Properties

Label 729.2.g.a.55.6
Level $729$
Weight $2$
Character 729.55
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 55.6
Character \(\chi\) \(=\) 729.55
Dual form 729.2.g.a.676.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.415272 - 0.962709i) q^{2} +(0.618125 + 0.655174i) q^{4} +(-0.0443725 - 0.761846i) q^{5} +(2.82023 + 0.668406i) q^{7} +(2.85789 - 1.04019i) q^{8} +O(q^{10})\) \(q+(0.415272 - 0.962709i) q^{2} +(0.618125 + 0.655174i) q^{4} +(-0.0443725 - 0.761846i) q^{5} +(2.82023 + 0.668406i) q^{7} +(2.85789 - 1.04019i) q^{8} +(-0.751863 - 0.273656i) q^{10} +(-1.36690 - 0.899022i) q^{11} +(-4.07018 - 0.475735i) q^{13} +(1.81464 - 2.43749i) q^{14} +(0.0806579 - 1.38484i) q^{16} +(4.52563 - 3.79745i) q^{17} +(4.77625 + 4.00775i) q^{19} +(0.471714 - 0.499987i) q^{20} +(-1.43313 + 0.942586i) q^{22} +(-3.75955 + 0.891030i) q^{23} +(4.38775 - 0.512855i) q^{25} +(-2.14823 + 3.72084i) q^{26} +(1.30533 + 2.26090i) q^{28} +(1.97163 + 2.64835i) q^{29} +(-0.166718 + 0.556877i) q^{31} +(4.13590 + 2.07713i) q^{32} +(-1.77648 - 5.93384i) q^{34} +(0.384082 - 2.17824i) q^{35} +(-0.349184 - 1.98032i) q^{37} +(5.84174 - 2.93383i) q^{38} +(-0.919272 - 2.13111i) q^{40} +(0.581956 + 1.34912i) q^{41} +(-6.99844 + 3.51475i) q^{43} +(-0.255897 - 1.45126i) q^{44} +(-0.703435 + 3.98938i) q^{46} +(-3.37012 - 11.2570i) q^{47} +(1.25148 + 0.628517i) q^{49} +(1.32838 - 4.43710i) q^{50} +(-2.20419 - 2.96074i) q^{52} +(0.600204 + 1.03958i) q^{53} +(-0.624264 + 1.08126i) q^{55} +(8.75515 - 1.02333i) q^{56} +(3.36835 - 0.798315i) q^{58} +(5.89398 - 3.87653i) q^{59} +(8.34487 - 8.84504i) q^{61} +(0.466877 + 0.391757i) q^{62} +(5.84249 - 4.90243i) q^{64} +(-0.181833 + 3.12196i) q^{65} +(-1.39975 + 1.88018i) q^{67} +(5.28540 + 0.617774i) q^{68} +(-1.93751 - 1.27432i) q^{70} +(-10.2267 - 3.72222i) q^{71} +(-12.9627 + 4.71802i) q^{73} +(-2.05148 - 0.486209i) q^{74} +(0.326545 + 5.60657i) q^{76} +(-3.25405 - 3.44909i) q^{77} +(-1.70702 + 3.95732i) q^{79} -1.05862 q^{80} +1.54049 q^{82} +(-6.82230 + 15.8159i) q^{83} +(-3.09389 - 3.27933i) q^{85} +(0.477423 + 8.19704i) q^{86} +(-4.84159 - 1.14748i) q^{88} +(3.38989 - 1.23382i) q^{89} +(-11.1608 - 4.06221i) q^{91} +(-2.90765 - 1.91239i) q^{92} +(-12.2367 - 1.43027i) q^{94} +(2.84135 - 3.81660i) q^{95} +(-0.637153 + 10.9395i) q^{97} +(1.12478 - 0.943807i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415272 0.962709i 0.293642 0.680738i −0.705980 0.708232i \(-0.749493\pi\)
0.999622 + 0.0274933i \(0.00875248\pi\)
\(3\) 0 0
\(4\) 0.618125 + 0.655174i 0.309062 + 0.327587i
\(5\) −0.0443725 0.761846i −0.0198440 0.340708i −0.993588 0.113062i \(-0.963934\pi\)
0.973744 0.227646i \(-0.0731029\pi\)
\(6\) 0 0
\(7\) 2.82023 + 0.668406i 1.06595 + 0.252634i 0.725918 0.687782i \(-0.241415\pi\)
0.340028 + 0.940415i \(0.389564\pi\)
\(8\) 2.85789 1.04019i 1.01042 0.367761i
\(9\) 0 0
\(10\) −0.751863 0.273656i −0.237760 0.0865375i
\(11\) −1.36690 0.899022i −0.412135 0.271065i 0.326465 0.945209i \(-0.394142\pi\)
−0.738600 + 0.674144i \(0.764513\pi\)
\(12\) 0 0
\(13\) −4.07018 0.475735i −1.12886 0.131945i −0.468906 0.883248i \(-0.655352\pi\)
−0.659958 + 0.751303i \(0.729426\pi\)
\(14\) 1.81464 2.43749i 0.484984 0.651446i
\(15\) 0 0
\(16\) 0.0806579 1.38484i 0.0201645 0.346211i
\(17\) 4.52563 3.79745i 1.09763 0.921018i 0.100363 0.994951i \(-0.468000\pi\)
0.997263 + 0.0739329i \(0.0235551\pi\)
\(18\) 0 0
\(19\) 4.77625 + 4.00775i 1.09575 + 0.919441i 0.997132 0.0756846i \(-0.0241142\pi\)
0.0986153 + 0.995126i \(0.468559\pi\)
\(20\) 0.471714 0.499987i 0.105478 0.111801i
\(21\) 0 0
\(22\) −1.43313 + 0.942586i −0.305545 + 0.200960i
\(23\) −3.75955 + 0.891030i −0.783921 + 0.185793i −0.603038 0.797712i \(-0.706043\pi\)
−0.180882 + 0.983505i \(0.557895\pi\)
\(24\) 0 0
\(25\) 4.38775 0.512855i 0.877550 0.102571i
\(26\) −2.14823 + 3.72084i −0.421302 + 0.729716i
\(27\) 0 0
\(28\) 1.30533 + 2.26090i 0.246684 + 0.427269i
\(29\) 1.97163 + 2.64835i 0.366122 + 0.491787i 0.946565 0.322514i \(-0.104528\pi\)
−0.580443 + 0.814301i \(0.697121\pi\)
\(30\) 0 0
\(31\) −0.166718 + 0.556877i −0.0299434 + 0.100018i −0.971655 0.236403i \(-0.924031\pi\)
0.941712 + 0.336421i \(0.109217\pi\)
\(32\) 4.13590 + 2.07713i 0.731131 + 0.367188i
\(33\) 0 0
\(34\) −1.77648 5.93384i −0.304663 1.01765i
\(35\) 0.384082 2.17824i 0.0649217 0.368189i
\(36\) 0 0
\(37\) −0.349184 1.98032i −0.0574055 0.325563i 0.942559 0.334041i \(-0.108412\pi\)
−0.999964 + 0.00847831i \(0.997301\pi\)
\(38\) 5.84174 2.93383i 0.947656 0.475931i
\(39\) 0 0
\(40\) −0.919272 2.13111i −0.145350 0.336958i
\(41\) 0.581956 + 1.34912i 0.0908862 + 0.210698i 0.957596 0.288115i \(-0.0930286\pi\)
−0.866710 + 0.498813i \(0.833769\pi\)
\(42\) 0 0
\(43\) −6.99844 + 3.51475i −1.06725 + 0.535994i −0.893624 0.448817i \(-0.851845\pi\)
−0.173628 + 0.984811i \(0.555549\pi\)
\(44\) −0.255897 1.45126i −0.0385779 0.218786i
\(45\) 0 0
\(46\) −0.703435 + 3.98938i −0.103716 + 0.588201i
\(47\) −3.37012 11.2570i −0.491582 1.64200i −0.739455 0.673206i \(-0.764917\pi\)
0.247873 0.968793i \(-0.420269\pi\)
\(48\) 0 0
\(49\) 1.25148 + 0.628517i 0.178783 + 0.0897882i
\(50\) 1.32838 4.43710i 0.187862 0.627501i
\(51\) 0 0
\(52\) −2.20419 2.96074i −0.305666 0.410581i
\(53\) 0.600204 + 1.03958i 0.0824443 + 0.142798i 0.904299 0.426899i \(-0.140394\pi\)
−0.821855 + 0.569697i \(0.807061\pi\)
\(54\) 0 0
\(55\) −0.624264 + 1.08126i −0.0841757 + 0.145797i
\(56\) 8.75515 1.02333i 1.16996 0.136748i
\(57\) 0 0
\(58\) 3.36835 0.798315i 0.442287 0.104824i
\(59\) 5.89398 3.87653i 0.767330 0.504681i −0.104479 0.994527i \(-0.533317\pi\)
0.871809 + 0.489846i \(0.162947\pi\)
\(60\) 0 0
\(61\) 8.34487 8.84504i 1.06845 1.13249i 0.0776755 0.996979i \(-0.475250\pi\)
0.990776 0.135513i \(-0.0432683\pi\)
\(62\) 0.466877 + 0.391757i 0.0592935 + 0.0497531i
\(63\) 0 0
\(64\) 5.84249 4.90243i 0.730312 0.612804i
\(65\) −0.181833 + 3.12196i −0.0225536 + 0.387231i
\(66\) 0 0
\(67\) −1.39975 + 1.88018i −0.171006 + 0.229701i −0.879361 0.476155i \(-0.842030\pi\)
0.708355 + 0.705856i \(0.249437\pi\)
\(68\) 5.28540 + 0.617774i 0.640949 + 0.0749162i
\(69\) 0 0
\(70\) −1.93751 1.27432i −0.231577 0.152310i
\(71\) −10.2267 3.72222i −1.21369 0.441746i −0.345706 0.938343i \(-0.612361\pi\)
−0.867981 + 0.496597i \(0.834583\pi\)
\(72\) 0 0
\(73\) −12.9627 + 4.71802i −1.51716 + 0.552202i −0.960438 0.278494i \(-0.910165\pi\)
−0.556726 + 0.830696i \(0.687943\pi\)
\(74\) −2.05148 0.486209i −0.238480 0.0565207i
\(75\) 0 0
\(76\) 0.326545 + 5.60657i 0.0374573 + 0.643117i
\(77\) −3.25405 3.44909i −0.370833 0.393060i
\(78\) 0 0
\(79\) −1.70702 + 3.95732i −0.192055 + 0.445233i −0.986849 0.161646i \(-0.948320\pi\)
0.794794 + 0.606879i \(0.207579\pi\)
\(80\) −1.05862 −0.118357
\(81\) 0 0
\(82\) 1.54049 0.170118
\(83\) −6.82230 + 15.8159i −0.748844 + 1.73602i −0.0749512 + 0.997187i \(0.523880\pi\)
−0.673893 + 0.738829i \(0.735379\pi\)
\(84\) 0 0
\(85\) −3.09389 3.27933i −0.335579 0.355693i
\(86\) 0.477423 + 8.19704i 0.0514819 + 0.883909i
\(87\) 0 0
\(88\) −4.84159 1.14748i −0.516115 0.122321i
\(89\) 3.38989 1.23382i 0.359327 0.130784i −0.156047 0.987750i \(-0.549875\pi\)
0.515374 + 0.856965i \(0.327653\pi\)
\(90\) 0 0
\(91\) −11.1608 4.06221i −1.16997 0.425836i
\(92\) −2.90765 1.91239i −0.303144 0.199381i
\(93\) 0 0
\(94\) −12.2367 1.43027i −1.26212 0.147521i
\(95\) 2.84135 3.81660i 0.291517 0.391575i
\(96\) 0 0
\(97\) −0.637153 + 10.9395i −0.0646930 + 1.11074i 0.797223 + 0.603685i \(0.206302\pi\)
−0.861916 + 0.507051i \(0.830735\pi\)
\(98\) 1.12478 0.943807i 0.113620 0.0953389i
\(99\) 0 0
\(100\) 3.04819 + 2.55773i 0.304819 + 0.255773i
\(101\) −6.22321 + 6.59621i −0.619232 + 0.656348i −0.958750 0.284252i \(-0.908255\pi\)
0.339517 + 0.940600i \(0.389736\pi\)
\(102\) 0 0
\(103\) 5.43776 3.57647i 0.535799 0.352400i −0.252594 0.967572i \(-0.581284\pi\)
0.788393 + 0.615172i \(0.210913\pi\)
\(104\) −12.1270 + 2.87414i −1.18915 + 0.281833i
\(105\) 0 0
\(106\) 1.25006 0.146112i 0.121417 0.0141916i
\(107\) −5.56131 + 9.63248i −0.537632 + 0.931207i 0.461398 + 0.887193i \(0.347348\pi\)
−0.999031 + 0.0440137i \(0.985985\pi\)
\(108\) 0 0
\(109\) 4.15761 + 7.20119i 0.398227 + 0.689749i 0.993507 0.113769i \(-0.0362923\pi\)
−0.595280 + 0.803518i \(0.702959\pi\)
\(110\) 0.781696 + 1.05000i 0.0745318 + 0.100114i
\(111\) 0 0
\(112\) 1.15311 3.85166i 0.108959 0.363947i
\(113\) −3.64240 1.82928i −0.342649 0.172085i 0.269150 0.963098i \(-0.413257\pi\)
−0.611798 + 0.791014i \(0.709554\pi\)
\(114\) 0 0
\(115\) 0.845648 + 2.82466i 0.0788571 + 0.263401i
\(116\) −0.516421 + 2.92877i −0.0479485 + 0.271929i
\(117\) 0 0
\(118\) −1.28437 7.28400i −0.118235 0.670547i
\(119\) 15.3015 7.68472i 1.40269 0.704457i
\(120\) 0 0
\(121\) −3.29671 7.64263i −0.299701 0.694785i
\(122\) −5.04981 11.7068i −0.457189 1.05988i
\(123\) 0 0
\(124\) −0.467904 + 0.234990i −0.0420190 + 0.0211027i
\(125\) −1.24800 7.07775i −0.111624 0.633053i
\(126\) 0 0
\(127\) 2.35011 13.3281i 0.208538 1.18268i −0.683235 0.730198i \(-0.739428\pi\)
0.891774 0.452482i \(-0.149461\pi\)
\(128\) 0.361365 + 1.20704i 0.0319405 + 0.106689i
\(129\) 0 0
\(130\) 2.93003 + 1.47151i 0.256980 + 0.129060i
\(131\) −4.28758 + 14.3215i −0.374608 + 1.25128i 0.538176 + 0.842833i \(0.319114\pi\)
−0.912783 + 0.408444i \(0.866072\pi\)
\(132\) 0 0
\(133\) 10.7913 + 14.4952i 0.935725 + 1.25690i
\(134\) 1.22880 + 2.12834i 0.106152 + 0.183860i
\(135\) 0 0
\(136\) 8.98368 15.5602i 0.770344 1.33427i
\(137\) −13.2035 + 1.54327i −1.12805 + 0.131851i −0.659586 0.751629i \(-0.729268\pi\)
−0.468469 + 0.883480i \(0.655194\pi\)
\(138\) 0 0
\(139\) 12.5063 2.96404i 1.06077 0.251407i 0.337039 0.941491i \(-0.390575\pi\)
0.723729 + 0.690084i \(0.242426\pi\)
\(140\) 1.66453 1.09478i 0.140679 0.0925259i
\(141\) 0 0
\(142\) −7.83029 + 8.29962i −0.657103 + 0.696489i
\(143\) 5.13582 + 4.30946i 0.429479 + 0.360375i
\(144\) 0 0
\(145\) 1.93015 1.61959i 0.160290 0.134499i
\(146\) −0.840949 + 14.4385i −0.0695974 + 1.19494i
\(147\) 0 0
\(148\) 1.08161 1.45286i 0.0889082 0.119424i
\(149\) −10.7987 1.26218i −0.884661 0.103402i −0.338385 0.941008i \(-0.609881\pi\)
−0.546275 + 0.837606i \(0.683955\pi\)
\(150\) 0 0
\(151\) −7.10300 4.67172i −0.578034 0.380179i 0.226566 0.973996i \(-0.427250\pi\)
−0.804600 + 0.593817i \(0.797620\pi\)
\(152\) 17.8188 + 6.48551i 1.44529 + 0.526044i
\(153\) 0 0
\(154\) −4.67179 + 1.70039i −0.376463 + 0.137021i
\(155\) 0.431652 + 0.102303i 0.0346711 + 0.00821721i
\(156\) 0 0
\(157\) 0.827351 + 14.2051i 0.0660298 + 1.13369i 0.854786 + 0.518981i \(0.173688\pi\)
−0.788756 + 0.614706i \(0.789275\pi\)
\(158\) 3.10087 + 3.28673i 0.246692 + 0.261478i
\(159\) 0 0
\(160\) 1.39893 3.24309i 0.110595 0.256388i
\(161\) −11.1984 −0.882554
\(162\) 0 0
\(163\) −2.11478 −0.165643 −0.0828213 0.996564i \(-0.526393\pi\)
−0.0828213 + 0.996564i \(0.526393\pi\)
\(164\) −0.524190 + 1.21521i −0.0409324 + 0.0948919i
\(165\) 0 0
\(166\) 12.3930 + 13.1358i 0.961881 + 1.01953i
\(167\) 0.460106 + 7.89972i 0.0356041 + 0.611299i 0.968169 + 0.250297i \(0.0805282\pi\)
−0.932565 + 0.361002i \(0.882435\pi\)
\(168\) 0 0
\(169\) 3.69043 + 0.874649i 0.283879 + 0.0672807i
\(170\) −4.44185 + 1.61670i −0.340674 + 0.123995i
\(171\) 0 0
\(172\) −6.62868 2.41264i −0.505432 0.183962i
\(173\) −16.3700 10.7667i −1.24459 0.818579i −0.255631 0.966774i \(-0.582283\pi\)
−0.988958 + 0.148195i \(0.952654\pi\)
\(174\) 0 0
\(175\) 12.7172 + 1.48643i 0.961334 + 0.112364i
\(176\) −1.35526 + 1.82042i −0.102156 + 0.137220i
\(177\) 0 0
\(178\) 0.219918 3.77585i 0.0164836 0.283012i
\(179\) −13.7606 + 11.5465i −1.02852 + 0.863029i −0.990674 0.136254i \(-0.956494\pi\)
−0.0378443 + 0.999284i \(0.512049\pi\)
\(180\) 0 0
\(181\) −2.39235 2.00742i −0.177822 0.149210i 0.549532 0.835472i \(-0.314806\pi\)
−0.727354 + 0.686262i \(0.759250\pi\)
\(182\) −8.54552 + 9.05772i −0.633436 + 0.671403i
\(183\) 0 0
\(184\) −9.81753 + 6.45709i −0.723758 + 0.476023i
\(185\) −1.49320 + 0.353896i −0.109783 + 0.0260189i
\(186\) 0 0
\(187\) −9.60007 + 1.12209i −0.702026 + 0.0820551i
\(188\) 5.29213 9.16623i 0.385968 0.668516i
\(189\) 0 0
\(190\) −2.49434 4.32033i −0.180959 0.313429i
\(191\) −5.23124 7.02677i −0.378519 0.508439i 0.571513 0.820593i \(-0.306357\pi\)
−0.950031 + 0.312154i \(0.898949\pi\)
\(192\) 0 0
\(193\) 5.07494 16.9515i 0.365302 1.22019i −0.555946 0.831219i \(-0.687644\pi\)
0.921248 0.388976i \(-0.127171\pi\)
\(194\) 10.2670 + 5.15626i 0.737124 + 0.370198i
\(195\) 0 0
\(196\) 0.361783 + 1.20844i 0.0258417 + 0.0863171i
\(197\) −1.12942 + 6.40526i −0.0804679 + 0.456356i 0.917775 + 0.397101i \(0.129984\pi\)
−0.998243 + 0.0592552i \(0.981127\pi\)
\(198\) 0 0
\(199\) 2.77478 + 15.7366i 0.196699 + 1.11554i 0.909978 + 0.414656i \(0.136098\pi\)
−0.713279 + 0.700880i \(0.752791\pi\)
\(200\) 12.0062 6.02976i 0.848969 0.426368i
\(201\) 0 0
\(202\) 3.76591 + 8.73037i 0.264969 + 0.614266i
\(203\) 3.79025 + 8.78680i 0.266024 + 0.616712i
\(204\) 0 0
\(205\) 1.00200 0.503224i 0.0699829 0.0351467i
\(206\) −1.18495 6.72019i −0.0825595 0.468218i
\(207\) 0 0
\(208\) −0.987111 + 5.59818i −0.0684438 + 0.388164i
\(209\) −2.92559 9.77214i −0.202367 0.675953i
\(210\) 0 0
\(211\) 10.9590 + 5.50382i 0.754449 + 0.378899i 0.784078 0.620662i \(-0.213136\pi\)
−0.0296286 + 0.999561i \(0.509432\pi\)
\(212\) −0.310107 + 1.03583i −0.0212983 + 0.0711411i
\(213\) 0 0
\(214\) 6.96382 + 9.35403i 0.476037 + 0.639428i
\(215\) 2.98823 + 5.17577i 0.203796 + 0.352985i
\(216\) 0 0
\(217\) −0.842402 + 1.45908i −0.0571860 + 0.0990491i
\(218\) 8.65920 1.01212i 0.586475 0.0685491i
\(219\) 0 0
\(220\) −1.09428 + 0.259350i −0.0737766 + 0.0174854i
\(221\) −20.2267 + 13.3033i −1.36059 + 0.894877i
\(222\) 0 0
\(223\) −1.20505 + 1.27728i −0.0806961 + 0.0855329i −0.766463 0.642288i \(-0.777985\pi\)
0.685767 + 0.727821i \(0.259467\pi\)
\(224\) 10.2758 + 8.62243i 0.686582 + 0.576110i
\(225\) 0 0
\(226\) −3.27366 + 2.74693i −0.217761 + 0.182723i
\(227\) −1.03052 + 17.6933i −0.0683979 + 1.17435i 0.773171 + 0.634197i \(0.218669\pi\)
−0.841569 + 0.540149i \(0.818368\pi\)
\(228\) 0 0
\(229\) 2.17984 2.92804i 0.144048 0.193490i −0.724243 0.689544i \(-0.757811\pi\)
0.868292 + 0.496054i \(0.165218\pi\)
\(230\) 3.07050 + 0.358890i 0.202463 + 0.0236645i
\(231\) 0 0
\(232\) 8.38946 + 5.51783i 0.550795 + 0.362263i
\(233\) −21.1172 7.68604i −1.38343 0.503529i −0.460217 0.887806i \(-0.652228\pi\)
−0.923218 + 0.384277i \(0.874451\pi\)
\(234\) 0 0
\(235\) −8.42654 + 3.06701i −0.549687 + 0.200070i
\(236\) 6.18301 + 1.46540i 0.402480 + 0.0953895i
\(237\) 0 0
\(238\) −1.04385 17.9222i −0.0676627 1.16172i
\(239\) 2.49200 + 2.64136i 0.161194 + 0.170856i 0.802937 0.596064i \(-0.203270\pi\)
−0.641743 + 0.766920i \(0.721788\pi\)
\(240\) 0 0
\(241\) 2.03864 4.72609i 0.131320 0.304434i −0.839851 0.542817i \(-0.817358\pi\)
0.971171 + 0.238382i \(0.0766172\pi\)
\(242\) −8.72667 −0.560972
\(243\) 0 0
\(244\) 10.9532 0.701208
\(245\) 0.423302 0.981324i 0.0270438 0.0626945i
\(246\) 0 0
\(247\) −17.5336 18.5845i −1.11563 1.18250i
\(248\) 0.102794 + 1.76491i 0.00652744 + 0.112072i
\(249\) 0 0
\(250\) −7.33207 1.73773i −0.463721 0.109904i
\(251\) 6.68026 2.43142i 0.421655 0.153470i −0.122474 0.992472i \(-0.539083\pi\)
0.544128 + 0.839002i \(0.316860\pi\)
\(252\) 0 0
\(253\) 5.93998 + 2.16197i 0.373443 + 0.135922i
\(254\) −11.8552 7.79727i −0.743860 0.489244i
\(255\) 0 0
\(256\) 16.4626 + 1.92420i 1.02891 + 0.120263i
\(257\) 0.900688 1.20983i 0.0561833 0.0754673i −0.773143 0.634231i \(-0.781317\pi\)
0.829327 + 0.558764i \(0.188724\pi\)
\(258\) 0 0
\(259\) 0.338880 5.81835i 0.0210570 0.361534i
\(260\) −2.15782 + 1.81063i −0.133822 + 0.112290i
\(261\) 0 0
\(262\) 12.0069 + 10.0750i 0.741792 + 0.622437i
\(263\) −1.62123 + 1.71840i −0.0999691 + 0.105961i −0.775426 0.631438i \(-0.782465\pi\)
0.675457 + 0.737399i \(0.263946\pi\)
\(264\) 0 0
\(265\) 0.765370 0.503392i 0.0470163 0.0309231i
\(266\) 18.4360 4.36942i 1.13039 0.267906i
\(267\) 0 0
\(268\) −2.09707 + 0.245112i −0.128099 + 0.0149726i
\(269\) 4.07527 7.05858i 0.248474 0.430369i −0.714629 0.699504i \(-0.753404\pi\)
0.963103 + 0.269135i \(0.0867377\pi\)
\(270\) 0 0
\(271\) 1.47740 + 2.55894i 0.0897458 + 0.155444i 0.907404 0.420260i \(-0.138061\pi\)
−0.817658 + 0.575704i \(0.804728\pi\)
\(272\) −4.89385 6.57358i −0.296733 0.398582i
\(273\) 0 0
\(274\) −3.99734 + 13.3521i −0.241488 + 0.806627i
\(275\) −6.45867 3.24367i −0.389473 0.195601i
\(276\) 0 0
\(277\) −3.75609 12.5462i −0.225682 0.753829i −0.993567 0.113243i \(-0.963876\pi\)
0.767886 0.640587i \(-0.221309\pi\)
\(278\) 2.34000 13.2708i 0.140344 0.795929i
\(279\) 0 0
\(280\) −1.16811 6.62467i −0.0698078 0.395900i
\(281\) 17.3424 8.70969i 1.03456 0.519576i 0.151315 0.988486i \(-0.451649\pi\)
0.883246 + 0.468909i \(0.155353\pi\)
\(282\) 0 0
\(283\) 3.17488 + 7.36020i 0.188727 + 0.437518i 0.986140 0.165916i \(-0.0530579\pi\)
−0.797413 + 0.603434i \(0.793799\pi\)
\(284\) −3.88268 9.00107i −0.230395 0.534116i
\(285\) 0 0
\(286\) 6.28152 3.15470i 0.371434 0.186541i
\(287\) 0.739484 + 4.19382i 0.0436503 + 0.247553i
\(288\) 0 0
\(289\) 3.10865 17.6300i 0.182862 1.03706i
\(290\) −0.757655 2.53074i −0.0444910 0.148610i
\(291\) 0 0
\(292\) −11.1037 5.57647i −0.649793 0.326338i
\(293\) 7.33932 24.5150i 0.428768 1.43218i −0.421978 0.906606i \(-0.638664\pi\)
0.850746 0.525577i \(-0.176151\pi\)
\(294\) 0 0
\(295\) −3.21485 4.31829i −0.187176 0.251420i
\(296\) −3.05783 5.29631i −0.177733 0.307842i
\(297\) 0 0
\(298\) −5.69950 + 9.87182i −0.330163 + 0.571859i
\(299\) 15.7259 1.83810i 0.909454 0.106300i
\(300\) 0 0
\(301\) −22.0865 + 5.23459i −1.27304 + 0.301717i
\(302\) −7.44719 + 4.89809i −0.428538 + 0.281854i
\(303\) 0 0
\(304\) 5.93535 6.29110i 0.340416 0.360819i
\(305\) −7.10884 5.96503i −0.407051 0.341556i
\(306\) 0 0
\(307\) 2.42628 2.03589i 0.138475 0.116195i −0.570919 0.821006i \(-0.693413\pi\)
0.709394 + 0.704812i \(0.248969\pi\)
\(308\) 0.248346 4.26394i 0.0141508 0.242960i
\(309\) 0 0
\(310\) 0.277742 0.373072i 0.0157747 0.0211891i
\(311\) 1.27660 + 0.149214i 0.0723895 + 0.00846112i 0.152211 0.988348i \(-0.451361\pi\)
−0.0798210 + 0.996809i \(0.525435\pi\)
\(312\) 0 0
\(313\) −8.71160 5.72971i −0.492408 0.323862i 0.278904 0.960319i \(-0.410029\pi\)
−0.771312 + 0.636457i \(0.780399\pi\)
\(314\) 14.0189 + 5.10247i 0.791134 + 0.287949i
\(315\) 0 0
\(316\) −3.64788 + 1.32772i −0.205210 + 0.0746902i
\(317\) 26.3951 + 6.25575i 1.48249 + 0.351358i 0.890648 0.454693i \(-0.150251\pi\)
0.591847 + 0.806051i \(0.298399\pi\)
\(318\) 0 0
\(319\) −0.314081 5.39256i −0.0175852 0.301925i
\(320\) −3.99414 4.23355i −0.223279 0.236662i
\(321\) 0 0
\(322\) −4.65037 + 10.7808i −0.259155 + 0.600788i
\(323\) 36.8348 2.04954
\(324\) 0 0
\(325\) −18.1029 −1.00417
\(326\) −0.878211 + 2.03592i −0.0486396 + 0.112759i
\(327\) 0 0
\(328\) 3.06650 + 3.25030i 0.169319 + 0.179468i
\(329\) −1.98026 33.9998i −0.109176 1.87447i
\(330\) 0 0
\(331\) −6.10141 1.44606i −0.335364 0.0794827i 0.0594839 0.998229i \(-0.481054\pi\)
−0.394848 + 0.918747i \(0.629203\pi\)
\(332\) −14.5792 + 5.30638i −0.800136 + 0.291226i
\(333\) 0 0
\(334\) 7.79620 + 2.83759i 0.426589 + 0.155266i
\(335\) 1.49452 + 0.982961i 0.0816544 + 0.0537049i
\(336\) 0 0
\(337\) −5.51739 0.644890i −0.300551 0.0351294i −0.0355191 0.999369i \(-0.511308\pi\)
−0.265032 + 0.964240i \(0.585383\pi\)
\(338\) 2.37457 3.18960i 0.129159 0.173491i
\(339\) 0 0
\(340\) 0.236123 4.05407i 0.0128055 0.219863i
\(341\) 0.728531 0.611310i 0.0394522 0.0331043i
\(342\) 0 0
\(343\) −12.4325 10.4321i −0.671292 0.563281i
\(344\) −16.3447 + 17.3244i −0.881250 + 0.934070i
\(345\) 0 0
\(346\) −17.1632 + 11.2884i −0.922702 + 0.606870i
\(347\) 26.3744 6.25085i 1.41585 0.335563i 0.549707 0.835357i \(-0.314739\pi\)
0.866144 + 0.499794i \(0.166591\pi\)
\(348\) 0 0
\(349\) 20.9161 2.44475i 1.11962 0.130864i 0.463911 0.885882i \(-0.346446\pi\)
0.655705 + 0.755018i \(0.272372\pi\)
\(350\) 6.71212 11.6257i 0.358778 0.621422i
\(351\) 0 0
\(352\) −3.78597 6.55749i −0.201793 0.349515i
\(353\) −12.1106 16.2673i −0.644580 0.865822i 0.352980 0.935631i \(-0.385168\pi\)
−0.997560 + 0.0698092i \(0.977761\pi\)
\(354\) 0 0
\(355\) −2.38197 + 7.95634i −0.126422 + 0.422279i
\(356\) 2.90374 + 1.45831i 0.153898 + 0.0772904i
\(357\) 0 0
\(358\) 5.40156 + 18.0425i 0.285481 + 0.953573i
\(359\) −0.901880 + 5.11482i −0.0475994 + 0.269950i −0.999314 0.0370347i \(-0.988209\pi\)
0.951715 + 0.306984i \(0.0993199\pi\)
\(360\) 0 0
\(361\) 3.45119 + 19.5727i 0.181642 + 1.03014i
\(362\) −2.92604 + 1.46951i −0.153789 + 0.0772359i
\(363\) 0 0
\(364\) −4.23733 9.82324i −0.222097 0.514878i
\(365\) 4.16959 + 9.66619i 0.218246 + 0.505952i
\(366\) 0 0
\(367\) 4.98231 2.50221i 0.260074 0.130614i −0.313985 0.949428i \(-0.601664\pi\)
0.574059 + 0.818814i \(0.305368\pi\)
\(368\) 0.930699 + 5.27826i 0.0485160 + 0.275148i
\(369\) 0 0
\(370\) −0.279387 + 1.58448i −0.0145247 + 0.0823734i
\(371\) 0.997847 + 3.33304i 0.0518056 + 0.173043i
\(372\) 0 0
\(373\) −29.5856 14.8584i −1.53188 0.769341i −0.534751 0.845010i \(-0.679595\pi\)
−0.997133 + 0.0756686i \(0.975891\pi\)
\(374\) −2.90640 + 9.70805i −0.150286 + 0.501991i
\(375\) 0 0
\(376\) −21.3408 28.6656i −1.10057 1.47832i
\(377\) −6.76495 11.7172i −0.348413 0.603468i
\(378\) 0 0
\(379\) 0.872014 1.51037i 0.0447923 0.0775826i −0.842760 0.538289i \(-0.819071\pi\)
0.887552 + 0.460707i \(0.152404\pi\)
\(380\) 4.25685 0.497554i 0.218372 0.0255240i
\(381\) 0 0
\(382\) −8.93712 + 2.11814i −0.457263 + 0.108373i
\(383\) 25.7840 16.9584i 1.31750 0.866535i 0.320758 0.947161i \(-0.396062\pi\)
0.996744 + 0.0806260i \(0.0256919\pi\)
\(384\) 0 0
\(385\) −2.48328 + 2.63213i −0.126560 + 0.134146i
\(386\) −14.2119 11.9252i −0.723365 0.606975i
\(387\) 0 0
\(388\) −7.56111 + 6.34452i −0.383857 + 0.322094i
\(389\) −1.53694 + 26.3883i −0.0779262 + 1.33794i 0.702048 + 0.712129i \(0.252269\pi\)
−0.779974 + 0.625811i \(0.784768\pi\)
\(390\) 0 0
\(391\) −13.6307 + 18.3092i −0.689334 + 0.925936i
\(392\) 4.23036 + 0.494459i 0.213666 + 0.0249739i
\(393\) 0 0
\(394\) 5.69739 + 3.74723i 0.287030 + 0.188783i
\(395\) 3.09061 + 1.12489i 0.155506 + 0.0565994i
\(396\) 0 0
\(397\) 32.2517 11.7387i 1.61867 0.589146i 0.635538 0.772069i \(-0.280778\pi\)
0.983127 + 0.182923i \(0.0585561\pi\)
\(398\) 16.3020 + 3.86365i 0.817147 + 0.193667i
\(399\) 0 0
\(400\) −0.356316 6.11771i −0.0178158 0.305886i
\(401\) −0.124842 0.132325i −0.00623432 0.00660799i 0.724249 0.689539i \(-0.242187\pi\)
−0.730483 + 0.682931i \(0.760705\pi\)
\(402\) 0 0
\(403\) 0.943498 2.18727i 0.0469990 0.108956i
\(404\) −8.16839 −0.406393
\(405\) 0 0
\(406\) 10.0331 0.497935
\(407\) −1.30305 + 3.02082i −0.0645900 + 0.149736i
\(408\) 0 0
\(409\) 4.15307 + 4.40200i 0.205356 + 0.217665i 0.821864 0.569684i \(-0.192934\pi\)
−0.616508 + 0.787349i \(0.711453\pi\)
\(410\) −0.0683551 1.17361i −0.00337582 0.0579606i
\(411\) 0 0
\(412\) 5.70443 + 1.35197i 0.281037 + 0.0666070i
\(413\) 19.2134 6.99312i 0.945432 0.344109i
\(414\) 0 0
\(415\) 12.3520 + 4.49575i 0.606334 + 0.220688i
\(416\) −15.8457 10.4219i −0.776899 0.510974i
\(417\) 0 0
\(418\) −10.6226 1.24161i −0.519571 0.0607291i
\(419\) −12.4349 + 16.7030i −0.607485 + 0.815994i −0.994351 0.106142i \(-0.966150\pi\)
0.386866 + 0.922136i \(0.373558\pi\)
\(420\) 0 0
\(421\) 0.691141 11.8664i 0.0336841 0.578334i −0.938669 0.344819i \(-0.887940\pi\)
0.972353 0.233515i \(-0.0750228\pi\)
\(422\) 9.84956 8.26476i 0.479469 0.402322i
\(423\) 0 0
\(424\) 2.79667 + 2.34669i 0.135818 + 0.113965i
\(425\) 17.9098 18.9833i 0.868753 0.920824i
\(426\) 0 0
\(427\) 29.4465 19.3673i 1.42502 0.937248i
\(428\) −9.74854 + 2.31045i −0.471213 + 0.111680i
\(429\) 0 0
\(430\) 6.22369 0.727446i 0.300133 0.0350805i
\(431\) −5.15721 + 8.93256i −0.248414 + 0.430266i −0.963086 0.269194i \(-0.913243\pi\)
0.714672 + 0.699460i \(0.246576\pi\)
\(432\) 0 0
\(433\) 0.0197177 + 0.0341520i 0.000947570 + 0.00164124i 0.866499 0.499179i \(-0.166365\pi\)
−0.865551 + 0.500820i \(0.833032\pi\)
\(434\) 1.05485 + 1.41691i 0.0506343 + 0.0680137i
\(435\) 0 0
\(436\) −2.14811 + 7.17520i −0.102876 + 0.343630i
\(437\) −21.5276 10.8116i −1.02980 0.517187i
\(438\) 0 0
\(439\) 1.28848 + 4.30381i 0.0614957 + 0.205410i 0.983216 0.182445i \(-0.0584012\pi\)
−0.921720 + 0.387855i \(0.873216\pi\)
\(440\) −0.659367 + 3.73946i −0.0314341 + 0.178272i
\(441\) 0 0
\(442\) 4.40763 + 24.9969i 0.209650 + 1.18898i
\(443\) 7.41704 3.72498i 0.352394 0.176979i −0.263792 0.964580i \(-0.584973\pi\)
0.616186 + 0.787601i \(0.288677\pi\)
\(444\) 0 0
\(445\) −1.09040 2.52782i −0.0516898 0.119830i
\(446\) 0.729224 + 1.69053i 0.0345297 + 0.0800490i
\(447\) 0 0
\(448\) 19.7540 9.92082i 0.933287 0.468715i
\(449\) 4.67637 + 26.5210i 0.220691 + 1.25160i 0.870752 + 0.491722i \(0.163632\pi\)
−0.650061 + 0.759882i \(0.725257\pi\)
\(450\) 0 0
\(451\) 0.417420 2.36731i 0.0196555 0.111472i
\(452\) −1.05296 3.51714i −0.0495271 0.165432i
\(453\) 0 0
\(454\) 16.6056 + 8.33963i 0.779338 + 0.391398i
\(455\) −2.59954 + 8.68308i −0.121869 + 0.407069i
\(456\) 0 0
\(457\) −15.5014 20.8220i −0.725126 0.974013i −0.999922 0.0125106i \(-0.996018\pi\)
0.274796 0.961503i \(-0.411390\pi\)
\(458\) −1.91362 3.31449i −0.0894177 0.154876i
\(459\) 0 0
\(460\) −1.32793 + 2.30004i −0.0619150 + 0.107240i
\(461\) −2.46853 + 0.288530i −0.114971 + 0.0134382i −0.173384 0.984854i \(-0.555470\pi\)
0.0584129 + 0.998293i \(0.481396\pi\)
\(462\) 0 0
\(463\) −19.6502 + 4.65717i −0.913220 + 0.216437i −0.660258 0.751039i \(-0.729553\pi\)
−0.252962 + 0.967476i \(0.581405\pi\)
\(464\) 3.82658 2.51678i 0.177644 0.116839i
\(465\) 0 0
\(466\) −16.1688 + 17.1379i −0.749006 + 0.793900i
\(467\) −7.13253 5.98491i −0.330054 0.276948i 0.462668 0.886532i \(-0.346892\pi\)
−0.792722 + 0.609583i \(0.791337\pi\)
\(468\) 0 0
\(469\) −5.20432 + 4.36695i −0.240313 + 0.201647i
\(470\) −0.546669 + 9.38595i −0.0252160 + 0.432942i
\(471\) 0 0
\(472\) 12.8120 17.2095i 0.589720 0.792132i
\(473\) 12.7260 + 1.48745i 0.585141 + 0.0683932i
\(474\) 0 0
\(475\) 23.0124 + 15.1355i 1.05588 + 0.694464i
\(476\) 14.4931 + 5.27505i 0.664290 + 0.241782i
\(477\) 0 0
\(478\) 3.57772 1.30218i 0.163641 0.0595605i
\(479\) 19.0640 + 4.51825i 0.871056 + 0.206444i 0.641753 0.766911i \(-0.278207\pi\)
0.229303 + 0.973355i \(0.426355\pi\)
\(480\) 0 0
\(481\) 0.479132 + 8.22637i 0.0218465 + 0.375090i
\(482\) −3.70326 3.92523i −0.168679 0.178789i
\(483\) 0 0
\(484\) 2.96948 6.88402i 0.134976 0.312910i
\(485\) 8.36247 0.379720
\(486\) 0 0
\(487\) −9.74140 −0.441425 −0.220712 0.975339i \(-0.570838\pi\)
−0.220712 + 0.975339i \(0.570838\pi\)
\(488\) 14.6482 33.9583i 0.663093 1.53722i
\(489\) 0 0
\(490\) −0.768944 0.815033i −0.0347374 0.0368195i
\(491\) 0.0515677 + 0.885383i 0.00232722 + 0.0399568i 0.999272 0.0381548i \(-0.0121480\pi\)
−0.996945 + 0.0781116i \(0.975111\pi\)
\(492\) 0 0
\(493\) 18.9798 + 4.49830i 0.854809 + 0.202593i
\(494\) −25.1727 + 9.16210i −1.13257 + 0.412222i
\(495\) 0 0
\(496\) 0.757740 + 0.275795i 0.0340235 + 0.0123836i
\(497\) −26.3537 17.3331i −1.18212 0.777496i
\(498\) 0 0
\(499\) 20.4062 + 2.38514i 0.913506 + 0.106774i 0.559842 0.828599i \(-0.310862\pi\)
0.353664 + 0.935373i \(0.384936\pi\)
\(500\) 3.86574 5.19259i 0.172881 0.232220i
\(501\) 0 0
\(502\) 0.433380 7.44085i 0.0193427 0.332102i
\(503\) 33.6724 28.2545i 1.50138 1.25981i 0.622638 0.782510i \(-0.286061\pi\)
0.878742 0.477297i \(-0.158383\pi\)
\(504\) 0 0
\(505\) 5.30144 + 4.44843i 0.235911 + 0.197953i
\(506\) 4.54806 4.82066i 0.202186 0.214305i
\(507\) 0 0
\(508\) 10.1849 6.69871i 0.451882 0.297207i
\(509\) 15.2824 3.62199i 0.677379 0.160542i 0.122495 0.992469i \(-0.460911\pi\)
0.554885 + 0.831927i \(0.312762\pi\)
\(510\) 0 0
\(511\) −39.7112 + 4.64157i −1.75672 + 0.205331i
\(512\) 7.42895 12.8673i 0.328316 0.568660i
\(513\) 0 0
\(514\) −0.790687 1.36951i −0.0348757 0.0604065i
\(515\) −2.96601 3.98404i −0.130698 0.175558i
\(516\) 0 0
\(517\) −5.51367 + 18.4169i −0.242491 + 0.809976i
\(518\) −5.46065 2.74244i −0.239927 0.120496i
\(519\) 0 0
\(520\) 2.72775 + 9.11133i 0.119620 + 0.399558i
\(521\) 2.10231 11.9228i 0.0921038 0.522346i −0.903493 0.428604i \(-0.859006\pi\)
0.995596 0.0937429i \(-0.0298832\pi\)
\(522\) 0 0
\(523\) −6.56199 37.2149i −0.286936 1.62729i −0.698288 0.715817i \(-0.746055\pi\)
0.411353 0.911476i \(-0.365056\pi\)
\(524\) −12.0333 + 6.04337i −0.525679 + 0.264006i
\(525\) 0 0
\(526\) 0.981069 + 2.27437i 0.0427766 + 0.0991674i
\(527\) 1.36021 + 3.15332i 0.0592517 + 0.137361i
\(528\) 0 0
\(529\) −7.21326 + 3.62263i −0.313620 + 0.157506i
\(530\) −0.166783 0.945873i −0.00724459 0.0410861i
\(531\) 0 0
\(532\) −2.82653 + 16.0300i −0.122546 + 0.694991i
\(533\) −1.72684 5.76803i −0.0747976 0.249841i
\(534\) 0 0
\(535\) 7.58523 + 3.80945i 0.327938 + 0.164697i
\(536\) −2.04457 + 6.82935i −0.0883121 + 0.294983i
\(537\) 0 0
\(538\) −5.10301 6.85454i −0.220007 0.295520i
\(539\) −1.14559 1.98423i −0.0493442 0.0854667i
\(540\) 0 0
\(541\) −16.6000 + 28.7521i −0.713692 + 1.23615i 0.249770 + 0.968305i \(0.419645\pi\)
−0.963462 + 0.267845i \(0.913688\pi\)
\(542\) 3.07704 0.359654i 0.132170 0.0154485i
\(543\) 0 0
\(544\) 26.6054 6.30558i 1.14070 0.270350i
\(545\) 5.30171 3.48699i 0.227101 0.149366i
\(546\) 0 0
\(547\) 3.03806 3.22015i 0.129898 0.137684i −0.659160 0.752003i \(-0.729088\pi\)
0.789058 + 0.614319i \(0.210569\pi\)
\(548\) −9.17255 7.69668i −0.391832 0.328786i
\(549\) 0 0
\(550\) −5.80482 + 4.87082i −0.247518 + 0.207692i
\(551\) −1.19696 + 20.5510i −0.0509921 + 0.875501i
\(552\) 0 0
\(553\) −7.45928 + 10.0196i −0.317201 + 0.426075i
\(554\) −13.6382 1.59407i −0.579430 0.0677257i
\(555\) 0 0
\(556\) 9.67240 + 6.36164i 0.410201 + 0.269794i
\(557\) −18.3879 6.69266i −0.779122 0.283577i −0.0783156 0.996929i \(-0.524954\pi\)
−0.700807 + 0.713351i \(0.747176\pi\)
\(558\) 0 0
\(559\) 30.1570 10.9762i 1.27550 0.464245i
\(560\) −2.98554 0.707585i −0.126162 0.0299009i
\(561\) 0 0
\(562\) −1.18307 20.3126i −0.0499050 0.856835i
\(563\) 10.1785 + 10.7886i 0.428973 + 0.454685i 0.905419 0.424519i \(-0.139557\pi\)
−0.476446 + 0.879204i \(0.658075\pi\)
\(564\) 0 0
\(565\) −1.23201 + 2.85612i −0.0518311 + 0.120158i
\(566\) 8.40417 0.353254
\(567\) 0 0
\(568\) −33.0986 −1.38879
\(569\) 1.69374 3.92653i 0.0710053 0.164609i −0.879017 0.476790i \(-0.841800\pi\)
0.950023 + 0.312181i \(0.101060\pi\)
\(570\) 0 0
\(571\) 5.12217 + 5.42919i 0.214356 + 0.227204i 0.825626 0.564218i \(-0.190822\pi\)
−0.611269 + 0.791423i \(0.709341\pi\)
\(572\) 0.351128 + 6.02864i 0.0146814 + 0.252070i
\(573\) 0 0
\(574\) 4.34452 + 1.02967i 0.181337 + 0.0429776i
\(575\) −16.0390 + 5.83772i −0.668873 + 0.243450i
\(576\) 0 0
\(577\) 38.2457 + 13.9203i 1.59219 + 0.579510i 0.977809 0.209499i \(-0.0671832\pi\)
0.614382 + 0.789009i \(0.289405\pi\)
\(578\) −15.6816 10.3140i −0.652270 0.429005i
\(579\) 0 0
\(580\) 2.25419 + 0.263477i 0.0936000 + 0.0109403i
\(581\) −29.8118 + 40.0442i −1.23680 + 1.66131i
\(582\) 0 0
\(583\) 0.114192 1.96060i 0.00472935 0.0811998i
\(584\) −32.1382 + 26.9671i −1.32989 + 1.11591i
\(585\) 0 0
\(586\) −20.5530 17.2460i −0.849038 0.712428i
\(587\) 1.81042 1.91894i 0.0747242 0.0792030i −0.688933 0.724825i \(-0.741920\pi\)
0.763657 + 0.645622i \(0.223402\pi\)
\(588\) 0 0
\(589\) −3.02811 + 1.99162i −0.124771 + 0.0820633i
\(590\) −5.49229 + 1.30170i −0.226114 + 0.0535900i
\(591\) 0 0
\(592\) −2.77060 + 0.323836i −0.113871 + 0.0133096i
\(593\) −4.37859 + 7.58393i −0.179807 + 0.311435i −0.941814 0.336134i \(-0.890881\pi\)
0.762007 + 0.647568i \(0.224214\pi\)
\(594\) 0 0
\(595\) −6.53354 11.3164i −0.267849 0.463928i
\(596\) −5.84797 7.85519i −0.239542 0.321761i
\(597\) 0 0
\(598\) 4.76099 15.9028i 0.194691 0.650315i
\(599\) 13.4342 + 6.74691i 0.548906 + 0.275671i 0.701562 0.712608i \(-0.252486\pi\)
−0.152656 + 0.988279i \(0.548783\pi\)
\(600\) 0 0
\(601\) −1.44763 4.83540i −0.0590499 0.197240i 0.923375 0.383900i \(-0.125419\pi\)
−0.982425 + 0.186659i \(0.940234\pi\)
\(602\) −4.13251 + 23.4366i −0.168428 + 0.955205i
\(603\) 0 0
\(604\) −1.32975 7.54141i −0.0541069 0.306856i
\(605\) −5.67623 + 2.85071i −0.230771 + 0.115898i
\(606\) 0 0
\(607\) 12.6908 + 29.4206i 0.515104 + 1.19414i 0.955137 + 0.296164i \(0.0957073\pi\)
−0.440033 + 0.897981i \(0.645033\pi\)
\(608\) 11.4295 + 26.4965i 0.463527 + 1.07458i
\(609\) 0 0
\(610\) −8.69469 + 4.36664i −0.352038 + 0.176800i
\(611\) 8.36163 + 47.4212i 0.338275 + 1.91846i
\(612\) 0 0
\(613\) −4.00790 + 22.7299i −0.161877 + 0.918052i 0.790348 + 0.612658i \(0.209900\pi\)
−0.952226 + 0.305395i \(0.901212\pi\)
\(614\) −0.952405 3.18125i −0.0384359 0.128385i
\(615\) 0 0
\(616\) −12.8874 6.47229i −0.519248 0.260776i
\(617\) 2.87197 9.59306i 0.115621 0.386202i −0.880515 0.474017i \(-0.842803\pi\)
0.996137 + 0.0878153i \(0.0279885\pi\)
\(618\) 0 0
\(619\) 11.5177 + 15.4710i 0.462935 + 0.621830i 0.970882 0.239558i \(-0.0770027\pi\)
−0.507947 + 0.861389i \(0.669595\pi\)
\(620\) 0.199788 + 0.346044i 0.00802369 + 0.0138974i
\(621\) 0 0
\(622\) 0.673787 1.16703i 0.0270164 0.0467938i
\(623\) 10.3849 1.21383i 0.416064 0.0486309i
\(624\) 0 0
\(625\) 16.1559 3.82903i 0.646238 0.153161i
\(626\) −9.13373 + 6.00735i −0.365057 + 0.240102i
\(627\) 0 0
\(628\) −8.79538 + 9.32256i −0.350974 + 0.372011i
\(629\) −9.10045 7.63618i −0.362859 0.304475i
\(630\) 0 0
\(631\) 22.1834 18.6140i 0.883105 0.741013i −0.0837097 0.996490i \(-0.526677\pi\)
0.966815 + 0.255477i \(0.0822324\pi\)
\(632\) −0.762125 + 13.0852i −0.0303157 + 0.520501i
\(633\) 0 0
\(634\) 16.9836 22.8129i 0.674505 0.906018i
\(635\) −10.2583 1.19902i −0.407086 0.0475816i
\(636\) 0 0
\(637\) −4.79474 3.15355i −0.189975 0.124948i
\(638\) −5.32190 1.93701i −0.210696 0.0766871i
\(639\) 0 0
\(640\) 0.903547 0.328864i 0.0357158 0.0129995i
\(641\) −48.0872 11.3969i −1.89933 0.450150i −0.999915 0.0130551i \(-0.995844\pi\)
−0.899416 0.437094i \(-0.856008\pi\)
\(642\) 0 0
\(643\) −0.833314 14.3074i −0.0328627 0.564231i −0.974048 0.226341i \(-0.927324\pi\)
0.941186 0.337890i \(-0.109713\pi\)
\(644\) −6.92198 7.33687i −0.272764 0.289113i
\(645\) 0 0
\(646\) 15.2965 35.4612i 0.601832 1.39520i
\(647\) 14.0663 0.553003 0.276501 0.961013i \(-0.410825\pi\)
0.276501 + 0.961013i \(0.410825\pi\)
\(648\) 0 0
\(649\) −11.5415 −0.453045
\(650\) −7.51764 + 17.4278i −0.294866 + 0.683576i
\(651\) 0 0
\(652\) −1.30720 1.38555i −0.0511939 0.0542624i
\(653\) −0.682581 11.7195i −0.0267115 0.458618i −0.984971 0.172719i \(-0.944745\pi\)
0.958260 0.285899i \(-0.0922922\pi\)
\(654\) 0 0
\(655\) 11.1010 + 2.63099i 0.433753 + 0.102801i
\(656\) 1.91527 0.697100i 0.0747785 0.0272172i
\(657\) 0 0
\(658\) −33.5543 12.2128i −1.30808 0.476103i
\(659\) 37.6271 + 24.7477i 1.46574 + 0.964034i 0.996727 + 0.0808436i \(0.0257614\pi\)
0.469015 + 0.883190i \(0.344609\pi\)
\(660\) 0 0
\(661\) −5.54506 0.648124i −0.215678 0.0252091i 0.00756779 0.999971i \(-0.497591\pi\)
−0.223245 + 0.974762i \(0.571665\pi\)
\(662\) −3.92588 + 5.27337i −0.152584 + 0.204956i
\(663\) 0 0
\(664\) −3.04592 + 52.2964i −0.118204 + 2.02949i
\(665\) 10.5643 8.86450i 0.409666 0.343750i
\(666\) 0 0
\(667\) −9.77219 8.19984i −0.378381 0.317499i
\(668\) −4.89129 + 5.18446i −0.189250 + 0.200593i
\(669\) 0 0
\(670\) 1.56694 1.03059i 0.0605361 0.0398152i
\(671\) −19.3585 + 4.58804i −0.747326 + 0.177119i
\(672\) 0 0
\(673\) 2.58958 0.302678i 0.0998209 0.0116674i −0.0660358 0.997817i \(-0.521035\pi\)
0.165857 + 0.986150i \(0.446961\pi\)
\(674\) −2.91206 + 5.04384i −0.112168 + 0.194281i
\(675\) 0 0
\(676\) 1.70810 + 2.95852i 0.0656962 + 0.113789i
\(677\) 16.4729 + 22.1269i 0.633104 + 0.850406i 0.996702 0.0811498i \(-0.0258592\pi\)
−0.363598 + 0.931556i \(0.618452\pi\)
\(678\) 0 0
\(679\) −9.10893 + 30.4259i −0.349569 + 1.16764i
\(680\) −12.2531 6.15373i −0.469884 0.235985i
\(681\) 0 0
\(682\) −0.285975 0.955224i −0.0109506 0.0365774i
\(683\) 2.34587 13.3041i 0.0897621 0.509066i −0.906465 0.422281i \(-0.861229\pi\)
0.996227 0.0867852i \(-0.0276594\pi\)
\(684\) 0 0
\(685\) 1.76161 + 9.99058i 0.0673076 + 0.381720i
\(686\) −15.2060 + 7.63673i −0.580567 + 0.291572i
\(687\) 0 0
\(688\) 4.30289 + 9.97523i 0.164046 + 0.380302i
\(689\) −1.94837 4.51683i −0.0742269 0.172077i
\(690\) 0 0
\(691\) −14.5223 + 7.29338i −0.552455 + 0.277453i −0.703048 0.711143i \(-0.748178\pi\)
0.150593 + 0.988596i \(0.451882\pi\)
\(692\) −3.06463 17.3804i −0.116500 0.660703i
\(693\) 0 0
\(694\) 4.93481 27.9867i 0.187323 1.06236i
\(695\) −2.81308 9.39633i −0.106706 0.356423i
\(696\) 0 0
\(697\) 7.75696 + 3.89569i 0.293816 + 0.147560i
\(698\) 6.33231 21.1514i 0.239682 0.800592i
\(699\) 0 0
\(700\) 6.88697 + 9.25081i 0.260303 + 0.349648i
\(701\) 9.28318 + 16.0789i 0.350621 + 0.607293i 0.986358 0.164612i \(-0.0526373\pi\)
−0.635738 + 0.771905i \(0.719304\pi\)
\(702\) 0 0
\(703\) 6.26884 10.8579i 0.236434 0.409515i
\(704\) −12.3935 + 1.44859i −0.467097 + 0.0545958i
\(705\) 0 0
\(706\) −20.6899 + 4.90359i −0.778674 + 0.184549i
\(707\) −21.9598 + 14.4432i −0.825883 + 0.543192i
\(708\) 0 0
\(709\) 2.41271 2.55732i 0.0906111 0.0960421i −0.680481 0.732766i \(-0.738229\pi\)
0.771092 + 0.636723i \(0.219711\pi\)
\(710\) 6.67048 + 5.59720i 0.250339 + 0.210059i
\(711\) 0 0
\(712\) 8.40451 7.05222i 0.314972 0.264293i
\(713\) 0.130591 2.24216i 0.00489067 0.0839695i
\(714\) 0 0
\(715\) 3.05526 4.10392i 0.114260 0.153478i
\(716\) −16.0708 1.87841i −0.600594 0.0701993i
\(717\) 0 0
\(718\) 4.54956 + 2.99229i 0.169788 + 0.111671i
\(719\) 26.7826 + 9.74806i 0.998821 + 0.363541i 0.789130 0.614226i \(-0.210532\pi\)
0.209691 + 0.977768i \(0.432754\pi\)
\(720\) 0 0
\(721\) 17.7263 6.45183i 0.660160 0.240279i
\(722\) 20.2760 + 4.80550i 0.754595 + 0.178842i
\(723\) 0 0
\(724\) −0.163562 2.80824i −0.00607872 0.104368i
\(725\) 10.0092 + 10.6092i 0.371733 + 0.394014i
\(726\) 0 0
\(727\) −11.9804 + 27.7738i −0.444330 + 1.03007i 0.538005 + 0.842941i \(0.319178\pi\)
−0.982335 + 0.187131i \(0.940081\pi\)
\(728\) −36.1218 −1.33876
\(729\) 0 0
\(730\) 11.0372 0.408507
\(731\) −18.3252 + 42.4827i −0.677784 + 1.57128i
\(732\) 0 0
\(733\) −1.18301 1.25392i −0.0436955 0.0463145i 0.705157 0.709051i \(-0.250876\pi\)
−0.748853 + 0.662737i \(0.769395\pi\)
\(734\) −0.339886 5.83561i −0.0125454 0.215396i
\(735\) 0 0
\(736\) −17.3999 4.12386i −0.641369 0.152007i
\(737\) 3.60364 1.31162i 0.132742 0.0483140i
\(738\) 0 0
\(739\) −1.24530 0.453252i −0.0458091 0.0166732i 0.319014 0.947750i \(-0.396648\pi\)
−0.364823 + 0.931077i \(0.618871\pi\)
\(740\) −1.15485 0.759557i −0.0424531 0.0279219i
\(741\) 0 0
\(742\) 3.62313 + 0.423483i 0.133009 + 0.0155465i
\(743\) 24.2138 32.5248i 0.888318 1.19322i −0.0919936 0.995760i \(-0.529324\pi\)
0.980311 0.197458i \(-0.0632687\pi\)
\(744\) 0 0
\(745\) −0.482425 + 8.28292i −0.0176747 + 0.303463i
\(746\) −26.5904 + 22.3120i −0.973545 + 0.816902i
\(747\) 0 0
\(748\) −6.66920 5.59613i −0.243850 0.204615i
\(749\) −22.1226 + 23.4485i −0.808341 + 0.856791i
\(750\) 0 0
\(751\) 11.9765 7.87707i 0.437029 0.287438i −0.311867 0.950126i \(-0.600954\pi\)
0.748896 + 0.662687i \(0.230584\pi\)
\(752\) −15.8610 + 3.75912i −0.578390 + 0.137081i
\(753\) 0 0
\(754\) −14.0896 + 1.64684i −0.513112 + 0.0599742i
\(755\) −3.24395 + 5.61869i −0.118059 + 0.204485i
\(756\) 0 0
\(757\) −21.3641 37.0037i −0.776491 1.34492i −0.933953 0.357397i \(-0.883664\pi\)
0.157462 0.987525i \(-0.449669\pi\)
\(758\) −1.09193 1.46671i −0.0396605 0.0532734i
\(759\) 0 0
\(760\) 4.15029 13.8629i 0.150547 0.502862i
\(761\) −2.79203 1.40221i −0.101211 0.0508300i 0.397474 0.917614i \(-0.369887\pi\)
−0.498684 + 0.866784i \(0.666183\pi\)
\(762\) 0 0
\(763\) 6.91208 + 23.0880i 0.250234 + 0.835841i
\(764\) 1.37020 7.77079i 0.0495721 0.281137i
\(765\) 0 0
\(766\) −5.61864 31.8649i −0.203010 1.15133i
\(767\) −25.8337 + 12.9742i −0.932802 + 0.468471i
\(768\) 0 0
\(769\) −4.62658 10.7256i −0.166839 0.386776i 0.814201 0.580584i \(-0.197176\pi\)
−0.981040 + 0.193808i \(0.937916\pi\)
\(770\) 1.50273 + 3.48373i 0.0541548 + 0.125545i
\(771\) 0 0
\(772\) 14.2431 7.15316i 0.512621 0.257448i
\(773\) −5.48952 31.1326i −0.197444 1.11976i −0.908895 0.417026i \(-0.863072\pi\)
0.711450 0.702737i \(-0.248039\pi\)
\(774\) 0 0
\(775\) −0.445920 + 2.52894i −0.0160179 + 0.0908422i
\(776\) 9.55818 + 31.9266i 0.343119 + 1.14610i
\(777\) 0 0
\(778\) 24.7660 + 12.4380i 0.887905 + 0.445923i
\(779\) −2.62739 + 8.77609i −0.0941360 + 0.314436i
\(780\) 0 0
\(781\) 10.6325 + 14.2819i 0.380461 + 0.511048i
\(782\) 11.9660 + 20.7257i 0.427903 + 0.741149i
\(783\) 0