Properties

Label 729.2.g.a.55.7
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.7
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.a.676.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.677333 - 1.57023i) q^{2} +(-0.634371 - 0.672394i) q^{4} +(0.0798566 + 1.37108i) q^{5} +(-0.301861 - 0.0715423i) q^{7} +(1.72842 - 0.629095i) q^{8} +O(q^{10})\) \(q+(0.677333 - 1.57023i) q^{2} +(-0.634371 - 0.672394i) q^{4} +(0.0798566 + 1.37108i) q^{5} +(-0.301861 - 0.0715423i) q^{7} +(1.72842 - 0.629095i) q^{8} +(2.20701 + 0.803287i) q^{10} +(-2.01426 - 1.32480i) q^{11} +(4.58584 + 0.536008i) q^{13} +(-0.316798 + 0.425534i) q^{14} +(0.290392 - 4.98584i) q^{16} +(-0.161307 + 0.135352i) q^{17} +(2.66964 + 2.24009i) q^{19} +(0.871250 - 0.923471i) q^{20} +(-3.44457 + 2.26553i) q^{22} +(7.79405 - 1.84722i) q^{23} +(3.09270 - 0.361484i) q^{25} +(3.94780 - 6.83779i) q^{26} +(0.143387 + 0.248354i) q^{28} +(-4.96463 - 6.66865i) q^{29} +(-0.229930 + 0.768019i) q^{31} +(-4.34483 - 2.18205i) q^{32} +(0.103276 + 0.344968i) q^{34} +(0.0739849 - 0.419589i) q^{35} +(1.88786 + 10.7066i) q^{37} +(5.32570 - 2.67467i) q^{38} +(1.00057 + 2.31958i) q^{40} +(-1.86060 - 4.31336i) q^{41} +(6.64705 - 3.33827i) q^{43} +(0.387001 + 2.19479i) q^{44} +(2.37859 - 13.4897i) q^{46} +(1.78517 + 5.96289i) q^{47} +(-6.16943 - 3.09840i) q^{49} +(1.52717 - 5.10110i) q^{50} +(-2.54872 - 3.42352i) q^{52} +(-4.27003 - 7.39591i) q^{53} +(1.65556 - 2.86752i) q^{55} +(-0.566750 + 0.0662436i) q^{56} +(-13.8340 + 3.27873i) q^{58} +(-5.90137 + 3.88139i) q^{59} +(-6.87408 + 7.28610i) q^{61} +(1.05023 + 0.881248i) q^{62} +(1.28246 - 1.07611i) q^{64} +(-0.368703 + 6.33038i) q^{65} +(-0.749408 + 1.00663i) q^{67} +(0.193338 + 0.0225980i) q^{68} +(-0.608741 - 0.400375i) q^{70} +(1.68007 + 0.611494i) q^{71} +(-12.6834 + 4.61640i) q^{73} +(18.0905 + 4.28753i) q^{74} +(-0.187316 - 3.21610i) q^{76} +(0.513247 + 0.544010i) q^{77} +(-1.25449 + 2.90824i) q^{79} +6.85919 q^{80} -8.03324 q^{82} +(-0.317759 + 0.736649i) q^{83} +(-0.198461 - 0.210356i) q^{85} +(-0.739606 - 12.6985i) q^{86} +(-4.31493 - 1.02266i) q^{88} +(-12.2626 + 4.46322i) q^{89} +(-1.34594 - 0.489881i) q^{91} +(-6.18638 - 4.06885i) q^{92} +(10.5723 + 1.23572i) q^{94} +(-2.85817 + 3.83919i) q^{95} +(0.387850 - 6.65913i) q^{97} +(-9.04397 + 7.58879i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.677333 1.57023i 0.478947 1.11032i −0.491907 0.870648i \(-0.663700\pi\)
0.970853 0.239675i \(-0.0770409\pi\)
\(3\) 0 0
\(4\) −0.634371 0.672394i −0.317186 0.336197i
\(5\) 0.0798566 + 1.37108i 0.0357129 + 0.613167i 0.967923 + 0.251249i \(0.0808412\pi\)
−0.932210 + 0.361919i \(0.882122\pi\)
\(6\) 0 0
\(7\) −0.301861 0.0715423i −0.114093 0.0270404i 0.173173 0.984891i \(-0.444598\pi\)
−0.287266 + 0.957851i \(0.592746\pi\)
\(8\) 1.72842 0.629095i 0.611091 0.222419i
\(9\) 0 0
\(10\) 2.20701 + 0.803287i 0.697918 + 0.254022i
\(11\) −2.01426 1.32480i −0.607323 0.399442i 0.208268 0.978072i \(-0.433217\pi\)
−0.815591 + 0.578629i \(0.803588\pi\)
\(12\) 0 0
\(13\) 4.58584 + 0.536008i 1.27188 + 0.148662i 0.725119 0.688624i \(-0.241785\pi\)
0.546765 + 0.837286i \(0.315859\pi\)
\(14\) −0.316798 + 0.425534i −0.0846679 + 0.113729i
\(15\) 0 0
\(16\) 0.290392 4.98584i 0.0725980 1.24646i
\(17\) −0.161307 + 0.135352i −0.0391226 + 0.0328277i −0.662139 0.749381i \(-0.730351\pi\)
0.623017 + 0.782209i \(0.285907\pi\)
\(18\) 0 0
\(19\) 2.66964 + 2.24009i 0.612457 + 0.513913i 0.895422 0.445218i \(-0.146874\pi\)
−0.282965 + 0.959130i \(0.591318\pi\)
\(20\) 0.871250 0.923471i 0.194817 0.206494i
\(21\) 0 0
\(22\) −3.44457 + 2.26553i −0.734385 + 0.483013i
\(23\) 7.79405 1.84722i 1.62517 0.385173i 0.685724 0.727862i \(-0.259486\pi\)
0.939449 + 0.342689i \(0.111338\pi\)
\(24\) 0 0
\(25\) 3.09270 0.361484i 0.618539 0.0722969i
\(26\) 3.94780 6.83779i 0.774227 1.34100i
\(27\) 0 0
\(28\) 0.143387 + 0.248354i 0.0270976 + 0.0469344i
\(29\) −4.96463 6.66865i −0.921908 1.23834i −0.970887 0.239538i \(-0.923004\pi\)
0.0489788 0.998800i \(-0.484403\pi\)
\(30\) 0 0
\(31\) −0.229930 + 0.768019i −0.0412966 + 0.137940i −0.976152 0.217089i \(-0.930344\pi\)
0.934855 + 0.355029i \(0.115529\pi\)
\(32\) −4.34483 2.18205i −0.768064 0.385736i
\(33\) 0 0
\(34\) 0.103276 + 0.344968i 0.0177118 + 0.0591614i
\(35\) 0.0739849 0.419589i 0.0125057 0.0709236i
\(36\) 0 0
\(37\) 1.88786 + 10.7066i 0.310362 + 1.76015i 0.597126 + 0.802148i \(0.296309\pi\)
−0.286764 + 0.958001i \(0.592580\pi\)
\(38\) 5.32570 2.67467i 0.863943 0.433889i
\(39\) 0 0
\(40\) 1.00057 + 2.31958i 0.158204 + 0.366758i
\(41\) −1.86060 4.31336i −0.290577 0.673634i 0.708921 0.705287i \(-0.249182\pi\)
−0.999499 + 0.0316531i \(0.989923\pi\)
\(42\) 0 0
\(43\) 6.64705 3.33827i 1.01367 0.509082i 0.137198 0.990544i \(-0.456190\pi\)
0.876467 + 0.481462i \(0.159894\pi\)
\(44\) 0.387001 + 2.19479i 0.0583426 + 0.330877i
\(45\) 0 0
\(46\) 2.37859 13.4897i 0.350704 1.98894i
\(47\) 1.78517 + 5.96289i 0.260394 + 0.869777i 0.983787 + 0.179341i \(0.0573964\pi\)
−0.723393 + 0.690437i \(0.757418\pi\)
\(48\) 0 0
\(49\) −6.16943 3.09840i −0.881347 0.442629i
\(50\) 1.52717 5.10110i 0.215974 0.721405i
\(51\) 0 0
\(52\) −2.54872 3.42352i −0.353443 0.474757i
\(53\) −4.27003 7.39591i −0.586533 1.01591i −0.994682 0.102990i \(-0.967159\pi\)
0.408149 0.912915i \(-0.366174\pi\)
\(54\) 0 0
\(55\) 1.65556 2.86752i 0.223236 0.386656i
\(56\) −0.566750 + 0.0662436i −0.0757352 + 0.00885218i
\(57\) 0 0
\(58\) −13.8340 + 3.27873i −1.81650 + 0.430518i
\(59\) −5.90137 + 3.88139i −0.768293 + 0.505314i −0.872126 0.489280i \(-0.837259\pi\)
0.103834 + 0.994595i \(0.466889\pi\)
\(60\) 0 0
\(61\) −6.87408 + 7.28610i −0.880136 + 0.932889i −0.998191 0.0601177i \(-0.980852\pi\)
0.118056 + 0.993007i \(0.462334\pi\)
\(62\) 1.05023 + 0.881248i 0.133379 + 0.111919i
\(63\) 0 0
\(64\) 1.28246 1.07611i 0.160308 0.134514i
\(65\) −0.368703 + 6.33038i −0.0457319 + 0.785187i
\(66\) 0 0
\(67\) −0.749408 + 1.00663i −0.0915548 + 0.122979i −0.845540 0.533912i \(-0.820721\pi\)
0.753985 + 0.656891i \(0.228129\pi\)
\(68\) 0.193338 + 0.0225980i 0.0234457 + 0.00274041i
\(69\) 0 0
\(70\) −0.608741 0.400375i −0.0727585 0.0478540i
\(71\) 1.68007 + 0.611494i 0.199387 + 0.0725710i 0.439784 0.898104i \(-0.355055\pi\)
−0.240396 + 0.970675i \(0.577277\pi\)
\(72\) 0 0
\(73\) −12.6834 + 4.61640i −1.48448 + 0.540308i −0.951991 0.306126i \(-0.900967\pi\)
−0.532494 + 0.846434i \(0.678745\pi\)
\(74\) 18.0905 + 4.28753i 2.10298 + 0.498415i
\(75\) 0 0
\(76\) −0.187316 3.21610i −0.0214867 0.368912i
\(77\) 0.513247 + 0.544010i 0.0584899 + 0.0619957i
\(78\) 0 0
\(79\) −1.25449 + 2.90824i −0.141142 + 0.327203i −0.974095 0.226141i \(-0.927389\pi\)
0.832953 + 0.553344i \(0.186648\pi\)
\(80\) 6.85919 0.766881
\(81\) 0 0
\(82\) −8.03324 −0.887123
\(83\) −0.317759 + 0.736649i −0.0348786 + 0.0808578i −0.934765 0.355267i \(-0.884390\pi\)
0.899886 + 0.436125i \(0.143649\pi\)
\(84\) 0 0
\(85\) −0.198461 0.210356i −0.0215261 0.0228163i
\(86\) −0.739606 12.6985i −0.0797538 1.36932i
\(87\) 0 0
\(88\) −4.31493 1.02266i −0.459973 0.109016i
\(89\) −12.2626 + 4.46322i −1.29983 + 0.473101i −0.896942 0.442147i \(-0.854217\pi\)
−0.402891 + 0.915248i \(0.631995\pi\)
\(90\) 0 0
\(91\) −1.34594 0.489881i −0.141093 0.0513535i
\(92\) −6.18638 4.06885i −0.644975 0.424207i
\(93\) 0 0
\(94\) 10.5723 + 1.23572i 1.09045 + 0.127455i
\(95\) −2.85817 + 3.83919i −0.293242 + 0.393892i
\(96\) 0 0
\(97\) 0.387850 6.65913i 0.0393802 0.676132i −0.919634 0.392775i \(-0.871515\pi\)
0.959015 0.283356i \(-0.0914480\pi\)
\(98\) −9.04397 + 7.58879i −0.913579 + 0.766584i
\(99\) 0 0
\(100\) −2.20498 1.85020i −0.220498 0.185020i
\(101\) −6.39584 + 6.77920i −0.636410 + 0.674555i −0.962655 0.270730i \(-0.912735\pi\)
0.326245 + 0.945285i \(0.394216\pi\)
\(102\) 0 0
\(103\) 1.09702 0.721522i 0.108093 0.0710936i −0.494312 0.869285i \(-0.664580\pi\)
0.602404 + 0.798191i \(0.294209\pi\)
\(104\) 8.26349 1.95848i 0.810301 0.192045i
\(105\) 0 0
\(106\) −14.5055 + 1.69545i −1.40890 + 0.164677i
\(107\) −0.386855 + 0.670052i −0.0373987 + 0.0647764i −0.884119 0.467262i \(-0.845240\pi\)
0.846720 + 0.532038i \(0.178574\pi\)
\(108\) 0 0
\(109\) 1.03104 + 1.78582i 0.0987559 + 0.171050i 0.911170 0.412031i \(-0.135180\pi\)
−0.812414 + 0.583081i \(0.801847\pi\)
\(110\) −3.38131 4.54188i −0.322395 0.433051i
\(111\) 0 0
\(112\) −0.444356 + 1.48425i −0.0419877 + 0.140249i
\(113\) 5.25253 + 2.63792i 0.494116 + 0.248154i 0.678365 0.734725i \(-0.262689\pi\)
−0.184249 + 0.982880i \(0.558985\pi\)
\(114\) 0 0
\(115\) 3.15511 + 10.5388i 0.294215 + 0.982747i
\(116\) −1.33455 + 7.56859i −0.123909 + 0.702726i
\(117\) 0 0
\(118\) 2.09750 + 11.8955i 0.193091 + 1.09507i
\(119\) 0.0583755 0.0293173i 0.00535127 0.00268751i
\(120\) 0 0
\(121\) −2.05472 4.76339i −0.186793 0.433035i
\(122\) 6.78484 + 15.7290i 0.614270 + 1.42404i
\(123\) 0 0
\(124\) 0.662272 0.332606i 0.0594738 0.0298689i
\(125\) 1.93505 + 10.9742i 0.173076 + 0.981562i
\(126\) 0 0
\(127\) 1.81538 10.2955i 0.161089 0.913580i −0.791917 0.610628i \(-0.790917\pi\)
0.953006 0.302951i \(-0.0979720\pi\)
\(128\) −3.60996 12.0581i −0.319078 1.06580i
\(129\) 0 0
\(130\) 9.69044 + 4.86672i 0.849908 + 0.426840i
\(131\) −1.71783 + 5.73796i −0.150088 + 0.501328i −0.999658 0.0261475i \(-0.991676\pi\)
0.849570 + 0.527475i \(0.176861\pi\)
\(132\) 0 0
\(133\) −0.645597 0.867188i −0.0559804 0.0751947i
\(134\) 1.07305 + 1.85857i 0.0926970 + 0.160556i
\(135\) 0 0
\(136\) −0.193657 + 0.335423i −0.0166059 + 0.0287623i
\(137\) 1.15384 0.134865i 0.0985793 0.0115223i −0.0666602 0.997776i \(-0.521234\pi\)
0.165240 + 0.986253i \(0.447160\pi\)
\(138\) 0 0
\(139\) 15.8687 3.76096i 1.34597 0.319001i 0.506421 0.862286i \(-0.330968\pi\)
0.839548 + 0.543285i \(0.182820\pi\)
\(140\) −0.329063 + 0.216428i −0.0278109 + 0.0182915i
\(141\) 0 0
\(142\) 2.09815 2.22391i 0.176073 0.186627i
\(143\) −8.52698 7.15499i −0.713062 0.598330i
\(144\) 0 0
\(145\) 8.74683 7.33946i 0.726384 0.609509i
\(146\) −1.34209 + 23.0428i −0.111072 + 1.90704i
\(147\) 0 0
\(148\) 6.00143 8.06132i 0.493315 0.662636i
\(149\) −8.86820 1.03654i −0.726511 0.0849170i −0.255205 0.966887i \(-0.582143\pi\)
−0.471306 + 0.881970i \(0.656217\pi\)
\(150\) 0 0
\(151\) 13.0290 + 8.56932i 1.06029 + 0.697361i 0.954857 0.297065i \(-0.0960080\pi\)
0.105429 + 0.994427i \(0.466378\pi\)
\(152\) 6.02350 + 2.19238i 0.488571 + 0.177825i
\(153\) 0 0
\(154\) 1.20186 0.437442i 0.0968488 0.0352501i
\(155\) −1.07138 0.253922i −0.0860553 0.0203955i
\(156\) 0 0
\(157\) −0.711632 12.2182i −0.0567944 0.975122i −0.899548 0.436822i \(-0.856104\pi\)
0.842753 0.538300i \(-0.180933\pi\)
\(158\) 3.71691 + 3.93970i 0.295702 + 0.313426i
\(159\) 0 0
\(160\) 2.64482 6.13138i 0.209091 0.484728i
\(161\) −2.48487 −0.195835
\(162\) 0 0
\(163\) −25.0816 −1.96454 −0.982271 0.187465i \(-0.939973\pi\)
−0.982271 + 0.187465i \(0.939973\pi\)
\(164\) −1.71997 + 3.98733i −0.134307 + 0.311358i
\(165\) 0 0
\(166\) 0.941483 + 0.997913i 0.0730732 + 0.0774531i
\(167\) 0.468266 + 8.03982i 0.0362355 + 0.622140i 0.966724 + 0.255820i \(0.0823454\pi\)
−0.930489 + 0.366320i \(0.880618\pi\)
\(168\) 0 0
\(169\) 8.09307 + 1.91809i 0.622543 + 0.147546i
\(170\) −0.464732 + 0.169149i −0.0356433 + 0.0129731i
\(171\) 0 0
\(172\) −6.46133 2.35173i −0.492672 0.179318i
\(173\) −14.8606 9.77400i −1.12983 0.743104i −0.160060 0.987107i \(-0.551169\pi\)
−0.969774 + 0.244004i \(0.921539\pi\)
\(174\) 0 0
\(175\) −0.959425 0.112141i −0.0725257 0.00847704i
\(176\) −7.19017 + 9.65807i −0.541979 + 0.728004i
\(177\) 0 0
\(178\) −1.29756 + 22.2782i −0.0972562 + 1.66982i
\(179\) 13.5735 11.3896i 1.01453 0.851295i 0.0256035 0.999672i \(-0.491849\pi\)
0.988931 + 0.148377i \(0.0474048\pi\)
\(180\) 0 0
\(181\) 20.5130 + 17.2124i 1.52472 + 1.27939i 0.825340 + 0.564636i \(0.190983\pi\)
0.699377 + 0.714753i \(0.253461\pi\)
\(182\) −1.68088 + 1.78162i −0.124595 + 0.132063i
\(183\) 0 0
\(184\) 12.3094 8.09599i 0.907458 0.596844i
\(185\) −14.5288 + 3.44340i −1.06818 + 0.253164i
\(186\) 0 0
\(187\) 0.504228 0.0589359i 0.0368728 0.00430982i
\(188\) 2.87695 4.98303i 0.209823 0.363424i
\(189\) 0 0
\(190\) 4.09249 + 7.08840i 0.296900 + 0.514246i
\(191\) 1.87225 + 2.51487i 0.135471 + 0.181969i 0.864682 0.502320i \(-0.167520\pi\)
−0.729211 + 0.684289i \(0.760113\pi\)
\(192\) 0 0
\(193\) −2.83373 + 9.46533i −0.203977 + 0.681329i 0.793384 + 0.608722i \(0.208317\pi\)
−0.997361 + 0.0726078i \(0.976868\pi\)
\(194\) −10.1937 5.11946i −0.731864 0.367556i
\(195\) 0 0
\(196\) 1.83036 + 6.11382i 0.130740 + 0.436702i
\(197\) −0.354010 + 2.00769i −0.0252221 + 0.143042i −0.994818 0.101669i \(-0.967582\pi\)
0.969596 + 0.244711i \(0.0786929\pi\)
\(198\) 0 0
\(199\) −2.26949 12.8709i −0.160880 0.912396i −0.953211 0.302305i \(-0.902244\pi\)
0.792331 0.610091i \(-0.208867\pi\)
\(200\) 5.11809 2.57040i 0.361903 0.181755i
\(201\) 0 0
\(202\) 6.31281 + 14.6347i 0.444168 + 1.02970i
\(203\) 1.02153 + 2.36818i 0.0716977 + 0.166214i
\(204\) 0 0
\(205\) 5.76540 2.89549i 0.402673 0.202230i
\(206\) −0.389910 2.21129i −0.0271663 0.154068i
\(207\) 0 0
\(208\) 4.00414 22.7086i 0.277637 1.57456i
\(209\) −2.40967 8.04887i −0.166681 0.556752i
\(210\) 0 0
\(211\) −14.1852 7.12406i −0.976548 0.490441i −0.112391 0.993664i \(-0.535851\pi\)
−0.864156 + 0.503223i \(0.832147\pi\)
\(212\) −2.26418 + 7.56289i −0.155505 + 0.519421i
\(213\) 0 0
\(214\) 0.790109 + 1.06130i 0.0540108 + 0.0725490i
\(215\) 5.10787 + 8.84708i 0.348354 + 0.603366i
\(216\) 0 0
\(217\) 0.124353 0.215385i 0.00844160 0.0146213i
\(218\) 3.50251 0.409385i 0.237220 0.0277270i
\(219\) 0 0
\(220\) −2.97834 + 0.705880i −0.200800 + 0.0475904i
\(221\) −0.812276 + 0.534243i −0.0546396 + 0.0359370i
\(222\) 0 0
\(223\) 1.30086 1.37883i 0.0871121 0.0923335i −0.682351 0.731025i \(-0.739042\pi\)
0.769463 + 0.638691i \(0.220524\pi\)
\(224\) 1.15542 + 0.969515i 0.0772000 + 0.0647785i
\(225\) 0 0
\(226\) 7.69986 6.46095i 0.512187 0.429776i
\(227\) −1.48603 + 25.5142i −0.0986315 + 1.69344i 0.479538 + 0.877521i \(0.340804\pi\)
−0.578170 + 0.815917i \(0.696233\pi\)
\(228\) 0 0
\(229\) −2.80161 + 3.76321i −0.185135 + 0.248680i −0.884995 0.465600i \(-0.845838\pi\)
0.699860 + 0.714280i \(0.253246\pi\)
\(230\) 18.6854 + 2.18401i 1.23208 + 0.144010i
\(231\) 0 0
\(232\) −12.7762 8.40304i −0.838799 0.551687i
\(233\) 10.7706 + 3.92018i 0.705605 + 0.256819i 0.669802 0.742540i \(-0.266379\pi\)
0.0358031 + 0.999359i \(0.488601\pi\)
\(234\) 0 0
\(235\) −8.03307 + 2.92380i −0.524020 + 0.190728i
\(236\) 6.35348 + 1.50580i 0.413577 + 0.0980194i
\(237\) 0 0
\(238\) −0.00649534 0.111521i −0.000421031 0.00722882i
\(239\) −8.06092 8.54408i −0.521418 0.552671i 0.412129 0.911125i \(-0.364785\pi\)
−0.933547 + 0.358455i \(0.883304\pi\)
\(240\) 0 0
\(241\) 1.75025 4.05753i 0.112743 0.261368i −0.852497 0.522732i \(-0.824913\pi\)
0.965240 + 0.261364i \(0.0841721\pi\)
\(242\) −8.87136 −0.570273
\(243\) 0 0
\(244\) 9.25985 0.592801
\(245\) 3.75550 8.70623i 0.239930 0.556221i
\(246\) 0 0
\(247\) 11.0418 + 11.7037i 0.702575 + 0.744686i
\(248\) 0.0857407 + 1.47211i 0.00544454 + 0.0934792i
\(249\) 0 0
\(250\) 18.5427 + 4.39471i 1.17274 + 0.277946i
\(251\) 5.90077 2.14770i 0.372453 0.135562i −0.149010 0.988836i \(-0.547609\pi\)
0.521463 + 0.853274i \(0.325386\pi\)
\(252\) 0 0
\(253\) −18.1465 6.60477i −1.14086 0.415239i
\(254\) −14.9368 9.82406i −0.937216 0.616417i
\(255\) 0 0
\(256\) −18.0536 2.11016i −1.12835 0.131885i
\(257\) 1.41164 1.89616i 0.0880555 0.118279i −0.755912 0.654673i \(-0.772806\pi\)
0.843968 + 0.536394i \(0.180214\pi\)
\(258\) 0 0
\(259\) 0.196103 3.36695i 0.0121852 0.209212i
\(260\) 4.49040 3.76790i 0.278483 0.233675i
\(261\) 0 0
\(262\) 7.84639 + 6.58390i 0.484752 + 0.406755i
\(263\) −9.60486 + 10.1806i −0.592261 + 0.627760i −0.952295 0.305179i \(-0.901284\pi\)
0.360034 + 0.932939i \(0.382765\pi\)
\(264\) 0 0
\(265\) 9.79942 6.44518i 0.601974 0.395924i
\(266\) −1.79897 + 0.426364i −0.110302 + 0.0261421i
\(267\) 0 0
\(268\) 1.15225 0.134679i 0.0703851 0.00822684i
\(269\) −12.8630 + 22.2793i −0.784268 + 1.35839i 0.145167 + 0.989407i \(0.453628\pi\)
−0.929435 + 0.368985i \(0.879705\pi\)
\(270\) 0 0
\(271\) −6.52248 11.2973i −0.396212 0.686260i 0.597043 0.802209i \(-0.296342\pi\)
−0.993255 + 0.115950i \(0.963009\pi\)
\(272\) 0.628002 + 0.843553i 0.0380782 + 0.0511479i
\(273\) 0 0
\(274\) 0.569765 1.90315i 0.0344208 0.114973i
\(275\) −6.70840 3.36908i −0.404532 0.203163i
\(276\) 0 0
\(277\) −1.49661 4.99901i −0.0899223 0.300361i 0.901183 0.433438i \(-0.142700\pi\)
−0.991106 + 0.133076i \(0.957514\pi\)
\(278\) 4.84283 27.4651i 0.290454 1.64725i
\(279\) 0 0
\(280\) −0.136084 0.771772i −0.00813259 0.0461222i
\(281\) 5.07578 2.54915i 0.302795 0.152070i −0.290914 0.956749i \(-0.593959\pi\)
0.593709 + 0.804680i \(0.297663\pi\)
\(282\) 0 0
\(283\) −4.49732 10.4260i −0.267338 0.619759i 0.730678 0.682722i \(-0.239204\pi\)
−0.998016 + 0.0629635i \(0.979945\pi\)
\(284\) −0.654621 1.51758i −0.0388446 0.0900519i
\(285\) 0 0
\(286\) −17.0106 + 8.54305i −1.00586 + 0.505161i
\(287\) 0.253055 + 1.43515i 0.0149374 + 0.0847140i
\(288\) 0 0
\(289\) −2.94432 + 16.6981i −0.173195 + 0.982239i
\(290\) −5.60015 18.7058i −0.328852 1.09844i
\(291\) 0 0
\(292\) 11.1500 + 5.59976i 0.652507 + 0.327701i
\(293\) 4.95619 16.5548i 0.289544 0.967143i −0.682212 0.731154i \(-0.738982\pi\)
0.971756 0.235989i \(-0.0758329\pi\)
\(294\) 0 0
\(295\) −5.79298 7.78132i −0.337280 0.453046i
\(296\) 9.99847 + 17.3179i 0.581149 + 1.00658i
\(297\) 0 0
\(298\) −7.63434 + 13.2231i −0.442245 + 0.765991i
\(299\) 36.7324 4.29341i 2.12429 0.248294i
\(300\) 0 0
\(301\) −2.24531 + 0.532148i −0.129418 + 0.0306725i
\(302\) 22.2808 14.6543i 1.28212 0.843261i
\(303\) 0 0
\(304\) 11.9440 12.6599i 0.685034 0.726094i
\(305\) −10.5388 8.84310i −0.603450 0.506354i
\(306\) 0 0
\(307\) −6.44460 + 5.40766i −0.367812 + 0.308631i −0.807895 0.589326i \(-0.799393\pi\)
0.440083 + 0.897957i \(0.354949\pi\)
\(308\) 0.0402001 0.690208i 0.00229061 0.0393283i
\(309\) 0 0
\(310\) −1.12440 + 1.51033i −0.0638615 + 0.0857809i
\(311\) 6.51107 + 0.761035i 0.369209 + 0.0431544i 0.298675 0.954355i \(-0.403455\pi\)
0.0705345 + 0.997509i \(0.477530\pi\)
\(312\) 0 0
\(313\) −4.55516 2.99597i −0.257473 0.169342i 0.414210 0.910181i \(-0.364058\pi\)
−0.671683 + 0.740839i \(0.734428\pi\)
\(314\) −19.6675 7.15839i −1.10990 0.403971i
\(315\) 0 0
\(316\) 2.75130 1.00139i 0.154773 0.0563327i
\(317\) 3.49841 + 0.829137i 0.196490 + 0.0465690i 0.327682 0.944788i \(-0.393732\pi\)
−0.131192 + 0.991357i \(0.541881\pi\)
\(318\) 0 0
\(319\) 1.16542 + 20.0096i 0.0652512 + 1.12032i
\(320\) 1.57785 + 1.67243i 0.0882047 + 0.0934915i
\(321\) 0 0
\(322\) −1.68309 + 3.90183i −0.0937947 + 0.217441i
\(323\) −0.733832 −0.0408315
\(324\) 0 0
\(325\) 14.3764 0.797458
\(326\) −16.9886 + 39.3840i −0.940911 + 2.18128i
\(327\) 0 0
\(328\) −5.92943 6.28483i −0.327398 0.347022i
\(329\) −0.112274 1.92768i −0.00618989 0.106276i
\(330\) 0 0
\(331\) −26.0845 6.18215i −1.43374 0.339802i −0.560927 0.827865i \(-0.689555\pi\)
−0.872808 + 0.488063i \(0.837703\pi\)
\(332\) 0.696896 0.253649i 0.0382471 0.0139208i
\(333\) 0 0
\(334\) 12.9416 + 4.71034i 0.708131 + 0.257739i
\(335\) −1.44002 0.947115i −0.0786766 0.0517464i
\(336\) 0 0
\(337\) −21.4712 2.50962i −1.16961 0.136708i −0.490969 0.871177i \(-0.663357\pi\)
−0.678642 + 0.734469i \(0.737431\pi\)
\(338\) 8.49355 11.4088i 0.461988 0.620558i
\(339\) 0 0
\(340\) −0.0155444 + 0.266888i −0.000843015 + 0.0144740i
\(341\) 1.48061 1.24238i 0.0801796 0.0672787i
\(342\) 0 0
\(343\) 3.30415 + 2.77251i 0.178407 + 0.149702i
\(344\) 9.38883 9.95158i 0.506212 0.536553i
\(345\) 0 0
\(346\) −25.4131 + 16.7144i −1.36622 + 0.898574i
\(347\) −16.3883 + 3.88409i −0.879768 + 0.208509i −0.645589 0.763685i \(-0.723388\pi\)
−0.234179 + 0.972194i \(0.575240\pi\)
\(348\) 0 0
\(349\) 1.95794 0.228850i 0.104806 0.0122501i −0.0635282 0.997980i \(-0.520235\pi\)
0.168334 + 0.985730i \(0.446161\pi\)
\(350\) −0.825937 + 1.43056i −0.0441482 + 0.0764669i
\(351\) 0 0
\(352\) 5.86083 + 10.1513i 0.312384 + 0.541064i
\(353\) −3.47131 4.66277i −0.184759 0.248174i 0.700088 0.714057i \(-0.253144\pi\)
−0.884847 + 0.465883i \(0.845737\pi\)
\(354\) 0 0
\(355\) −0.704246 + 2.35234i −0.0373775 + 0.124849i
\(356\) 10.7801 + 5.41396i 0.571343 + 0.286939i
\(357\) 0 0
\(358\) −8.69046 29.0282i −0.459305 1.53419i
\(359\) −3.38611 + 19.2036i −0.178712 + 1.01353i 0.755059 + 0.655657i \(0.227608\pi\)
−0.933771 + 0.357871i \(0.883503\pi\)
\(360\) 0 0
\(361\) −1.19036 6.75087i −0.0626506 0.355309i
\(362\) 40.9216 20.5516i 2.15079 1.08017i
\(363\) 0 0
\(364\) 0.524431 + 1.21577i 0.0274876 + 0.0637235i
\(365\) −7.34232 17.0214i −0.384315 0.890942i
\(366\) 0 0
\(367\) −16.8818 + 8.47836i −0.881222 + 0.442567i −0.831065 0.556175i \(-0.812269\pi\)
−0.0501571 + 0.998741i \(0.515972\pi\)
\(368\) −6.94663 39.3963i −0.362118 2.05367i
\(369\) 0 0
\(370\) −4.43392 + 25.1460i −0.230509 + 1.30728i
\(371\) 0.759833 + 2.53802i 0.0394486 + 0.131767i
\(372\) 0 0
\(373\) −19.9239 10.0061i −1.03162 0.518098i −0.149320 0.988789i \(-0.547709\pi\)
−0.882298 + 0.470691i \(0.844005\pi\)
\(374\) 0.248987 0.831676i 0.0128748 0.0430049i
\(375\) 0 0
\(376\) 6.83676 + 9.18337i 0.352579 + 0.473596i
\(377\) −19.1926 33.2425i −0.988467 1.71207i
\(378\) 0 0
\(379\) 5.97107 10.3422i 0.306713 0.531243i −0.670928 0.741522i \(-0.734104\pi\)
0.977641 + 0.210280i \(0.0674374\pi\)
\(380\) 4.39458 0.513653i 0.225437 0.0263499i
\(381\) 0 0
\(382\) 5.21706 1.23647i 0.266928 0.0632631i
\(383\) 17.4697 11.4900i 0.892662 0.587113i −0.0181952 0.999834i \(-0.505792\pi\)
0.910857 + 0.412721i \(0.135422\pi\)
\(384\) 0 0
\(385\) −0.704897 + 0.747148i −0.0359249 + 0.0380782i
\(386\) 12.9434 + 10.8608i 0.658802 + 0.552800i
\(387\) 0 0
\(388\) −4.72360 + 3.96357i −0.239804 + 0.201220i
\(389\) 0.558292 9.58551i 0.0283066 0.486005i −0.954128 0.299398i \(-0.903214\pi\)
0.982435 0.186606i \(-0.0597489\pi\)
\(390\) 0 0
\(391\) −1.00721 + 1.35291i −0.0509366 + 0.0684197i
\(392\) −12.6126 1.47420i −0.637032 0.0744583i
\(393\) 0 0
\(394\) 2.91276 + 1.91575i 0.146743 + 0.0965141i
\(395\) −4.08763 1.48777i −0.205671 0.0748581i
\(396\) 0 0
\(397\) 1.93277 0.703471i 0.0970030 0.0353062i −0.293063 0.956093i \(-0.594674\pi\)
0.390066 + 0.920787i \(0.372452\pi\)
\(398\) −21.7476 5.15427i −1.09011 0.258360i
\(399\) 0 0
\(400\) −0.904208 15.5247i −0.0452104 0.776233i
\(401\) 0.464530 + 0.492373i 0.0231975 + 0.0245879i 0.738869 0.673850i \(-0.235360\pi\)
−0.715671 + 0.698438i \(0.753879\pi\)
\(402\) 0 0
\(403\) −1.46609 + 3.39877i −0.0730310 + 0.169305i
\(404\) 8.61563 0.428644
\(405\) 0 0
\(406\) 4.41052 0.218891
\(407\) 10.3814 24.0669i 0.514588 1.19295i
\(408\) 0 0
\(409\) −11.7714 12.4770i −0.582058 0.616945i 0.367695 0.929947i \(-0.380147\pi\)
−0.949753 + 0.313001i \(0.898666\pi\)
\(410\) −0.641507 11.0142i −0.0316818 0.543955i
\(411\) 0 0
\(412\) −1.18106 0.279917i −0.0581869 0.0137905i
\(413\) 2.05907 0.749442i 0.101320 0.0368776i
\(414\) 0 0
\(415\) −1.03538 0.376849i −0.0508250 0.0184988i
\(416\) −18.7551 12.3354i −0.919545 0.604794i
\(417\) 0 0
\(418\) −14.2708 1.66801i −0.698006 0.0815852i
\(419\) 16.7727 22.5296i 0.819399 1.10064i −0.173865 0.984769i \(-0.555626\pi\)
0.993264 0.115874i \(-0.0369670\pi\)
\(420\) 0 0
\(421\) 0.584307 10.0322i 0.0284774 0.488938i −0.953674 0.300843i \(-0.902732\pi\)
0.982151 0.188094i \(-0.0602311\pi\)
\(422\) −20.7945 + 17.4487i −1.01226 + 0.849388i
\(423\) 0 0
\(424\) −12.0332 10.0970i −0.584382 0.490354i
\(425\) −0.449945 + 0.476913i −0.0218255 + 0.0231337i
\(426\) 0 0
\(427\) 2.59628 1.70760i 0.125643 0.0826365i
\(428\) 0.695949 0.164943i 0.0336400 0.00797282i
\(429\) 0 0
\(430\) 17.3517 2.02812i 0.836774 0.0978048i
\(431\) 2.67380 4.63116i 0.128792 0.223075i −0.794417 0.607373i \(-0.792223\pi\)
0.923209 + 0.384298i \(0.125557\pi\)
\(432\) 0 0
\(433\) 3.44686 + 5.97014i 0.165646 + 0.286906i 0.936884 0.349639i \(-0.113696\pi\)
−0.771239 + 0.636546i \(0.780363\pi\)
\(434\) −0.253977 0.341150i −0.0121913 0.0163757i
\(435\) 0 0
\(436\) 0.546710 1.82614i 0.0261826 0.0874561i
\(437\) 24.9453 + 12.5280i 1.19329 + 0.599295i
\(438\) 0 0
\(439\) −4.46624 14.9183i −0.213162 0.712011i −0.995965 0.0897416i \(-0.971396\pi\)
0.782803 0.622270i \(-0.213789\pi\)
\(440\) 1.05757 5.99779i 0.0504178 0.285934i
\(441\) 0 0
\(442\) 0.288704 + 1.63732i 0.0137323 + 0.0778796i
\(443\) 24.9809 12.5459i 1.18688 0.596072i 0.257886 0.966175i \(-0.416974\pi\)
0.928991 + 0.370103i \(0.120678\pi\)
\(444\) 0 0
\(445\) −7.09870 16.4566i −0.336511 0.780120i
\(446\) −1.28397 2.97659i −0.0607979 0.140945i
\(447\) 0 0
\(448\) −0.464112 + 0.233086i −0.0219272 + 0.0110123i
\(449\) 1.89891 + 10.7693i 0.0896152 + 0.508233i 0.996265 + 0.0863489i \(0.0275200\pi\)
−0.906650 + 0.421884i \(0.861369\pi\)
\(450\) 0 0
\(451\) −1.96661 + 11.1532i −0.0926038 + 0.525182i
\(452\) −1.55833 5.20519i −0.0732977 0.244831i
\(453\) 0 0
\(454\) 39.0567 + 19.6150i 1.83302 + 0.920579i
\(455\) 0.564187 1.88451i 0.0264495 0.0883474i
\(456\) 0 0
\(457\) −9.81178 13.1795i −0.458976 0.616511i 0.511039 0.859558i \(-0.329261\pi\)
−0.970015 + 0.243046i \(0.921853\pi\)
\(458\) 4.01150 + 6.94812i 0.187445 + 0.324664i
\(459\) 0 0
\(460\) 5.08471 8.80698i 0.237076 0.410627i
\(461\) −24.8325 + 2.90251i −1.15657 + 0.135183i −0.672670 0.739943i \(-0.734853\pi\)
−0.483896 + 0.875126i \(0.660779\pi\)
\(462\) 0 0
\(463\) 13.1994 3.12832i 0.613429 0.145385i 0.0878551 0.996133i \(-0.471999\pi\)
0.525574 + 0.850748i \(0.323851\pi\)
\(464\) −34.6905 + 22.8163i −1.61047 + 1.05922i
\(465\) 0 0
\(466\) 13.4509 14.2571i 0.623100 0.660447i
\(467\) 26.2848 + 22.0556i 1.21632 + 1.02061i 0.999009 + 0.0445082i \(0.0141721\pi\)
0.217308 + 0.976103i \(0.430272\pi\)
\(468\) 0 0
\(469\) 0.298233 0.250247i 0.0137711 0.0115554i
\(470\) −0.850014 + 14.5942i −0.0392082 + 0.673179i
\(471\) 0 0
\(472\) −7.75831 + 10.4212i −0.357105 + 0.479675i
\(473\) −17.8114 2.08186i −0.818971 0.0957240i
\(474\) 0 0
\(475\) 9.06614 + 5.96290i 0.415983 + 0.273596i
\(476\) −0.0567445 0.0206533i −0.00260088 0.000946643i
\(477\) 0 0
\(478\) −18.8761 + 6.87035i −0.863374 + 0.314242i
\(479\) 21.0780 + 4.99558i 0.963079 + 0.228254i 0.681936 0.731412i \(-0.261138\pi\)
0.281143 + 0.959666i \(0.409286\pi\)
\(480\) 0 0
\(481\) 2.91861 + 50.1105i 0.133077 + 2.28484i
\(482\) −5.18577 5.49659i −0.236205 0.250363i
\(483\) 0 0
\(484\) −1.89941 + 4.40334i −0.0863370 + 0.200152i
\(485\) 9.16119 0.415988
\(486\) 0 0
\(487\) 38.8502 1.76047 0.880235 0.474538i \(-0.157385\pi\)
0.880235 + 0.474538i \(0.157385\pi\)
\(488\) −7.29768 + 16.9179i −0.330350 + 0.765838i
\(489\) 0 0
\(490\) −11.1271 11.7940i −0.502671 0.532800i
\(491\) 1.70264 + 29.2332i 0.0768391 + 1.31928i 0.787751 + 0.615994i \(0.211246\pi\)
−0.710912 + 0.703281i \(0.751717\pi\)
\(492\) 0 0
\(493\) 1.70344 + 0.403724i 0.0767193 + 0.0181828i
\(494\) 25.8565 9.41099i 1.16334 0.423420i
\(495\) 0 0
\(496\) 3.76245 + 1.36942i 0.168939 + 0.0614887i
\(497\) −0.463398 0.304782i −0.0207863 0.0136713i
\(498\) 0 0
\(499\) 27.2881 + 3.18952i 1.22158 + 0.142783i 0.702339 0.711843i \(-0.252139\pi\)
0.519245 + 0.854625i \(0.326213\pi\)
\(500\) 6.15145 8.26282i 0.275101 0.369525i
\(501\) 0 0
\(502\) 0.624386 10.7203i 0.0278677 0.478470i
\(503\) 25.2177 21.1601i 1.12440 0.943484i 0.125583 0.992083i \(-0.459920\pi\)
0.998818 + 0.0485988i \(0.0154756\pi\)
\(504\) 0 0
\(505\) −9.80560 8.22788i −0.436343 0.366136i
\(506\) −22.6622 + 24.0206i −1.00746 + 1.06784i
\(507\) 0 0
\(508\) −8.07427 + 5.31053i −0.358238 + 0.235617i
\(509\) −4.99552 + 1.18396i −0.221423 + 0.0524781i −0.339830 0.940487i \(-0.610369\pi\)
0.118407 + 0.992965i \(0.462221\pi\)
\(510\) 0 0
\(511\) 4.15890 0.486106i 0.183979 0.0215040i
\(512\) −2.95483 + 5.11791i −0.130586 + 0.226182i
\(513\) 0 0
\(514\) −2.02126 3.50093i −0.0891541 0.154419i
\(515\) 1.07687 + 1.44649i 0.0474526 + 0.0637399i
\(516\) 0 0
\(517\) 4.30384 14.3758i 0.189283 0.632248i
\(518\) −5.15408 2.58847i −0.226457 0.113731i
\(519\) 0 0
\(520\) 3.34514 + 11.1735i 0.146694 + 0.489992i
\(521\) 1.32353 7.50611i 0.0579849 0.328849i −0.941992 0.335635i \(-0.891049\pi\)
0.999977 + 0.00678637i \(0.00216018\pi\)
\(522\) 0 0
\(523\) −1.93766 10.9890i −0.0847279 0.480516i −0.997415 0.0718566i \(-0.977108\pi\)
0.912687 0.408659i \(-0.134004\pi\)
\(524\) 4.94791 2.48493i 0.216151 0.108555i
\(525\) 0 0
\(526\) 9.48017 + 21.9775i 0.413355 + 0.958265i
\(527\) −0.0668639 0.155008i −0.00291264 0.00675226i
\(528\) 0 0
\(529\) 36.7815 18.4724i 1.59919 0.803146i
\(530\) −3.48297 19.7529i −0.151291 0.858012i
\(531\) 0 0
\(532\) −0.173544 + 0.984215i −0.00752407 + 0.0426711i
\(533\) −6.22044 20.7777i −0.269437 0.899982i
\(534\) 0 0
\(535\) −0.949591 0.476903i −0.0410544 0.0206183i
\(536\) −0.662030 + 2.21133i −0.0285953 + 0.0955150i
\(537\) 0 0
\(538\) 26.2712 + 35.2883i 1.13263 + 1.52139i
\(539\) 8.32207 + 14.4143i 0.358457 + 0.620866i
\(540\) 0 0
\(541\) 12.8996 22.3428i 0.554598 0.960592i −0.443337 0.896355i \(-0.646205\pi\)
0.997935 0.0642366i \(-0.0204612\pi\)
\(542\) −22.1572 + 2.58981i −0.951735 + 0.111242i
\(543\) 0 0
\(544\) 0.996195 0.236103i 0.0427115 0.0101228i
\(545\) −2.36617 + 1.55625i −0.101356 + 0.0666626i
\(546\) 0 0
\(547\) −24.8071 + 26.2940i −1.06068 + 1.12425i −0.0687241 + 0.997636i \(0.521893\pi\)
−0.991952 + 0.126615i \(0.959589\pi\)
\(548\) −0.822645 0.690281i −0.0351417 0.0294874i
\(549\) 0 0
\(550\) −9.83406 + 8.25176i −0.419326 + 0.351856i
\(551\) 1.68464 28.9241i 0.0717680 1.23221i
\(552\) 0 0
\(553\) 0.586745 0.788135i 0.0249509 0.0335149i
\(554\) −8.86331 1.03597i −0.376566 0.0440143i
\(555\) 0 0
\(556\) −12.5955 8.28421i −0.534169 0.351329i
\(557\) −31.3174 11.3986i −1.32696 0.482974i −0.421278 0.906931i \(-0.638418\pi\)
−0.905682 + 0.423957i \(0.860641\pi\)
\(558\) 0 0
\(559\) 32.2717 11.7459i 1.36495 0.496800i
\(560\) −2.07052 0.490722i −0.0874954 0.0207368i
\(561\) 0 0
\(562\) −0.564773 9.69678i −0.0238235 0.409034i
\(563\) 23.7787 + 25.2040i 1.00215 + 1.06222i 0.998062 + 0.0622289i \(0.0198209\pi\)
0.00409146 + 0.999992i \(0.498698\pi\)
\(564\) 0 0
\(565\) −3.19736 + 7.41231i −0.134514 + 0.311838i
\(566\) −19.4174 −0.816173
\(567\) 0 0
\(568\) 3.28856 0.137985
\(569\) −13.0161 + 30.1747i −0.545663 + 1.26499i 0.392805 + 0.919622i \(0.371505\pi\)
−0.938468 + 0.345367i \(0.887755\pi\)
\(570\) 0 0
\(571\) 10.4745 + 11.1024i 0.438346 + 0.464620i 0.908451 0.417991i \(-0.137266\pi\)
−0.470105 + 0.882610i \(0.655784\pi\)
\(572\) 0.598300 + 10.2724i 0.0250162 + 0.429511i
\(573\) 0 0
\(574\) 2.42492 + 0.574716i 0.101214 + 0.0239882i
\(575\) 23.4369 8.53034i 0.977386 0.355740i
\(576\) 0 0
\(577\) 9.00255 + 3.27666i 0.374781 + 0.136409i 0.522541 0.852614i \(-0.324984\pi\)
−0.147760 + 0.989023i \(0.547206\pi\)
\(578\) 24.2256 + 15.9334i 1.00765 + 0.662743i
\(579\) 0 0
\(580\) −10.4837 1.22537i −0.435314 0.0508809i
\(581\) 0.148621 0.199632i 0.00616582 0.00828214i
\(582\) 0 0
\(583\) −1.19715 + 20.5542i −0.0495808 + 0.851269i
\(584\) −19.0182 + 15.9582i −0.786980 + 0.660355i
\(585\) 0 0
\(586\) −22.6380 18.9955i −0.935165 0.784697i
\(587\) −19.5724 + 20.7455i −0.807838 + 0.856258i −0.991948 0.126648i \(-0.959578\pi\)
0.184110 + 0.982906i \(0.441060\pi\)
\(588\) 0 0
\(589\) −2.33426 + 1.53527i −0.0961817 + 0.0632597i
\(590\) −16.1423 + 3.82579i −0.664567 + 0.157505i
\(591\) 0 0
\(592\) 53.9294 6.30344i 2.21649 0.259070i
\(593\) 21.1230 36.5862i 0.867419 1.50241i 0.00279478 0.999996i \(-0.499110\pi\)
0.864625 0.502418i \(-0.167556\pi\)
\(594\) 0 0
\(595\) 0.0448581 + 0.0776966i 0.00183900 + 0.00318525i
\(596\) 4.92876 + 6.62048i 0.201890 + 0.271185i
\(597\) 0 0
\(598\) 18.1384 60.5866i 0.741735 2.47757i
\(599\) 16.0004 + 8.03568i 0.653757 + 0.328329i 0.744575 0.667538i \(-0.232652\pi\)
−0.0908185 + 0.995867i \(0.528948\pi\)
\(600\) 0 0
\(601\) 2.87565 + 9.60533i 0.117300 + 0.391809i 0.996395 0.0848376i \(-0.0270372\pi\)
−0.879095 + 0.476647i \(0.841852\pi\)
\(602\) −0.685225 + 3.88610i −0.0279277 + 0.158386i
\(603\) 0 0
\(604\) −2.50327 14.1968i −0.101857 0.577658i
\(605\) 6.36692 3.19759i 0.258852 0.130000i
\(606\) 0 0
\(607\) −4.73369 10.9739i −0.192135 0.445418i 0.794731 0.606962i \(-0.207612\pi\)
−0.986866 + 0.161544i \(0.948353\pi\)
\(608\) −6.71112 15.5581i −0.272172 0.630965i
\(609\) 0 0
\(610\) −21.0240 + 10.5587i −0.851237 + 0.427507i
\(611\) 4.99036 + 28.3018i 0.201888 + 1.14497i
\(612\) 0 0
\(613\) −6.82305 + 38.6954i −0.275580 + 1.56289i 0.461532 + 0.887124i \(0.347300\pi\)
−0.737112 + 0.675771i \(0.763811\pi\)
\(614\) 4.12615 + 13.7823i 0.166518 + 0.556209i
\(615\) 0 0
\(616\) 1.22934 + 0.617399i 0.0495316 + 0.0248757i
\(617\) −11.7232 + 39.1581i −0.471957 + 1.57644i 0.308493 + 0.951226i \(0.400175\pi\)
−0.780450 + 0.625218i \(0.785010\pi\)
\(618\) 0 0
\(619\) 15.2570 + 20.4937i 0.613230 + 0.823711i 0.994929 0.100576i \(-0.0320684\pi\)
−0.381699 + 0.924287i \(0.624661\pi\)
\(620\) 0.508917 + 0.881470i 0.0204386 + 0.0354007i
\(621\) 0 0
\(622\) 5.60517 9.70843i 0.224747 0.389273i
\(623\) 4.02091 0.469976i 0.161094 0.0188292i
\(624\) 0 0
\(625\) 0.257080 0.0609291i 0.0102832 0.00243716i
\(626\) −7.78974 + 5.12339i −0.311340 + 0.204772i
\(627\) 0 0
\(628\) −7.76404 + 8.22940i −0.309819 + 0.328389i
\(629\) −1.75368 1.47151i −0.0699239 0.0586731i
\(630\) 0 0
\(631\) −3.09592 + 2.59779i −0.123247 + 0.103416i −0.702328 0.711854i \(-0.747856\pi\)
0.579081 + 0.815270i \(0.303411\pi\)
\(632\) −0.338736 + 5.81588i −0.0134742 + 0.231343i
\(633\) 0 0
\(634\) 3.67152 4.93171i 0.145815 0.195863i
\(635\) 14.2610 + 1.66687i 0.565930 + 0.0661478i
\(636\) 0 0
\(637\) −26.6313 17.5157i −1.05517 0.693995i
\(638\) 32.2091 + 11.7231i 1.27517 + 0.464123i
\(639\) 0 0
\(640\) 16.2444 5.91248i 0.642116 0.233711i
\(641\) −11.5063 2.72705i −0.454472 0.107712i −0.00299679 0.999996i \(-0.500954\pi\)
−0.451475 + 0.892284i \(0.649102\pi\)
\(642\) 0 0
\(643\) 1.17771 + 20.2204i 0.0464442 + 0.797416i 0.938455 + 0.345402i \(0.112257\pi\)
−0.892011 + 0.452014i \(0.850706\pi\)
\(644\) 1.57633 + 1.67081i 0.0621161 + 0.0658393i
\(645\) 0 0
\(646\) −0.497048 + 1.15229i −0.0195561 + 0.0453361i
\(647\) −25.4173 −0.999257 −0.499629 0.866240i \(-0.666530\pi\)
−0.499629 + 0.866240i \(0.666530\pi\)
\(648\) 0 0
\(649\) 17.0290 0.668446
\(650\) 9.73759 22.5743i 0.381940 0.885436i
\(651\) 0 0
\(652\) 15.9110 + 16.8647i 0.623125 + 0.660473i
\(653\) 0.380169 + 6.52724i 0.0148772 + 0.255431i 0.997544 + 0.0700484i \(0.0223154\pi\)
−0.982666 + 0.185382i \(0.940648\pi\)
\(654\) 0 0
\(655\) −8.00440 1.89708i −0.312758 0.0741250i
\(656\) −22.0460 + 8.02410i −0.860753 + 0.313289i
\(657\) 0 0
\(658\) −3.10295 1.12938i −0.120966 0.0440279i
\(659\) −20.8387 13.7058i −0.811761 0.533904i 0.0744284 0.997226i \(-0.476287\pi\)
−0.886190 + 0.463323i \(0.846657\pi\)
\(660\) 0 0
\(661\) 44.7213 + 5.22717i 1.73946 + 0.203313i 0.925795 0.378025i \(-0.123397\pi\)
0.813662 + 0.581339i \(0.197471\pi\)
\(662\) −27.3753 + 36.7714i −1.06397 + 1.42916i
\(663\) 0 0
\(664\) −0.0858009 + 1.47314i −0.00332972 + 0.0571691i
\(665\) 1.13743 0.954419i 0.0441077 0.0370108i
\(666\) 0 0
\(667\) −51.0131 42.8051i −1.97523 1.65742i
\(668\) 5.10887 5.41509i 0.197668 0.209516i
\(669\) 0 0
\(670\) −2.46256 + 1.61965i −0.0951372 + 0.0625727i
\(671\) 23.4988 5.56932i 0.907162 0.215001i
\(672\) 0 0
\(673\) −12.0498 + 1.40842i −0.464485 + 0.0542905i −0.345117 0.938560i \(-0.612161\pi\)
−0.119368 + 0.992850i \(0.538087\pi\)
\(674\) −18.4838 + 32.0150i −0.711971 + 1.23317i
\(675\) 0 0
\(676\) −3.84429 6.65851i −0.147857 0.256097i
\(677\) 3.57201 + 4.79804i 0.137283 + 0.184404i 0.865448 0.500999i \(-0.167034\pi\)
−0.728165 + 0.685402i \(0.759626\pi\)
\(678\) 0 0
\(679\) −0.593486 + 1.98238i −0.0227759 + 0.0760768i
\(680\) −0.475359 0.238734i −0.0182292 0.00915503i
\(681\) 0 0
\(682\) −0.947961 3.16641i −0.0362993 0.121248i
\(683\) −4.79324 + 27.1838i −0.183408 + 1.04016i 0.744575 + 0.667538i \(0.232652\pi\)
−0.927984 + 0.372621i \(0.878459\pi\)
\(684\) 0 0
\(685\) 0.277053 + 1.57124i 0.0105856 + 0.0600341i
\(686\) 6.59150 3.31038i 0.251665 0.126391i
\(687\) 0 0
\(688\) −14.7138 34.1105i −0.560960 1.30045i
\(689\) −15.6174 36.2052i −0.594976 1.37931i
\(690\) 0 0
\(691\) −26.2115 + 13.1639i −0.997134 + 0.500779i −0.871026 0.491237i \(-0.836545\pi\)
−0.126108 + 0.992017i \(0.540248\pi\)
\(692\) 2.85518 + 16.1926i 0.108538 + 0.615549i
\(693\) 0 0
\(694\) −5.00138 + 28.3642i −0.189850 + 1.07669i
\(695\) 6.42382 + 21.4571i 0.243669 + 0.813912i
\(696\) 0 0
\(697\) 0.883951 + 0.443937i 0.0334820 + 0.0168153i
\(698\) 0.966827 3.22943i 0.0365949 0.122236i
\(699\) 0 0
\(700\) 0.533229 + 0.716250i 0.0201541 + 0.0270717i
\(701\) 1.45226 + 2.51539i 0.0548512 + 0.0950051i 0.892147 0.451745i \(-0.149198\pi\)
−0.837296 + 0.546750i \(0.815865\pi\)
\(702\) 0 0
\(703\) −18.9438 + 32.8116i −0.714479 + 1.23751i
\(704\) −4.00884 + 0.468567i −0.151089 + 0.0176598i
\(705\) 0 0
\(706\) −9.67287 + 2.29251i −0.364043 + 0.0862799i
\(707\) 2.41565 1.58880i 0.0908500 0.0597530i
\(708\) 0 0
\(709\) 16.9595 17.9760i 0.636927 0.675103i −0.325844 0.945424i \(-0.605648\pi\)
0.962770 + 0.270321i \(0.0871298\pi\)
\(710\) 3.21672 + 2.69915i 0.120721 + 0.101297i
\(711\) 0 0
\(712\) −18.3872 + 15.4287i −0.689089 + 0.578215i
\(713\) −0.373382 + 6.41071i −0.0139832 + 0.240083i
\(714\) 0 0
\(715\) 9.12916 12.2626i 0.341411 0.458595i
\(716\) −16.2689 1.90157i −0.607999 0.0710648i
\(717\) 0 0
\(718\) 27.8606 + 18.3242i 1.03975 + 0.683854i
\(719\) −23.8425 8.67796i −0.889175 0.323633i −0.143269 0.989684i \(-0.545761\pi\)
−0.745907 + 0.666051i \(0.767983\pi\)
\(720\) 0 0
\(721\) −0.382767 + 0.139316i −0.0142550 + 0.00518838i
\(722\) −11.4067 2.70344i −0.424514 0.100612i
\(723\) 0 0
\(724\) −1.43930 24.7119i −0.0534912 0.918409i
\(725\) −17.7647 18.8295i −0.659765 0.699310i
\(726\) 0 0
\(727\) 7.03503 16.3090i 0.260915 0.604868i −0.736523 0.676413i \(-0.763534\pi\)
0.997437 + 0.0715446i \(0.0227928\pi\)
\(728\) −2.63453 −0.0976424
\(729\) 0 0
\(730\) −31.7008 −1.17330
\(731\) −0.620370 + 1.43818i −0.0229452 + 0.0531930i
\(732\) 0 0
\(733\) −6.35574 6.73669i −0.234755 0.248825i 0.599277 0.800541i \(-0.295455\pi\)
−0.834032 + 0.551716i \(0.813973\pi\)
\(734\) 1.87841 + 32.2510i 0.0693333 + 1.19041i
\(735\) 0 0
\(736\) −37.8946 8.98118i −1.39681 0.331051i
\(737\) 2.84309 1.03480i 0.104726 0.0381173i
\(738\) 0 0
\(739\) 5.02496 + 1.82894i 0.184846 + 0.0672785i 0.432785 0.901497i \(-0.357531\pi\)
−0.247939 + 0.968776i \(0.579753\pi\)
\(740\) 11.5320 + 7.58472i 0.423925 + 0.278820i
\(741\) 0 0
\(742\) 4.49994 + 0.525968i 0.165198 + 0.0193089i
\(743\) 15.5402 20.8740i 0.570113 0.765795i −0.419778 0.907627i \(-0.637892\pi\)
0.989891 + 0.141832i \(0.0452994\pi\)
\(744\) 0 0
\(745\) 0.713005 12.2418i 0.0261225 0.448506i
\(746\) −29.2071 + 24.5076i −1.06935 + 0.897288i
\(747\) 0 0
\(748\) −0.359496 0.301653i −0.0131445 0.0110295i
\(749\) 0.164713 0.174586i 0.00601849 0.00637923i
\(750\) 0 0
\(751\) 3.04582 2.00327i 0.111143 0.0731002i −0.492720 0.870188i \(-0.663997\pi\)
0.603864 + 0.797088i \(0.293627\pi\)
\(752\) 30.2484 7.16900i 1.10305 0.261427i
\(753\) 0 0
\(754\) −65.1982 + 7.62058i −2.37438 + 0.277525i
\(755\) −10.7088 + 18.5482i −0.389733 + 0.675038i
\(756\) 0 0
\(757\) −5.44196 9.42576i −0.197792 0.342585i 0.750021 0.661415i \(-0.230044\pi\)
−0.947812 + 0.318830i \(0.896710\pi\)
\(758\) −12.1953 16.3811i −0.442952 0.594988i
\(759\) 0 0
\(760\) −2.52491 + 8.43380i −0.0915883 + 0.305926i
\(761\) −22.0603 11.0791i −0.799687 0.401618i 0.00152487 0.999999i \(-0.499515\pi\)
−0.801212 + 0.598381i \(0.795811\pi\)
\(762\) 0 0
\(763\) −0.183470 0.612831i −0.00664204 0.0221860i
\(764\) 0.503281 2.85425i 0.0182081 0.103263i
\(765\) 0 0
\(766\) −6.20921 35.2142i −0.224348 1.27234i
\(767\) −29.1432 + 14.6363i −1.05230 + 0.528485i
\(768\) 0 0
\(769\) 12.3947 + 28.7342i 0.446965 + 1.03618i 0.981574 + 0.191082i \(0.0611996\pi\)
−0.534609 + 0.845099i \(0.679541\pi\)
\(770\) 0.695746 + 1.61292i 0.0250730 + 0.0581256i
\(771\) 0 0
\(772\) 8.16207 4.09915i 0.293759 0.147531i
\(773\) −2.32846 13.2054i −0.0837490 0.474964i −0.997620 0.0689585i \(-0.978032\pi\)
0.913871 0.406006i \(-0.133079\pi\)
\(774\) 0 0
\(775\) −0.433476 + 2.45837i −0.0155709 + 0.0883071i
\(776\) −3.51885 11.7538i −0.126320 0.421937i
\(777\) 0 0
\(778\) −14.6733 7.36923i −0.526065 0.264200i
\(779\) 4.69520 15.6830i 0.168223 0.561904i
\(780\) 0 0
\(781\) −2.57399 3.45746i −0.0921045 0.123718i
\(782\) 1.44218 + 2.49792i 0.0515721 + 0.0893255i
\(783\)