Properties

Label 729.2.g.a.514.8
Level $729$
Weight $2$
Character 729.514
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 514.8
Character \(\chi\) \(=\) 729.514
Dual form 729.2.g.a.217.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.126512 + 2.17212i) q^{2} +(-2.71564 + 0.317413i) q^{4} +(-0.629067 - 0.149092i) q^{5} +(-1.09241 + 1.46736i) q^{7} +(-0.277373 - 1.57306i) q^{8} +(0.244261 - 1.38527i) q^{10} +(-0.830243 - 0.880006i) q^{11} +(-4.76615 + 2.39365i) q^{13} +(-3.32548 - 2.18720i) q^{14} +(-1.93907 + 0.459569i) q^{16} +(6.43434 - 2.34191i) q^{17} +(-5.97823 - 2.17590i) q^{19} +(1.75565 + 0.205206i) q^{20} +(1.80645 - 1.91472i) q^{22} +(1.86114 + 2.49994i) q^{23} +(-4.09467 - 2.05642i) q^{25} +(-5.80229 - 10.0499i) q^{26} +(2.50083 - 4.33156i) q^{28} +(-4.91797 + 3.23460i) q^{29} +(-1.09846 + 2.54651i) q^{31} +(-2.15979 - 7.21421i) q^{32} +(5.90094 + 13.6799i) q^{34} +(0.905967 - 0.760197i) q^{35} +(-1.09453 - 0.918418i) q^{37} +(3.97000 - 13.2607i) q^{38} +(-0.0600440 + 1.03092i) q^{40} +(0.0648547 - 1.11351i) q^{41} +(2.76319 - 9.22968i) q^{43} +(2.53397 + 2.12625i) q^{44} +(-5.19473 + 4.35890i) q^{46} +(-2.41701 - 5.60327i) q^{47} +(1.04784 + 3.50003i) q^{49} +(3.94877 - 9.15429i) q^{50} +(12.1834 - 8.01315i) q^{52} +(-4.26135 + 7.38088i) q^{53} +(0.391077 + 0.677365i) q^{55} +(2.61124 + 1.31142i) q^{56} +(-7.64814 - 10.2732i) q^{58} +(1.43295 - 1.51884i) q^{59} +(3.56577 + 0.416778i) q^{61} +(-5.67029 - 2.06382i) q^{62} +(11.6517 - 4.24088i) q^{64} +(3.35511 - 0.795175i) q^{65} +(-1.01911 - 0.670277i) q^{67} +(-16.7300 + 8.40213i) q^{68} +(1.76586 + 1.87170i) q^{70} +(-1.41528 + 8.02646i) q^{71} +(1.11524 + 6.32482i) q^{73} +(1.85645 - 2.49364i) q^{74} +(16.9254 + 4.01139i) q^{76} +(2.19824 - 0.256938i) q^{77} +(0.829051 + 14.2343i) q^{79} +1.28832 q^{80} +2.42689 q^{82} +(0.390702 + 6.70809i) q^{83} +(-4.39679 + 0.513911i) q^{85} +(20.3976 + 4.83432i) q^{86} +(-1.15402 + 1.55011i) q^{88} +(2.70557 + 15.3441i) q^{89} +(1.69423 - 9.60848i) q^{91} +(-5.84771 - 6.19821i) q^{92} +(11.8652 - 5.95894i) q^{94} +(3.43630 + 2.26009i) q^{95} +(-3.62877 + 0.860034i) q^{97} +(-7.46994 + 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.126512 + 2.17212i 0.0894574 + 1.53592i 0.682579 + 0.730812i \(0.260858\pi\)
−0.593122 + 0.805113i \(0.702105\pi\)
\(3\) 0 0
\(4\) −2.71564 + 0.317413i −1.35782 + 0.158707i
\(5\) −0.629067 0.149092i −0.281327 0.0666758i 0.0875297 0.996162i \(-0.472103\pi\)
−0.368857 + 0.929486i \(0.620251\pi\)
\(6\) 0 0
\(7\) −1.09241 + 1.46736i −0.412891 + 0.554608i −0.959110 0.283034i \(-0.908659\pi\)
0.546219 + 0.837642i \(0.316066\pi\)
\(8\) −0.277373 1.57306i −0.0980662 0.556161i
\(9\) 0 0
\(10\) 0.244261 1.38527i 0.0772422 0.438062i
\(11\) −0.830243 0.880006i −0.250328 0.265332i 0.590009 0.807397i \(-0.299124\pi\)
−0.840337 + 0.542065i \(0.817643\pi\)
\(12\) 0 0
\(13\) −4.76615 + 2.39365i −1.32189 + 0.663880i −0.963001 0.269499i \(-0.913142\pi\)
−0.358893 + 0.933379i \(0.616846\pi\)
\(14\) −3.32548 2.18720i −0.888772 0.584555i
\(15\) 0 0
\(16\) −1.93907 + 0.459569i −0.484768 + 0.114892i
\(17\) 6.43434 2.34191i 1.56056 0.567996i 0.589693 0.807628i \(-0.299249\pi\)
0.970864 + 0.239631i \(0.0770266\pi\)
\(18\) 0 0
\(19\) −5.97823 2.17590i −1.37150 0.499185i −0.451909 0.892064i \(-0.649257\pi\)
−0.919590 + 0.392879i \(0.871479\pi\)
\(20\) 1.75565 + 0.205206i 0.392575 + 0.0458854i
\(21\) 0 0
\(22\) 1.80645 1.91472i 0.385136 0.408220i
\(23\) 1.86114 + 2.49994i 0.388074 + 0.521274i 0.952634 0.304118i \(-0.0983616\pi\)
−0.564560 + 0.825392i \(0.690954\pi\)
\(24\) 0 0
\(25\) −4.09467 2.05642i −0.818933 0.411284i
\(26\) −5.80229 10.0499i −1.13792 1.97094i
\(27\) 0 0
\(28\) 2.50083 4.33156i 0.472612 0.818588i
\(29\) −4.91797 + 3.23460i −0.913244 + 0.600650i −0.916801 0.399344i \(-0.869238\pi\)
0.00355721 + 0.999994i \(0.498868\pi\)
\(30\) 0 0
\(31\) −1.09846 + 2.54651i −0.197288 + 0.457366i −0.987928 0.154916i \(-0.950489\pi\)
0.790639 + 0.612282i \(0.209748\pi\)
\(32\) −2.15979 7.21421i −0.381801 1.27530i
\(33\) 0 0
\(34\) 5.90094 + 13.6799i 1.01200 + 2.34609i
\(35\) 0.905967 0.760197i 0.153136 0.128497i
\(36\) 0 0
\(37\) −1.09453 0.918418i −0.179939 0.150987i 0.548369 0.836236i \(-0.315249\pi\)
−0.728309 + 0.685249i \(0.759693\pi\)
\(38\) 3.97000 13.2607i 0.644019 2.15117i
\(39\) 0 0
\(40\) −0.0600440 + 1.03092i −0.00949379 + 0.163002i
\(41\) 0.0648547 1.11351i 0.0101286 0.173902i −0.989450 0.144875i \(-0.953722\pi\)
0.999579 0.0290269i \(-0.00924084\pi\)
\(42\) 0 0
\(43\) 2.76319 9.22968i 0.421382 1.40751i −0.439286 0.898347i \(-0.644769\pi\)
0.860668 0.509167i \(-0.170046\pi\)
\(44\) 2.53397 + 2.12625i 0.382010 + 0.320545i
\(45\) 0 0
\(46\) −5.19473 + 4.35890i −0.765922 + 0.642685i
\(47\) −2.41701 5.60327i −0.352558 0.817321i −0.998543 0.0539704i \(-0.982812\pi\)
0.645985 0.763350i \(-0.276447\pi\)
\(48\) 0 0
\(49\) 1.04784 + 3.50003i 0.149692 + 0.500005i
\(50\) 3.94877 9.15429i 0.558441 1.29461i
\(51\) 0 0
\(52\) 12.1834 8.01315i 1.68953 1.11122i
\(53\) −4.26135 + 7.38088i −0.585342 + 1.01384i 0.409491 + 0.912314i \(0.365706\pi\)
−0.994833 + 0.101528i \(0.967627\pi\)
\(54\) 0 0
\(55\) 0.391077 + 0.677365i 0.0527328 + 0.0913359i
\(56\) 2.61124 + 1.31142i 0.348942 + 0.175245i
\(57\) 0 0
\(58\) −7.64814 10.2732i −1.00425 1.34894i
\(59\) 1.43295 1.51884i 0.186554 0.197736i −0.627346 0.778741i \(-0.715859\pi\)
0.813900 + 0.581005i \(0.197340\pi\)
\(60\) 0 0
\(61\) 3.56577 + 0.416778i 0.456550 + 0.0533630i 0.341260 0.939969i \(-0.389146\pi\)
0.115290 + 0.993332i \(0.463220\pi\)
\(62\) −5.67029 2.06382i −0.720128 0.262105i
\(63\) 0 0
\(64\) 11.6517 4.24088i 1.45646 0.530110i
\(65\) 3.35511 0.795175i 0.416150 0.0986293i
\(66\) 0 0
\(67\) −1.01911 0.670277i −0.124504 0.0818873i 0.485730 0.874109i \(-0.338554\pi\)
−0.610233 + 0.792222i \(0.708924\pi\)
\(68\) −16.7300 + 8.40213i −2.02881 + 1.01891i
\(69\) 0 0
\(70\) 1.76586 + 1.87170i 0.211060 + 0.223711i
\(71\) −1.41528 + 8.02646i −0.167963 + 0.952565i 0.777994 + 0.628272i \(0.216237\pi\)
−0.945957 + 0.324293i \(0.894874\pi\)
\(72\) 0 0
\(73\) 1.11524 + 6.32482i 0.130529 + 0.740264i 0.977870 + 0.209215i \(0.0670909\pi\)
−0.847341 + 0.531049i \(0.821798\pi\)
\(74\) 1.85645 2.49364i 0.215808 0.289880i
\(75\) 0 0
\(76\) 16.9254 + 4.01139i 1.94148 + 0.460138i
\(77\) 2.19824 0.256938i 0.250513 0.0292808i
\(78\) 0 0
\(79\) 0.829051 + 14.2343i 0.0932755 + 1.60148i 0.642822 + 0.766015i \(0.277763\pi\)
−0.549547 + 0.835463i \(0.685200\pi\)
\(80\) 1.28832 0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) 0.390702 + 6.70809i 0.0428851 + 0.736308i 0.949387 + 0.314107i \(0.101705\pi\)
−0.906502 + 0.422201i \(0.861258\pi\)
\(84\) 0 0
\(85\) −4.39679 + 0.513911i −0.476899 + 0.0557415i
\(86\) 20.3976 + 4.83432i 2.19953 + 0.521298i
\(87\) 0 0
\(88\) −1.15402 + 1.55011i −0.123018 + 0.165243i
\(89\) 2.70557 + 15.3441i 0.286790 + 1.62647i 0.698820 + 0.715297i \(0.253709\pi\)
−0.412030 + 0.911170i \(0.635180\pi\)
\(90\) 0 0
\(91\) 1.69423 9.60848i 0.177604 1.00724i
\(92\) −5.84771 6.19821i −0.609666 0.646208i
\(93\) 0 0
\(94\) 11.8652 5.95894i 1.22380 0.614617i
\(95\) 3.43630 + 2.26009i 0.352557 + 0.231880i
\(96\) 0 0
\(97\) −3.62877 + 0.860034i −0.368446 + 0.0873232i −0.410668 0.911785i \(-0.634704\pi\)
0.0422221 + 0.999108i \(0.486556\pi\)
\(98\) −7.46994 + 2.71884i −0.754578 + 0.274644i
\(99\) 0 0
\(100\) 11.7724 + 4.28480i 1.17724 + 0.428480i
\(101\) −4.61913 0.539899i −0.459621 0.0537220i −0.116868 0.993147i \(-0.537285\pi\)
−0.342753 + 0.939426i \(0.611359\pi\)
\(102\) 0 0
\(103\) −3.54684 + 3.75944i −0.349481 + 0.370428i −0.878138 0.478407i \(-0.841214\pi\)
0.528657 + 0.848835i \(0.322696\pi\)
\(104\) 5.08736 + 6.83351i 0.498857 + 0.670081i
\(105\) 0 0
\(106\) −16.5713 8.32243i −1.60955 0.808345i
\(107\) −6.49528 11.2502i −0.627922 1.08759i −0.987968 0.154659i \(-0.950572\pi\)
0.360046 0.932935i \(-0.382761\pi\)
\(108\) 0 0
\(109\) −0.888686 + 1.53925i −0.0851207 + 0.147433i −0.905443 0.424469i \(-0.860461\pi\)
0.820322 + 0.571902i \(0.193794\pi\)
\(110\) −1.42185 + 0.935163i −0.135568 + 0.0891643i
\(111\) 0 0
\(112\) 1.44390 3.34734i 0.136436 0.316294i
\(113\) 3.98316 + 13.3047i 0.374704 + 1.25160i 0.912693 + 0.408646i \(0.133999\pi\)
−0.537989 + 0.842952i \(0.680816\pi\)
\(114\) 0 0
\(115\) −0.798061 1.85011i −0.0744196 0.172524i
\(116\) 12.3288 10.3451i 1.14470 0.960514i
\(117\) 0 0
\(118\) 3.48039 + 2.92040i 0.320396 + 0.268844i
\(119\) −3.59250 + 11.9998i −0.329324 + 1.10002i
\(120\) 0 0
\(121\) 0.554486 9.52015i 0.0504078 0.865468i
\(122\) −0.454183 + 7.79802i −0.0411198 + 0.705999i
\(123\) 0 0
\(124\) 2.17472 7.26407i 0.195296 0.652332i
\(125\) 4.74544 + 3.98190i 0.424445 + 0.356152i
\(126\) 0 0
\(127\) −8.72949 + 7.32491i −0.774617 + 0.649981i −0.941887 0.335930i \(-0.890949\pi\)
0.167270 + 0.985911i \(0.446505\pi\)
\(128\) 4.72038 + 10.9431i 0.417226 + 0.967239i
\(129\) 0 0
\(130\) 2.15168 + 7.18711i 0.188715 + 0.630351i
\(131\) 5.77514 13.3883i 0.504576 1.16974i −0.455560 0.890205i \(-0.650561\pi\)
0.960136 0.279534i \(-0.0901799\pi\)
\(132\) 0 0
\(133\) 9.72346 6.39522i 0.843131 0.554536i
\(134\) 1.32700 2.29842i 0.114635 0.198554i
\(135\) 0 0
\(136\) −5.46868 9.47202i −0.468935 0.812219i
\(137\) 0.331366 + 0.166418i 0.0283105 + 0.0142181i 0.462898 0.886411i \(-0.346810\pi\)
−0.434588 + 0.900630i \(0.643106\pi\)
\(138\) 0 0
\(139\) 8.94395 + 12.0138i 0.758616 + 1.01900i 0.998834 + 0.0482794i \(0.0153738\pi\)
−0.240218 + 0.970719i \(0.577219\pi\)
\(140\) −2.21899 + 2.35199i −0.187539 + 0.198779i
\(141\) 0 0
\(142\) −17.6135 2.05872i −1.47809 0.172764i
\(143\) 6.06349 + 2.20693i 0.507055 + 0.184553i
\(144\) 0 0
\(145\) 3.57599 1.30155i 0.296970 0.108088i
\(146\) −13.5972 + 3.22260i −1.12531 + 0.266704i
\(147\) 0 0
\(148\) 3.26387 + 2.14668i 0.268288 + 0.176456i
\(149\) 0.893861 0.448914i 0.0732279 0.0367764i −0.411808 0.911270i \(-0.635103\pi\)
0.485036 + 0.874494i \(0.338806\pi\)
\(150\) 0 0
\(151\) −0.0134726 0.0142801i −0.00109638 0.00116210i 0.726825 0.686822i \(-0.240995\pi\)
−0.727922 + 0.685660i \(0.759514\pi\)
\(152\) −1.76462 + 10.0076i −0.143129 + 0.811727i
\(153\) 0 0
\(154\) 0.836205 + 4.74235i 0.0673833 + 0.382150i
\(155\) 1.07067 1.43815i 0.0859979 0.115515i
\(156\) 0 0
\(157\) −7.59419 1.79986i −0.606083 0.143644i −0.0838947 0.996475i \(-0.526736\pi\)
−0.522188 + 0.852830i \(0.674884\pi\)
\(158\) −30.8137 + 3.60160i −2.45141 + 0.286528i
\(159\) 0 0
\(160\) 0.283076 + 4.86023i 0.0223791 + 0.384235i
\(161\) −5.70142 −0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) 0.177321 + 3.04449i 0.0138465 + 0.237735i
\(165\) 0 0
\(166\) −14.5214 + 1.69731i −1.12708 + 0.131736i
\(167\) −3.55630 0.842859i −0.275195 0.0652224i 0.0907011 0.995878i \(-0.471089\pi\)
−0.365896 + 0.930656i \(0.619237\pi\)
\(168\) 0 0
\(169\) 9.22359 12.3894i 0.709507 0.953033i
\(170\) −1.67253 9.48537i −0.128277 0.727494i
\(171\) 0 0
\(172\) −4.57421 + 25.9416i −0.348780 + 1.97803i
\(173\) 9.11506 + 9.66140i 0.693005 + 0.734543i 0.974344 0.225066i \(-0.0722598\pi\)
−0.281338 + 0.959609i \(0.590778\pi\)
\(174\) 0 0
\(175\) 7.49053 3.76189i 0.566231 0.284372i
\(176\) 2.01432 + 1.32484i 0.151835 + 0.0998637i
\(177\) 0 0
\(178\) −32.9869 + 7.81805i −2.47248 + 0.585987i
\(179\) 0.392738 0.142945i 0.0293546 0.0106842i −0.327301 0.944920i \(-0.606139\pi\)
0.356656 + 0.934236i \(0.383917\pi\)
\(180\) 0 0
\(181\) −19.5881 7.12947i −1.45597 0.529929i −0.511717 0.859154i \(-0.670990\pi\)
−0.944252 + 0.329225i \(0.893213\pi\)
\(182\) 21.0852 + 2.46450i 1.56294 + 0.182681i
\(183\) 0 0
\(184\) 3.41633 3.62110i 0.251855 0.266951i
\(185\) 0.551604 + 0.740932i 0.0405547 + 0.0544744i
\(186\) 0 0
\(187\) −7.40296 3.71791i −0.541358 0.271880i
\(188\) 8.34230 + 14.4493i 0.608425 + 1.05382i
\(189\) 0 0
\(190\) −4.47446 + 7.75000i −0.324612 + 0.562244i
\(191\) 5.75588 3.78570i 0.416481 0.273924i −0.323927 0.946082i \(-0.605003\pi\)
0.740407 + 0.672159i \(0.234633\pi\)
\(192\) 0 0
\(193\) −3.46427 + 8.03108i −0.249363 + 0.578089i −0.996217 0.0868989i \(-0.972304\pi\)
0.746854 + 0.664988i \(0.231564\pi\)
\(194\) −2.32718 7.77334i −0.167082 0.558093i
\(195\) 0 0
\(196\) −3.95652 9.17224i −0.282609 0.655160i
\(197\) 6.47094 5.42976i 0.461035 0.386855i −0.382476 0.923965i \(-0.624929\pi\)
0.843512 + 0.537111i \(0.180484\pi\)
\(198\) 0 0
\(199\) 9.66790 + 8.11233i 0.685339 + 0.575068i 0.917561 0.397595i \(-0.130155\pi\)
−0.232222 + 0.972663i \(0.574599\pi\)
\(200\) −2.09912 + 7.01155i −0.148430 + 0.495792i
\(201\) 0 0
\(202\) 0.588353 10.1016i 0.0413964 0.710749i
\(203\) 0.626111 10.7499i 0.0439444 0.754495i
\(204\) 0 0
\(205\) −0.206814 + 0.690805i −0.0144445 + 0.0482479i
\(206\) −8.61468 7.22858i −0.600213 0.503639i
\(207\) 0 0
\(208\) 8.14187 6.83184i 0.564537 0.473703i
\(209\) 3.04858 + 7.06740i 0.210875 + 0.488862i
\(210\) 0 0
\(211\) 1.62787 + 5.43746i 0.112067 + 0.374330i 0.995562 0.0941110i \(-0.0300009\pi\)
−0.883495 + 0.468441i \(0.844816\pi\)
\(212\) 9.22953 21.3965i 0.633887 1.46952i
\(213\) 0 0
\(214\) 23.6150 15.5318i 1.61429 1.06173i
\(215\) −3.11430 + 5.39413i −0.212393 + 0.367876i
\(216\) 0 0
\(217\) −2.53667 4.39364i −0.172200 0.298260i
\(218\) −3.45587 1.73560i −0.234061 0.117550i
\(219\) 0 0
\(220\) −1.27703 1.71535i −0.0860974 0.115649i
\(221\) −25.0613 + 26.5635i −1.68581 + 1.78685i
\(222\) 0 0
\(223\) −7.48192 0.874511i −0.501027 0.0585616i −0.138174 0.990408i \(-0.544123\pi\)
−0.362853 + 0.931846i \(0.618197\pi\)
\(224\) 12.9452 + 4.71166i 0.864936 + 0.314811i
\(225\) 0 0
\(226\) −28.3955 + 10.3351i −1.88884 + 0.687481i
\(227\) 13.2754 3.14632i 0.881118 0.208829i 0.234935 0.972011i \(-0.424512\pi\)
0.646183 + 0.763182i \(0.276364\pi\)
\(228\) 0 0
\(229\) −13.3632 8.78913i −0.883067 0.580802i 0.0249721 0.999688i \(-0.492050\pi\)
−0.908039 + 0.418886i \(0.862421\pi\)
\(230\) 3.91771 1.96755i 0.258326 0.129736i
\(231\) 0 0
\(232\) 6.45233 + 6.83907i 0.423616 + 0.449007i
\(233\) 0.930605 5.27772i 0.0609660 0.345755i −0.939032 0.343829i \(-0.888276\pi\)
0.999998 0.00192589i \(-0.000613031\pi\)
\(234\) 0 0
\(235\) 0.685064 + 3.88519i 0.0446886 + 0.253442i
\(236\) −3.40928 + 4.57946i −0.221925 + 0.298098i
\(237\) 0 0
\(238\) −26.5195 6.28524i −1.71900 0.407412i
\(239\) −16.0344 + 1.87416i −1.03718 + 0.121229i −0.617603 0.786490i \(-0.711896\pi\)
−0.419578 + 0.907719i \(0.637822\pi\)
\(240\) 0 0
\(241\) 1.35989 + 23.3484i 0.0875982 + 1.50400i 0.700391 + 0.713759i \(0.253009\pi\)
−0.612793 + 0.790244i \(0.709954\pi\)
\(242\) 20.7491 1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) −0.137337 2.35798i −0.00877412 0.150646i
\(246\) 0 0
\(247\) 33.7015 3.93914i 2.14437 0.250641i
\(248\) 4.31049 + 1.02160i 0.273716 + 0.0648720i
\(249\) 0 0
\(250\) −8.04882 + 10.8114i −0.509052 + 0.683776i
\(251\) −4.21745 23.9183i −0.266203 1.50971i −0.765588 0.643331i \(-0.777552\pi\)
0.499385 0.866380i \(-0.333559\pi\)
\(252\) 0 0
\(253\) 0.654768 3.71337i 0.0411649 0.233458i
\(254\) −17.0150 18.0349i −1.06762 1.13161i
\(255\) 0 0
\(256\) −1.01133 + 0.507909i −0.0632081 + 0.0317443i
\(257\) 8.04903 + 5.29393i 0.502085 + 0.330226i 0.775158 0.631767i \(-0.217670\pi\)
−0.273074 + 0.961993i \(0.588040\pi\)
\(258\) 0 0
\(259\) 2.54332 0.602777i 0.158034 0.0374547i
\(260\) −8.85887 + 3.22437i −0.549404 + 0.199967i
\(261\) 0 0
\(262\) 29.8116 + 10.8505i 1.84177 + 0.670349i
\(263\) 6.59689 + 0.771066i 0.406782 + 0.0475460i 0.317024 0.948418i \(-0.397317\pi\)
0.0897582 + 0.995964i \(0.471391\pi\)
\(264\) 0 0
\(265\) 3.78111 4.00774i 0.232272 0.246194i
\(266\) 15.1214 + 20.3115i 0.927150 + 1.24538i
\(267\) 0 0
\(268\) 2.98028 + 1.49676i 0.182050 + 0.0914289i
\(269\) 14.6832 + 25.4321i 0.895251 + 1.55062i 0.833494 + 0.552529i \(0.186337\pi\)
0.0617568 + 0.998091i \(0.480330\pi\)
\(270\) 0 0
\(271\) 9.43957 16.3498i 0.573413 0.993180i −0.422799 0.906223i \(-0.638952\pi\)
0.996212 0.0869568i \(-0.0277142\pi\)
\(272\) −11.4004 + 7.49815i −0.691250 + 0.454642i
\(273\) 0 0
\(274\) −0.319560 + 0.740823i −0.0193053 + 0.0447547i
\(275\) 1.58991 + 5.31066i 0.0958750 + 0.320245i
\(276\) 0 0
\(277\) 5.56045 + 12.8906i 0.334095 + 0.774519i 0.999604 + 0.0281297i \(0.00895515\pi\)
−0.665509 + 0.746390i \(0.731786\pi\)
\(278\) −24.9640 + 20.9473i −1.49724 + 1.25633i
\(279\) 0 0
\(280\) −1.44713 1.21428i −0.0864824 0.0725673i
\(281\) −6.33274 + 21.1528i −0.377780 + 1.26187i 0.531987 + 0.846753i \(0.321446\pi\)
−0.909767 + 0.415120i \(0.863740\pi\)
\(282\) 0 0
\(283\) −0.230048 + 3.94978i −0.0136750 + 0.234790i 0.984544 + 0.175136i \(0.0560367\pi\)
−0.998219 + 0.0596536i \(0.981000\pi\)
\(284\) 1.29570 22.2462i 0.0768854 1.32007i
\(285\) 0 0
\(286\) −4.02663 + 13.4499i −0.238099 + 0.795307i
\(287\) 1.56307 + 1.31157i 0.0922652 + 0.0774197i
\(288\) 0 0
\(289\) 22.8934 19.2099i 1.34667 1.12999i
\(290\) 3.27954 + 7.60283i 0.192581 + 0.446453i
\(291\) 0 0
\(292\) −5.03617 16.8220i −0.294719 0.984431i
\(293\) −3.15963 + 7.32485i −0.184588 + 0.427922i −0.985234 0.171215i \(-0.945231\pi\)
0.800646 + 0.599138i \(0.204490\pi\)
\(294\) 0 0
\(295\) −1.12787 + 0.741811i −0.0656671 + 0.0431899i
\(296\) −1.14114 + 1.97650i −0.0663271 + 0.114882i
\(297\) 0 0
\(298\) 1.08818 + 1.88478i 0.0630366 + 0.109183i
\(299\) −14.8545 7.46020i −0.859056 0.431434i
\(300\) 0 0
\(301\) 10.5247 + 14.1371i 0.606634 + 0.814851i
\(302\) 0.0293137 0.0310707i 0.00168681 0.00178792i
\(303\) 0 0
\(304\) 12.5922 + 1.47182i 0.722211 + 0.0844144i
\(305\) −2.18097 0.793808i −0.124882 0.0454533i
\(306\) 0 0
\(307\) 1.95823 0.712736i 0.111762 0.0406780i −0.285534 0.958369i \(-0.592171\pi\)
0.397296 + 0.917691i \(0.369949\pi\)
\(308\) −5.88809 + 1.39550i −0.335505 + 0.0795162i
\(309\) 0 0
\(310\) 3.25930 + 2.14367i 0.185116 + 0.121753i
\(311\) 13.4174 6.73846i 0.760830 0.382103i −0.0256887 0.999670i \(-0.508178\pi\)
0.786518 + 0.617567i \(0.211882\pi\)
\(312\) 0 0
\(313\) −3.49359 3.70299i −0.197469 0.209305i 0.621071 0.783754i \(-0.286698\pi\)
−0.818540 + 0.574449i \(0.805216\pi\)
\(314\) 2.94876 16.7232i 0.166408 0.943747i
\(315\) 0 0
\(316\) −6.76955 38.3920i −0.380817 2.15972i
\(317\) 16.5461 22.2253i 0.929323 1.24830i −0.0391636 0.999233i \(-0.512469\pi\)
0.968487 0.249065i \(-0.0801232\pi\)
\(318\) 0 0
\(319\) 6.92958 + 1.64234i 0.387982 + 0.0919534i
\(320\) −7.96199 + 0.930623i −0.445089 + 0.0520234i
\(321\) 0 0
\(322\) −0.721298 12.3842i −0.0401964 0.690145i
\(323\) −43.5617 −2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) −1.94762 33.4393i −0.107869 1.85203i
\(327\) 0 0
\(328\) −1.76961 + 0.206838i −0.0977105 + 0.0114207i
\(329\) 10.8623 + 2.57442i 0.598860 + 0.141933i
\(330\) 0 0
\(331\) 16.2840 21.8732i 0.895049 1.20226i −0.0835546 0.996503i \(-0.526627\pi\)
0.978603 0.205756i \(-0.0659653\pi\)
\(332\) −3.19024 18.0928i −0.175087 0.992969i
\(333\) 0 0
\(334\) 1.38088 7.83136i 0.0755584 0.428513i
\(335\) 0.541154 + 0.573589i 0.0295664 + 0.0313385i
\(336\) 0 0
\(337\) −11.3657 + 5.70808i −0.619130 + 0.310939i −0.730576 0.682832i \(-0.760748\pi\)
0.111445 + 0.993771i \(0.464452\pi\)
\(338\) 28.0783 + 18.4674i 1.52726 + 1.00449i
\(339\) 0 0
\(340\) 11.7770 2.79120i 0.638698 0.151374i
\(341\) 3.15292 1.14757i 0.170740 0.0621444i
\(342\) 0 0
\(343\) −18.3136 6.66560i −0.988840 0.359908i
\(344\) −15.2853 1.78659i −0.824127 0.0963267i
\(345\) 0 0
\(346\) −19.8326 + 21.0213i −1.06621 + 1.13011i
\(347\) −5.02397 6.74836i −0.269701 0.362271i 0.646553 0.762869i \(-0.276210\pi\)
−0.916254 + 0.400598i \(0.868802\pi\)
\(348\) 0 0
\(349\) 26.9370 + 13.5282i 1.44190 + 0.724150i 0.986134 0.165948i \(-0.0530685\pi\)
0.455768 + 0.890099i \(0.349365\pi\)
\(350\) 9.11893 + 15.7944i 0.487427 + 0.844249i
\(351\) 0 0
\(352\) −4.55540 + 7.89018i −0.242803 + 0.420548i
\(353\) 19.4095 12.7659i 1.03307 0.679458i 0.0846248 0.996413i \(-0.473031\pi\)
0.948441 + 0.316955i \(0.102660\pi\)
\(354\) 0 0
\(355\) 2.08698 4.83817i 0.110766 0.256784i
\(356\) −12.2178 40.8102i −0.647541 2.16294i
\(357\) 0 0
\(358\) 0.360180 + 0.834992i 0.0190361 + 0.0441307i
\(359\) −3.19290 + 2.67916i −0.168515 + 0.141401i −0.723145 0.690696i \(-0.757304\pi\)
0.554630 + 0.832097i \(0.312860\pi\)
\(360\) 0 0
\(361\) 16.4498 + 13.8030i 0.865780 + 0.726476i
\(362\) 13.0080 43.4497i 0.683684 2.28366i
\(363\) 0 0
\(364\) −1.55108 + 26.6310i −0.0812986 + 1.39584i
\(365\) 0.241419 4.14501i 0.0126365 0.216960i
\(366\) 0 0
\(367\) 3.36163 11.2286i 0.175476 0.586130i −0.824324 0.566118i \(-0.808445\pi\)
0.999800 0.0200114i \(-0.00637025\pi\)
\(368\) −4.75778 3.99225i −0.248016 0.208110i
\(369\) 0 0
\(370\) −1.53961 + 1.29189i −0.0800407 + 0.0671621i
\(371\) −6.17525 14.3158i −0.320603 0.743241i
\(372\) 0 0
\(373\) −10.4315 34.8438i −0.540124 1.80414i −0.592572 0.805518i \(-0.701887\pi\)
0.0524474 0.998624i \(-0.483298\pi\)
\(374\) 7.13919 16.5505i 0.369159 0.855806i
\(375\) 0 0
\(376\) −8.14387 + 5.35630i −0.419988 + 0.276230i
\(377\) 15.6973 27.1885i 0.808452 1.40028i
\(378\) 0 0
\(379\) 5.02516 + 8.70383i 0.258125 + 0.447086i 0.965740 0.259513i \(-0.0835620\pi\)
−0.707615 + 0.706599i \(0.750229\pi\)
\(380\) −10.0491 5.04687i −0.515510 0.258899i
\(381\) 0 0
\(382\) 8.95120 + 12.0235i 0.457983 + 0.615178i
\(383\) −0.207663 + 0.220110i −0.0106111 + 0.0112471i −0.732657 0.680598i \(-0.761720\pi\)
0.722046 + 0.691845i \(0.243202\pi\)
\(384\) 0 0
\(385\) −1.42115 0.166109i −0.0724285 0.00846568i
\(386\) −17.8828 6.50880i −0.910209 0.331289i
\(387\) 0 0
\(388\) 9.58146 3.48737i 0.486425 0.177044i
\(389\) −7.31685 + 1.73413i −0.370979 + 0.0879237i −0.411876 0.911240i \(-0.635126\pi\)
0.0408974 + 0.999163i \(0.486978\pi\)
\(390\) 0 0
\(391\) 17.8298 + 11.7269i 0.901694 + 0.593053i
\(392\) 5.21512 2.61913i 0.263403 0.132286i
\(393\) 0 0
\(394\) 12.6128 + 13.3688i 0.635422 + 0.673508i
\(395\) 1.60068 9.07791i 0.0805390 0.456759i
\(396\) 0 0
\(397\) 2.95983 + 16.7860i 0.148549 + 0.842466i 0.964448 + 0.264271i \(0.0851314\pi\)
−0.815899 + 0.578195i \(0.803757\pi\)
\(398\) −16.3979 + 22.0262i −0.821952 + 1.10407i
\(399\) 0 0
\(400\) 8.88492 + 2.10576i 0.444246 + 0.105288i
\(401\) 13.4856 1.57624i 0.673441 0.0787139i 0.227502 0.973778i \(-0.426944\pi\)
0.445938 + 0.895064i \(0.352870\pi\)
\(402\) 0 0
\(403\) −0.860042 14.7664i −0.0428418 0.735565i
\(404\) 12.7153 0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) 0.100511 + 1.72570i 0.00498213 + 0.0855399i
\(408\) 0 0
\(409\) 0.667804 0.0780551i 0.0330208 0.00385958i −0.0995665 0.995031i \(-0.531746\pi\)
0.132587 + 0.991171i \(0.457672\pi\)
\(410\) −1.52668 0.361830i −0.0753973 0.0178695i
\(411\) 0 0
\(412\) 8.43867 11.3351i 0.415744 0.558441i
\(413\) 0.663313 + 3.76184i 0.0326395 + 0.185108i
\(414\) 0 0
\(415\) 0.754343 4.27809i 0.0370292 0.210003i
\(416\) 27.5622 + 29.2143i 1.35135 + 1.43235i
\(417\) 0 0
\(418\) −14.9656 + 7.51600i −0.731991 + 0.367620i
\(419\) −16.6146 10.9276i −0.811675 0.533847i 0.0744874 0.997222i \(-0.476268\pi\)
−0.886162 + 0.463375i \(0.846638\pi\)
\(420\) 0 0
\(421\) 12.2171 2.89551i 0.595426 0.141119i 0.0781566 0.996941i \(-0.475097\pi\)
0.517270 + 0.855822i \(0.326948\pi\)
\(422\) −11.6049 + 4.22384i −0.564918 + 0.205613i
\(423\) 0 0
\(424\) 12.7926 + 4.65611i 0.621262 + 0.226121i
\(425\) −31.1624 3.64236i −1.51160 0.176681i
\(426\) 0 0
\(427\) −4.50682 + 4.77696i −0.218101 + 0.231173i
\(428\) 21.2098 + 28.4897i 1.02522 + 1.37710i
\(429\) 0 0
\(430\) −12.1107 6.08223i −0.584030 0.293311i
\(431\) −10.8013 18.7084i −0.520281 0.901153i −0.999722 0.0235787i \(-0.992494\pi\)
0.479441 0.877574i \(-0.340839\pi\)
\(432\) 0 0
\(433\) −1.99970 + 3.46358i −0.0960993 + 0.166449i −0.910067 0.414461i \(-0.863970\pi\)
0.813968 + 0.580910i \(0.197303\pi\)
\(434\) 9.22262 6.06581i 0.442700 0.291168i
\(435\) 0 0
\(436\) 1.92478 4.46213i 0.0921801 0.213697i
\(437\) −5.68669 18.9949i −0.272031 0.908648i
\(438\) 0 0
\(439\) −12.3621 28.6586i −0.590011 1.36780i −0.907706 0.419607i \(-0.862168\pi\)
0.317695 0.948193i \(-0.397091\pi\)
\(440\) 0.957063 0.803071i 0.0456262 0.0382849i
\(441\) 0 0
\(442\) −60.8697 51.0758i −2.89528 2.42943i
\(443\) 0.459510 1.53487i 0.0218320 0.0729238i −0.946379 0.323057i \(-0.895289\pi\)
0.968211 + 0.250134i \(0.0804745\pi\)
\(444\) 0 0
\(445\) 0.585685 10.0558i 0.0277641 0.476692i
\(446\) 0.952996 16.3623i 0.0451257 0.774778i
\(447\) 0 0
\(448\) −6.50552 + 21.7300i −0.307357 + 1.02664i
\(449\) −8.04720 6.75241i −0.379771 0.318666i 0.432841 0.901470i \(-0.357511\pi\)
−0.812613 + 0.582804i \(0.801955\pi\)
\(450\) 0 0
\(451\) −1.03374 + 0.867414i −0.0486771 + 0.0408449i
\(452\) −15.0399 34.8664i −0.707418 1.63998i
\(453\) 0 0
\(454\) 8.51370 + 28.4378i 0.399568 + 1.33465i
\(455\) −2.49833 + 5.79179i −0.117124 + 0.271523i
\(456\) 0 0
\(457\) −34.3727 + 22.6073i −1.60789 + 1.05752i −0.654375 + 0.756171i \(0.727068\pi\)
−0.953513 + 0.301353i \(0.902562\pi\)
\(458\) 17.4005 30.1385i 0.813071 1.40828i
\(459\) 0 0
\(460\) 2.75450 + 4.77093i 0.128429 + 0.222446i
\(461\) 30.6506 + 15.3933i 1.42754 + 0.716939i 0.983809 0.179219i \(-0.0573572\pi\)
0.443734 + 0.896159i \(0.353654\pi\)
\(462\) 0 0
\(463\) −19.9050 26.7371i −0.925066 1.24258i −0.969880 0.243584i \(-0.921677\pi\)
0.0448139 0.998995i \(-0.485731\pi\)
\(464\) 8.04978 8.53227i 0.373702 0.396101i
\(465\) 0 0
\(466\) 11.5816 + 1.35370i 0.536508 + 0.0627087i
\(467\) 9.76380 + 3.55373i 0.451815 + 0.164447i 0.557897 0.829910i \(-0.311608\pi\)
−0.106082 + 0.994357i \(0.533831\pi\)
\(468\) 0 0
\(469\) 2.09681 0.763177i 0.0968218 0.0352402i
\(470\) −8.35245 + 1.97957i −0.385270 + 0.0913106i
\(471\) 0 0
\(472\) −2.78669 1.83283i −0.128268 0.0843630i
\(473\) −10.4163 + 5.23126i −0.478942 + 0.240534i
\(474\) 0 0
\(475\) 20.0043 + 21.2033i 0.917860 + 0.972874i
\(476\) 5.94706 33.7274i 0.272583 1.54589i
\(477\) 0 0
\(478\) −6.09945 34.5917i −0.278982 1.58219i
\(479\) −12.1202 + 16.2803i −0.553787 + 0.743865i −0.987575 0.157150i \(-0.949769\pi\)
0.433788 + 0.901015i \(0.357177\pi\)
\(480\) 0 0
\(481\) 7.41507 + 1.75740i 0.338098 + 0.0801307i
\(482\) −50.5436 + 5.90770i −2.30220 + 0.269088i
\(483\) 0 0
\(484\) 1.51604 + 26.0293i 0.0689108 + 1.18315i
\(485\) 2.41096 0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) −0.333430 5.72477i −0.0150937 0.259148i
\(489\) 0 0
\(490\) 5.10445 0.596625i 0.230596 0.0269528i
\(491\) −9.94187 2.35627i −0.448670 0.106337i 6.80725e−5 1.00000i \(-0.499978\pi\)
−0.448738 + 0.893663i \(0.648126\pi\)
\(492\) 0 0
\(493\) −24.0688 + 32.3300i −1.08400 + 1.45607i
\(494\) 12.8199 + 72.7055i 0.576796 + 3.27117i
\(495\) 0 0
\(496\) 0.959690 5.44267i 0.0430914 0.244383i
\(497\) −10.2316 10.8449i −0.458950 0.486459i
\(498\) 0 0
\(499\) −7.81359 + 3.92413i −0.349785 + 0.175668i −0.615013 0.788517i \(-0.710849\pi\)
0.265228 + 0.964186i \(0.414553\pi\)
\(500\) −14.1508 9.30715i −0.632845 0.416228i
\(501\) 0 0
\(502\) 51.4200 12.1868i 2.29499 0.543922i
\(503\) 12.2947 4.47489i 0.548192 0.199526i −0.0530509 0.998592i \(-0.516895\pi\)
0.601243 + 0.799066i \(0.294672\pi\)
\(504\) 0 0
\(505\) 2.82525 + 1.02831i 0.125722 + 0.0457591i
\(506\) 8.14875 + 0.952452i 0.362256 + 0.0423417i
\(507\) 0 0
\(508\) 21.3812 22.6627i 0.948636 1.00550i
\(509\) 18.1662 + 24.4014i 0.805202 + 1.08157i 0.995012 + 0.0997537i \(0.0318055\pi\)
−0.189810 + 0.981821i \(0.560787\pi\)
\(510\) 0 0
\(511\) −10.4990 5.27282i −0.464451 0.233256i
\(512\) 10.6866 + 18.5097i 0.472284 + 0.818019i
\(513\) 0 0
\(514\) −10.4808 + 18.1532i −0.462287 + 0.800705i
\(515\) 2.79170 1.83613i 0.123017 0.0809097i
\(516\) 0 0
\(517\) −2.92420 + 6.77906i −0.128606 + 0.298143i
\(518\) 1.63107 + 5.44814i 0.0716649 + 0.239378i
\(519\) 0 0
\(520\) −2.18147 5.05722i −0.0956640 0.221774i
\(521\) −8.25925 + 6.93034i −0.361845 + 0.303624i −0.805525 0.592561i \(-0.798117\pi\)
0.443681 + 0.896185i \(0.353672\pi\)
\(522\) 0 0
\(523\) 9.44644 + 7.92650i 0.413064 + 0.346602i 0.825517 0.564377i \(-0.190884\pi\)
−0.412453 + 0.910979i \(0.635328\pi\)
\(524\) −11.4336 + 38.1909i −0.499479 + 1.66838i
\(525\) 0 0
\(526\) −0.840267 + 14.4268i −0.0366374 + 0.629040i
\(527\) −1.10415 + 18.9576i −0.0480976 + 0.825804i
\(528\) 0 0
\(529\) 3.81060 12.7283i 0.165678 0.553403i
\(530\) 9.18367 + 7.70601i 0.398913 + 0.334728i
\(531\) 0 0
\(532\) −24.3755 + 20.4535i −1.05681 + 0.886772i
\(533\) 2.35626 + 5.46241i 0.102061 + 0.236603i
\(534\) 0 0
\(535\) 2.40866 + 8.04550i 0.104136 + 0.347837i
\(536\) −0.771713 + 1.78903i −0.0333329 + 0.0772744i
\(537\) 0 0
\(538\) −53.3840 + 35.1112i −2.30155 + 1.51375i
\(539\) 2.21009 3.82798i 0.0951952 0.164883i
\(540\) 0 0
\(541\) 7.99279 + 13.8439i 0.343637 + 0.595196i 0.985105 0.171953i \(-0.0550078\pi\)
−0.641468 + 0.767149i \(0.721674\pi\)
\(542\) 36.7080 + 18.4355i 1.57675 + 0.791871i
\(543\) 0 0
\(544\) −30.7919 41.3607i −1.32019 1.77332i
\(545\) 0.788533 0.835796i 0.0337770 0.0358016i
\(546\) 0 0
\(547\) −1.22825 0.143562i −0.0525161 0.00613825i 0.0897943 0.995960i \(-0.471379\pi\)
−0.142310 + 0.989822i \(0.545453\pi\)
\(548\) −0.952696 0.346753i −0.0406972 0.0148126i
\(549\) 0 0
\(550\) −11.3343 + 4.12534i −0.483295 + 0.175905i
\(551\) 36.4389 8.63618i 1.55235 0.367914i
\(552\) 0 0
\(553\) −21.7924 14.3331i −0.926706 0.609504i
\(554\) −27.2965 + 13.7088i −1.15972 + 0.582431i
\(555\) 0 0
\(556\) −28.1019 29.7863i −1.19179 1.26322i
\(557\) −2.28246 + 12.9445i −0.0967109 + 0.548475i 0.897499 + 0.441017i \(0.145382\pi\)
−0.994210 + 0.107458i \(0.965729\pi\)
\(558\) 0 0
\(559\) 8.92289 + 50.6042i 0.377398 + 2.14033i
\(560\) −1.40737 + 1.89043i −0.0594724 + 0.0798853i
\(561\) 0 0
\(562\) −46.7478 11.0794i −1.97194 0.467357i
\(563\) 6.04774 0.706879i 0.254882 0.0297914i 0.0123076 0.999924i \(-0.496082\pi\)
0.242574 + 0.970133i \(0.422008\pi\)
\(564\) 0 0
\(565\) −0.522058 8.96339i −0.0219631 0.377092i
\(566\) −8.60852 −0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) 0.963908 + 16.5497i 0.0404091 + 0.693798i 0.956303 + 0.292377i \(0.0944463\pi\)
−0.915894 + 0.401420i \(0.868517\pi\)
\(570\) 0 0
\(571\) −34.6117 + 4.04552i −1.44845 + 0.169300i −0.803674 0.595069i \(-0.797125\pi\)
−0.644779 + 0.764369i \(0.723050\pi\)
\(572\) −17.1668 4.06861i −0.717780 0.170117i
\(573\) 0 0
\(574\) −2.65115 + 3.56112i −0.110657 + 0.148638i
\(575\) −2.47981 14.0637i −0.103415 0.586497i
\(576\) 0 0
\(577\) 5.38675 30.5498i 0.224254 1.27180i −0.639854 0.768497i \(-0.721005\pi\)
0.864107 0.503308i \(-0.167884\pi\)
\(578\) 44.6225 + 47.2971i 1.85605 + 1.96730i
\(579\) 0 0
\(580\) −9.29798 + 4.66962i −0.386078 + 0.193895i
\(581\) −10.2700 6.75465i −0.426069 0.280230i
\(582\) 0 0
\(583\) 10.0332 2.37791i 0.415532 0.0984829i
\(584\) 9.63999 3.50867i 0.398906 0.145190i
\(585\) 0 0
\(586\) −16.3102 5.93644i −0.673769 0.245232i
\(587\) −44.2431 5.17128i −1.82611 0.213442i −0.867358 0.497685i \(-0.834184\pi\)
−0.958752 + 0.284243i \(0.908258\pi\)
\(588\) 0 0
\(589\) 12.1077 12.8335i 0.498891 0.528794i
\(590\) −1.75399 2.35602i −0.0722108 0.0969960i
\(591\) 0 0
\(592\) 2.54445 + 1.27787i 0.104576 + 0.0525201i
\(593\) −9.90549 17.1568i −0.406770 0.704546i 0.587756 0.809038i \(-0.300011\pi\)
−0.994526 + 0.104493i \(0.966678\pi\)
\(594\) 0 0
\(595\) 4.04899 7.01306i 0.165992 0.287507i
\(596\) −2.28492 + 1.50281i −0.0935938 + 0.0615576i
\(597\) 0 0
\(598\) 14.3252 33.2096i 0.585801 1.35804i
\(599\) −8.00993 26.7550i −0.327277 1.09318i −0.950393 0.311051i \(-0.899319\pi\)
0.623116 0.782129i \(-0.285866\pi\)
\(600\) 0 0
\(601\) −4.01814 9.31508i −0.163903 0.379970i 0.816395 0.577494i \(-0.195969\pi\)
−0.980298 + 0.197524i \(0.936710\pi\)
\(602\) −29.3761 + 24.6495i −1.19728 + 1.00464i
\(603\) 0 0
\(604\) 0.0411194 + 0.0345033i 0.00167313 + 0.00140392i
\(605\) −1.76818 + 5.90615i −0.0718869 + 0.240119i
\(606\) 0 0
\(607\) −0.628918 + 10.7981i −0.0255270 + 0.438282i 0.961196 + 0.275868i \(0.0889651\pi\)
−0.986723 + 0.162414i \(0.948072\pi\)
\(608\) −2.78565 + 47.8277i −0.112973 + 1.93967i
\(609\) 0 0
\(610\) 1.44833 4.83776i 0.0586412 0.195875i
\(611\) 24.9321 + 20.9205i 1.00865 + 0.846355i
\(612\) 0 0
\(613\) 4.13859 3.47269i 0.167156 0.140261i −0.555372 0.831602i \(-0.687424\pi\)
0.722528 + 0.691341i \(0.242980\pi\)
\(614\) 1.79589 + 4.16334i 0.0724763 + 0.168019i
\(615\) 0 0
\(616\) −1.01391 3.38670i −0.0408517 0.136454i
\(617\) 9.91795 22.9924i 0.399282 0.925639i −0.593403 0.804905i \(-0.702216\pi\)
0.992685 0.120734i \(-0.0385247\pi\)
\(618\) 0 0
\(619\) −21.2925 + 14.0043i −0.855817 + 0.562880i −0.899874 0.436149i \(-0.856342\pi\)
0.0440575 + 0.999029i \(0.485972\pi\)
\(620\) −2.45106 + 4.24535i −0.0984368 + 0.170498i
\(621\) 0 0
\(622\) 16.3342 + 28.2917i 0.654943 + 1.13439i
\(623\) −25.4708 12.7919i −1.02047 0.512497i
\(624\) 0 0
\(625\) 11.2895 + 15.1644i 0.451580 + 0.606578i
\(626\) 7.60137 8.05698i 0.303812 0.322022i
\(627\) 0 0
\(628\) 21.1944 + 2.47727i 0.845750 + 0.0988540i
\(629\) −9.19342 3.34613i −0.366566 0.133419i
\(630\) 0 0
\(631\) −18.7709 + 6.83203i −0.747256 + 0.271979i −0.687451 0.726231i \(-0.741270\pi\)
−0.0598054 + 0.998210i \(0.519048\pi\)
\(632\) 22.1614 5.25234i 0.881533 0.208927i
\(633\) 0 0
\(634\) 50.3694 + 33.1285i 2.00043 + 1.31570i
\(635\) 6.58352 3.30637i 0.261259 0.131209i
\(636\) 0 0
\(637\) −13.3720 14.1735i −0.529819 0.561575i
\(638\) −2.69069 + 15.2597i −0.106526 + 0.604137i
\(639\) 0 0
\(640\) −1.33792 7.58769i −0.0528857 0.299930i
\(641\) 5.33236 7.16261i 0.210616 0.282906i −0.684244 0.729253i \(-0.739868\pi\)
0.894860 + 0.446347i \(0.147275\pi\)
\(642\) 0 0
\(643\) 13.0387 + 3.09023i 0.514197 + 0.121867i 0.479519 0.877532i \(-0.340811\pi\)
0.0346781 + 0.999399i \(0.488959\pi\)
\(644\) 15.4830 1.80971i 0.610117 0.0713125i
\(645\) 0 0
\(646\) −5.51107 94.6214i −0.216830 3.72283i
\(647\) 48.7223 1.91547 0.957736 0.287649i \(-0.0928736\pi\)
0.957736 + 0.287649i \(0.0928736\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) 3.09172 + 53.0827i 0.121267 + 2.08208i
\(651\) 0 0
\(652\) 41.8066 4.88650i 1.63727 0.191370i
\(653\) −4.67541 1.10809i −0.182963 0.0433630i 0.138113 0.990416i \(-0.455896\pi\)
−0.321076 + 0.947053i \(0.604044\pi\)
\(654\) 0 0
\(655\) −5.62903 + 7.56110i −0.219944 + 0.295437i
\(656\) 0.385978 + 2.18899i 0.0150699 + 0.0854656i
\(657\) 0 0
\(658\) −4.21775 + 23.9201i −0.164425 + 0.932501i
\(659\) −17.3570 18.3974i −0.676133 0.716659i 0.294920 0.955522i \(-0.404707\pi\)
−0.971053 + 0.238863i \(0.923225\pi\)
\(660\) 0 0
\(661\) −12.6327 + 6.34438i −0.491355 + 0.246768i −0.677183 0.735814i \(-0.736800\pi\)
0.185828 + 0.982582i \(0.440503\pi\)
\(662\) 49.5714 + 32.6036i 1.92665 + 1.26718i
\(663\) 0 0
\(664\) 10.4439 2.47524i 0.405300 0.0960579i
\(665\) −7.07019 + 2.57334i −0.274170 + 0.0997898i
\(666\) 0 0
\(667\) −17.2393 6.27461i −0.667510 0.242954i
\(668\) 9.92518 + 1.16009i 0.384017 + 0.0448851i
\(669\) 0 0
\(670\) −1.17745 + 1.24802i −0.0454887 + 0.0482152i
\(671\) −2.59368 3.48392i −0.100128 0.134495i
\(672\) 0 0
\(673\) 2.38363 + 1.19711i 0.0918823 + 0.0461450i 0.494147 0.869378i \(-0.335481\pi\)
−0.402265 + 0.915523i \(0.631777\pi\)
\(674\) −13.8366 23.9656i −0.532965 0.923122i
\(675\) 0 0
\(676\) −21.1154 + 36.5730i −0.812131 + 1.40665i
\(677\) −12.3339 + 8.11215i −0.474031 + 0.311775i −0.763949 0.645276i \(-0.776742\pi\)
0.289918 + 0.957051i \(0.406372\pi\)
\(678\) 0 0
\(679\) 2.70211 6.26420i 0.103698 0.240398i
\(680\) 2.02797 + 6.77388i 0.0777689 + 0.259766i
\(681\) 0 0
\(682\) 2.89155 + 6.70336i 0.110723 + 0.256685i
\(683\) 16.0712 13.4854i 0.614948 0.516003i −0.281263 0.959631i \(-0.590753\pi\)
0.896211 + 0.443628i \(0.146309\pi\)
\(684\) 0 0
\(685\) −0.183640 0.154092i −0.00701653 0.00588756i
\(686\) 12.1616 40.6226i 0.464333 1.55098i
\(687\) 0 0
\(688\) −1.11634 + 19.1669i −0.0425602 + 0.730731i
\(689\) 2.64300 45.3786i 0.100690 1.72879i
\(690\) 0 0
\(691\) −9.99045 + 33.3704i −0.380055 + 1.26947i 0.527507 + 0.849551i \(0.323127\pi\)
−0.907561 + 0.419920i \(0.862058\pi\)
\(692\) −27.8199 23.3437i −1.05755 0.887394i
\(693\) 0 0
\(694\) 14.0227 11.7664i 0.532294 0.446648i
\(695\) −3.83519 8.89097i −0.145477 0.337254i
\(696\) 0 0
\(697\) −2.19045 7.31660i −0.0829691 0.277136i
\(698\) −25.9772 + 60.2219i −0.983251 + 2.27943i
\(699\) 0 0
\(700\) −19.1475 + 12.5935i −0.723709 + 0.475991i
\(701\) −21.8053 + 37.7679i −0.823576 + 1.42647i 0.0794276 + 0.996841i \(0.474691\pi\)
−0.903003 + 0.429634i \(0.858643\pi\)
\(702\) 0 0
\(703\) 4.54496 + 7.87209i 0.171416 + 0.296902i
\(704\) −13.4057 6.73262i −0.505248 0.253745i
\(705\) 0 0
\(706\) 30.1846 + 40.5449i 1.13601 + 1.52593i
\(707\) 5.83819 6.18812i 0.219568 0.232728i
\(708\) 0 0
\(709\) −18.1438 2.12071i −0.681406 0.0796449i −0.231654 0.972798i \(-0.574414\pi\)
−0.449752 + 0.893153i \(0.648488\pi\)
\(710\) 10.7731 + 3.92111i 0.404309 + 0.147156i
\(711\) 0 0
\(712\) 23.3867 8.51206i 0.876453 0.319003i
\(713\) −8.41050 + 1.99332i −0.314976 + 0.0746506i
\(714\) 0 0
\(715\) −3.48531 2.29233i −0.130343 0.0857281i
\(716\) −1.02116 + 0.512848i −0.0381627 + 0.0191660i
\(717\) 0 0
\(718\) −6.22342 6.59644i −0.232256 0.246177i
\(719\) 3.15002 17.8647i 0.117476 0.666240i −0.868018 0.496532i \(-0.834607\pi\)
0.985494 0.169708i \(-0.0542824\pi\)
\(720\) 0 0
\(721\) −1.64184 9.31131i −0.0611451 0.346771i
\(722\) −27.9008 + 37.4773i −1.03836 + 1.39476i
\(723\) 0 0
\(724\) 55.4572 + 13.1436i 2.06105 + 0.488478i
\(725\) 26.7891 3.13120i 0.994924 0.116290i
\(726\) 0 0
\(727\) −1.17766 20.2197i −0.0436770 0.749906i −0.947057 0.321065i \(-0.895959\pi\)
0.903380 0.428841i \(-0.141078\pi\)
\(728\) −15.5847 −0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) −3.83580 65.8581i −0.141872 2.43585i
\(732\) 0 0
\(733\) 1.75603 0.205251i 0.0648606 0.00758111i −0.0836007 0.996499i \(-0.526642\pi\)
0.148461 + 0.988918i \(0.452568\pi\)
\(734\) 24.8153 + 5.88133i 0.915948 + 0.217084i
\(735\) 0 0
\(736\) 14.0154 18.8260i 0.516616 0.693936i
\(737\) 0.256258 + 1.45331i 0.00943939 + 0.0535334i
\(738\) 0 0
\(739\) −1.58340 + 8.97988i −0.0582461 + 0.330330i −0.999982 0.00602346i \(-0.998083\pi\)
0.941736 + 0.336354i \(0.109194\pi\)
\(740\) −1.73314 1.83702i −0.0637115 0.0675303i
\(741\) 0 0
\(742\) 30.3145 15.2245i 1.11288 0.558910i
\(743\) −16.6442 10.9471i −0.610616 0.401608i 0.206197 0.978510i \(-0.433891\pi\)
−0.816813 + 0.576902i \(0.804261\pi\)
\(744\) 0 0
\(745\) −0.629228 + 0.149130i −0.0230531 + 0.00546369i
\(746\) 74.3653 27.0667i 2.72271 0.990984i
\(747\) 0 0
\(748\) 21.2839 + 7.74671i 0.778217 + 0.283248i
\(749\) 23.6035 + 2.75885i 0.862451 + 0.100806i
\(750\) 0 0
\(751\) 26.4586 28.0445i 0.965487 1.02336i −0.0342262 0.999414i \(-0.510897\pi\)
0.999713 0.0239424i \(-0.00762184\pi\)
\(752\) 7.26185 + 9.75436i 0.264812 + 0.355705i
\(753\) 0 0
\(754\) 61.0427 + 30.6568i 2.22305 + 1.11646i
\(755\) 0.00634611 + 0.0109918i 0.000230959 + 0.000400032i
\(756\) 0 0
\(757\) 25.4729 44.1204i 0.925829 1.60358i 0.135606 0.990763i \(-0.456702\pi\)
0.790223 0.612820i \(-0.209965\pi\)
\(758\) −18.2701 + 12.0164i −0.663599 + 0.436456i
\(759\) 0 0
\(760\) 2.60212 6.03239i 0.0943889 0.218818i
\(761\) 11.1682 + 37.3045i 0.404848 + 1.35229i 0.881080 + 0.472967i \(0.156817\pi\)
−0.476233 + 0.879319i \(0.657998\pi\)
\(762\) 0 0
\(763\) −1.28782 2.98550i −0.0466222 0.108082i
\(764\) −14.4293 + 12.1076i −0.522033 + 0.438038i
\(765\) 0 0
\(766\) −0.504379 0.423224i −0.0182239 0.0152917i
\(767\) −3.19409 + 10.6690i −0.115332 + 0.385235i
\(768\) 0 0
\(769\) −1.98573 + 34.0937i −0.0716073 + 1.22945i 0.750792 + 0.660539i \(0.229672\pi\)
−0.822399 + 0.568911i \(0.807365\pi\)
\(770\) 0.181016 3.10793i 0.00652338 0.112002i
\(771\) 0 0
\(772\) 6.85855 22.9091i 0.246845 0.824518i
\(773\) 2.31945 + 1.94625i 0.0834247 + 0.0700016i 0.683546 0.729907i \(-0.260437\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(774\) 0 0
\(775\) 9.73449 8.16820i 0.349673 0.293411i
\(776\) 2.35941 + 5.46972i 0.0846978 + 0.196352i
\(777\) 0 0
\(778\) −4.69241 15.6737i −0.168231 0.561930i
\(779\) −2.81061 + 6.51572i −0.100700 + 0.233450i
\(780\) 0 0
\(781\) 8.23836 5.41845i 0.294792 0.193887i
\(782\) −23.2165 + 40.2122i −0.830222 + 1.43799i
\(783\) 0 0
\(784\) −3.64034 6.30526i −0.130012 0.225188i
\(785\) 4.50892 + 2.26446i 0.160930 + 0.0808221i
\(786\) 0 0
\(787\) 1.35626 + 1.82178i 0.0483456 + 0.0649394i 0.825639 0.564199i \(-0.190815\pi\)
−0.777293 + 0.629139i \(0.783408\pi\)
\(788\) −15.8493 + 16.7993i −0.564608 + 0.598449i
\(789\) 0 0
\(790\) 19.9209 + 2.32841i 0.708752 + 0.0828413i
\(791\) −23.8739 8.68939i −0.848858 0.308959i
\(792\) 0 0
\(793\) −17.9926 + 6.54878i −0.638936 + 0.232554i
\(794\) −36.0869 + 8.55274i −1.28067 + 0.303525i
\(795\) 0 0
\(796\) −28.8295 18.9615i −1.02184 0.672072i
\(797\) −11.2447 + 5.64728i −0.398306 + 0.200037i −0.636665 0.771140i \(-0.719687\pi\)
0.238359 + 0.971177i \(0.423390\pi\)
\(798\) 0 0
\(799\) −28.6742 30.3929i −1.01442 1.07522i
\(800\) −5.99181 + 33.9812i −0.211842 + 1.20142i
\(801\) 0 0
\(802\) 5.12989 + 29.0931i 0.181143 + 1.02731i
\(803\) 4.63996 6.23255i 0.163741 0.219942i
\(804\) 0 0
\(805\) 3.58658 + 0.850035i 0.126410 + 0.0299598i
\(806\) 31.9656 3.73624i 1.12594 0.131603i
\(807\) 0 0
\(808\) 0.431929 + 7.41593i 0.0151952 + 0.260891i
\(809\) 13.7132 0.482129 0.241065 0.970509i \(-0.422503\pi\)
0.241065 + 0.970509i \(0.422503\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) 1.71187 + 29.3917i 0.0600748 + 1.03144i
\(813\) 0 0
\(814\) −3.73572 + 0.436644i −0.130937 + 0.0153043i
\(815\) 9.68433 + 2.29523i 0.339227 + 0.0803983i
\(816\) 0 0
\(817\) −36.6018 + 49.1647i −1.28053 + 1.72006i
\(818\) 0.254031 + 1.44068i 0.00888198 + 0.0503722i
\(819\) 0 0
\(820\) 0.342361 1.94163i 0.0119558 0.0678046i
\(821\) −35.4816 37.6083i −1.23832 1.31254i −0.932820 0.360344i \(-0.882659\pi\)
−0.305496 0.952193i \(-0.598822\pi\)
\(822\) 0 0
\(823\) 18.2164 9.14864i 0.634985 0.318902i −0.102026 0.994782i \(-0.532533\pi\)
0.737012 + 0.675880i \(0.236236\pi\)
\(824\) 6.89762 + 4.53664i 0.240290 + 0.158041i
\(825\) 0 0
\(826\) −8.08726 + 1.91672i −0.281392 + 0.0666911i
\(827\) −40.3124 + 14.6725i −1.40180 + 0.510213i −0.928712 0.370803i \(-0.879083\pi\)
−0.473087 + 0.881016i \(0.656860\pi\)
\(828\) 0 0
\(829\) −13.4165 4.88321i −0.465975 0.169601i 0.0983534 0.995152i \(-0.468642\pi\)
−0.564328 + 0.825551i \(0.690865\pi\)
\(830\) 9.38798 + 1.09730i 0.325861 + 0.0380877i
\(831\) 0 0
\(832\) −45.3827 + 48.1028i −1.57336 + 1.66767i
\(833\) 14.9389 + 20.0664i 0.517603 + 0.695261i
\(834\) 0 0
\(835\) 2.11149 + 1.06043i 0.0730711 + 0.0366977i
\(836\) −10.5221 18.2249i −0.363916 0.630321i
\(837\) 0 0
\(838\) 21.6341 37.4714i 0.747338 1.29443i
\(839\) 25.1136 16.5175i 0.867018 0.570247i −0.0362407 0.999343i \(-0.511538\pi\)
0.903259 + 0.429096i \(0.141168\pi\)
\(840\) 0 0
\(841\) 2.23748 5.18707i 0.0771545 0.178864i
\(842\) 7.83502 + 26.1708i 0.270013 + 0.901905i
\(843\) 0 0
\(844\) −6.14664 14.2495i −0.211576 0.490488i
\(845\) −7.64942 + 6.41863i −0.263148 + 0.220807i
\(846\) 0 0
\(847\) 13.3637 + 11.2135i 0.459183 + 0.385300i
\(848\) 4.87105 16.2704i 0.167273 0.558730i
\(849\) 0 0
\(850\) 3.96925 68.1495i 0.136144 2.33751i
\(851\) 0.258925 4.44556i 0.00887582 0.152392i
\(852\) 0 0
\(853\) −10.4796 + 35.0042i −0.358813 + 1.19852i 0.568010 + 0.823022i \(0.307713\pi\)
−0.926823 + 0.375498i \(0.877472\pi\)
\(854\) −10.9463 9.18504i −0.374575 0.314306i
\(855\) 0 0
\(856\) −15.8956 + 13.3380i −0.543299 + 0.455882i
\(857\) 18.2829 + 42.3845i 0.624532 + 1.44783i 0.877128 + 0.480256i \(0.159456\pi\)
−0.252596 + 0.967572i \(0.581284\pi\)
\(858\) 0 0
\(859\) 0.0885216 + 0.295683i 0.00302032 + 0.0100886i 0.959486 0.281755i \(-0.0909165\pi\)
−0.956466 + 0.291844i \(0.905731\pi\)
\(860\) 6.74516 15.6370i 0.230008 0.533219i
\(861\) 0 0
\(862\) 39.2705 25.8286i 1.33756 0.879727i
\(863\) −16.3176 + 28.2630i −0.555459 + 0.962083i 0.442409 + 0.896813i \(0.354124\pi\)
−0.997868 + 0.0652694i \(0.979209\pi\)
\(864\) 0 0
\(865\) −4.29355 7.43665i −0.145985 0.252854i
\(866\) −7.77630 3.90541i −0.264250 0.132711i
\(867\) 0 0
\(868\) 8.28329 + 11.1264i 0.281153 + 0.377654i
\(869\) 11.8379 12.5475i 0.401574 0.425643i
\(870\) 0 0
\(871\) 6.46163 + 0.755256i 0.218944 + 0.0255909i
\(872\) 2.66783 + 0.971011i 0.0903441 + 0.0328826i
\(873\) 0 0
\(874\) 40.5398 14.7553i 1.37128 0.499105i
\(875\) −11.0268 + 2.61340i −0.372774 + 0.0883491i
\(876\) 0 0
\(877\) −5.80901 3.82065i −0.196156 0.129014i 0.447631 0.894218i \(-0.352268\pi\)
−0.643788 + 0.765204i \(0.722638\pi\)
\(878\) 60.6861 30.4777i 2.04806 1.02857i
\(879\) 0 0
\(880\) −1.06962 1.13373i −0.0360570 0.0382182i
\(881\) −6.47573 + 36.7257i −0.218173 + 1.23732i 0.657142 + 0.753767i \(0.271765\pi\)
−0.875315 + 0.483553i \(0.839346\pi\)
\(882\) 0 0
\(883\) 1.07456 + 6.09412i 0.0361618 + 0.205084i 0.997536 0.0701625i \(-0.0223518\pi\)
−0.961374 + 0.275246i \(0.911241\pi\)
\(884\) 59.6261 80.0917i 2.00544 2.69378i
\(885\) 0 0
\(886\) 3.39206 + 0.803933i 0.113958 + 0.0270087i
\(887\) −18.4976 + 2.16206i −0.621088 + 0.0725948i −0.420817 0.907146i \(-0.638256\pi\)
−0.200271 + 0.979740i \(0.564182\pi\)
\(888\) 0 0
\(889\) −1.21211 20.8110i −0.0406527 0.697980i
\(890\) 21.9166 0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) 2.25733 + 38.7568i 0.0755385 + 1.29695i
\(894\) 0 0
\(895\) −0.268371 + 0.0313680i −0.00897064 + 0.00104852i
\(896\) −21.2139 5.02779i −0.708708 0.167967i
\(897\) 0 0
\(898\) 13.6490 18.3338i 0.455473 0.611807i
\(899\) −2.83476 16.0767i −0.0945444 0.536188i
\(900\) 0 0
\(901\) −10.1337 + 57.4708i −0.337601 + 1.91463i
\(902\) −2.01491 2.13568i −0.0670892 0.0711104i
\(903\) 0 0
\(904\) 19.8242 9.95610i 0.659344 0.331135i
\(905\) 11.2593 + 7.40533i 0.374271 + 0.246162i
\(906\) 0 0
\(907\) 25.4769 6.03814i 0.845947 0.200493i 0.215285 0.976551i \(-0.430932\pi\)
0.630661 + 0.776058i \(0.282784\pi\)
\(908\) −35.0525 + 12.7581i −1.16326 + 0.423392i
\(909\) 0 0
\(910\) −12.8966 4.69396i −0.427516 0.155603i
\(911\) 7.90750 + 0.924254i 0.261987 + 0.0306219i 0.246072 0.969251i \(-0.420860\pi\)
0.0159147 + 0.999873i \(0.494934\pi\)
\(912\) 0 0
\(913\) 5.57878 5.91316i 0.184631 0.195697i
\(914\) −53.4544 71.8017i −1.76811 2.37499i
\(915\) 0 0
\(916\) 39.0795 + 19.6265i 1.29122 + 0.648477i
\(917\) 13.3366 + 23.0996i 0.440412 + 0.762816i
\(918\) 0 0
\(919\) −27.5324 + 47.6875i −0.908210 + 1.57307i −0.0916606 + 0.995790i \(0.529217\pi\)
−0.816549 + 0.577276i \(0.804116\pi\)
\(920\) −2.68898 + 1.76857i −0.0886530 + 0.0583080i
\(921\) 0 0
\(922\) −29.5586 + 68.5245i −0.973460 + 2.25673i
\(923\) −12.4671 41.6430i −0.410360 1.37070i
\(924\) 0 0
\(925\) 2.59308 + 6.01143i 0.0852598 + 0.197654i
\(926\) 55.5581 46.6188i 1.82575 1.53199i
\(927\) 0 0
\(928\) 33.9569 + 28.4932i 1.11469 + 0.935336i
\(929\) −12.5788 + 42.0162i −0.412697 + 1.37851i 0.458989 + 0.888442i \(0.348212\pi\)
−0.871687 + 0.490063i \(0.836974\pi\)
\(930\) 0 0
\(931\) 1.35148 23.2040i 0.0442929 0.760480i
\(932\) −0.851973 + 14.6278i −0.0279073 + 0.479150i
\(933\) 0 0
\(934\) −6.48392 + 21.6578i −0.212160 + 0.708664i
\(935\) 4.10265 + 3.44253i 0.134171 + 0.112583i
\(936\) 0 0
\(937\) 25.4682 21.3704i 0.832010 0.698140i −0.123741 0.992315i \(-0.539489\pi\)
0.955752 + 0.294175i \(0.0950449\pi\)
\(938\) 1.92299 + 4.45799i 0.0627878 + 0.145558i
\(939\) 0 0
\(940\) −3.09360 10.3333i −0.100902 0.337037i
\(941\) −4.43921 + 10.2912i −0.144714 + 0.335485i −0.975121 0.221672i \(-0.928849\pi\)
0.830407 + 0.557157i \(0.188108\pi\)
\(942\) 0 0
\(943\) 2.90442 1.91027i 0.0945810 0.0622069i
\(944\) −2.08058 + 3.60368i −0.0677172 + 0.117290i
\(945\) 0 0
\(946\) −12.6807 21.9637i −0.412286 0.714101i
\(947\) −4.22787 2.12331i −0.137387 0.0689984i 0.378778 0.925488i \(-0.376345\pi\)
−0.516165 + 0.856489i \(0.672641\pi\)
\(948\) 0 0
\(949\) −20.4548 27.4756i −0.663991 0.891895i
\(950\) −43.5254 + 46.1343i −1.41215 + 1.49679i
\(951\) 0 0
\(952\) 19.8728 + 2.32280i 0.644082 + 0.0752824i
\(953\) −1.77553 0.646238i −0.0575149 0.0209337i 0.313102 0.949719i \(-0.398632\pi\)
−0.370617 + 0.928786i \(0.620854\pi\)
\(954\) 0 0
\(955\) −4.18525 + 1.52331i −0.135432 + 0.0492930i
\(956\) 42.9489 10.1791i 1.38907 0.329215i
\(957\) 0 0
\(958\) −36.8962 24.2670i −1.19206 0.784031i
\(959\) −0.606181 + 0.304436i −0.0195746 + 0.00983074i
\(960\) 0 0
\(961\) 15.9954 + 16.9541i 0.515981 + 0.546908i
\(962\) −2.87920 + 16.3288i −0.0928293 + 0.526461i
\(963\) 0 0
\(964\) −11.1041 62.9743i −0.357638 2.02827i
\(965\) 3.37662 4.53559i 0.108697 0.146006i
\(966\) 0 0
\(967\) −54.3404 12.8789i −1.74747 0.414158i −0.772236 0.635336i \(-0.780862\pi\)
−0.975234 + 0.221178i \(0.929010\pi\)
\(968\) −15.1296 + 1.76839i −0.486283 + 0.0568383i
\(969\) 0 0
\(970\) 0.305016 + 5.23692i 0.00979346 + 0.168147i
\(971\) 6.12547 0.196576 0.0982879 0.995158i \(-0.468663\pi\)
0.0982879 + 0.995158i \(0.468663\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) −3.48813 59.8889i −0.111767 1.91896i
\(975\) 0 0
\(976\) −7.10582 + 0.830551i −0.227452 + 0.0265853i
\(977\) −27.7777 6.58343i −0.888687 0.210623i −0.239177 0.970976i \(-0.576878\pi\)
−0.649510 + 0.760353i \(0.725026\pi\)
\(978\) 0 0
\(979\) 11.2566 15.1202i 0.359762 0.483244i
\(980\) 1.12141 + 6.35984i 0.0358222 + 0.203158i
\(981\) 0 0
\(982\) 3.86034 21.8931i 0.123188 0.698636i
\(983\) −15.1504 16.0585i −0.483224 0.512187i 0.439188 0.898395i \(-0.355266\pi\)
−0.922412 + 0.386208i \(0.873785\pi\)
\(984\) 0 0
\(985\) −4.88019 + 2.45092i −0.155496 + 0.0780929i
\(986\) −73.2697 48.1902i −2.33338 1.53469i
\(987\) 0 0
\(988\) −90.2709 + 21.3946i −2.87190 + 0.680653i
\(989\) 28.2164 10.2699i 0.897228 0.326564i
\(990\) 0 0
\(991\) 33.4354 + 12.1695i 1.06211 + 0.386577i 0.813221 0.581955i \(-0.197712\pi\)
0.248890 + 0.968532i \(0.419934\pi\)
\(992\) 20.7435 + 2.42456i 0.658606 + 0.0769800i
\(993\) 0 0
\(994\) 22.2620 23.5963i 0.706107 0.748430i
\(995\) −4.87228 6.54461i −0.154462 0.207478i
\(996\) 0 0
\(997\) 32.9108 + 16.5284i 1.04230 + 0.523461i 0.885727 0.464206i \(-0.153660\pi\)
0.156570 + 0.987667i \(0.449956\pi\)
\(998\) −9.51222 16.4757i −0.301104 0.521528i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.514.8 144
3.2 odd 2 729.2.g.d.514.1 144
9.2 odd 6 729.2.g.c.28.1 144
9.4 even 3 243.2.g.a.10.1 144
9.5 odd 6 81.2.g.a.13.8 144
9.7 even 3 729.2.g.b.28.8 144
81.2 odd 54 729.2.g.d.217.1 144
81.22 even 27 6561.2.a.d.1.8 72
81.25 even 27 729.2.g.b.703.8 144
81.29 odd 54 81.2.g.a.25.8 yes 144
81.52 even 27 243.2.g.a.73.1 144
81.56 odd 54 729.2.g.c.703.1 144
81.59 odd 54 6561.2.a.c.1.65 72
81.79 even 27 inner 729.2.g.a.217.8 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 9.5 odd 6
81.2.g.a.25.8 yes 144 81.29 odd 54
243.2.g.a.10.1 144 9.4 even 3
243.2.g.a.73.1 144 81.52 even 27
729.2.g.a.217.8 144 81.79 even 27 inner
729.2.g.a.514.8 144 1.1 even 1 trivial
729.2.g.b.28.8 144 9.7 even 3
729.2.g.b.703.8 144 81.25 even 27
729.2.g.c.28.1 144 9.2 odd 6
729.2.g.c.703.1 144 81.56 odd 54
729.2.g.d.217.1 144 81.2 odd 54
729.2.g.d.514.1 144 3.2 odd 2
6561.2.a.c.1.65 72 81.59 odd 54
6561.2.a.d.1.8 72 81.22 even 27