Properties

Label 729.2.g.a.541.7
Level $729$
Weight $2$
Character 729.541
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 541.7
Character \(\chi\) \(=\) 729.541
Dual form 729.2.g.a.190.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03395 + 1.38884i) q^{2} +(-0.286206 + 0.955993i) q^{4} +(-1.15051 + 0.756701i) q^{5} +(-2.25654 + 2.39179i) q^{7} +(1.63042 - 0.593424i) q^{8} +(-2.24050 - 0.815476i) q^{10} +(0.183502 - 0.0921584i) q^{11} +(2.08132 + 4.82504i) q^{13} +(-5.65495 - 0.660968i) q^{14} +(4.17744 + 2.74754i) q^{16} +(-3.88762 + 3.26210i) q^{17} +(-2.25026 - 1.88819i) q^{19} +(-0.394119 - 1.31645i) q^{20} +(0.317725 + 0.159568i) q^{22} +(-2.58175 - 2.73649i) q^{23} +(-1.22933 + 2.84990i) q^{25} +(-4.54921 + 7.87946i) q^{26} +(-1.64070 - 2.84178i) q^{28} +(-6.26558 + 0.732341i) q^{29} +(4.94436 - 1.17183i) q^{31} +(0.301604 + 5.17835i) q^{32} +(-8.55013 - 2.02642i) q^{34} +(0.786294 - 4.45930i) q^{35} +(1.44468 + 8.19321i) q^{37} +(0.295733 - 5.07754i) q^{38} +(-1.42677 + 1.91648i) q^{40} +(1.64966 - 2.21588i) q^{41} +(0.0922521 - 1.58391i) q^{43} +(0.0355834 + 0.201803i) q^{44} +(1.13114 - 6.41502i) q^{46} +(2.02520 + 0.479981i) q^{47} +(-0.221683 - 3.80615i) q^{49} +(-5.22910 + 1.23932i) q^{50} +(-5.20839 + 0.608774i) q^{52} +(-4.51663 - 7.82303i) q^{53} +(-0.141385 + 0.244885i) q^{55} +(-2.25976 + 5.23870i) q^{56} +(-7.49539 - 7.94465i) q^{58} +(13.2668 + 6.66285i) q^{59} +(0.432126 + 1.44340i) q^{61} +(6.73971 + 5.65528i) q^{62} +(0.780406 - 0.654838i) q^{64} +(-6.04569 - 3.97631i) q^{65} +(13.3182 + 1.55668i) q^{67} +(-2.00589 - 4.65018i) q^{68} +(7.00622 - 3.51865i) q^{70} +(-4.39214 - 1.59861i) q^{71} +(15.3008 - 5.56905i) q^{73} +(-9.88529 + 10.4778i) q^{74} +(2.44914 - 1.61082i) q^{76} +(-0.193656 + 0.646857i) q^{77} +(-0.887948 - 1.19272i) q^{79} -6.88524 q^{80} +4.78316 q^{82} +(8.51037 + 11.4314i) q^{83} +(2.00431 - 6.69485i) q^{85} +(2.29517 - 1.50956i) q^{86} +(0.244497 - 0.259152i) q^{88} +(4.83016 - 1.75803i) q^{89} +(-16.2370 - 5.90980i) q^{91} +(3.35498 - 1.68493i) q^{92} +(1.42734 + 3.30895i) q^{94} +(4.01774 + 0.469606i) q^{95} +(1.50005 + 0.986599i) q^{97} +(5.05691 - 4.24325i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03395 + 1.38884i 0.731113 + 0.982055i 0.999823 + 0.0188339i \(0.00599536\pi\)
−0.268710 + 0.963221i \(0.586597\pi\)
\(3\) 0 0
\(4\) −0.286206 + 0.955993i −0.143103 + 0.477997i
\(5\) −1.15051 + 0.756701i −0.514523 + 0.338407i −0.780071 0.625690i \(-0.784817\pi\)
0.265548 + 0.964098i \(0.414447\pi\)
\(6\) 0 0
\(7\) −2.25654 + 2.39179i −0.852890 + 0.904011i −0.996325 0.0856487i \(-0.972704\pi\)
0.143435 + 0.989660i \(0.454185\pi\)
\(8\) 1.63042 0.593424i 0.576441 0.209807i
\(9\) 0 0
\(10\) −2.24050 0.815476i −0.708509 0.257876i
\(11\) 0.183502 0.0921584i 0.0553280 0.0277868i −0.420920 0.907098i \(-0.638293\pi\)
0.476248 + 0.879311i \(0.341996\pi\)
\(12\) 0 0
\(13\) 2.08132 + 4.82504i 0.577254 + 1.33823i 0.917443 + 0.397868i \(0.130250\pi\)
−0.340189 + 0.940357i \(0.610491\pi\)
\(14\) −5.65495 0.660968i −1.51135 0.176651i
\(15\) 0 0
\(16\) 4.17744 + 2.74754i 1.04436 + 0.686886i
\(17\) −3.88762 + 3.26210i −0.942887 + 0.791176i −0.978085 0.208204i \(-0.933238\pi\)
0.0351981 + 0.999380i \(0.488794\pi\)
\(18\) 0 0
\(19\) −2.25026 1.88819i −0.516245 0.433181i 0.347075 0.937837i \(-0.387175\pi\)
−0.863320 + 0.504656i \(0.831619\pi\)
\(20\) −0.394119 1.31645i −0.0881278 0.294367i
\(21\) 0 0
\(22\) 0.317725 + 0.159568i 0.0677392 + 0.0340199i
\(23\) −2.58175 2.73649i −0.538332 0.570598i 0.399921 0.916550i \(-0.369038\pi\)
−0.938252 + 0.345952i \(0.887556\pi\)
\(24\) 0 0
\(25\) −1.22933 + 2.84990i −0.245865 + 0.569980i
\(26\) −4.54921 + 7.87946i −0.892173 + 1.54529i
\(27\) 0 0
\(28\) −1.64070 2.84178i −0.310063 0.537045i
\(29\) −6.26558 + 0.732341i −1.16349 + 0.135992i −0.675840 0.737048i \(-0.736219\pi\)
−0.487648 + 0.873040i \(0.662145\pi\)
\(30\) 0 0
\(31\) 4.94436 1.17183i 0.888033 0.210468i 0.238811 0.971066i \(-0.423242\pi\)
0.649223 + 0.760598i \(0.275094\pi\)
\(32\) 0.301604 + 5.17835i 0.0533166 + 0.915411i
\(33\) 0 0
\(34\) −8.55013 2.02642i −1.46634 0.347528i
\(35\) 0.786294 4.45930i 0.132908 0.753759i
\(36\) 0 0
\(37\) 1.44468 + 8.19321i 0.237505 + 1.34696i 0.837274 + 0.546783i \(0.184148\pi\)
−0.599770 + 0.800173i \(0.704741\pi\)
\(38\) 0.295733 5.07754i 0.0479742 0.823685i
\(39\) 0 0
\(40\) −1.42677 + 1.91648i −0.225592 + 0.303022i
\(41\) 1.64966 2.21588i 0.257634 0.346062i −0.654421 0.756130i \(-0.727088\pi\)
0.912055 + 0.410068i \(0.134495\pi\)
\(42\) 0 0
\(43\) 0.0922521 1.58391i 0.0140683 0.241544i −0.983942 0.178490i \(-0.942879\pi\)
0.998010 0.0630541i \(-0.0200841\pi\)
\(44\) 0.0355834 + 0.201803i 0.00536439 + 0.0304230i
\(45\) 0 0
\(46\) 1.13114 6.41502i 0.166778 0.945843i
\(47\) 2.02520 + 0.479981i 0.295406 + 0.0700125i 0.375646 0.926763i \(-0.377421\pi\)
−0.0802406 + 0.996776i \(0.525569\pi\)
\(48\) 0 0
\(49\) −0.221683 3.80615i −0.0316690 0.543736i
\(50\) −5.22910 + 1.23932i −0.739507 + 0.175266i
\(51\) 0 0
\(52\) −5.20839 + 0.608774i −0.722274 + 0.0844217i
\(53\) −4.51663 7.82303i −0.620407 1.07458i −0.989410 0.145148i \(-0.953634\pi\)
0.369003 0.929428i \(-0.379699\pi\)
\(54\) 0 0
\(55\) −0.141385 + 0.244885i −0.0190643 + 0.0330203i
\(56\) −2.25976 + 5.23870i −0.301973 + 0.700051i
\(57\) 0 0
\(58\) −7.49539 7.94465i −0.984193 1.04318i
\(59\) 13.2668 + 6.66285i 1.72719 + 0.867429i 0.978976 + 0.203976i \(0.0653864\pi\)
0.748218 + 0.663453i \(0.230910\pi\)
\(60\) 0 0
\(61\) 0.432126 + 1.44340i 0.0553281 + 0.184809i 0.981187 0.193062i \(-0.0618417\pi\)
−0.925859 + 0.377870i \(0.876657\pi\)
\(62\) 6.73971 + 5.65528i 0.855943 + 0.718222i
\(63\) 0 0
\(64\) 0.780406 0.654838i 0.0975508 0.0818548i
\(65\) −6.04569 3.97631i −0.749875 0.493201i
\(66\) 0 0
\(67\) 13.3182 + 1.55668i 1.62708 + 0.190178i 0.880140 0.474715i \(-0.157449\pi\)
0.746938 + 0.664893i \(0.231523\pi\)
\(68\) −2.00589 4.65018i −0.243250 0.563917i
\(69\) 0 0
\(70\) 7.00622 3.51865i 0.837403 0.420560i
\(71\) −4.39214 1.59861i −0.521252 0.189720i 0.0679763 0.997687i \(-0.478346\pi\)
−0.589228 + 0.807967i \(0.700568\pi\)
\(72\) 0 0
\(73\) 15.3008 5.56905i 1.79083 0.651808i 0.791662 0.610960i \(-0.209216\pi\)
0.999165 0.0408483i \(-0.0130060\pi\)
\(74\) −9.88529 + 10.4778i −1.14914 + 1.21802i
\(75\) 0 0
\(76\) 2.44914 1.61082i 0.280935 0.184774i
\(77\) −0.193656 + 0.646857i −0.0220692 + 0.0737162i
\(78\) 0 0
\(79\) −0.887948 1.19272i −0.0999020 0.134192i 0.749361 0.662162i \(-0.230361\pi\)
−0.849263 + 0.527970i \(0.822953\pi\)
\(80\) −6.88524 −0.769794
\(81\) 0 0
\(82\) 4.78316 0.528211
\(83\) 8.51037 + 11.4314i 0.934134 + 1.25476i 0.966863 + 0.255296i \(0.0821729\pi\)
−0.0327287 + 0.999464i \(0.510420\pi\)
\(84\) 0 0
\(85\) 2.00431 6.69485i 0.217397 0.726158i
\(86\) 2.29517 1.50956i 0.247495 0.162780i
\(87\) 0 0
\(88\) 0.244497 0.259152i 0.0260635 0.0276257i
\(89\) 4.83016 1.75803i 0.511996 0.186351i −0.0730859 0.997326i \(-0.523285\pi\)
0.585082 + 0.810974i \(0.301062\pi\)
\(90\) 0 0
\(91\) −16.2370 5.90980i −1.70210 0.619515i
\(92\) 3.35498 1.68493i 0.349781 0.175667i
\(93\) 0 0
\(94\) 1.42734 + 3.30895i 0.147219 + 0.341292i
\(95\) 4.01774 + 0.469606i 0.412211 + 0.0481806i
\(96\) 0 0
\(97\) 1.50005 + 0.986599i 0.152307 + 0.100174i 0.623375 0.781923i \(-0.285761\pi\)
−0.471068 + 0.882097i \(0.656131\pi\)
\(98\) 5.05691 4.24325i 0.510825 0.428633i
\(99\) 0 0
\(100\) −2.37264 1.99088i −0.237264 0.199088i
\(101\) −3.29109 10.9930i −0.327475 1.09384i −0.950262 0.311452i \(-0.899185\pi\)
0.622787 0.782392i \(-0.286000\pi\)
\(102\) 0 0
\(103\) 0.446992 + 0.224488i 0.0440434 + 0.0221194i 0.470685 0.882302i \(-0.344007\pi\)
−0.426641 + 0.904421i \(0.640303\pi\)
\(104\) 6.25672 + 6.63174i 0.613522 + 0.650295i
\(105\) 0 0
\(106\) 6.19494 14.3615i 0.601706 1.39491i
\(107\) 2.72183 4.71434i 0.263129 0.455752i −0.703943 0.710257i \(-0.748579\pi\)
0.967072 + 0.254504i \(0.0819123\pi\)
\(108\) 0 0
\(109\) −8.38980 14.5316i −0.803597 1.39187i −0.917234 0.398348i \(-0.869584\pi\)
0.113637 0.993522i \(-0.463750\pi\)
\(110\) −0.486290 + 0.0568392i −0.0463660 + 0.00541940i
\(111\) 0 0
\(112\) −15.9981 + 3.79161i −1.51168 + 0.358274i
\(113\) −0.513560 8.81749i −0.0483117 0.829480i −0.932236 0.361850i \(-0.882145\pi\)
0.883925 0.467629i \(-0.154892\pi\)
\(114\) 0 0
\(115\) 5.04103 + 1.19475i 0.470078 + 0.111411i
\(116\) 1.09313 6.19945i 0.101495 0.575604i
\(117\) 0 0
\(118\) 4.46363 + 25.3145i 0.410910 + 2.33039i
\(119\) 0.970301 16.6594i 0.0889474 1.52717i
\(120\) 0 0
\(121\) −6.54356 + 8.78953i −0.594870 + 0.799048i
\(122\) −1.55785 + 2.09256i −0.141041 + 0.189451i
\(123\) 0 0
\(124\) −0.294837 + 5.06216i −0.0264772 + 0.454596i
\(125\) −1.93778 10.9897i −0.173321 0.982950i
\(126\) 0 0
\(127\) −1.21170 + 6.87190i −0.107521 + 0.609783i 0.882662 + 0.470008i \(0.155749\pi\)
−0.990183 + 0.139775i \(0.955362\pi\)
\(128\) 11.8110 + 2.79925i 1.04395 + 0.247421i
\(129\) 0 0
\(130\) −0.728495 12.5078i −0.0638932 1.09700i
\(131\) −5.48768 + 1.30061i −0.479461 + 0.113634i −0.463238 0.886234i \(-0.653312\pi\)
−0.0162234 + 0.999868i \(0.505164\pi\)
\(132\) 0 0
\(133\) 9.59395 1.12137i 0.831901 0.0972352i
\(134\) 11.6084 + 20.1063i 1.00281 + 1.73692i
\(135\) 0 0
\(136\) −4.40265 + 7.62561i −0.377524 + 0.653891i
\(137\) 0.441416 1.02332i 0.0377127 0.0874280i −0.898319 0.439345i \(-0.855211\pi\)
0.936031 + 0.351917i \(0.114470\pi\)
\(138\) 0 0
\(139\) 3.26512 + 3.46082i 0.276944 + 0.293543i 0.850884 0.525354i \(-0.176067\pi\)
−0.573940 + 0.818897i \(0.694586\pi\)
\(140\) 4.03802 + 2.02797i 0.341275 + 0.171395i
\(141\) 0 0
\(142\) −2.32105 7.75285i −0.194778 0.650605i
\(143\) 0.826595 + 0.693595i 0.0691233 + 0.0580014i
\(144\) 0 0
\(145\) 6.65443 5.58373i 0.552621 0.463704i
\(146\) 23.5548 + 15.4922i 1.94941 + 1.28215i
\(147\) 0 0
\(148\) −8.24613 0.963835i −0.677828 0.0792267i
\(149\) −3.04091 7.04963i −0.249121 0.577528i 0.747068 0.664748i \(-0.231461\pi\)
−0.996189 + 0.0872197i \(0.972202\pi\)
\(150\) 0 0
\(151\) 2.76017 1.38621i 0.224620 0.112808i −0.332931 0.942951i \(-0.608038\pi\)
0.557551 + 0.830143i \(0.311741\pi\)
\(152\) −4.78937 1.74319i −0.388469 0.141391i
\(153\) 0 0
\(154\) −1.09861 + 0.399861i −0.0885285 + 0.0322217i
\(155\) −4.80180 + 5.08961i −0.385690 + 0.408807i
\(156\) 0 0
\(157\) −5.12220 + 3.36893i −0.408796 + 0.268870i −0.737209 0.675665i \(-0.763857\pi\)
0.328413 + 0.944534i \(0.393486\pi\)
\(158\) 0.738400 2.46643i 0.0587440 0.196219i
\(159\) 0 0
\(160\) −4.26546 5.72951i −0.337214 0.452958i
\(161\) 12.3709 0.974965
\(162\) 0 0
\(163\) −0.171894 −0.0134638 −0.00673188 0.999977i \(-0.502143\pi\)
−0.00673188 + 0.999977i \(0.502143\pi\)
\(164\) 1.64622 + 2.21126i 0.128548 + 0.172670i
\(165\) 0 0
\(166\) −7.07705 + 23.6390i −0.549286 + 1.83474i
\(167\) −0.245915 + 0.161741i −0.0190295 + 0.0125159i −0.558988 0.829176i \(-0.688810\pi\)
0.539959 + 0.841692i \(0.318440\pi\)
\(168\) 0 0
\(169\) −10.0280 + 10.6290i −0.771383 + 0.817618i
\(170\) 11.3704 4.13849i 0.872069 0.317407i
\(171\) 0 0
\(172\) 1.48780 + 0.541516i 0.113444 + 0.0412902i
\(173\) 2.40115 1.20590i 0.182556 0.0916831i −0.355174 0.934800i \(-0.615578\pi\)
0.537730 + 0.843117i \(0.319282\pi\)
\(174\) 0 0
\(175\) −4.04233 9.37119i −0.305572 0.708395i
\(176\) 1.01978 + 0.119195i 0.0768687 + 0.00898466i
\(177\) 0 0
\(178\) 7.43576 + 4.89058i 0.557334 + 0.366564i
\(179\) 1.83356 1.53854i 0.137047 0.114996i −0.571687 0.820471i \(-0.693711\pi\)
0.708734 + 0.705476i \(0.249267\pi\)
\(180\) 0 0
\(181\) 12.8278 + 10.7638i 0.953481 + 0.800065i 0.979880 0.199586i \(-0.0639598\pi\)
−0.0263995 + 0.999651i \(0.508404\pi\)
\(182\) −8.58055 28.6610i −0.636032 2.12450i
\(183\) 0 0
\(184\) −5.83323 2.92956i −0.430032 0.215970i
\(185\) −7.86193 8.33316i −0.578021 0.612666i
\(186\) 0 0
\(187\) −0.412758 + 0.956881i −0.0301839 + 0.0699741i
\(188\) −1.03848 + 1.79870i −0.0757391 + 0.131184i
\(189\) 0 0
\(190\) 3.50193 + 6.06553i 0.254057 + 0.440040i
\(191\) 14.0948 1.64745i 1.01987 0.119205i 0.410308 0.911947i \(-0.365421\pi\)
0.609558 + 0.792742i \(0.291347\pi\)
\(192\) 0 0
\(193\) −4.06333 + 0.963026i −0.292485 + 0.0693202i −0.374239 0.927332i \(-0.622096\pi\)
0.0817540 + 0.996653i \(0.473948\pi\)
\(194\) 0.180754 + 3.10342i 0.0129774 + 0.222813i
\(195\) 0 0
\(196\) 3.70211 + 0.877415i 0.264436 + 0.0626725i
\(197\) −3.59768 + 20.4035i −0.256324 + 1.45369i 0.536326 + 0.844011i \(0.319812\pi\)
−0.792650 + 0.609677i \(0.791299\pi\)
\(198\) 0 0
\(199\) 0.499478 + 2.83268i 0.0354071 + 0.200803i 0.997380 0.0723417i \(-0.0230472\pi\)
−0.961973 + 0.273145i \(0.911936\pi\)
\(200\) −0.313119 + 5.37604i −0.0221408 + 0.380144i
\(201\) 0 0
\(202\) 11.8646 15.9370i 0.834793 1.12132i
\(203\) 12.3869 16.6385i 0.869389 1.16779i
\(204\) 0 0
\(205\) −0.221190 + 3.79769i −0.0154486 + 0.265242i
\(206\) 0.150390 + 0.852907i 0.0104782 + 0.0594248i
\(207\) 0 0
\(208\) −4.56243 + 25.8748i −0.316347 + 1.79409i
\(209\) −0.586941 0.139107i −0.0405995 0.00962227i
\(210\) 0 0
\(211\) 0.617143 + 10.5959i 0.0424859 + 0.729454i 0.950540 + 0.310602i \(0.100531\pi\)
−0.908054 + 0.418852i \(0.862432\pi\)
\(212\) 8.77146 2.07887i 0.602426 0.142778i
\(213\) 0 0
\(214\) 9.36167 1.09422i 0.639951 0.0747995i
\(215\) 1.09241 + 1.89211i 0.0745016 + 0.129041i
\(216\) 0 0
\(217\) −8.35434 + 14.4701i −0.567130 + 0.982298i
\(218\) 11.5073 26.6770i 0.779374 1.80679i
\(219\) 0 0
\(220\) −0.193644 0.205250i −0.0130555 0.0138380i
\(221\) −23.8312 11.9685i −1.60306 0.805086i
\(222\) 0 0
\(223\) 6.79008 + 22.6805i 0.454698 + 1.51880i 0.811351 + 0.584559i \(0.198733\pi\)
−0.356653 + 0.934237i \(0.616082\pi\)
\(224\) −13.0661 10.9638i −0.873015 0.732547i
\(225\) 0 0
\(226\) 11.7150 9.83009i 0.779273 0.653888i
\(227\) 0.383501 + 0.252232i 0.0254538 + 0.0167412i 0.562172 0.827020i \(-0.309966\pi\)
−0.536718 + 0.843761i \(0.680336\pi\)
\(228\) 0 0
\(229\) −15.8851 1.85670i −1.04971 0.122694i −0.426297 0.904583i \(-0.640182\pi\)
−0.623417 + 0.781889i \(0.714256\pi\)
\(230\) 3.55287 + 8.23647i 0.234269 + 0.543097i
\(231\) 0 0
\(232\) −9.78093 + 4.91217i −0.642150 + 0.322500i
\(233\) 7.46875 + 2.71840i 0.489294 + 0.178089i 0.574873 0.818243i \(-0.305052\pi\)
−0.0855784 + 0.996331i \(0.527274\pi\)
\(234\) 0 0
\(235\) −2.69321 + 0.980249i −0.175686 + 0.0639444i
\(236\) −10.1667 + 10.7761i −0.661795 + 0.701461i
\(237\) 0 0
\(238\) 24.1404 15.8774i 1.56479 1.02918i
\(239\) −6.08524 + 20.3261i −0.393621 + 1.31479i 0.500023 + 0.866012i \(0.333325\pi\)
−0.893645 + 0.448775i \(0.851860\pi\)
\(240\) 0 0
\(241\) −10.7905 14.4942i −0.695079 0.933653i 0.304745 0.952434i \(-0.401429\pi\)
−0.999824 + 0.0187813i \(0.994021\pi\)
\(242\) −18.9729 −1.21963
\(243\) 0 0
\(244\) −1.50356 −0.0962556
\(245\) 3.13517 + 4.21127i 0.200299 + 0.269048i
\(246\) 0 0
\(247\) 4.42709 14.7875i 0.281689 0.940907i
\(248\) 7.36599 4.84469i 0.467741 0.307638i
\(249\) 0 0
\(250\) 13.2593 14.0541i 0.838594 0.888857i
\(251\) −7.58786 + 2.76176i −0.478942 + 0.174321i −0.570199 0.821507i \(-0.693134\pi\)
0.0912569 + 0.995827i \(0.470912\pi\)
\(252\) 0 0
\(253\) −0.725947 0.264223i −0.0456399 0.0166116i
\(254\) −10.7968 + 5.42235i −0.677450 + 0.340228i
\(255\) 0 0
\(256\) 7.51724 + 17.4269i 0.469828 + 1.08918i
\(257\) 16.4217 + 1.91942i 1.02436 + 0.119730i 0.611646 0.791132i \(-0.290508\pi\)
0.412711 + 0.910862i \(0.364582\pi\)
\(258\) 0 0
\(259\) −22.8564 15.0329i −1.42023 0.934099i
\(260\) 5.53164 4.64160i 0.343058 0.287860i
\(261\) 0 0
\(262\) −7.48032 6.27673i −0.462135 0.387778i
\(263\) −0.00481531 0.0160843i −0.000296925 0.000991797i 0.957841 0.287299i \(-0.0927574\pi\)
−0.958138 + 0.286307i \(0.907572\pi\)
\(264\) 0 0
\(265\) 11.1161 + 5.58273i 0.682858 + 0.342944i
\(266\) 11.4771 + 12.1650i 0.703704 + 0.745882i
\(267\) 0 0
\(268\) −5.29992 + 12.2866i −0.323744 + 0.750523i
\(269\) 3.16338 5.47913i 0.192874 0.334068i −0.753327 0.657646i \(-0.771552\pi\)
0.946202 + 0.323578i \(0.104886\pi\)
\(270\) 0 0
\(271\) −9.98751 17.2989i −0.606698 1.05083i −0.991781 0.127950i \(-0.959160\pi\)
0.385082 0.922882i \(-0.374173\pi\)
\(272\) −25.2031 + 2.94582i −1.52816 + 0.178616i
\(273\) 0 0
\(274\) 1.87762 0.445005i 0.113431 0.0268837i
\(275\) 0.0370577 + 0.636256i 0.00223466 + 0.0383677i
\(276\) 0 0
\(277\) 6.08715 + 1.44268i 0.365741 + 0.0866822i 0.409377 0.912365i \(-0.365746\pi\)
−0.0436360 + 0.999047i \(0.513894\pi\)
\(278\) −1.43055 + 8.11303i −0.0857985 + 0.486587i
\(279\) 0 0
\(280\) −1.36427 7.73713i −0.0815304 0.462382i
\(281\) −0.338495 + 5.81173i −0.0201929 + 0.346699i 0.973046 + 0.230611i \(0.0740724\pi\)
−0.993239 + 0.116088i \(0.962965\pi\)
\(282\) 0 0
\(283\) −5.13375 + 6.89582i −0.305170 + 0.409914i −0.928081 0.372379i \(-0.878542\pi\)
0.622911 + 0.782292i \(0.285950\pi\)
\(284\) 2.78532 3.74133i 0.165278 0.222007i
\(285\) 0 0
\(286\) −0.108632 + 1.86515i −0.00642357 + 0.110288i
\(287\) 1.57739 + 8.94585i 0.0931106 + 0.528057i
\(288\) 0 0
\(289\) 1.52028 8.62194i 0.0894282 0.507173i
\(290\) 14.6352 + 3.46862i 0.859411 + 0.203684i
\(291\) 0 0
\(292\) 0.944788 + 16.2214i 0.0552896 + 0.949285i
\(293\) −6.26236 + 1.48421i −0.365851 + 0.0867083i −0.409430 0.912342i \(-0.634272\pi\)
0.0435786 + 0.999050i \(0.486124\pi\)
\(294\) 0 0
\(295\) −20.3054 + 2.37336i −1.18222 + 0.138182i
\(296\) 7.21749 + 12.5011i 0.419508 + 0.726610i
\(297\) 0 0
\(298\) 6.64663 11.5123i 0.385029 0.666889i
\(299\) 7.83024 18.1525i 0.452835 1.04979i
\(300\) 0 0
\(301\) 3.58020 + 3.79479i 0.206359 + 0.218728i
\(302\) 4.77910 + 2.40015i 0.275006 + 0.138113i
\(303\) 0 0
\(304\) −4.21243 14.0705i −0.241599 0.806998i
\(305\) −1.58939 1.33366i −0.0910082 0.0763649i
\(306\) 0 0
\(307\) 18.8060 15.7801i 1.07332 0.900619i 0.0779670 0.996956i \(-0.475157\pi\)
0.995349 + 0.0963370i \(0.0307127\pi\)
\(308\) −0.562966 0.370269i −0.0320780 0.0210980i
\(309\) 0 0
\(310\) −12.0334 1.40651i −0.683454 0.0798843i
\(311\) 5.14380 + 11.9247i 0.291678 + 0.676186i 0.999545 0.0301598i \(-0.00960161\pi\)
−0.707867 + 0.706346i \(0.750342\pi\)
\(312\) 0 0
\(313\) 4.67199 2.34636i 0.264076 0.132624i −0.311835 0.950136i \(-0.600944\pi\)
0.575911 + 0.817512i \(0.304647\pi\)
\(314\) −9.97498 3.63060i −0.562921 0.204886i
\(315\) 0 0
\(316\) 1.39437 0.507509i 0.0784394 0.0285496i
\(317\) −20.9694 + 22.2263i −1.17776 + 1.24835i −0.215412 + 0.976523i \(0.569109\pi\)
−0.962346 + 0.271827i \(0.912372\pi\)
\(318\) 0 0
\(319\) −1.08226 + 0.711811i −0.0605947 + 0.0398538i
\(320\) −0.402347 + 1.34393i −0.0224919 + 0.0751280i
\(321\) 0 0
\(322\) 12.7909 + 17.1812i 0.712809 + 0.957469i
\(323\) 14.9076 0.829483
\(324\) 0 0
\(325\) −16.3095 −0.904688
\(326\) −0.177730 0.238732i −0.00984353 0.0132222i
\(327\) 0 0
\(328\) 1.37468 4.59176i 0.0759042 0.253538i
\(329\) −5.71795 + 3.76075i −0.315241 + 0.207337i
\(330\) 0 0
\(331\) −2.18477 + 2.31572i −0.120086 + 0.127283i −0.784627 0.619968i \(-0.787146\pi\)
0.664541 + 0.747252i \(0.268627\pi\)
\(332\) −13.3641 + 4.86412i −0.733449 + 0.266953i
\(333\) 0 0
\(334\) −0.478896 0.174304i −0.0262040 0.00953748i
\(335\) −16.5006 + 8.28694i −0.901527 + 0.452764i
\(336\) 0 0
\(337\) −12.9802 30.0915i −0.707076 1.63919i −0.767528 0.641016i \(-0.778513\pi\)
0.0604518 0.998171i \(-0.480746\pi\)
\(338\) −25.1304 2.93732i −1.36691 0.159769i
\(339\) 0 0
\(340\) 5.82659 + 3.83221i 0.315991 + 0.207831i
\(341\) 0.799307 0.670699i 0.0432849 0.0363204i
\(342\) 0 0
\(343\) −8.02888 6.73703i −0.433519 0.363765i
\(344\) −0.789520 2.63718i −0.0425681 0.142187i
\(345\) 0 0
\(346\) 4.15747 + 2.08796i 0.223507 + 0.112249i
\(347\) −15.3768 16.2984i −0.825468 0.874944i 0.168378 0.985723i \(-0.446147\pi\)
−0.993845 + 0.110778i \(0.964666\pi\)
\(348\) 0 0
\(349\) 8.74057 20.2629i 0.467872 1.08465i −0.507013 0.861939i \(-0.669250\pi\)
0.974885 0.222711i \(-0.0714905\pi\)
\(350\) 8.83546 15.3035i 0.472275 0.818005i
\(351\) 0 0
\(352\) 0.532573 + 0.922444i 0.0283863 + 0.0491664i
\(353\) −10.8430 + 1.26736i −0.577114 + 0.0674550i −0.399643 0.916671i \(-0.630866\pi\)
−0.177472 + 0.984126i \(0.556792\pi\)
\(354\) 0 0
\(355\) 6.26287 1.48433i 0.332399 0.0787799i
\(356\) 0.298250 + 5.12076i 0.0158072 + 0.271400i
\(357\) 0 0
\(358\) 4.03259 + 0.955741i 0.213129 + 0.0505125i
\(359\) 4.30460 24.4126i 0.227188 1.28845i −0.631269 0.775564i \(-0.717466\pi\)
0.858457 0.512885i \(-0.171423\pi\)
\(360\) 0 0
\(361\) −1.80092 10.2135i −0.0947851 0.537553i
\(362\) −1.68585 + 28.9449i −0.0886061 + 1.52131i
\(363\) 0 0
\(364\) 10.2969 13.8311i 0.539702 0.724946i
\(365\) −13.3896 + 17.9854i −0.700845 + 0.941399i
\(366\) 0 0
\(367\) 0.747077 12.8268i 0.0389971 0.669555i −0.921003 0.389555i \(-0.872629\pi\)
0.960000 0.279999i \(-0.0903343\pi\)
\(368\) −3.26645 18.5250i −0.170276 0.965681i
\(369\) 0 0
\(370\) 3.44455 19.5350i 0.179074 1.01558i
\(371\) 28.9030 + 6.85013i 1.50057 + 0.355641i
\(372\) 0 0
\(373\) −0.129702 2.22690i −0.00671572 0.115304i 0.993284 0.115700i \(-0.0369111\pi\)
−1.00000 0.000395600i \(0.999874\pi\)
\(374\) −1.75572 + 0.416114i −0.0907862 + 0.0215167i
\(375\) 0 0
\(376\) 3.58676 0.419232i 0.184973 0.0216202i
\(377\) −16.5742 28.7074i −0.853617 1.47851i
\(378\) 0 0
\(379\) 3.67947 6.37302i 0.189001 0.327360i −0.755916 0.654668i \(-0.772808\pi\)
0.944918 + 0.327308i \(0.106142\pi\)
\(380\) −1.59884 + 3.70653i −0.0820188 + 0.190141i
\(381\) 0 0
\(382\) 16.8614 + 17.8720i 0.862703 + 0.914412i
\(383\) −12.9185 6.48791i −0.660104 0.331517i 0.0870152 0.996207i \(-0.472267\pi\)
−0.747119 + 0.664690i \(0.768563\pi\)
\(384\) 0 0
\(385\) −0.266675 0.890755i −0.0135910 0.0453971i
\(386\) −5.53876 4.64757i −0.281916 0.236555i
\(387\) 0 0
\(388\) −1.37251 + 1.15167i −0.0696784 + 0.0584671i
\(389\) −7.10510 4.67310i −0.360243 0.236935i 0.356466 0.934308i \(-0.383982\pi\)
−0.716708 + 0.697373i \(0.754352\pi\)
\(390\) 0 0
\(391\) 18.9636 + 2.21653i 0.959030 + 0.112094i
\(392\) −2.62010 6.07408i −0.132335 0.306787i
\(393\) 0 0
\(394\) −32.0569 + 16.0996i −1.61500 + 0.811085i
\(395\) 1.92413 + 0.700325i 0.0968133 + 0.0352372i
\(396\) 0 0
\(397\) −5.16106 + 1.87847i −0.259026 + 0.0942779i −0.468269 0.883586i \(-0.655122\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(398\) −3.41769 + 3.62254i −0.171313 + 0.181582i
\(399\) 0 0
\(400\) −12.9656 + 8.52764i −0.648282 + 0.426382i
\(401\) 2.69850 9.01361i 0.134757 0.450118i −0.863800 0.503835i \(-0.831922\pi\)
0.998556 + 0.0537173i \(0.0171070\pi\)
\(402\) 0 0
\(403\) 15.9449 + 21.4178i 0.794274 + 1.06690i
\(404\) 11.4512 0.569716
\(405\) 0 0
\(406\) 35.9155 1.78246
\(407\) 1.02018 + 1.37033i 0.0505682 + 0.0679249i
\(408\) 0 0
\(409\) 4.42300 14.7739i 0.218703 0.730520i −0.776272 0.630398i \(-0.782892\pi\)
0.994975 0.100122i \(-0.0319233\pi\)
\(410\) −5.50306 + 3.61942i −0.271777 + 0.178750i
\(411\) 0 0
\(412\) −0.342540 + 0.363071i −0.0168757 + 0.0178872i
\(413\) −45.8732 + 16.6965i −2.25727 + 0.821580i
\(414\) 0 0
\(415\) −18.4414 6.71212i −0.905253 0.329485i
\(416\) −24.3580 + 12.2331i −1.19425 + 0.599775i
\(417\) 0 0
\(418\) −0.413670 0.958994i −0.0202332 0.0469059i
\(419\) 24.5377 + 2.86805i 1.19875 + 0.140113i 0.691945 0.721950i \(-0.256754\pi\)
0.506801 + 0.862063i \(0.330828\pi\)
\(420\) 0 0
\(421\) 0.155228 + 0.102095i 0.00756535 + 0.00497581i 0.553286 0.832991i \(-0.313374\pi\)
−0.545721 + 0.837967i \(0.683744\pi\)
\(422\) −14.0779 + 11.8128i −0.685302 + 0.575037i
\(423\) 0 0
\(424\) −12.0064 10.0746i −0.583082 0.489264i
\(425\) −4.51751 15.0895i −0.219131 0.731949i
\(426\) 0 0
\(427\) −4.42742 2.22354i −0.214258 0.107604i
\(428\) 3.72788 + 3.95132i 0.180194 + 0.190994i
\(429\) 0 0
\(430\) −1.49833 + 3.47352i −0.0722559 + 0.167508i
\(431\) −7.27612 + 12.6026i −0.350478 + 0.607046i −0.986333 0.164762i \(-0.947314\pi\)
0.635855 + 0.771808i \(0.280648\pi\)
\(432\) 0 0
\(433\) 17.3096 + 29.9811i 0.831846 + 1.44080i 0.896573 + 0.442897i \(0.146049\pi\)
−0.0647264 + 0.997903i \(0.520617\pi\)
\(434\) −28.7346 + 3.35860i −1.37931 + 0.161218i
\(435\) 0 0
\(436\) 16.2933 3.86158i 0.780307 0.184936i
\(437\) 0.642579 + 11.0327i 0.0307387 + 0.527763i
\(438\) 0 0
\(439\) −1.91282 0.453346i −0.0912937 0.0216370i 0.184715 0.982792i \(-0.440864\pi\)
−0.276009 + 0.961155i \(0.589012\pi\)
\(440\) −0.0851954 + 0.483167i −0.00406153 + 0.0230341i
\(441\) 0 0
\(442\) −8.01800 45.4724i −0.381378 2.16290i
\(443\) 1.84950 31.7547i 0.0878725 1.50871i −0.609949 0.792441i \(-0.708810\pi\)
0.697821 0.716272i \(-0.254153\pi\)
\(444\) 0 0
\(445\) −4.22683 + 5.67762i −0.200371 + 0.269145i
\(446\) −24.4788 + 32.8808i −1.15911 + 1.55695i
\(447\) 0 0
\(448\) −0.194779 + 3.34423i −0.00920246 + 0.158000i
\(449\) 5.17251 + 29.3348i 0.244106 + 1.38439i 0.822560 + 0.568679i \(0.192545\pi\)
−0.578454 + 0.815715i \(0.696344\pi\)
\(450\) 0 0
\(451\) 0.0985049 0.558649i 0.00463841 0.0263057i
\(452\) 8.57645 + 2.03266i 0.403402 + 0.0956081i
\(453\) 0 0
\(454\) 0.0462111 + 0.793415i 0.00216880 + 0.0372368i
\(455\) 23.1528 5.48732i 1.08542 0.257249i
\(456\) 0 0
\(457\) −12.6602 + 1.47977i −0.592220 + 0.0692206i −0.406924 0.913462i \(-0.633399\pi\)
−0.185296 + 0.982683i \(0.559325\pi\)
\(458\) −13.8457 23.9815i −0.646968 1.12058i
\(459\) 0 0
\(460\) −2.58494 + 4.47725i −0.120523 + 0.208753i
\(461\) −8.18619 + 18.9777i −0.381269 + 0.883880i 0.614232 + 0.789126i \(0.289466\pi\)
−0.995501 + 0.0947547i \(0.969793\pi\)
\(462\) 0 0
\(463\) 11.4261 + 12.1109i 0.531014 + 0.562842i 0.936234 0.351377i \(-0.114286\pi\)
−0.405220 + 0.914219i \(0.632805\pi\)
\(464\) −28.1862 14.1556i −1.30851 0.657159i
\(465\) 0 0
\(466\) 3.94690 + 13.1836i 0.182837 + 0.610717i
\(467\) 22.4416 + 18.8308i 1.03848 + 0.871384i 0.991835 0.127527i \(-0.0407041\pi\)
0.0466403 + 0.998912i \(0.485149\pi\)
\(468\) 0 0
\(469\) −33.7762 + 28.3416i −1.55964 + 1.30870i
\(470\) −4.14605 2.72690i −0.191243 0.125783i
\(471\) 0 0
\(472\) 25.5844 + 2.99039i 1.17762 + 0.137644i
\(473\) −0.129042 0.299153i −0.00593335 0.0137551i
\(474\) 0 0
\(475\) 8.14746 4.09181i 0.373831 0.187745i
\(476\) 15.6486 + 5.69562i 0.717252 + 0.261059i
\(477\) 0 0
\(478\) −34.5215 + 12.5648i −1.57897 + 0.574700i
\(479\) 15.3457 16.2655i 0.701162 0.743189i −0.274711 0.961527i \(-0.588582\pi\)
0.975873 + 0.218338i \(0.0700636\pi\)
\(480\) 0 0
\(481\) −36.5257 + 24.0233i −1.66543 + 1.09537i
\(482\) 8.97318 29.9725i 0.408717 1.36521i
\(483\) 0 0
\(484\) −6.52993 8.77122i −0.296815 0.398692i
\(485\) −2.47238 −0.112265
\(486\) 0 0
\(487\) 3.73936 0.169447 0.0847233 0.996405i \(-0.472999\pi\)
0.0847233 + 0.996405i \(0.472999\pi\)
\(488\) 1.56110 + 2.09692i 0.0706676 + 0.0949230i
\(489\) 0 0
\(490\) −2.60715 + 8.70847i −0.117779 + 0.393409i
\(491\) −1.00818 + 0.663088i −0.0454984 + 0.0299248i −0.572054 0.820216i \(-0.693853\pi\)
0.526556 + 0.850140i \(0.323483\pi\)
\(492\) 0 0
\(493\) 21.9692 23.2860i 0.989444 1.04875i
\(494\) 25.1148 9.14105i 1.12997 0.411275i
\(495\) 0 0
\(496\) 23.8744 + 8.68957i 1.07199 + 0.390173i
\(497\) 13.7346 6.89776i 0.616079 0.309407i
\(498\) 0 0
\(499\) 1.32207 + 3.06491i 0.0591842 + 0.137204i 0.945242 0.326371i \(-0.105826\pi\)
−0.886058 + 0.463575i \(0.846566\pi\)
\(500\) 11.0607 + 1.29281i 0.494649 + 0.0578162i
\(501\) 0 0
\(502\) −11.6811 7.68278i −0.521353 0.342899i
\(503\) −18.7108 + 15.7002i −0.834274 + 0.700039i −0.956268 0.292492i \(-0.905516\pi\)
0.121994 + 0.992531i \(0.461071\pi\)
\(504\) 0 0
\(505\) 12.1048 + 10.1572i 0.538658 + 0.451988i
\(506\) −0.383630 1.28142i −0.0170545 0.0569658i
\(507\) 0 0
\(508\) −6.22270 3.12516i −0.276087 0.138656i
\(509\) 21.2317 + 22.5042i 0.941076 + 0.997483i 1.00000 0.000779780i \(-0.000248212\pi\)
−0.0589233 + 0.998263i \(0.518767\pi\)
\(510\) 0 0
\(511\) −21.2069 + 49.1631i −0.938138 + 2.17485i
\(512\) −4.29252 + 7.43487i −0.189705 + 0.328578i
\(513\) 0 0
\(514\) 14.3134 + 24.7916i 0.631339 + 1.09351i
\(515\) −0.684138 + 0.0799642i −0.0301467 + 0.00352364i
\(516\) 0 0
\(517\) 0.415863 0.0985614i 0.0182896 0.00433473i
\(518\) −2.75416 47.2871i −0.121011 2.07767i
\(519\) 0 0
\(520\) −12.2167 2.89540i −0.535736 0.126972i
\(521\) −2.47495 + 14.0361i −0.108430 + 0.614934i 0.881365 + 0.472435i \(0.156625\pi\)
−0.989795 + 0.142499i \(0.954486\pi\)
\(522\) 0 0
\(523\) 0.234960 + 1.33253i 0.0102741 + 0.0582673i 0.989514 0.144439i \(-0.0461376\pi\)
−0.979240 + 0.202706i \(0.935026\pi\)
\(524\) 0.327236 5.61843i 0.0142954 0.245442i
\(525\) 0 0
\(526\) 0.0173596 0.0233180i 0.000756914 0.00101671i
\(527\) −15.3992 + 20.6847i −0.670798 + 0.901038i
\(528\) 0 0
\(529\) 0.514360 8.83122i 0.0223635 0.383966i
\(530\) 3.74002 + 21.2107i 0.162456 + 0.921335i
\(531\) 0 0
\(532\) −1.67382 + 9.49269i −0.0725692 + 0.411560i
\(533\) 14.1252 + 3.34773i 0.611829 + 0.145006i
\(534\) 0 0
\(535\) 0.435864 + 7.48350i 0.0188440 + 0.323540i
\(536\) 22.6380 5.36531i 0.977814 0.231746i
\(537\) 0 0
\(538\) 10.8804 1.27173i 0.469086 0.0548283i
\(539\) −0.391448 0.678008i −0.0168609 0.0292039i
\(540\) 0 0
\(541\) 12.5060 21.6611i 0.537676 0.931283i −0.461352 0.887217i \(-0.652636\pi\)
0.999029 0.0440659i \(-0.0140312\pi\)
\(542\) 13.6987 31.7572i 0.588410 1.36409i
\(543\) 0 0
\(544\) −18.0648 19.1476i −0.774524 0.820947i
\(545\) 20.6486 + 10.3701i 0.884488 + 0.444207i
\(546\) 0 0
\(547\) −8.14494 27.2060i −0.348253 1.16325i −0.935348 0.353728i \(-0.884914\pi\)
0.587096 0.809517i \(-0.300271\pi\)
\(548\) 0.851950 + 0.714871i 0.0363935 + 0.0305378i
\(549\) 0 0
\(550\) −0.845339 + 0.709324i −0.0360454 + 0.0302457i
\(551\) 15.4820 + 10.1827i 0.659554 + 0.433796i
\(552\) 0 0
\(553\) 4.85642 + 0.567635i 0.206516 + 0.0241383i
\(554\) 4.29016 + 9.94570i 0.182271 + 0.422552i
\(555\) 0 0
\(556\) −4.24302 + 2.13093i −0.179944 + 0.0903714i
\(557\) 34.6621 + 12.6160i 1.46868 + 0.534556i 0.947742 0.319039i \(-0.103360\pi\)
0.520938 + 0.853594i \(0.325582\pi\)
\(558\) 0 0
\(559\) 7.83442 2.85150i 0.331361 0.120605i
\(560\) 15.5368 16.4680i 0.656550 0.695902i
\(561\) 0 0
\(562\) −8.42152 + 5.53892i −0.355240 + 0.233645i
\(563\) 6.35470 21.2262i 0.267819 0.894576i −0.713249 0.700911i \(-0.752777\pi\)
0.981068 0.193666i \(-0.0620377\pi\)
\(564\) 0 0
\(565\) 7.26306 + 9.75598i 0.305559 + 0.410437i
\(566\) −14.8852 −0.625671
\(567\) 0 0
\(568\) −8.10969 −0.340275
\(569\) −3.82370 5.13612i −0.160298 0.215317i 0.714717 0.699414i \(-0.246556\pi\)
−0.875014 + 0.484097i \(0.839148\pi\)
\(570\) 0 0
\(571\) 1.58425 5.29175i 0.0662986 0.221453i −0.918420 0.395607i \(-0.870534\pi\)
0.984718 + 0.174155i \(0.0557193\pi\)
\(572\) −0.899649 + 0.591708i −0.0376162 + 0.0247406i
\(573\) 0 0
\(574\) −10.7934 + 11.4403i −0.450506 + 0.477509i
\(575\) 10.9725 3.99368i 0.457586 0.166548i
\(576\) 0 0
\(577\) 36.7599 + 13.3795i 1.53033 + 0.556996i 0.963703 0.266977i \(-0.0860246\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(578\) 13.5463 6.80323i 0.563454 0.282977i
\(579\) 0 0
\(580\) 3.43348 + 7.95969i 0.142567 + 0.330508i
\(581\) −46.5455 5.44038i −1.93103 0.225705i
\(582\) 0 0
\(583\) −1.54977 1.01930i −0.0641849 0.0422151i
\(584\) 21.6420 18.1598i 0.895551 0.751457i
\(585\) 0 0
\(586\) −8.53628 7.16279i −0.352631 0.295892i
\(587\) 3.98891 + 13.3239i 0.164640 + 0.549935i 1.00000 0.000232108i \(7.38823e-5\pi\)
−0.835360 + 0.549703i \(0.814741\pi\)
\(588\) 0 0
\(589\) −13.3387 6.69897i −0.549613 0.276026i
\(590\) −24.2909 25.7469i −1.00004 1.05998i
\(591\) 0 0
\(592\) −16.4761 + 38.1959i −0.677164 + 1.56984i
\(593\) −8.67989 + 15.0340i −0.356441 + 0.617373i −0.987363 0.158472i \(-0.949343\pi\)
0.630923 + 0.775846i \(0.282676\pi\)
\(594\) 0 0
\(595\) 11.4899 + 19.9010i 0.471039 + 0.815863i
\(596\) 7.60973 0.889450i 0.311707 0.0364333i
\(597\) 0 0
\(598\) 33.3070 7.89390i 1.36202 0.322806i
\(599\) 2.41727 + 41.5029i 0.0987669 + 1.69576i 0.576372 + 0.817187i \(0.304468\pi\)
−0.477606 + 0.878574i \(0.658495\pi\)
\(600\) 0 0
\(601\) −8.98563 2.12963i −0.366532 0.0868696i 0.0432228 0.999065i \(-0.486237\pi\)
−0.409754 + 0.912196i \(0.634386\pi\)
\(602\) −1.56859 + 8.89594i −0.0639311 + 0.362571i
\(603\) 0 0
\(604\) 0.535232 + 3.03545i 0.0217783 + 0.123511i
\(605\) 0.877375 15.0640i 0.0356704 0.612437i
\(606\) 0 0
\(607\) −8.05551 + 10.8204i −0.326963 + 0.439187i −0.934961 0.354751i \(-0.884566\pi\)
0.607998 + 0.793939i \(0.291973\pi\)
\(608\) 9.09903 12.2221i 0.369014 0.495672i
\(609\) 0 0
\(610\) 0.208880 3.58633i 0.00845731 0.145206i
\(611\) 1.89916 + 10.7707i 0.0768317 + 0.435734i
\(612\) 0 0
\(613\) −0.675007 + 3.82815i −0.0272633 + 0.154618i −0.995400 0.0958034i \(-0.969458\pi\)
0.968137 + 0.250421i \(0.0805691\pi\)
\(614\) 41.3605 + 9.80261i 1.66917 + 0.395601i
\(615\) 0 0
\(616\) 0.0681197 + 1.16957i 0.00274462 + 0.0471233i
\(617\) −23.3671 + 5.53810i −0.940723 + 0.222956i −0.672244 0.740330i \(-0.734669\pi\)
−0.268480 + 0.963285i \(0.586521\pi\)
\(618\) 0 0
\(619\) 10.1098 1.18167i 0.406348 0.0474953i 0.0895361 0.995984i \(-0.471462\pi\)
0.316812 + 0.948488i \(0.397387\pi\)
\(620\) −3.49133 6.04716i −0.140215 0.242860i
\(621\) 0 0
\(622\) −11.2430 + 19.4734i −0.450802 + 0.780812i
\(623\) −6.69458 + 15.5198i −0.268213 + 0.621787i
\(624\) 0 0
\(625\) −0.104193 0.110438i −0.00416772 0.00441753i
\(626\) 8.08931 + 4.06260i 0.323314 + 0.162374i
\(627\) 0 0
\(628\) −1.75467 5.86100i −0.0700189 0.233879i
\(629\) −32.3435 27.1394i −1.28962 1.08212i
\(630\) 0 0
\(631\) −37.7162 + 31.6476i −1.50146 + 1.25987i −0.622836 + 0.782352i \(0.714020\pi\)
−0.878621 + 0.477520i \(0.841536\pi\)
\(632\) −2.15552 1.41771i −0.0857419 0.0563934i
\(633\) 0 0
\(634\) −52.5499 6.14220i −2.08702 0.243938i
\(635\) −3.80590 8.82307i −0.151033 0.350133i
\(636\) 0 0
\(637\) 17.9035 8.99145i 0.709361 0.356254i
\(638\) −2.10759 0.767099i −0.0834402 0.0303698i
\(639\) 0 0
\(640\) −15.7068 + 5.71682i −0.620867 + 0.225977i
\(641\) −23.3866 + 24.7883i −0.923714 + 0.979080i −0.999838 0.0180187i \(-0.994264\pi\)
0.0761236 + 0.997098i \(0.475746\pi\)
\(642\) 0 0
\(643\) 16.6064 10.9222i 0.654891 0.430728i −0.178102 0.984012i \(-0.556996\pi\)
0.832993 + 0.553284i \(0.186625\pi\)
\(644\) −3.54063 + 11.8265i −0.139520 + 0.466030i
\(645\) 0 0
\(646\) 15.4138 + 20.7043i 0.606446 + 0.814598i
\(647\) 37.1636 1.46105 0.730525 0.682886i \(-0.239275\pi\)
0.730525 + 0.682886i \(0.239275\pi\)
\(648\) 0 0
\(649\) 3.04853 0.119665
\(650\) −16.8632 22.6512i −0.661429 0.888453i
\(651\) 0 0
\(652\) 0.0491970 0.164329i 0.00192670 0.00643563i
\(653\) −4.60149 + 3.02645i −0.180070 + 0.118434i −0.636344 0.771405i \(-0.719554\pi\)
0.456274 + 0.889839i \(0.349184\pi\)
\(654\) 0 0
\(655\) 5.32946 5.64889i 0.208239 0.220721i
\(656\) 12.9796 4.72418i 0.506767 0.184448i
\(657\) 0 0
\(658\) −11.1351 4.05286i −0.434093 0.157997i
\(659\) −34.0326 + 17.0918i −1.32572 + 0.665802i −0.963855 0.266428i \(-0.914156\pi\)
−0.361866 + 0.932230i \(0.617860\pi\)
\(660\) 0 0
\(661\) −11.1606 25.8732i −0.434097 1.00635i −0.985121 0.171861i \(-0.945022\pi\)
0.551024 0.834490i \(-0.314237\pi\)
\(662\) −5.47509 0.639947i −0.212796 0.0248722i
\(663\) 0 0
\(664\) 20.6592 + 13.5877i 0.801731 + 0.527307i
\(665\) −10.1894 + 8.54990i −0.395127 + 0.331551i
\(666\) 0 0
\(667\) 18.1802 + 15.2550i 0.703939 + 0.590675i
\(668\) −0.0842410 0.281385i −0.00325938 0.0108871i
\(669\) 0 0
\(670\) −28.5700 14.3484i −1.10376 0.554327i
\(671\) 0.212318 + 0.225044i 0.00819644 + 0.00868772i
\(672\) 0 0
\(673\) 9.84070 22.8133i 0.379331 0.879388i −0.616430 0.787410i \(-0.711422\pi\)
0.995761 0.0919783i \(-0.0293190\pi\)
\(674\) 28.3712 49.1404i 1.09282 1.89282i
\(675\) 0 0
\(676\) −7.29123 12.6288i −0.280432 0.485722i
\(677\) 35.0463 4.09633i 1.34694 0.157435i 0.588141 0.808759i \(-0.299860\pi\)
0.758800 + 0.651324i \(0.225786\pi\)
\(678\) 0 0
\(679\) −5.74466 + 1.36151i −0.220460 + 0.0522499i
\(680\) −0.705025 12.1048i −0.0270365 0.464199i
\(681\) 0 0
\(682\) 1.75793 + 0.416638i 0.0673148 + 0.0159539i
\(683\) 6.86569 38.9372i 0.262708 1.48989i −0.512774 0.858523i \(-0.671382\pi\)
0.775483 0.631369i \(-0.217507\pi\)
\(684\) 0 0
\(685\) 0.266493 + 1.51136i 0.0101822 + 0.0577460i
\(686\) 1.05517 18.1165i 0.0402865 0.691693i
\(687\) 0 0
\(688\) 4.73723 6.36321i 0.180605 0.242595i
\(689\) 28.3459 38.0752i 1.07989 1.45055i
\(690\) 0 0
\(691\) 0.987935 16.9622i 0.0375828 0.645272i −0.925944 0.377661i \(-0.876729\pi\)
0.963527 0.267612i \(-0.0862344\pi\)
\(692\) 0.465612 + 2.64062i 0.0176999 + 0.100381i
\(693\) 0 0
\(694\) 6.73702 38.2075i 0.255734 1.45034i
\(695\) −6.37536 1.51099i −0.241831 0.0573150i
\(696\) 0 0
\(697\) 0.815166 + 13.9959i 0.0308766 + 0.530131i
\(698\) 37.1792 8.81163i 1.40725 0.333525i
\(699\) 0 0
\(700\) 10.1157 1.18236i 0.382339 0.0446890i
\(701\) −16.3741 28.3608i −0.618442 1.07117i −0.989770 0.142672i \(-0.954431\pi\)
0.371328 0.928502i \(-0.378903\pi\)
\(702\) 0 0
\(703\) 12.2194 21.1647i 0.460865 0.798241i
\(704\) 0.0828575 0.192085i 0.00312281 0.00723949i
\(705\) 0 0
\(706\) −12.9713 13.7487i −0.488180 0.517441i
\(707\) 33.7194 + 16.9345i 1.26815 + 0.636887i
\(708\) 0 0
\(709\) −9.41268 31.4405i −0.353500 1.18077i −0.931195 0.364521i \(-0.881233\pi\)
0.577695 0.816253i \(-0.303952\pi\)
\(710\) 8.53698 + 7.16337i 0.320387 + 0.268837i
\(711\) 0 0
\(712\) 6.83193 5.73267i 0.256037 0.214841i
\(713\) −15.9718 10.5048i −0.598149 0.393409i
\(714\) 0 0
\(715\) −1.47585 0.172502i −0.0551936 0.00645121i
\(716\) 0.946059 + 2.19321i 0.0353559 + 0.0819641i
\(717\) 0 0
\(718\) 38.3559 19.2630i 1.43143 0.718890i
\(719\) 15.8250 + 5.75983i 0.590173 + 0.214806i 0.619806 0.784755i \(-0.287211\pi\)
−0.0296323 + 0.999561i \(0.509434\pi\)
\(720\) 0 0
\(721\) −1.54558 + 0.562545i −0.0575604 + 0.0209503i
\(722\) 12.3228 13.0614i 0.458608 0.486096i
\(723\) 0 0
\(724\) −13.9615 + 9.18261i −0.518874 + 0.341269i
\(725\) 5.61534 18.7565i 0.208548 0.696600i
\(726\) 0 0
\(727\) −5.01783 6.74011i −0.186101 0.249977i 0.699275 0.714853i \(-0.253506\pi\)
−0.885376 + 0.464876i \(0.846099\pi\)
\(728\) −29.9802 −1.11114
\(729\) 0 0
\(730\) −38.8230 −1.43690
\(731\) 4.80823 + 6.45857i 0.177839 + 0.238879i
\(732\) 0 0
\(733\) −3.54104 + 11.8279i −0.130791 + 0.436874i −0.998149 0.0608113i \(-0.980631\pi\)
0.867358 + 0.497685i \(0.165816\pi\)
\(734\) 18.5868 12.2247i 0.686051 0.451223i
\(735\) 0 0
\(736\) 13.3918 14.1945i 0.493630 0.523217i
\(737\) 2.58738 0.941730i 0.0953075 0.0346891i
\(738\) 0 0
\(739\) 37.3973 + 13.6115i 1.37568 + 0.500707i 0.920866 0.389879i \(-0.127483\pi\)
0.454815 + 0.890586i \(0.349705\pi\)
\(740\) 10.2166 5.13096i 0.375569 0.188618i
\(741\) 0 0
\(742\) 20.3705 + 47.2242i 0.747826 + 1.73365i
\(743\) 19.7041 + 2.30308i 0.722873 + 0.0844917i 0.469570 0.882895i \(-0.344409\pi\)
0.253303 + 0.967387i \(0.418483\pi\)
\(744\) 0 0
\(745\) 8.83306 + 5.80960i 0.323618 + 0.212847i
\(746\) 2.95869 2.48263i 0.108325 0.0908957i
\(747\) 0 0
\(748\) −0.796638 0.668459i −0.0291280 0.0244413i
\(749\) 5.13381 + 17.1481i 0.187585 + 0.626578i
\(750\) 0 0
\(751\) 34.2956 + 17.2239i 1.25146 + 0.628509i 0.946146 0.323742i \(-0.104941\pi\)
0.305318 + 0.952250i \(0.401237\pi\)
\(752\) 7.14137 + 7.56941i 0.260419 + 0.276028i
\(753\) 0 0
\(754\) 22.7330 52.7009i 0.827885 1.91925i
\(755\) −2.12665 + 3.68347i −0.0773969 + 0.134055i
\(756\) 0 0
\(757\) 7.07444 + 12.2533i 0.257125 + 0.445353i 0.965470 0.260513i \(-0.0838915\pi\)
−0.708346 + 0.705866i \(0.750558\pi\)
\(758\) 12.6555 1.47921i 0.459667 0.0537274i
\(759\) 0 0
\(760\) 6.82928 1.61857i 0.247724 0.0587117i
\(761\) 0.551159 + 9.46303i 0.0199795 + 0.343034i 0.993454 + 0.114237i \(0.0364423\pi\)
−0.973474 + 0.228797i \(0.926521\pi\)
\(762\) 0 0
\(763\) 53.6883 + 12.7244i 1.94365 + 0.460653i
\(764\) −2.45907 + 13.9461i −0.0889660 + 0.504551i
\(765\) 0 0
\(766\) −4.34643 24.6498i −0.157043 0.890634i
\(767\) −4.53602 + 77.8805i −0.163786 + 2.81210i
\(768\) 0 0
\(769\) −7.47719 + 10.0436i −0.269634 + 0.362182i −0.916231 0.400650i \(-0.868784\pi\)
0.646597 + 0.762832i \(0.276192\pi\)
\(770\) 0.961384 1.29136i 0.0346459 0.0465375i
\(771\) 0 0
\(772\) 0.242300 4.16014i 0.00872059 0.149727i
\(773\) −6.23462 35.3583i −0.224244 1.27175i −0.864125 0.503277i \(-0.832128\pi\)
0.639882 0.768474i \(-0.278983\pi\)
\(774\) 0 0
\(775\) −2.73862 + 15.5315i −0.0983742 + 0.557908i
\(776\) 3.03119 + 0.718404i 0.108813 + 0.0257892i
\(777\) 0 0
\(778\) −0.856152 14.6996i −0.0306945 0.527005i
\(779\) −7.89617 + 1.87143i −0.282910 + 0.0670508i
\(780\) 0 0
\(781\) −0.953294 + 0.111424i −0.0341115 + 0.00398707i
\(782\) 16.5290 + 28.6291i 0.591076 + 1.02377i
\(783\) 0 0
\(784\) 9.53150 16.5091i 0.340411 0.589609i
\(785\) 3.34387 7.75195i 0.119348 0.276679i
\(786\) 0 0
\(787\) −27.4162 29.0594i −0.977281 1.03586i −0.999348 0.0361007i \(-0.988506\pi\)
0.0220673 0.999756i \(-0.492975\pi\)
\(788\) −18.4759 9.27895i −0.658177 0.330549i
\(789\) 0 0
\(790\) 1.01681 + 3.39639i 0.0361766 + 0.120838i
\(791\) 22.2484 + 18.6687i 0.791063 + 0.663781i
\(792\) 0 0
\(793\) −6.06508 + 5.08921i −0.215377 + 0.180723i
\(794\) −7.94517 5.22562i −0.281964 0.185450i
\(795\) 0 0
\(796\) −2.85098 0.333231i −0.101050 0.0118111i
\(797\) 13.5008 + 31.2984i 0.478224 + 1.10865i 0.971127 + 0.238563i \(0.0766764\pi\)
−0.492903 + 0.870084i \(0.664064\pi\)
\(798\) 0 0
\(799\) −9.43896 + 4.74043i −0.333927 + 0.167704i
\(800\) −15.1285 5.50634i −0.534875 0.194678i
\(801\) 0 0
\(802\) 15.3085 5.57185i 0.540563 0.196749i
\(803\) 2.29451 2.43203i 0.0809713 0.0858246i
\(804\) 0 0
\(805\) −14.2328 + 9.36109i −0.501642 + 0.329935i
\(806\) −13.2595 + 44.2898i −0.467046 + 1.56004i
\(807\) 0 0
\(808\) −11.8894 15.9702i −0.418266 0.561829i
\(809\) −7.57622 −0.266366 −0.133183 0.991091i \(-0.542520\pi\)
−0.133183 + 0.991091i \(0.542520\pi\)
\(810\) 0 0
\(811\) 20.5558 0.721810 0.360905 0.932602i \(-0.382468\pi\)
0.360905 + 0.932602i \(0.382468\pi\)
\(812\) 12.3611 + 16.6038i 0.433789 + 0.582680i
\(813\) 0 0
\(814\) −0.848358 + 2.83371i −0.0297349 + 0.0993216i
\(815\) 0.197765 0.130072i 0.00692742 0.00455623i
\(816\) 0 0
\(817\) −3.19831 + 3.39001i −0.111895 + 0.118602i
\(818\) 25.0916 9.13260i 0.877308 0.319314i
\(819\) 0 0
\(820\) −3.56726 1.29838i −0.124574 0.0453412i
\(821\) 27.2335 13.6772i 0.950455 0.477337i 0.0951512 0.995463i \(-0.469667\pi\)
0.855304 + 0.518126i \(0.173370\pi\)
\(822\) 0 0
\(823\) −8.83984 20.4930i −0.308137 0.714343i 0.691833 0.722058i \(-0.256803\pi\)
−0.999970 + 0.00771507i \(0.997544\pi\)
\(824\) 0.862001 + 0.100753i 0.0300292 + 0.00350991i
\(825\) 0 0
\(826\) −70.6192 46.4470i −2.45716 1.61610i
\(827\) 27.2509 22.8662i 0.947606 0.795136i −0.0312864 0.999510i \(-0.509960\pi\)
0.978893 + 0.204374i \(0.0655159\pi\)
\(828\) 0 0
\(829\) −13.4520 11.2875i −0.467206 0.392032i 0.378568 0.925573i \(-0.376416\pi\)
−0.845774 + 0.533541i \(0.820861\pi\)
\(830\) −9.74546 32.5521i −0.338270 1.12990i
\(831\) 0 0
\(832\) 4.78390 + 2.40256i 0.165852 + 0.0832939i
\(833\) 13.2779 + 14.0737i 0.460052 + 0.487626i
\(834\) 0 0
\(835\) 0.160538 0.372169i 0.00555565 0.0128794i
\(836\) 0.300972 0.521298i 0.0104093 0.0180295i
\(837\) 0 0
\(838\) 21.3875 + 37.0443i 0.738820 + 1.27967i
\(839\) −38.0724 + 4.45002i −1.31440 + 0.153632i −0.744247 0.667904i \(-0.767192\pi\)
−0.570157 + 0.821536i \(0.693118\pi\)
\(840\) 0 0
\(841\) 10.5028 2.48921i 0.362166 0.0858350i
\(842\) 0.0187047 + 0.321147i 0.000644606 + 0.0110675i
\(843\) 0 0
\(844\) −10.3063 2.44263i −0.354757 0.0840789i
\(845\) 3.49427 19.8170i 0.120206 0.681725i
\(846\) 0 0
\(847\) −6.25691 35.4847i −0.214990 1.21927i
\(848\) 2.62619 45.0899i 0.0901836 1.54839i
\(849\) 0 0
\(850\) 16.2860 21.8759i 0.558605 0.750337i
\(851\) 18.6908 25.1062i 0.640714 0.860628i
\(852\) 0 0
\(853\) −0.488107 + 8.38047i −0.0167125 + 0.286942i 0.979589 + 0.201012i \(0.0644231\pi\)
−0.996301 + 0.0859296i \(0.972614\pi\)
\(854\) −1.48961 8.44799i −0.0509733 0.289084i
\(855\) 0 0
\(856\) 1.64011 9.30155i 0.0560580 0.317920i
\(857\) −46.8244 11.0976i −1.59949 0.379087i −0.668380 0.743820i \(-0.733012\pi\)
−0.931112 + 0.364733i \(0.881160\pi\)
\(858\) 0 0
\(859\) −2.97006 50.9939i −0.101337 1.73989i −0.540377 0.841423i \(-0.681718\pi\)
0.439040 0.898467i \(-0.355319\pi\)
\(860\) −2.12149 + 0.502804i −0.0723424 + 0.0171455i
\(861\) 0 0
\(862\) −25.0261 + 2.92513i −0.852392 + 0.0996303i
\(863\) 18.3885 + 31.8499i 0.625953 + 1.08418i 0.988356 + 0.152161i \(0.0486232\pi\)
−0.362403 + 0.932022i \(0.618043\pi\)
\(864\) 0 0
\(865\) −1.85003 + 3.20435i −0.0629031 + 0.108951i
\(866\) −23.7416 + 55.0391i −0.806771 + 1.87031i
\(867\) 0 0
\(868\) −11.4423 12.1281i −0.388377 0.411656i
\(869\) −0.272860 0.137035i −0.00925614 0.00464861i
\(870\) 0 0
\(871\) 20.2084 + 67.5008i 0.684736 + 2.28718i
\(872\) −22.3023 18.7138i −0.755250 0.633730i
\(873\) 0 0
\(874\) −14.6581 + 12.2996i −0.495819 + 0.416042i
\(875\) 30.6577 + 20.1639i 1.03642 + 0.681665i
\(876\) 0 0
\(877\) 4.03239 + 0.471319i 0.136164 + 0.0159153i 0.183902 0.982945i \(-0.441127\pi\)
−0.0477378 + 0.998860i \(0.515201\pi\)
\(878\) −1.34813 3.12532i −0.0454973 0.105475i
\(879\) 0 0
\(880\) −1.26346 + 0.634533i −0.0425912 + 0.0213901i
\(881\) −38.2223 13.9118i −1.28774 0.468700i −0.394758 0.918785i \(-0.629171\pi\)
−0.892986 + 0.450085i \(0.851394\pi\)
\(882\) 0 0
\(883\) −24.6043 + 8.95523i −0.828000 + 0.301367i −0.721038 0.692896i \(-0.756335\pi\)
−0.106962 + 0.994263i \(0.534112\pi\)
\(884\) 18.2624 19.3570i 0.614231 0.651046i
\(885\) 0 0
\(886\) 46.0144 30.2641i 1.54588 1.01674i
\(887\) 6.23488 20.8260i 0.209347 0.699267i −0.787235 0.616654i \(-0.788488\pi\)
0.996582 0.0826140i \(-0.0263268\pi\)
\(888\) 0 0
\(889\) −13.7019 18.4048i −0.459546 0.617278i
\(890\) −12.2556 −0.410809
\(891\) 0 0
\(892\) −23.6257 −0.791048
\(893\) −3.65093 4.90405i −0.122174 0.164108i
\(894\) 0 0
\(895\) −0.945312 + 3.15756i −0.0315983 + 0.105546i
\(896\) −33.3471 + 21.9327i −1.11405 + 0.732721i
\(897\) 0 0
\(898\) −35.3931 + 37.5145i −1.18108 + 1.25187i
\(899\) −30.1211 + 10.9632i −1.00459 + 0.365642i
\(900\) 0 0
\(901\) 43.0785 + 15.6793i 1.43515 + 0.522353i
\(902\) 0.877720 0.440808i 0.0292249 0.0146773i
\(903\) 0 0
\(904\) −6.06983 14.0715i −0.201880 0.468010i
\(905\) −22.9034 2.67703i −0.761336 0.0889874i
\(906\) 0 0
\(907\) 44.0406 + 28.9659i 1.46234 + 0.961798i 0.997059 + 0.0766368i \(0.0244182\pi\)
0.465284 + 0.885161i \(0.345952\pi\)
\(908\) −0.350892 + 0.294434i −0.0116448 + 0.00977113i
\(909\) 0 0
\(910\) 31.5598 + 26.4818i 1.04620 + 0.877864i
\(911\) 12.3476 + 41.2438i 0.409094 + 1.36647i 0.876063 + 0.482196i \(0.160161\pi\)
−0.466969 + 0.884273i \(0.654654\pi\)
\(912\) 0 0
\(913\) 2.61517 + 1.31339i 0.0865496 + 0.0434668i
\(914\) −15.1452 16.0530i −0.500958 0.530985i
\(915\) 0 0
\(916\) 6.32139 14.6546i 0.208864 0.484202i
\(917\) 9.27238 16.0602i 0.306201 0.530356i
\(918\) 0 0
\(919\) −25.2136 43.6712i −0.831719 1.44058i −0.896674 0.442691i \(-0.854024\pi\)
0.0649552 0.997888i \(-0.479310\pi\)
\(920\) 8.92799 1.04353i 0.294347 0.0344042i
\(921\) 0 0
\(922\) −34.8210 + 8.25274i −1.14677 + 0.271789i
\(923\) −1.42810 24.5195i −0.0470064 0.807069i
\(924\) 0 0
\(925\) −25.1258 5.95493i −0.826131 0.195797i
\(926\) −5.00610 + 28.3910i −0.164511 + 0.932987i
\(927\) 0 0
\(928\) −5.68204 32.2245i −0.186522 1.05782i
\(929\) −0.923930 + 15.8633i −0.0303132 + 0.520457i 0.948638 + 0.316363i \(0.102462\pi\)
−0.978951 + 0.204094i \(0.934575\pi\)
\(930\) 0 0
\(931\) −6.68791 + 8.98342i −0.219187 + 0.294420i
\(932\) −4.73638 + 6.36206i −0.155145 + 0.208396i
\(933\) 0 0
\(934\) −2.94932 + 50.6378i −0.0965046 + 1.65692i
\(935\) −0.249191 1.41323i −0.00814943 0.0462177i
\(936\) 0 0
\(937\) 3.98093 22.5770i 0.130051 0.737557i −0.848128 0.529792i \(-0.822270\pi\)
0.978179 0.207765i \(-0.0666189\pi\)
\(938\) −74.2848 17.6058i −2.42549 0.574851i
\(939\) 0 0
\(940\) −0.166299 2.85525i −0.00542408 0.0931278i
\(941\) −13.7585 + 3.26083i −0.448516 + 0.106300i −0.448665 0.893700i \(-0.648100\pi\)
0.000149695 1.00000i \(0.499952\pi\)
\(942\) 0 0
\(943\) −10.3227 + 1.20656i −0.336155 + 0.0392908i
\(944\) 37.1148 + 64.2848i 1.20799 + 2.09229i
\(945\) 0 0
\(946\) 0.282051 0.488527i 0.00917027 0.0158834i
\(947\) 22.6121 52.4208i 0.734796 1.70345i 0.0243417 0.999704i \(-0.492251\pi\)
0.710454 0.703744i \(-0.248490\pi\)
\(948\) 0 0
\(949\) 58.7168 + 62.2362i 1.90603 + 2.02027i
\(950\) 14.1069 + 7.08476i 0.457689 + 0.229860i
\(951\) 0 0
\(952\) −8.30411 27.7377i −0.269138 0.898983i
\(953\) 13.5816 + 11.3963i 0.439951 + 0.369163i 0.835691 0.549200i \(-0.185067\pi\)
−0.395740 + 0.918363i \(0.629512\pi\)
\(954\) 0 0
\(955\) −14.9696 + 12.5610i −0.484405 + 0.406464i
\(956\) −17.6900 11.6349i −0.572136 0.376299i
\(957\) 0 0
\(958\) 38.4567 + 4.49495i 1.24248 + 0.145225i
\(959\) 1.45149 + 3.36493i 0.0468710 + 0.108659i
\(960\) 0 0
\(961\) −4.62911 + 2.32483i −0.149326 + 0.0749945i
\(962\) −71.1302 25.8893i −2.29333 0.834704i
\(963\) 0 0
\(964\) 16.9447 6.16735i 0.545751 0.198637i
\(965\) 3.94617 4.18270i 0.127032 0.134646i
\(966\) 0 0
\(967\) 18.4795 12.1541i 0.594260 0.390851i −0.216455 0.976293i \(-0.569449\pi\)
0.810714 + 0.585442i \(0.199079\pi\)
\(968\) −5.45284 + 18.2137i −0.175261 + 0.585412i
\(969\) 0 0
\(970\) −2.55632 3.43373i −0.0820785 0.110251i
\(971\) 5.09901 0.163635 0.0818176 0.996647i \(-0.473928\pi\)
0.0818176 + 0.996647i \(0.473928\pi\)
\(972\) 0 0
\(973\) −15.6454 −0.501569
\(974\) 3.86631 + 5.19336i 0.123885 + 0.166406i
\(975\) 0 0
\(976\) −2.16063 + 7.21701i −0.0691601 + 0.231011i
\(977\) 19.4106 12.7666i 0.621001 0.408439i −0.199651 0.979867i \(-0.563981\pi\)
0.820652 + 0.571429i \(0.193611\pi\)
\(978\) 0 0
\(979\) 0.724328 0.767743i 0.0231496 0.0245372i
\(980\) −4.92325 + 1.79191i −0.157267 + 0.0572406i
\(981\) 0 0
\(982\) −1.96332 0.714592i −0.0626522 0.0228035i
\(983\) 15.0614 7.56411i 0.480384 0.241258i −0.192092 0.981377i \(-0.561527\pi\)
0.672476 + 0.740119i \(0.265231\pi\)
\(984\) 0 0
\(985\) −11.3002 26.1967i −0.360053 0.834698i
\(986\) 55.0555 + 6.43507i 1.75333 + 0.204934i
\(987\) 0 0
\(988\) 12.8697 + 8.46454i 0.409440 + 0.269293i
\(989\) −4.57252 + 3.83680i −0.145398 + 0.122003i
\(990\) 0 0
\(991\) −0.316451 0.265534i −0.0100524 0.00843496i 0.637748 0.770245i \(-0.279866\pi\)
−0.647800 + 0.761810i \(0.724311\pi\)
\(992\) 7.55941 + 25.2502i 0.240012 + 0.801694i
\(993\) 0 0
\(994\) 23.7807 + 11.9431i 0.754278 + 0.378813i
\(995\) −2.71815 2.88107i −0.0861710 0.0913360i
\(996\) 0 0
\(997\) 2.31383 5.36406i 0.0732797 0.169882i −0.877639 0.479322i \(-0.840883\pi\)
0.950919 + 0.309441i \(0.100142\pi\)
\(998\) −2.88970 + 5.00511i −0.0914719 + 0.158434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.541.7 144
3.2 odd 2 729.2.g.d.541.2 144
9.2 odd 6 81.2.g.a.34.2 yes 144
9.4 even 3 729.2.g.b.298.2 144
9.5 odd 6 729.2.g.c.298.7 144
9.7 even 3 243.2.g.a.181.7 144
81.4 even 27 243.2.g.a.145.7 144
81.23 odd 54 729.2.g.d.190.2 144
81.25 even 27 6561.2.a.d.1.56 72
81.31 even 27 729.2.g.b.433.2 144
81.50 odd 54 729.2.g.c.433.7 144
81.56 odd 54 6561.2.a.c.1.17 72
81.58 even 27 inner 729.2.g.a.190.7 144
81.77 odd 54 81.2.g.a.31.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.31.2 144 81.77 odd 54
81.2.g.a.34.2 yes 144 9.2 odd 6
243.2.g.a.145.7 144 81.4 even 27
243.2.g.a.181.7 144 9.7 even 3
729.2.g.a.190.7 144 81.58 even 27 inner
729.2.g.a.541.7 144 1.1 even 1 trivial
729.2.g.b.298.2 144 9.4 even 3
729.2.g.b.433.2 144 81.31 even 27
729.2.g.c.298.7 144 9.5 odd 6
729.2.g.c.433.7 144 81.50 odd 54
729.2.g.d.190.2 144 81.23 odd 54
729.2.g.d.541.2 144 3.2 odd 2
6561.2.a.c.1.17 72 81.56 odd 54
6561.2.a.d.1.56 72 81.25 even 27