.231622 + 0.972806i \(0.574403\pi\)
\(360\) 0 0
\(361\) 17.3065 + 6.29905i 0.910868 + 0.331529i
\(362\) 4.48188 + 6.02021i 0.235563 + 0.316415i
\(363\) 0 0
\(364\) 2.98103 + 3.15971i 0.156249 + 0.165614i
\(365\) −1.08741 1.15259i −0.0569175 0.0603291i
\(366\) 0 0
\(367\) −20.6418 27.7268i −1.07750 1.44733i −0.884742 0.466080i \(-0.845666\pi\)
−0.192753 0.981247i \(-0.561742\pi\)
\(368\) −7.84042 2.85368i −0.408710 0.148758i
\(369\) 0 0
\(370\) 22.1871 8.07544i 1.15345 0.419822i
\(371\) −2.86064 1.88147i −0.148517 0.0976812i
\(372\) 0 0
\(373\) −5.59504 + 7.51544i −0.289700 + 0.389135i −0.923018 0.384757i \(-0.874285\pi\)
0.633318 + 0.773892i \(0.281693\pi\)
\(374\) −47.8521 + 31.4728i −2.47437 + 1.62742i
\(375\) 0 0
\(376\) 0.531117 + 1.77406i 0.0273903 + 0.0914899i
\(377\) −7.76787 13.4543i −0.400065 0.692934i
\(378\) 0 0
\(379\) 0.963771 1.66930i 0.0495056 0.0857462i −0.840211 0.542260i \(-0.817569\pi\)
0.889716 + 0.456514i \(0.150902\pi\)
\(380\) 4.27293 + 1.01270i 0.219197 + 0.0519506i
\(381\) 0 0
\(382\) −13.1556 6.60698i −0.673098 0.338042i
\(383\) −7.72041 17.8979i −0.394494 0.914541i −0.993504 0.113799i \(-0.963698\pi\)
0.599010 0.800742i \(-0.295561\pi\)
\(384\) 0 0
\(385\) 0.368444 6.32594i 0.0187776 0.322400i
\(386\) −3.37590 + 19.1457i −0.171829 + 0.974489i
\(387\) 0 0
\(388\) −3.79483 21.5216i −0.192653 1.09259i
\(389\) −9.07811 + 1.06108i −0.460279 + 0.0537989i −0.343073 0.939309i \(-0.611468\pi\)
−0.117206 + 0.993108i \(0.537394\pi\)
\(390\) 0 0
\(391\) 4.72213 15.7730i 0.238808 0.797675i
\(392\) −1.01500 + 0.240560i −0.0512654 + 0.0121501i
\(393\) 0 0
\(394\) 3.94857 9.15382i 0.198926 0.461163i
\(395\) 19.5409 16.3967i 0.983208 0.825009i
\(396\) 0 0
\(397\) 25.5466 + 21.4361i 1.28215 + 1.07585i 0.992944 + 0.118581i \(0.0378344\pi\)
0.289202 + 0.957268i \(0.406610\pi\)
\(398\) 4.54274 2.28145i 0.227707 0.114359i
\(399\) 0 0
\(400\) 10.1501 + 1.18638i 0.507505 + 0.0593188i
\(401\) −0.206340 3.54271i −0.0103041 0.176915i −0.999534 0.0305412i \(-0.990277\pi\)
0.989229 0.146373i \(-0.0467601\pi\)
\(402\) 0 0
\(403\) −19.2106 + 20.3621i −0.956950 + 1.01431i
\(404\) −5.08795 −0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) 10.8546 11.5052i 0.538043 0.570293i
\(408\) 0 0
\(409\) 1.86266 + 31.9807i 0.0921027 + 1.58134i 0.655525 + 0.755173i \(0.272447\pi\)
−0.563422 + 0.826169i \(0.690516\pi\)
\(410\) 50.2031 + 5.86790i 2.47935 + 0.289795i
\(411\) 0 0
\(412\) 31.6752 15.9079i 1.56053 0.783726i
\(413\) 0.708579 + 0.594568i 0.0348669 + 0.0292568i
\(414\) 0 0
\(415\) 13.1227 11.0113i 0.644168 0.540522i
\(416\) −10.9249 + 25.3268i −0.535639 + 1.24175i
\(417\) 0 0
\(418\) 5.61766 1.33141i 0.274769 0.0651213i
\(419\) −4.25467 + 14.2116i −0.207854 + 0.694281i 0.788955 + 0.614452i \(0.210623\pi\)
−0.996809 + 0.0798292i \(0.974563\pi\)
\(420\) 0 0
\(421\) 15.4744 1.80870i 0.754176 0.0881505i 0.269687 0.962948i \(-0.413080\pi\)
0.484489 + 0.874798i \(0.339006\pi\)
\(422\) 2.45037 + 13.8968i 0.119282 + 0.676484i
\(423\) 0 0
\(424\) −0.153114 + 0.868355i −0.00743589 + 0.0421710i
\(425\) −1.17254 + 20.1317i −0.0568766 + 0.976533i
\(426\) 0 0
\(427\) −0.732046 1.69707i −0.0354262 0.0821271i
\(428\) 1.49318 + 0.749902i 0.0721754 + 0.0362479i
\(429\) 0 0
\(430\) 9.54451 + 2.26209i 0.460277 + 0.109088i
\(431\) 0.648713 1.12360i 0.0312474 0.0541221i −0.849979 0.526817i \(-0.823385\pi\)
0.881226 + 0.472695i \(0.156719\pi\)
\(432\) 0 0
\(433\) −8.76506 15.1815i −0.421222 0.729577i 0.574838 0.818268i \(-0.305065\pi\)
−0.996059 + 0.0886901i \(0.971732\pi\)
\(434\) 2.89796 + 9.67987i 0.139107 + 0.464649i
\(435\) 0 0
\(436\) 7.33105 4.82170i 0.351093 0.230918i
\(437\) −0.991071 + 1.33124i −0.0474094 + 0.0636818i
\(438\) 0 0
\(439\) −18.1453 11.9344i −0.866028 0.569596i 0.0369331 0.999318i \(-0.488241\pi\)
−0.902961 + 0.429722i \(0.858612\pi\)
\(440\) −1.53345 + 0.558129i −0.0731042 + 0.0266077i
\(441\) 0 0
\(442\) −49.1506 17.8894i −2.33786 0.850910i
\(443\) −5.46021 7.33434i −0.259422 0.348465i 0.653260 0.757133i \(-0.273401\pi\)
−0.912683 + 0.408668i \(0.865993\pi\)
\(444\) 0 0
\(445\) −8.74720 9.27149i −0.414657 0.439511i
\(446\) 24.9418 + 26.4367i 1.18103 + 1.25182i
\(447\) 0 0
\(448\) 3.14327 + 4.22215i 0.148506 + 0.199478i
\(449\) 11.6732 + 4.24870i 0.550893 + 0.200509i 0.602443 0.798162i \(-0.294194\pi\)
−0.0515501 + 0.998670i \(0.516416\pi\)
\(450\) 0 0
\(451\) 31.8189 11.5811i 1.49829 0.545335i
\(452\) −21.4291 14.0941i −1.00794 0.662932i
\(453\) 0 0
\(454\) 0.739832 0.993767i 0.0347220 0.0466398i
\(455\) 4.83485 3.17993i 0.226661 0.149077i
\(456\) 0 0
\(457\) 5.36176 + 17.9095i 0.250812 + 0.837772i 0.986962 + 0.160953i \(0.0514567\pi\)
−0.736150 + 0.676819i \(0.763358\pi\)
\(458\) 5.04367 + 8.73589i 0.235675 + 0.408201i
\(459\) 0 0
\(460\) 6.25233 10.8293i 0.291516 0.504921i
\(461\) −39.9745 9.47414i −1.86180 0.441255i −0.863764 0.503897i \(-0.831899\pi\)
−0.998036 + 0.0626425i \(0.980047\pi\)
\(462\) 0 0
\(463\) −3.69053 1.85346i −0.171514 0.0861374i 0.360971 0.932577i \(-0.382445\pi\)
−0.532485 + 0.846440i \(0.678742\pi\)
\(464\) −6.90567 16.0091i −0.320588 0.743205i
\(465\) 0 0
\(466\) 1.54492 26.5252i 0.0715669 1.22876i
\(467\) 4.38922 24.8925i 0.203109 1.15189i −0.697279 0.716799i \(-0.745606\pi\)
0.900388 0.435087i \(-0.143283\pi\)
\(468\) 0 0
\(469\) 0.812254 + 4.60652i 0.0375064 + 0.212710i
\(470\) 65.3144 7.63416i 3.01273 0.352138i
\(471\) 0 0
\(472\) 0.0683188 0.228201i 0.00314463 0.0105038i
\(473\) 6.39406 1.51542i 0.293999 0.0696791i
\(474\) 0 0
\(475\) 0.805121 1.86648i 0.0369415 0.0856399i
\(476\) −7.36945 + 6.18370i −0.337778 + 0.283430i
\(477\) 0 0
\(478\) 14.0744 + 11.8098i 0.643748 + 0.540168i
\(479\) 18.5894 9.33596i 0.849372 0.426571i 0.0298064 0.999556i \(-0.490511\pi\)
0.819566 + 0.572985i \(0.194215\pi\)
\(480\) 0 0
\(481\) 14.3474 + 1.67697i 0.654185 + 0.0764633i
\(482\) 1.67321 + 28.7279i 0.0762127 + 1.30852i
\(483\) 0 0
\(484\) −4.31189 + 4.57033i −0.195995 + 0.207742i
\(485\) −29.1122 −1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) −0.326629 + 0.346207i −0.0147858 + 0.0156721i
\(489\) 0 0
\(490\) 2.15375 + 36.9784i 0.0972964 + 1.67051i
\(491\) −36.2982 4.24265i −1.63811 0.191468i −0.753387 0.657577i \(-0.771581\pi\)
−0.884727 + 0.466109i \(0.845655\pi\)
\(492\) 0 0
\(493\) 30.7455 15.4410i 1.38471 0.695427i
\(494\) 4.03886 + 3.38900i 0.181717 + 0.152479i
\(495\) 0 0
\(496\) −24.0663 + 20.1941i −1.08061 + 0.906740i
\(497\) −1.64303 + 3.80897i −0.0736998 + 0.170855i
\(498\) 0 0
\(499\) 35.4129 8.39301i 1.58530 0.375723i 0.658890 0.752239i \(-0.271026\pi\)
0.926410 + 0.376517i \(0.122878\pi\)
\(500\) 3.85600 12.8799i 0.172446 0.576008i
\(501\) 0 0
\(502\) 17.2384 2.01488i 0.769387 0.0899284i
\(503\) −1.38230 7.83939i −0.0616335 0.349541i −0.999992 0.00387871i \(-0.998765\pi\)
0.938359 0.345662i \(-0.112346\pi\)
\(504\) 0 0
\(505\) −1.17697 + 6.67494i −0.0523746 + 0.297031i
\(506\) 0.955899 16.4122i 0.0424949 0.729610i
\(507\) 0 0
\(508\) 8.20992 + 19.0327i 0.364256 + 0.844441i
\(509\) 1.49130 + 0.748960i 0.0661008 + 0.0331971i 0.481543 0.876423i \(-0.340077\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(510\) 0 0
\(511\) −0.340485 0.0806964i −0.0150622 0.00356980i
\(512\) −16.0816 + 27.8541i −0.710711 + 1.23099i
\(513\) 0 0
\(514\) −22.4119 38.8186i −0.988548 1.71221i
\(515\) −13.5425 45.2350i −0.596753 1.99329i
\(516\) 0 0
\(517\) 36.8060 24.2077i 1.61873 1.06465i
\(518\) 3.11353 4.18220i 0.136801 0.183755i
\(519\) 0 0
\(520\) −1.24510 0.818917i −0.0546014 0.0359119i
\(521\) −32.9725 + 12.0010i −1.44455 + 0.525773i −0.941063 0.338230i \(-0.890172\pi\)
−0.503486 + 0.864003i \(0.667950\pi\)
\(522\) 0 0
\(523\) 11.3086 + 4.11600i 0.494491 + 0.179980i 0.577214 0.816593i \(-0.304140\pi\)
−0.0827236 + 0.996573i \(0.526362\pi\)
\(524\) −6.81627 9.15584i −0.297770 0.399975i
\(525\) 0 0
\(526\) 7.29276 + 7.72988i 0.317980 + 0.337039i
\(527\) −42.5435 45.0935i −1.85322 1.96430i
\(528\) 0 0
\(529\) −10.9125 14.6580i −0.474455 0.637304i
\(530\) 29.4226 + 10.7089i 1.27803 + 0.465167i
\(531\) 0 0
\(532\) 0.911231 0.331661i 0.0395069 0.0143793i
\(533\) 25.8358 + 16.9925i 1.11907 + 0.736026i
\(534\) 0 0
\(535\) 1.32921 1.78544i 0.0574669 0.0771915i
\(536\) 1.00643 0.661941i 0.0434712 0.0285915i
\(537\) 0 0
\(538\) 3.60733 + 12.0493i 0.155523 + 0.519483i
\(539\) 12.4073 + 21.4900i 0.534420 + 0.925642i
\(540\) 0 0
\(541\) −9.81306 + 16.9967i −0.421896 + 0.730746i −0.996125 0.0879490i \(-0.971969\pi\)
0.574229 + 0.818695i \(0.305302\pi\)
\(542\) 14.3810 + 3.40835i 0.617715 + 0.146401i
\(543\) 0 0
\(544\) −54.5867 27.4145i −2.34038 1.17539i
\(545\) −4.62979 10.7331i −0.198318 0.459754i
\(546\) 0 0
\(547\) −0.507250 + 8.70914i −0.0216884 + 0.372376i 0.969948 + 0.243313i \(0.0782341\pi\)
−0.991636 + 0.129063i \(0.958803\pi\)
\(548\) 5.49569 31.1676i 0.234764 1.33141i
\(549\) 0 0
\(550\) 3.49651 + 19.8297i 0.149092 + 0.845540i
\(551\) −3.44459 + 0.402615i −0.146745 + 0.0171520i
\(552\) 0 0
\(553\) 1.61556 5.39635i 0.0687007 0.229476i
\(554\) −36.6099 + 8.67671i −1.55541 + 0.368638i
\(555\) 0 0
\(556\) 13.1820 30.5592i 0.559040 1.29600i
\(557\) −15.1698 + 12.7290i −0.642765 + 0.539344i −0.904866 0.425696i \(-0.860029\pi\)
0.262101 + 0.965041i \(0.415585\pi\)
\(558\) 0 0
\(559\) 4.59706 + 3.85739i 0.194435 + 0.163150i
\(560\) 5.80354 2.91465i 0.245244 0.123166i
\(561\) 0 0
\(562\) −2.04975 0.239581i −0.0864634 0.0101061i
\(563\) 1.97439 + 33.8990i 0.0832108 + 1.42867i 0.738987 + 0.673719i \(0.235304\pi\)
−0.655777 + 0.754955i \(0.727659\pi\)
\(564\) 0 0
\(565\) −23.4473 + 24.8527i −0.986436 + 1.04556i
\(566\) −22.1392 −0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) −13.2027 + 13.9941i −0.553486 + 0.586661i −0.942348 0.334635i \(-0.891387\pi\)
0.388861 + 0.921296i \(0.372868\pi\)
\(570\) 0 0
\(571\) 0.144601 + 2.48271i 0.00605138 + 0.103898i 0.999981 0.00611695i \(-0.00194710\pi\)
−0.993930 + 0.110015i \(0.964910\pi\)
\(572\) −26.4325 3.08951i −1.10520 0.129179i
\(573\) 0 0
\(574\) 9.97437 5.00931i 0.416322 0.209085i
\(575\) −4.43416 3.72070i −0.184917 0.155164i
\(576\) 0 0
\(577\) 19.5278 16.3857i 0.812951 0.682147i −0.138359 0.990382i \(-0.544183\pi\)
0.951310 + 0.308235i \(0.0997383\pi\)
\(578\) 32.2821 74.8382i 1.34276 3.11286i
\(579\) 0 0
\(580\) 25.4258 6.02602i 1.05575 0.250217i
\(581\) 1.08493 3.62393i 0.0450106 0.150346i
\(582\) 0 0
\(583\) 20.8339 2.43514i 0.862854 0.100853i
\(584\) 0.0156480 + 0.0887440i 0.000647517 + 0.00367225i
\(585\) 0 0
\(586\) −8.51396 + 48.2851i −0.351709 + 1.99464i
\(587\) 0.0520618 0.893866i 0.00214882 0.0368938i −0.997063 0.0765818i \(-0.975599\pi\)
0.999212 + 0.0396880i \(0.0126364\pi\)
\(588\) 0 0
\(589\) 2.47514 + 5.73802i 0.101986 + 0.236431i
\(590\) −7.55901 3.79628i −0.311199 0.156290i
\(591\) 0 0
\(592\) 15.7741 + 3.73852i 0.648310 + 0.153652i
\(593\) 16.2145 28.0843i 0.665848 1.15328i −0.313207 0.949685i \(-0.601403\pi\)
0.979055 0.203597i \(-0.0652634\pi\)
\(594\) 0 0
\(595\) 6.40773 + 11.0985i 0.262691 + 0.454994i
\(596\) 5.26854 + 17.5981i 0.215808 + 0.720848i
\(597\) 0 0
\(598\) 12.5436 8.25008i 0.512948 0.337371i
\(599\) 25.1367 33.7644i 1.02706 1.37958i 0.104148 0.994562i \(-0.466788\pi\)
0.922910 0.385016i \(-0.125804\pi\)
\(600\) 0 0
\(601\) 25.8496 + 17.0016i 1.05443 + 0.693509i 0.953502 0.301385i \(-0.0974490\pi\)
0.100926 + 0.994894i \(0.467819\pi\)
\(602\) 2.03543 0.740836i 0.0829580 0.0301942i
\(603\) 0 0
\(604\) −1.92891 0.702064i −0.0784861 0.0285666i
\(605\) 4.99842 + 6.71405i 0.203215 + 0.272965i
\(606\) 0 0
\(607\) 10.2760 + 10.8919i 0.417090 + 0.442090i 0.901518 0.432742i \(-0.142454\pi\)
−0.484428 + 0.874831i \(0.660972\pi\)
\(608\) 4.22538 + 4.47864i 0.171362 + 0.181633i
\(609\) 0 0
\(610\) 10.0929 + 13.5572i 0.408651 + 0.548913i
\(611\) 37.8048 + 13.7598i 1.52942 + 0.556663i
\(612\) 0 0
\(613\) 17.2467 6.27730i 0.696589 0.253538i 0.0306353 0.999531i \(-0.490247\pi\)
0.665954 + 0.745993i \(0.268025\pi\)
\(614\) 41.8928 + 27.5533i 1.69065 + 1.11196i
\(615\) 0 0
\(616\) −0.215190 + 0.289050i −0.00867025 + 0.0116462i
\(617\) −27.3834 + 18.0103i −1.10241 + 0.725069i −0.964158 0.265328i \(-0.914520\pi\)
−0.138255 + 0.990397i \(0.544149\pi\)
\(618\) 0 0
\(619\) 1.72149 + 5.75017i 0.0691925 + 0.231119i 0.985590 0.169150i \(-0.0541021\pi\)
−0.916398 + 0.400268i \(0.868917\pi\)
\(620\) −23.5420 40.7760i −0.945471 1.63760i
\(621\) 0 0
\(622\) 1.86865 3.23661i 0.0749262 0.129776i
\(623\) −2.73889 0.649129i −0.109731 0.0260068i
\(624\) 0 0
\(625\) −27.9024 14.0131i −1.11610 0.560524i
\(626\) −5.56013 12.8898i −0.222227 0.515181i
\(627\) 0 0
\(628\) −2.19879 + 37.7517i −0.0877412 + 1.50646i
\(629\) −5.55497 + 31.5038i −0.221491 + 1.25614i
\(630\) 0 0
\(631\) −4.24361 24.0667i −0.168935 0.958080i −0.944914 0.327320i \(-0.893854\pi\)
0.775978 0.630760i \(-0.217257\pi\)
\(632\) −1.44084 + 0.168410i −0.0573135 + 0.00669899i
\(633\) 0 0
\(634\) 15.0800 50.3707i 0.598903 2.00048i
\(635\) 26.8684 6.36793i 1.06624 0.252704i
\(636\) 0 0
\(637\) −8.97577 + 20.8082i −0.355633 + 0.824450i
\(638\) 26.3163 22.0820i 1.04187 0.874234i
\(639\) 0 0
\(640\) −2.66848 2.23912i −0.105481 0.0885089i
\(641\) −9.21794 + 4.62942i −0.364087 + 0.182851i −0.621432 0.783468i \(-0.713449\pi\)
0.257345 + 0.966320i \(0.417152\pi\)
\(642\) 0 0
\(643\) 43.0139 + 5.02761i 1.69630 + 0.198270i 0.908566 0.417741i \(-0.137178\pi\)
0.787738 + 0.616010i \(0.211252\pi\)
\(644\) −0.160558 2.75668i −0.00632688 0.108628i
\(645\) 0 0
\(646\) −8.01259 + 8.49285i −0.315251 + 0.334147i
\(647\) −6.50021 −0.255550 −0.127775 0.991803i \(-0.540783\pi\)
−0.127775 + 0.991803i \(0.540783\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) −12.6190 + 13.3753i −0.494956 + 0.524623i
\(651\) 0 0
\(652\) −2.07173 35.5702i −0.0811350 1.39303i
\(653\) 2.95697 + 0.345620i 0.115715 + 0.0135251i 0.173753 0.984789i \(-0.444410\pi\)
−0.0580383 + 0.998314i \(0.518485\pi\)
\(654\) 0 0
\(655\) −13.5884 + 6.82436i −0.530944 + 0.266650i
\(656\) 26.5844 + 22.3070i 1.03795 + 0.870941i
\(657\) 0 0
\(658\) 11.1240 9.33410i 0.433657 0.363881i
\(659\) 11.1338 25.8110i 0.433710 1.00545i −0.551512 0.834167i \(-0.685949\pi\)
0.985221 0.171285i \(-0.0547920\pi\)
\(660\) 0 0
\(661\) −3.16302 + 0.749650i −0.123027 + 0.0291580i −0.291668 0.956520i \(-0.594210\pi\)
0.168641 + 0.985678i \(0.446062\pi\)
\(662\) 15.0789 50.3671i 0.586059 1.95757i
\(663\) 0 0
\(664\) −0.967598 + 0.113096i −0.0375501 + 0.00438898i
\(665\) −0.224319 1.27217i −0.00869871 0.0493328i
\(666\) 0 0
\(667\) −1.71488 + 9.72556i −0.0664004 + 0.376575i
\(668\) 0.712992 12.2416i 0.0275865 0.473642i
\(669\) 0 0
\(670\) −16.9424 39.2770i −0.654544 1.51740i
\(671\) 10.1183 + 5.08162i 0.390614 + 0.196174i
\(672\) 0 0
\(673\) 13.5198 + 3.20426i 0.521152 + 0.123515i 0.482769 0.875748i \(-0.339631\pi\)
0.0383830 + 0.999263i \(0.487779\pi\)
\(674\) 15.1769 26.2871i 0.584591 1.01254i
\(675\) 0 0
\(676\) 1.35501 + 2.34695i 0.0521158 + 0.0902672i
\(677\) −3.11373 10.4006i −0.119670 0.399727i 0.877074 0.480356i \(-0.159492\pi\)
−0.996744 + 0.0806287i \(0.974307\pi\)
\(678\) 0 0
\(679\) −5.37112 + 3.53264i −0.206125 + 0.135570i
\(680\) 1.97082 2.64726i 0.0755773 0.101518i
\(681\) 0 0
\(682\) −51.7182 34.0156i −1.98039 1.30253i
\(683\) 31.5858 11.4963i 1.20860 0.439893i 0.342380 0.939562i \(-0.388767\pi\)
0.866217 + 0.499668i \(0.166545\pi\)
\(684\) 0 0
\(685\) −39.6178 14.4197i −1.51372 0.550949i
\(686\) 10.0445 + 13.4921i 0.383501 + 0.515131i
\(687\) 0 0
\(688\) 4.62162 + 4.89864i 0.176198 + 0.186759i
\(689\) 13.1455 + 13.9334i 0.500804 + 0.530821i
\(690\) 0 0
\(691\) −0.267326 0.359082i −0.0101696 0.0136601i 0.797009 0.603967i \(-0.206414\pi\)
−0.807179 + 0.590307i \(0.799007\pi\)
\(692\) 17.5595 + 6.39115i 0.667513 + 0.242955i
\(693\) 0 0
\(694\) −48.2412 + 17.5584i −1.83121 + 0.666507i
\(695\) −37.0417 24.3627i −1.40507 0.924129i
\(696\) 0 0
\(697\) −40.8943 + 54.9306i −1.54898 + 2.08065i
\(698\) 49.3762 32.4753i 1.86892 1.22921i
\(699\) 0 0
\(700\) 0.969993 + 3.24000i 0.0366623 + 0.122461i
\(701\) −1.94332 3.36593i −0.0733982 0.127129i 0.826990 0.562216i \(-0.190051\pi\)
−0.900389 + 0.435087i \(0.856718\pi\)
\(702\) 0 0
\(703\) 1.61229 2.79256i 0.0608086 0.105324i
\(704\) −31.3776 7.43663i −1.18259 0.280278i
\(705\) 0 0
\(706\) −51.7769 26.0033i −1.94865 0.978648i
\(707\) 0.592827 + 1.37433i 0.0222956 + 0.0516869i
\(708\) 0 0
\(709\) 0.857054 14.7150i 0.0321873 0.552635i −0.943212 0.332191i \(-0.892212\pi\)
0.975400 0.220444i \(-0.0707507\pi\)
\(710\) 6.58725 37.3581i 0.247215 1.40203i
\(711\) 0 0
\(712\) 0.125874 + 0.713864i 0.00471731 + 0.0267532i
\(713\) 17.6746 2.06587i 0.661919 0.0773673i
\(714\) 0 0
\(715\) −10.1677 + 33.9624i −0.380249 + 1.27012i
\(716\) −2.60614 + 0.617666i −0.0973959 + 0.0230833i
\(717\) 0 0
\(718\) 16.6816 38.6723i 0.622552 1.44324i
\(719\) −24.7821 + 20.7947i −0.924218 + 0.775511i −0.974770 0.223210i \(-0.928346\pi\)
0.0505523 + 0.998721i \(0.483902\pi\)
\(720\) 0 0
\(721\) −7.98762 6.70241i −0.297474 0.249611i
\(722\) −33.2356 + 16.6915i −1.23690 + 0.621195i
\(723\) 0 0
\(724\) −7.67077 0.896585i −0.285082 0.0333213i
\(725\) −0.703295 12.0751i −0.0261197 0.448458i
\(726\) 0 0
\(727\) 6.33415 6.71380i 0.234921 0.249001i −0.599179 0.800615i \(-0.704506\pi\)
0.834100 + 0.551614i \(0.185988\pi\)
\(728\) −0.329090 −0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) −9.12000 + 9.66663i −0.337315 + 0.357533i
\(732\) 0 0
\(733\) 3.08131 + 52.9040i 0.113811 + 1.95405i 0.261936 + 0.965085i \(0.415639\pi\)
−0.148126 + 0.988969i \(0.547324\pi\)
\(734\) 69.3320 + 8.10374i 2.55909 + 0.299115i
\(735\) 0 0
\(736\) 15.6685 7.86901i 0.577548 0.290055i
\(737\) −21.9518 18.4198i −0.808606 0.678501i
\(738\) 0 0
\(739\) 2.18316 1.83188i 0.0803087 0.0673870i −0.601750 0.798685i \(-0.705529\pi\)
0.682058 + 0.731298i \(0.261085\pi\)
\(740\) −9.62303 + 22.3087i −0.353750 + 0.820084i
\(741\) 0 0
\(742\) 6.72786 1.59453i 0.246988 0.0585372i
\(743\) −8.43563 + 28.1770i −0.309473 + 1.03371i 0.651863 + 0.758337i \(0.273988\pi\)
−0.961336 + 0.275376i \(0.911198\pi\)
\(744\) 0 0
\(745\) 24.3059 2.84096i 0.890501 0.104085i
\(746\) −3.28553 18.6331i −0.120292 0.682208i
\(747\) 0 0
\(748\) 10.2340 58.0400i 0.374193 2.12215i
\(749\) 0.0285802 0.490704i 0.00104430 0.0179299i
\(750\) 0 0
\(751\) −10.8644 25.1865i −0.396447 0.919067i −0.993176 0.116624i \(-0.962793\pi\)
0.596729 0.802443i \(-0.296467\pi\)
\(752\) 40.3470 + 20.2630i 1.47130 + 0.738917i
\(753\) 0 0
\(754\) 30.5271 + 7.23506i 1.11173 + 0.263485i
\(755\) −1.36725 + 2.36815i −0.0497593 + 0.0861857i
\(756\) 0 0
\(757\) 14.2323 + 24.6511i 0.517282 + 0.895959i 0.999799 + 0.0200719i \(0.00638952\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(758\) 1.11637 + 3.72894i 0.0405485 + 0.135441i
\(759\) 0 0
\(760\) −0.277944 + 0.182807i −0.0100821 + 0.00663110i
\(761\) −16.7039 + 22.4372i −0.605514 + 0.813347i −0.994146 0.108046i \(-0.965541\pi\)
0.388631 + 0.921393i \(0.372948\pi\)
\(762\) 0 0
\(763\) −2.15659 1.41841i −0.0780739 0.0513500i
\(764\) 14.2348 5.18104i 0.514997 0.187444i
\(765\) 0 0
\(766\) 36.9883 + 13.4626i 1.33644 + 0.486425i
\(767\) −3.09030 4.15099i −0.111584 0.149884i
\(768\) 0 0
\(769\) −32.2285 34.1602i −1.16219 1.23185i −0.968018 0.250879i \(-0.919280\pi\)
−0.194169 0.980968i \(-0.562201\pi\)
\(770\) 8.78129 + 9.30762i 0.316456 + 0.335424i
\(771\) 0 0
\(772\) −11.9460 16.0463i −0.429947 0.577519i
\(773\) −41.5507 15.1232i −1.49447 0.543944i −0.539851 0.841761i \(-0.681519\pi\)
−0.954623 + 0.297816i \(0.903742\pi\)
\(774\) 0 0
\(775\) −20.4807 + 7.45437i −0.735689 + 0.267769i
\(776\) 1.38321 + 0.909749i 0.0496542 + 0.0326581i
\(777\) 0 0
\(778\) 11.0218 14.8049i 0.395151 0.530780i
\(779\) 5.76733 3.79323i 0.206636 0.135907i
\(780\) 0 0
\(781\) −7.28855 24.3454i −0.260805 0.871148i
\(782\) 16.6244 + 28.7942i 0.594486 + 1.02968i
\(783\) 0 0
\(784\) −12.7160 + 22.0247i −0.454143 + 0.786598i
\(785\) 49.0183 + 11.6175i 1.74954 + 0.414648i
\(786\) 0 0
\(787\) 32.6021 + 16.3734i 1.16214 + 0.583649i 0.922038 0.387099i \(-0.126523\pi\)
0.240102 + 0.970748i \(0.422819\pi\)
\(788\) 4.06308 + 9.41927i 0.144741 + 0.335548i
\(789\) 0 0
\(790\) −2.99517 + 51.4252i −0.106564 + 1.82963i
\(791\) −1.31019 + 7.43049i −0.0465852 + 0.264198i
\(792\) 0 0
\(793\) 1.79557 + 10.1832i 0.0637627 + 0.361616i
\(794\) −66.8888 + 7.81818i −2.37380 + 0.277457i
\(795\) 0 0
\(796\) −1.50023 + 5.01112i −0.0531742 + 0.177614i
\(797\) 14.7098 3.48628i 0.521046 0.123490i 0.0383267 0.999265i \(-0.487797\pi\)
0.482719 + 0.875775i \(0.339649\pi\)
\(798\) 0 0
\(799\) −35.2886 + 81.8083i −1.24842 + 2.89417i
\(800\) −16.4507 + 13.8038i −0.581621 + 0.488038i
\(801\) 0 0
\(802\) 5.48967 + 4.60638i 0.193847 + 0.162657i
\(803\) 1.91566 0.962081i 0.0676022 0.0339511i
\(804\) 0 0
\(805\) −3.65366 0.427051i −0.128774 0.0150516i
\(806\) −3.28698 56.4353i −0.115779 1.98785i
\(807\) 0 0
\(808\) 0.264512 0.280366i 0.00930549 0.00986325i
\(809\) 49.6978 1.74728 0.873641 0.486571i \(-0.161753\pi\)
0.873641 + 0.486571i \(0.161753\pi\)
\(810\) 0 0
\(811\) −8.76133 −0.307652 −0.153826 0.988098i \(-0.549159\pi\)
−0.153826 + 0.988098i \(0.549159\pi\)
\(812\) 3.95975 4.19709i 0.138960 0.147289i
\(813\) 0 0
\(814\) 1.85725 + 31.8877i 0.0650965 + 1.11766i
\(815\) −47.1441 5.51036i −1.65139 0.193019i
\(816\) 0 0
\(817\) 1.19712 0.601217i 0.0418820 0.0210339i
\(818\) −49.5562 41.5826i −1.73269 1.45390i
\(819\) 0 0
\(820\) −39.8424 + 33.4317i −1.39136 + 1.16749i
\(821\) 14.0466 32.5637i 0.490230 1.13648i −0.476150 0.879364i \(-0.657968\pi\)
0.966380 0.257117i \(-0.0827726\pi\)
\(822\) 0 0
\(823\) −1.82849 + 0.433361i −0.0637372 + 0.0151060i −0.262361 0.964970i \(-0.584501\pi\)
0.198624 + 0.980076i \(0.436353\pi\)
\(824\) −0.770140 + 2.57245i −0.0268291 + 0.0896155i
\(825\) 0 0
\(826\) −1.85528 + 0.216851i −0.0645533 + 0.00754520i
\(827\) −1.66995 9.47075i −0.0580698 0.329330i 0.941909 0.335869i \(-0.109030\pi\)
−0.999979 + 0.00653851i \(0.997919\pi\)
\(828\) 0 0
\(829\) −1.31856 + 7.47791i −0.0457954 + 0.259719i −0.999106 0.0422726i \(-0.986540\pi\)
0.953311 + 0.301991i \(0.0976513\pi\)
\(830\) −2.01142 + 34.5347i −0.0698173 + 1.19872i
\(831\) 0 0
\(832\) −11.6641 27.0405i −0.404381 0.937460i
\(833\) −44.8476 22.5233i −1.55388 0.780387i
\(834\) 0 0
\(835\) −15.8950 3.76717i −0.550068 0.130368i
\(836\) −2.97035 + 5.14479i −0.102732 + 0.177936i
\(837\) 0 0
\(838\) −14.9786 25.9438i −0.517429 0.896213i
\(839\) −11.3639 37.9580i −0.392325 1.31046i −0.895033 0.446001i \(-0.852848\pi\)
0.502707 0.864457i \(-0.332337\pi\)
\(840\) 0 0
\(841\) 6.98773 4.59591i 0.240956 0.158479i
\(842\) −18.7876 + 25.2361i −0.647463 + 0.869694i
\(843\) 0 0
\(844\) −12.1316 7.97906i −0.417586 0.274651i
\(845\) 3.39243 1.23475i 0.116703 0.0424765i
\(846\) 0 0
\(847\) 1.73692 + 0.632185i 0.0596811 + 0.0217221i
\(848\) 12.8375 + 17.2438i 0.440842 + 0.592154i
\(849\) 0 0
\(850\) −27.9457 29.6207i −0.958530 1.01598i
\(851\) −6.30127 6.67896i −0.216005 0.228952i
\(852\) 0 0
\(853\) 2.05643 + 2.76227i 0.0704110 + 0.0945783i 0.835933 0.548831i \(-0.184927\pi\)
−0.765523 + 0.643409i \(0.777519\pi\)
\(854\) 3.50722 + 1.27652i 0.120015 + 0.0436817i
\(855\) 0 0
\(856\) −0.118950 + 0.0432941i −0.00406561 + 0.00147976i
\(857\) −18.5031 12.1697i −0.632053 0.415708i 0.192655 0.981267i \(-0.438290\pi\)
−0.824708 + 0.565559i \(0.808661\pi\)
\(858\) 0 0
\(859\) 21.2724 28.5737i 0.725804 0.974924i −0.274109 0.961699i \(-0.588383\pi\)
0.999913 0.0132249i \(-0.00420973\pi\)
\(860\) −8.43288 + 5.54639i −0.287559 + 0.189130i
\(861\) 0 0
\(862\) 0.751429 + 2.50995i 0.0255938 + 0.0854891i
\(863\) −10.4873 18.1645i −0.356992 0.618328i 0.630465 0.776218i \(-0.282864\pi\)
−0.987457 + 0.157890i \(0.949531\pi\)
\(864\) 0 0
\(865\) 12.4466 21.5581i 0.423196 0.732998i
\(866\) 34.4460 + 8.16385i 1.17052 + 0.277419i
\(867\) 0 0
\(868\) −9.29143 4.66633i −0.315372 0.158386i
\(869\) 13.6684 + 31.6868i 0.463668 + 1.07490i
\(870\) 0 0
\(871\) 1.52163 26.1254i 0.0515586 0.885227i
\(872\) −0.115431 + 0.654639i −0.00390897 + 0.0221689i
\(873\) 0 0
\(874\) −0.581978 3.30056i −0.0196857 0.111643i
\(875\) −3.92834 + 0.459157i −0.132802 + 0.0155223i
\(876\) 0 0
\(877\) −12.1070 + 40.4401i −0.408823 + 1.36556i 0.467565 + 0.883959i \(0.345131\pi\)
−0.876388 + 0.481605i \(0.840054\pi\)
\(878\) 42.6755 10.1143i 1.44023 0.341340i
\(879\) 0 0
\(880\) −15.7584 + 36.5320i −0.531214 + 1.23149i
\(881\) 29.2913 24.5783i 0.986848 0.828064i 0.00173943 0.999998i \(-0.499446\pi\)
0.985108 + 0.171935i \(0.0550019\pi\)
\(882\) 0 0
\(883\) −22.0694 18.5184i −0.742693 0.623194i 0.190866 0.981616i \(-0.438870\pi\)
−0.933560 + 0.358422i \(0.883315\pi\)
\(884\) 48.0969 24.1552i 1.61767 0.812426i
\(885\) 0 0
\(886\) 18.3398 + 2.14361i 0.616137 + 0.0720161i
\(887\) −0.797647 13.6951i −0.0267824 0.459835i −0.984863 0.173336i \(-0.944545\pi\)
0.958080 0.286500i \(-0.0924917\pi\)
\(888\) 0 0
\(889\) 4.18443 4.43523i 0.140341 0.148753i
\(890\) 25.7403 0.862816
\(891\) 0 0
\(892\) −37.3995 −1.25223
\(893\) 6.16298 6.53238i 0.206236 0.218598i
\(894\) 0 0
\(895\) 0.207457 + 3.56190i 0.00693453 + 0.119061i
\(896\) −0.764034 0.0893027i −0.0255246 0.00298340i
\(897\) 0 0
\(898\) −22.4174 + 11.2584i −0.748078 + 0.375699i
\(899\) 28.4852 + 23.9019i 0.950035 + 0.797174i
\(900\) 0 0
\(901\) −32.4972 + 27.2684i −1.08264 + 0.908441i
\(902\) −27.0834 + 62.7864i −0.901779 + 2.09056i
\(903\) 0 0
\(904\) 1.89069 0.448102i 0.0628835 0.0149037i
\(905\) −2.95068 + 9.85597i −0.0980840 + 0.327623i
\(906\) 0 0
\(907\) −56.3534 + 6.58677i −1.87119 + 0.218710i −0.974567 0.224094i \(-0.928058\pi\)
−0.896618 + 0.442805i \(0.853984\pi\)
\(908\) 0.221375 + 1.25548i 0.00734659 + 0.0416646i
\(909\) 0 0
\(910\) −2.02924 + 11.5084i −0.0672687 + 0.381500i
\(911\) −0.0414988 + 0.712508i −0.00137492 + 0.0236064i −0.998926 0.0463376i \(-0.985245\pi\)
0.997551 + 0.0699440i \(0.0222821\pi\)
\(912\) 0 0
\(913\) 9.17902 + 21.2794i 0.303781 + 0.704244i
\(914\) −33.7367 16.9432i −1.11591 0.560432i
\(915\) 0 0
\(916\) −10.1001 2.39376i −0.333716 0.0790921i
\(917\) −1.67892 + 2.90797i −0.0554428 + 0.0960297i
\(918\) 0 0
\(919\) 28.6606 + 49.6416i 0.945425 + 1.63752i 0.754898 + 0.655842i \(0.227686\pi\)
0.190527 + 0.981682i \(0.438980\pi\)
\(920\) 0.271694 + 0.907522i 0.00895750 + 0.0299201i
\(921\) 0 0
\(922\) 69.3125 45.5876i 2.28269 1.50135i
\(923\) 13.8589 18.6157i 0.456171 0.612744i
\(924\) 0 0
\(925\) 9.39625 + 6.18001i 0.308947 + 0.203198i
\(926\) 7.83677 2.85235i 0.257532 0.0937341i
\(927\) 0 0
\(928\) 34.4289 + 12.5311i 1.13018 + 0.411353i
\(929\) −8.93536 12.0023i −0.293160 0.393782i 0.631003 0.775780i \(-0.282643\pi\)
−0.924163 + 0.381998i \(0.875236\pi\)
\(930\) 0 0
\(931\) 3.47151 + 3.67959i 0.113774 + 0.120594i
\(932\) 18.7623 + 19.8869i 0.614579 + 0.651416i
\(933\) 0 0
\(934\) 30.4809 + 40.9429i 0.997365 + 1.33969i
\(935\) −73.7759 26.8522i −2.41273 0.878162i
\(936\) 0 0
\(937\) 23.1819 8.43751i 0.757319 0.275641i 0.0656366 0.997844i \(-0.479092\pi\)
0.691682 + 0.722202i \(0.256870\pi\)
\(938\) −7.89193 5.19060i −0.257681 0.169479i
\(939\) 0 0
\(940\) −40.4073 + 54.2765i −1.31794 + 1.77030i
\(941\) −19.4338 + 12.7818i −0.633523 + 0.416675i −0.825245 0.564775i \(-0.808963\pi\)
0.191722 + 0.981449i \(0.438593\pi\)
\(942\) 0 0
\(943\) −5.63765 18.8310i −0.183587 0.613223i
\(944\) −2.90384 5.02959i −0.0945119 0.163699i
\(945\) 0 0
\(946\) −6.63491 + 11.4920i −0.215720 + 0.373637i
\(947\) 18.6605 + 4.42261i 0.606384 + 0.143716i 0.522327 0.852745i \(-0.325064\pi\)
0.0840570 + 0.996461i \(0.473212\pi\)
\(948\) 0 0
\(949\) 1.74945 + 0.878606i 0.0567895 + 0.0285208i
\(950\) 1.62586 + 3.76916i 0.0527497 + 0.122288i
\(951\) 0 0
\(952\) 0.0423757 0.727563i 0.00137340 0.0235804i
\(953\) −5.37991 + 30.5110i −0.174272 + 0.988348i 0.764708 + 0.644377i \(0.222883\pi\)
−0.938980 + 0.343971i \(0.888228\pi\)
\(954\) 0 0
\(955\) −3.50420 19.8733i −0.113393 0.643085i
\(956\) −18.7778 + 2.19481i −0.607316 + 0.0709851i
\(957\) 0 0
\(958\) −12.0479 + 40.2429i −0.389251 + 1.30019i
\(959\) −9.05915 + 2.14706i −0.292535 + 0.0693321i
\(960\) 0 0
\(961\) 14.2603 33.0592i 0.460011 1.06642i
\(962\) −22.3457 + 18.7503i −0.720456 + 0.604534i
\(963\) 0 0
\(964\) −22.6834 19.0336i −0.730583 0.613032i
\(965\) −23.8147 + 11.9602i −0.766623 + 0.385013i
\(966\) 0 0
\(967\) −19.7235 2.30534i −0.634264 0.0741348i −0.207116 0.978316i \(-0.566408\pi\)
−0.427148 + 0.904182i \(0.640482\pi\)
\(968\) −0.0276775 0.475204i −0.000889587 0.0152736i
\(969\) 0 0
\(970\) 40.3435 42.7616i 1.29535 1.37299i
\(971\) 3.39436 0.108930 0.0544651 0.998516i \(-0.482655\pi\)
0.0544651 + 0.998516i \(0.482655\pi\)
\(972\) 0 0
\(973\) −9.79039 −0.313865
\(974\) 9.14706 9.69532i 0.293091 0.310658i
\(975\) 0 0
\(976\) 0.674738 + 11.5848i 0.0215978 + 0.370820i
\(977\) −53.2053 6.21881i −1.70219 0.198957i −0.791249 0.611494i \(-0.790569\pi\)
−0.910941 + 0.412537i \(0.864643\pi\)
\(978\) 0 0
\(979\) 15.4097 7.73906i 0.492497 0.247342i
\(980\) −29.1980 24.5000i −0.932694 0.782624i
\(981\) 0 0
\(982\) 56.5336 47.4373i 1.80406 1.51379i
\(983\) −11.0201 + 25.5474i −0.351486 + 0.814836i 0.647137 + 0.762374i \(0.275966\pi\)
−0.998623 + 0.0524620i \(0.983293\pi\)
\(984\) 0 0
\(985\) 13.2971 3.15148i 0.423682 0.100414i
\(986\) −19.9264 + 66.5587i −0.634585 + 2.11966i
\(987\) 0 0
\(988\) −5.38856 + 0.629833i −0.171433 + 0.0200376i
\(989\) −0.662412 3.75672i −0.0210635 0.119457i
\(990\) 0 0
\(991\) 2.53438 14.3732i 0.0805071 0.456579i −0.917729 0.397207i \(-0.869979\pi\)
0.998236 0.0593711i \(-0.0189095\pi\)
\(992\) 3.83867 65.9075i 0.121878 2.09257i
\(993\) 0 0
\(994\) −3.31792 7.69180i −0.105238 0.243969i
\(995\) 6.22710 + 3.12737i 0.197412 + 0.0991441i
\(996\) 0 0
\(997\) −2.37129 0.562006i −0.0750995 0.0177989i 0.192894 0.981220i \(-0.438213\pi\)
−0.267994 + 0.963421i \(0.586361\pi\)
\(998\) −36.7468 + 63.6474i −1.16320 + 2.01472i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.622.2 144
3.2 odd 2 729.2.g.d.622.7 144
9.2 odd 6 81.2.g.a.16.2 144
9.4 even 3 729.2.g.b.379.2 144
9.5 odd 6 729.2.g.c.379.7 144
9.7 even 3 243.2.g.a.208.7 144
81.5 odd 54 729.2.g.c.352.7 144
81.22 even 27 inner 729.2.g.a.109.2 144
81.32 odd 54 81.2.g.a.76.2 yes 144
81.34 even 27 6561.2.a.d.1.59 72
81.47 odd 54 6561.2.a.c.1.14 72
81.49 even 27 243.2.g.a.118.7 144
81.59 odd 54 729.2.g.d.109.7 144
81.76 even 27 729.2.g.b.352.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.2 144 9.2 odd 6
81.2.g.a.76.2 yes 144 81.32 odd 54
243.2.g.a.118.7 144 81.49 even 27
243.2.g.a.208.7 144 9.7 even 3
729.2.g.a.109.2 144 81.22 even 27 inner
729.2.g.a.622.2 144 1.1 even 1 trivial
729.2.g.b.352.2 144 81.76 even 27
729.2.g.b.379.2 144 9.4 even 3
729.2.g.c.352.7 144 81.5 odd 54
729.2.g.c.379.7 144 9.5 odd 6
729.2.g.d.109.7 144 81.59 odd 54
729.2.g.d.622.7 144 3.2 odd 2
6561.2.a.c.1.14 72 81.47 odd 54
6561.2.a.d.1.59 72 81.34 even 27