Properties

Label 729.2.g.a.514.2
Level $729$
Weight $2$
Character 729.514
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 514.2
Character \(\chi\) \(=\) 729.514
Dual form 729.2.g.a.217.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.123020 - 2.11218i) q^{2} +(-2.45968 + 0.287495i) q^{4} +(-3.78800 - 0.897774i) q^{5} +(-1.99164 + 2.67524i) q^{7} +(0.175036 + 0.992677i) q^{8} +(-1.43025 + 8.11138i) q^{10} +(0.519303 + 0.550429i) q^{11} +(2.22178 - 1.11582i) q^{13} +(5.89558 + 3.87759i) q^{14} +(-2.74416 + 0.650378i) q^{16} +(0.700932 - 0.255119i) q^{17} +(4.21736 + 1.53499i) q^{19} +(9.57537 + 1.11920i) q^{20} +(1.09872 - 1.16457i) q^{22} +(1.36553 + 1.83423i) q^{23} +(9.07482 + 4.55755i) q^{25} +(-2.63013 - 4.55552i) q^{26} +(4.12967 - 7.15280i) q^{28} +(0.387661 - 0.254968i) q^{29} +(-1.56139 + 3.61971i) q^{31} +(2.28949 + 7.64743i) q^{32} +(-0.625084 - 1.44911i) q^{34} +(9.94610 - 8.34577i) q^{35} +(-3.64375 - 3.05747i) q^{37} +(2.72336 - 9.09665i) q^{38} +(0.228163 - 3.91741i) q^{40} +(0.284474 - 4.88423i) q^{41} +(-1.70392 + 5.69149i) q^{43} +(-1.43556 - 1.20458i) q^{44} +(3.70623 - 3.10990i) q^{46} +(4.26433 + 9.88583i) q^{47} +(-1.18264 - 3.95029i) q^{49} +(8.50995 - 19.7283i) q^{50} +(-5.14406 + 3.38330i) q^{52} +(-5.75294 + 9.96438i) q^{53} +(-1.47296 - 2.55124i) q^{55} +(-3.00425 - 1.50879i) q^{56} +(-0.586228 - 0.787441i) q^{58} +(-2.84735 + 3.01801i) q^{59} +(-0.265410 - 0.0310220i) q^{61} +(7.83755 + 2.85264i) q^{62} +(10.5709 - 3.84748i) q^{64} +(-9.41786 + 2.23207i) q^{65} +(1.60209 + 1.05371i) q^{67} +(-1.65072 + 0.829024i) q^{68} +(-18.8513 - 19.9812i) q^{70} +(-1.17278 + 6.65118i) q^{71} +(1.37723 + 7.81064i) q^{73} +(-6.00966 + 8.07238i) q^{74} +(-10.8147 - 2.56312i) q^{76} +(-2.50679 + 0.293002i) q^{77} +(-0.250999 - 4.30948i) q^{79} +10.9788 q^{80} -10.3513 q^{82} +(-0.148089 - 2.54258i) q^{83} +(-2.88417 + 0.337112i) q^{85} +(12.2310 + 2.89881i) q^{86} +(-0.455501 + 0.611845i) q^{88} +(0.935549 + 5.30576i) q^{89} +(-1.43990 + 8.16609i) q^{91} +(-3.88610 - 4.11903i) q^{92} +(20.3560 - 10.2232i) q^{94} +(-14.5973 - 9.60081i) q^{95} +(9.23262 - 2.18817i) q^{97} +(-8.19821 + 2.98391i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{13}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.123020 2.11218i −0.0869884 1.49353i −0.706034 0.708178i \(-0.749517\pi\)
0.619045 0.785355i \(-0.287520\pi\)
\(3\) 0 0
\(4\) −2.45968 + 0.287495i −1.22984 + 0.143747i
\(5\) −3.78800 0.897774i −1.69405 0.401497i −0.733517 0.679671i \(-0.762122\pi\)
−0.960530 + 0.278175i \(0.910271\pi\)
\(6\) 0 0
\(7\) −1.99164 + 2.67524i −0.752769 + 1.01114i 0.246350 + 0.969181i \(0.420769\pi\)
−0.999119 + 0.0419634i \(0.986639\pi\)
\(8\) 0.175036 + 0.992677i 0.0618845 + 0.350964i
\(9\) 0 0
\(10\) −1.43025 + 8.11138i −0.452286 + 2.56504i
\(11\) 0.519303 + 0.550429i 0.156576 + 0.165961i 0.800913 0.598781i \(-0.204348\pi\)
−0.644337 + 0.764742i \(0.722867\pi\)
\(12\) 0 0
\(13\) 2.22178 1.11582i 0.616210 0.309472i −0.113176 0.993575i \(-0.536102\pi\)
0.729386 + 0.684103i \(0.239806\pi\)
\(14\) 5.89558 + 3.87759i 1.57566 + 1.03633i
\(15\) 0 0
\(16\) −2.74416 + 0.650378i −0.686041 + 0.162595i
\(17\) 0.700932 0.255119i 0.170001 0.0618753i −0.255617 0.966778i \(-0.582279\pi\)
0.425619 + 0.904903i \(0.360057\pi\)
\(18\) 0 0
\(19\) 4.21736 + 1.53499i 0.967530 + 0.352152i 0.776980 0.629526i \(-0.216751\pi\)
0.190550 + 0.981678i \(0.438973\pi\)
\(20\) 9.57537 + 1.11920i 2.14112 + 0.250261i
\(21\) 0 0
\(22\) 1.09872 1.16457i 0.234247 0.248288i
\(23\) 1.36553 + 1.83423i 0.284733 + 0.382463i 0.921361 0.388708i \(-0.127079\pi\)
−0.636628 + 0.771171i \(0.719671\pi\)
\(24\) 0 0
\(25\) 9.07482 + 4.55755i 1.81496 + 0.911509i
\(26\) −2.63013 4.55552i −0.515811 0.893410i
\(27\) 0 0
\(28\) 4.12967 7.15280i 0.780435 1.35175i
\(29\) 0.387661 0.254968i 0.0719868 0.0473464i −0.513005 0.858385i \(-0.671468\pi\)
0.584992 + 0.811039i \(0.301098\pi\)
\(30\) 0 0
\(31\) −1.56139 + 3.61971i −0.280434 + 0.650120i −0.998970 0.0453702i \(-0.985553\pi\)
0.718536 + 0.695490i \(0.244813\pi\)
\(32\) 2.28949 + 7.64743i 0.404729 + 1.35189i
\(33\) 0 0
\(34\) −0.625084 1.44911i −0.107201 0.248520i
\(35\) 9.94610 8.34577i 1.68120 1.41069i
\(36\) 0 0
\(37\) −3.64375 3.05747i −0.599029 0.502645i 0.292104 0.956387i \(-0.405645\pi\)
−0.891134 + 0.453741i \(0.850089\pi\)
\(38\) 2.72336 9.09665i 0.441787 1.47567i
\(39\) 0 0
\(40\) 0.228163 3.91741i 0.0360757 0.619396i
\(41\) 0.284474 4.88423i 0.0444273 0.762788i −0.900368 0.435128i \(-0.856703\pi\)
0.944796 0.327660i \(-0.106260\pi\)
\(42\) 0 0
\(43\) −1.70392 + 5.69149i −0.259845 + 0.867944i 0.724134 + 0.689660i \(0.242240\pi\)
−0.983979 + 0.178284i \(0.942945\pi\)
\(44\) −1.43556 1.20458i −0.216419 0.181597i
\(45\) 0 0
\(46\) 3.70623 3.10990i 0.546454 0.458529i
\(47\) 4.26433 + 9.88583i 0.622017 + 1.44200i 0.879587 + 0.475738i \(0.157819\pi\)
−0.257570 + 0.966260i \(0.582922\pi\)
\(48\) 0 0
\(49\) −1.18264 3.95029i −0.168948 0.564327i
\(50\) 8.50995 19.7283i 1.20349 2.79000i
\(51\) 0 0
\(52\) −5.14406 + 3.38330i −0.713353 + 0.469180i
\(53\) −5.75294 + 9.96438i −0.790227 + 1.36871i 0.135600 + 0.990764i \(0.456704\pi\)
−0.925826 + 0.377949i \(0.876629\pi\)
\(54\) 0 0
\(55\) −1.47296 2.55124i −0.198614 0.344010i
\(56\) −3.00425 1.50879i −0.401460 0.201621i
\(57\) 0 0
\(58\) −0.586228 0.787441i −0.0769755 0.103396i
\(59\) −2.84735 + 3.01801i −0.370693 + 0.392911i −0.885687 0.464282i \(-0.846312\pi\)
0.514995 + 0.857193i \(0.327794\pi\)
\(60\) 0 0
\(61\) −0.265410 0.0310220i −0.0339823 0.00397196i 0.0990848 0.995079i \(-0.468408\pi\)
−0.133067 + 0.991107i \(0.542483\pi\)
\(62\) 7.83755 + 2.85264i 0.995370 + 0.362285i
\(63\) 0 0
\(64\) 10.5709 3.84748i 1.32136 0.480935i
\(65\) −9.41786 + 2.23207i −1.16814 + 0.276855i
\(66\) 0 0
\(67\) 1.60209 + 1.05371i 0.195726 + 0.128731i 0.643589 0.765371i \(-0.277444\pi\)
−0.447863 + 0.894102i \(0.647815\pi\)
\(68\) −1.65072 + 0.829024i −0.200179 + 0.100534i
\(69\) 0 0
\(70\) −18.8513 19.9812i −2.25316 2.38821i
\(71\) −1.17278 + 6.65118i −0.139184 + 0.789350i 0.832671 + 0.553768i \(0.186811\pi\)
−0.971855 + 0.235582i \(0.924300\pi\)
\(72\) 0 0
\(73\) 1.37723 + 7.81064i 0.161192 + 0.914167i 0.952904 + 0.303272i \(0.0980791\pi\)
−0.791712 + 0.610895i \(0.790810\pi\)
\(74\) −6.00966 + 8.07238i −0.698609 + 0.938395i
\(75\) 0 0
\(76\) −10.8147 2.56312i −1.24053 0.294010i
\(77\) −2.50679 + 0.293002i −0.285675 + 0.0333907i
\(78\) 0 0
\(79\) −0.250999 4.30948i −0.0282396 0.484855i −0.982545 0.186023i \(-0.940440\pi\)
0.954306 0.298832i \(-0.0965970\pi\)
\(80\) 10.9788 1.22747
\(81\) 0 0
\(82\) −10.3513 −1.14311
\(83\) −0.148089 2.54258i −0.0162548 0.279085i −0.996635 0.0819684i \(-0.973879\pi\)
0.980380 0.197116i \(-0.0631577\pi\)
\(84\) 0 0
\(85\) −2.88417 + 0.337112i −0.312833 + 0.0365649i
\(86\) 12.2310 + 2.89881i 1.31891 + 0.312587i
\(87\) 0 0
\(88\) −0.455501 + 0.611845i −0.0485566 + 0.0652229i
\(89\) 0.935549 + 5.30576i 0.0991680 + 0.562410i 0.993390 + 0.114786i \(0.0366184\pi\)
−0.894222 + 0.447623i \(0.852271\pi\)
\(90\) 0 0
\(91\) −1.43990 + 8.16609i −0.150943 + 0.856039i
\(92\) −3.88610 4.11903i −0.405154 0.429438i
\(93\) 0 0
\(94\) 20.3560 10.2232i 2.09956 1.05444i
\(95\) −14.5973 9.60081i −1.49765 0.985022i
\(96\) 0 0
\(97\) 9.23262 2.18817i 0.937431 0.222175i 0.266618 0.963802i \(-0.414094\pi\)
0.670812 + 0.741627i \(0.265946\pi\)
\(98\) −8.19821 + 2.98391i −0.828145 + 0.301420i
\(99\) 0 0
\(100\) −23.6314 8.60112i −2.36314 0.860112i
\(101\) −12.2244 1.42883i −1.21638 0.142174i −0.516406 0.856344i \(-0.672730\pi\)
−0.699972 + 0.714170i \(0.746804\pi\)
\(102\) 0 0
\(103\) −11.4398 + 12.1255i −1.12720 + 1.19476i −0.148623 + 0.988894i \(0.547484\pi\)
−0.978579 + 0.205870i \(0.933998\pi\)
\(104\) 1.49654 + 2.01020i 0.146748 + 0.197116i
\(105\) 0 0
\(106\) 21.7542 + 10.9254i 2.11296 + 1.06117i
\(107\) −1.84694 3.19899i −0.178550 0.309258i 0.762834 0.646595i \(-0.223807\pi\)
−0.941384 + 0.337336i \(0.890474\pi\)
\(108\) 0 0
\(109\) 8.66961 15.0162i 0.830398 1.43829i −0.0673245 0.997731i \(-0.521446\pi\)
0.897723 0.440561i \(-0.145220\pi\)
\(110\) −5.20747 + 3.42501i −0.496513 + 0.326562i
\(111\) 0 0
\(112\) 3.72547 8.63660i 0.352024 0.816082i
\(113\) −2.95666 9.87594i −0.278139 0.929051i −0.976900 0.213695i \(-0.931450\pi\)
0.698761 0.715355i \(-0.253735\pi\)
\(114\) 0 0
\(115\) −3.52593 8.17401i −0.328794 0.762231i
\(116\) −0.880217 + 0.738590i −0.0817261 + 0.0685764i
\(117\) 0 0
\(118\) 6.72485 + 5.64282i 0.619072 + 0.519464i
\(119\) −0.713503 + 2.38326i −0.0654067 + 0.218473i
\(120\) 0 0
\(121\) 0.606297 10.4097i 0.0551179 0.946337i
\(122\) −0.0328731 + 0.564409i −0.00297619 + 0.0510992i
\(123\) 0 0
\(124\) 2.79987 9.35221i 0.251436 0.839854i
\(125\) −15.3730 12.8995i −1.37500 1.15376i
\(126\) 0 0
\(127\) −10.1217 + 8.49315i −0.898159 + 0.753645i −0.969830 0.243783i \(-0.921611\pi\)
0.0716705 + 0.997428i \(0.477167\pi\)
\(128\) −3.10334 7.19434i −0.274299 0.635896i
\(129\) 0 0
\(130\) 5.87312 + 19.6176i 0.515107 + 1.72058i
\(131\) −3.98509 + 9.23849i −0.348179 + 0.807170i 0.650677 + 0.759355i \(0.274485\pi\)
−0.998856 + 0.0478157i \(0.984774\pi\)
\(132\) 0 0
\(133\) −12.5059 + 8.22529i −1.08440 + 0.713223i
\(134\) 2.02853 3.51352i 0.175238 0.303522i
\(135\) 0 0
\(136\) 0.375938 + 0.651145i 0.0322365 + 0.0558352i
\(137\) 8.46148 + 4.24951i 0.722913 + 0.363061i 0.771904 0.635739i \(-0.219304\pi\)
−0.0489914 + 0.998799i \(0.515601\pi\)
\(138\) 0 0
\(139\) −6.27037 8.42257i −0.531846 0.714393i 0.452278 0.891877i \(-0.350612\pi\)
−0.984124 + 0.177484i \(0.943204\pi\)
\(140\) −22.0648 + 23.3873i −1.86482 + 1.97659i
\(141\) 0 0
\(142\) 14.1927 + 1.65889i 1.19103 + 0.139211i
\(143\) 1.76795 + 0.643483i 0.147844 + 0.0538107i
\(144\) 0 0
\(145\) −1.69736 + 0.617790i −0.140958 + 0.0513047i
\(146\) 16.3280 3.86981i 1.35132 0.320268i
\(147\) 0 0
\(148\) 9.84146 + 6.47283i 0.808963 + 0.532063i
\(149\) −11.1073 + 5.57830i −0.909947 + 0.456992i −0.841251 0.540645i \(-0.818180\pi\)
−0.0686960 + 0.997638i \(0.521884\pi\)
\(150\) 0 0
\(151\) 12.5081 + 13.2578i 1.01790 + 1.07891i 0.996864 + 0.0791296i \(0.0252141\pi\)
0.0210332 + 0.999779i \(0.493304\pi\)
\(152\) −0.785565 + 4.45516i −0.0637177 + 0.361361i
\(153\) 0 0
\(154\) 0.927258 + 5.25874i 0.0747206 + 0.423761i
\(155\) 9.16424 12.3097i 0.736090 0.988740i
\(156\) 0 0
\(157\) 22.7419 + 5.38993i 1.81500 + 0.430163i 0.990709 0.136002i \(-0.0434254\pi\)
0.824292 + 0.566165i \(0.191574\pi\)
\(158\) −9.07151 + 1.06031i −0.721691 + 0.0843536i
\(159\) 0 0
\(160\) −1.80694 31.0240i −0.142851 2.45266i
\(161\) −7.62665 −0.601064
\(162\) 0 0
\(163\) 11.7238 0.918278 0.459139 0.888364i \(-0.348158\pi\)
0.459139 + 0.888364i \(0.348158\pi\)
\(164\) 0.704477 + 12.0954i 0.0550104 + 0.944492i
\(165\) 0 0
\(166\) −5.35217 + 0.625579i −0.415409 + 0.0485543i
\(167\) 23.5604 + 5.58392i 1.82316 + 0.432097i 0.992244 0.124304i \(-0.0396697\pi\)
0.830914 + 0.556400i \(0.187818\pi\)
\(168\) 0 0
\(169\) −4.07182 + 5.46940i −0.313217 + 0.420723i
\(170\) 1.06685 + 6.05041i 0.0818237 + 0.464045i
\(171\) 0 0
\(172\) 2.55482 14.4891i 0.194803 1.10478i
\(173\) −10.6453 11.2833i −0.809346 0.857857i 0.182773 0.983155i \(-0.441493\pi\)
−0.992119 + 0.125298i \(0.960011\pi\)
\(174\) 0 0
\(175\) −30.2663 + 15.2003i −2.28792 + 1.14903i
\(176\) −1.78304 1.17272i −0.134402 0.0883973i
\(177\) 0 0
\(178\) 11.0916 2.62876i 0.831352 0.197034i
\(179\) −6.75474 + 2.45852i −0.504873 + 0.183759i −0.581884 0.813271i \(-0.697684\pi\)
0.0770114 + 0.997030i \(0.475462\pi\)
\(180\) 0 0
\(181\) 7.27112 + 2.64647i 0.540458 + 0.196711i 0.597802 0.801644i \(-0.296041\pi\)
−0.0573439 + 0.998354i \(0.518263\pi\)
\(182\) 17.4254 + 2.03673i 1.29165 + 0.150973i
\(183\) 0 0
\(184\) −1.58178 + 1.67659i −0.116610 + 0.123600i
\(185\) 11.0576 + 14.8530i 0.812974 + 1.09201i
\(186\) 0 0
\(187\) 0.504421 + 0.253330i 0.0368869 + 0.0185253i
\(188\) −13.3310 23.0900i −0.972264 1.68401i
\(189\) 0 0
\(190\) −18.4828 + 32.0132i −1.34089 + 2.32248i
\(191\) −8.42018 + 5.53804i −0.609263 + 0.400719i −0.816311 0.577612i \(-0.803985\pi\)
0.207048 + 0.978331i \(0.433614\pi\)
\(192\) 0 0
\(193\) −6.33422 + 14.6844i −0.455947 + 1.05700i 0.522897 + 0.852396i \(0.324851\pi\)
−0.978844 + 0.204608i \(0.934408\pi\)
\(194\) −5.75760 19.2317i −0.413372 1.38076i
\(195\) 0 0
\(196\) 4.04460 + 9.37643i 0.288900 + 0.669745i
\(197\) −8.40349 + 7.05136i −0.598724 + 0.502389i −0.891035 0.453934i \(-0.850020\pi\)
0.292311 + 0.956323i \(0.405576\pi\)
\(198\) 0 0
\(199\) 2.68937 + 2.25665i 0.190644 + 0.159970i 0.733114 0.680106i \(-0.238066\pi\)
−0.542470 + 0.840075i \(0.682511\pi\)
\(200\) −2.93575 + 9.80609i −0.207589 + 0.693396i
\(201\) 0 0
\(202\) −1.51409 + 25.9960i −0.106531 + 1.82907i
\(203\) −0.0899795 + 1.54489i −0.00631532 + 0.108430i
\(204\) 0 0
\(205\) −5.46252 + 18.2461i −0.381519 + 1.27436i
\(206\) 27.0186 + 22.6713i 1.88247 + 1.57958i
\(207\) 0 0
\(208\) −5.37122 + 4.50698i −0.372427 + 0.312503i
\(209\) 1.34518 + 3.11849i 0.0930483 + 0.215710i
\(210\) 0 0
\(211\) 2.20372 + 7.36094i 0.151710 + 0.506748i 0.999730 0.0232159i \(-0.00739053\pi\)
−0.848020 + 0.529964i \(0.822205\pi\)
\(212\) 11.2857 26.1631i 0.775102 1.79689i
\(213\) 0 0
\(214\) −6.52962 + 4.29460i −0.446356 + 0.293573i
\(215\) 11.5641 20.0297i 0.788667 1.36601i
\(216\) 0 0
\(217\) −6.57386 11.3863i −0.446262 0.772949i
\(218\) −32.7834 16.4644i −2.22037 1.11511i
\(219\) 0 0
\(220\) 4.35648 + 5.85177i 0.293714 + 0.394526i
\(221\) 1.27265 1.34893i 0.0856077 0.0907389i
\(222\) 0 0
\(223\) −10.7710 1.25894i −0.721276 0.0843051i −0.252468 0.967605i \(-0.581242\pi\)
−0.468808 + 0.883300i \(0.655316\pi\)
\(224\) −25.0185 9.10600i −1.67162 0.608420i
\(225\) 0 0
\(226\) −20.4960 + 7.45993i −1.36337 + 0.496227i
\(227\) 10.5686 2.50480i 0.701461 0.166249i 0.135617 0.990761i \(-0.456698\pi\)
0.565844 + 0.824512i \(0.308550\pi\)
\(228\) 0 0
\(229\) −1.91282 1.25808i −0.126403 0.0831363i 0.484733 0.874662i \(-0.338917\pi\)
−0.611136 + 0.791526i \(0.709287\pi\)
\(230\) −16.8312 + 8.45294i −1.10982 + 0.557371i
\(231\) 0 0
\(232\) 0.320956 + 0.340193i 0.0210718 + 0.0223348i
\(233\) −3.09286 + 17.5405i −0.202620 + 1.14912i 0.698521 + 0.715590i \(0.253842\pi\)
−0.901141 + 0.433526i \(0.857269\pi\)
\(234\) 0 0
\(235\) −7.27807 41.2760i −0.474769 2.69255i
\(236\) 6.13589 8.24192i 0.399412 0.536504i
\(237\) 0 0
\(238\) 5.12165 + 1.21385i 0.331987 + 0.0786824i
\(239\) −12.1833 + 1.42403i −0.788073 + 0.0921126i −0.500603 0.865677i \(-0.666888\pi\)
−0.287470 + 0.957790i \(0.592814\pi\)
\(240\) 0 0
\(241\) −1.01750 17.4699i −0.0655432 1.12533i −0.857408 0.514637i \(-0.827927\pi\)
0.791865 0.610696i \(-0.209110\pi\)
\(242\) −22.0617 −1.41818
\(243\) 0 0
\(244\) 0.661742 0.0423637
\(245\) 0.933376 + 16.0254i 0.0596312 + 1.02383i
\(246\) 0 0
\(247\) 11.0828 1.29540i 0.705183 0.0824241i
\(248\) −3.86650 0.916378i −0.245523 0.0581901i
\(249\) 0 0
\(250\) −25.3548 + 34.0574i −1.60358 + 2.15398i
\(251\) −3.26810 18.5343i −0.206281 1.16988i −0.895412 0.445239i \(-0.853119\pi\)
0.689131 0.724637i \(-0.257992\pi\)
\(252\) 0 0
\(253\) −0.300488 + 1.70415i −0.0188915 + 0.107139i
\(254\) 19.1842 + 20.3341i 1.20372 + 1.27587i
\(255\) 0 0
\(256\) 5.29150 2.65749i 0.330718 0.166093i
\(257\) 14.4064 + 9.47524i 0.898646 + 0.591049i 0.912600 0.408854i \(-0.134071\pi\)
−0.0139536 + 0.999903i \(0.504442\pi\)
\(258\) 0 0
\(259\) 15.4365 3.65852i 0.959178 0.227329i
\(260\) 22.5232 8.19776i 1.39683 0.508404i
\(261\) 0 0
\(262\) 20.0036 + 7.28070i 1.23582 + 0.449803i
\(263\) −24.4451 2.85722i −1.50735 0.176184i −0.678062 0.735005i \(-0.737180\pi\)
−0.829288 + 0.558821i \(0.811254\pi\)
\(264\) 0 0
\(265\) 30.7379 32.5803i 1.88821 2.00139i
\(266\) 18.9117 + 25.4029i 1.15955 + 1.55755i
\(267\) 0 0
\(268\) −4.24356 2.13119i −0.259216 0.130183i
\(269\) 5.32448 + 9.22227i 0.324639 + 0.562292i 0.981439 0.191773i \(-0.0614238\pi\)
−0.656800 + 0.754065i \(0.728090\pi\)
\(270\) 0 0
\(271\) 2.35817 4.08447i 0.143249 0.248114i −0.785469 0.618900i \(-0.787578\pi\)
0.928718 + 0.370786i \(0.120912\pi\)
\(272\) −1.75755 + 1.15596i −0.106567 + 0.0700903i
\(273\) 0 0
\(274\) 7.93479 18.3949i 0.479358 1.11128i
\(275\) 2.20398 + 7.36179i 0.132905 + 0.443933i
\(276\) 0 0
\(277\) −2.61873 6.07089i −0.157344 0.364765i 0.821249 0.570570i \(-0.193278\pi\)
−0.978593 + 0.205806i \(0.934019\pi\)
\(278\) −17.0186 + 14.2803i −1.02071 + 0.856474i
\(279\) 0 0
\(280\) 10.0256 + 8.41245i 0.599142 + 0.502740i
\(281\) −0.710180 + 2.37217i −0.0423658 + 0.141512i −0.976556 0.215264i \(-0.930939\pi\)
0.934190 + 0.356776i \(0.116124\pi\)
\(282\) 0 0
\(283\) −0.0539093 + 0.925587i −0.00320457 + 0.0550204i −0.999531 0.0306125i \(-0.990254\pi\)
0.996327 + 0.0856330i \(0.0272912\pi\)
\(284\) 0.972485 16.6969i 0.0577064 0.990780i
\(285\) 0 0
\(286\) 1.14165 3.81339i 0.0675075 0.225491i
\(287\) 12.4999 + 10.4887i 0.737845 + 0.619126i
\(288\) 0 0
\(289\) −12.5965 + 10.5697i −0.740973 + 0.621750i
\(290\) 1.51369 + 3.50913i 0.0888870 + 0.206063i
\(291\) 0 0
\(292\) −5.63305 18.8157i −0.329650 1.10111i
\(293\) −0.928830 + 2.15327i −0.0542628 + 0.125795i −0.943191 0.332252i \(-0.892192\pi\)
0.888928 + 0.458047i \(0.151451\pi\)
\(294\) 0 0
\(295\) 13.4952 8.87596i 0.785724 0.516779i
\(296\) 2.39729 4.15224i 0.139340 0.241344i
\(297\) 0 0
\(298\) 13.1488 + 22.7744i 0.761688 + 1.31928i
\(299\) 5.08058 + 2.55156i 0.293818 + 0.147561i
\(300\) 0 0
\(301\) −11.8325 15.8938i −0.682013 0.916103i
\(302\) 26.4642 28.0504i 1.52284 1.61412i
\(303\) 0 0
\(304\) −12.5715 1.46939i −0.721023 0.0842755i
\(305\) 0.977524 + 0.355790i 0.0559729 + 0.0203725i
\(306\) 0 0
\(307\) 14.3376 5.21846i 0.818289 0.297833i 0.101246 0.994861i \(-0.467717\pi\)
0.717043 + 0.697028i \(0.245495\pi\)
\(308\) 6.08166 1.44138i 0.346535 0.0821302i
\(309\) 0 0
\(310\) −27.1277 17.8421i −1.54075 1.01337i
\(311\) 14.9627 7.51453i 0.848455 0.426110i 0.0292231 0.999573i \(-0.490697\pi\)
0.819231 + 0.573463i \(0.194400\pi\)
\(312\) 0 0
\(313\) −22.3532 23.6930i −1.26348 1.33921i −0.915822 0.401584i \(-0.868460\pi\)
−0.347654 0.937623i \(-0.613022\pi\)
\(314\) 8.58676 48.6979i 0.484579 2.74818i
\(315\) 0 0
\(316\) 1.85633 + 10.5278i 0.104427 + 0.592234i
\(317\) −12.9409 + 17.3827i −0.726835 + 0.976309i 0.273063 + 0.961996i \(0.411963\pi\)
−0.999898 + 0.0143125i \(0.995444\pi\)
\(318\) 0 0
\(319\) 0.341655 + 0.0809738i 0.0191290 + 0.00453366i
\(320\) −43.4966 + 5.08403i −2.43154 + 0.284206i
\(321\) 0 0
\(322\) 0.938232 + 16.1088i 0.0522856 + 0.897710i
\(323\) 3.34769 0.186271
\(324\) 0 0
\(325\) 25.2476 1.40049
\(326\) −1.44226 24.7627i −0.0798796 1.37148i
\(327\) 0 0
\(328\) 4.89825 0.572523i 0.270461 0.0316123i
\(329\) −34.9400 8.28092i −1.92630 0.456542i
\(330\) 0 0
\(331\) 14.2197 19.1003i 0.781583 1.04985i −0.215720 0.976455i \(-0.569210\pi\)
0.997303 0.0733934i \(-0.0233829\pi\)
\(332\) 1.09523 + 6.21136i 0.0601086 + 0.340893i
\(333\) 0 0
\(334\) 8.89581 50.4507i 0.486757 2.76054i
\(335\) −5.12273 5.42977i −0.279884 0.296660i
\(336\) 0 0
\(337\) −16.4386 + 8.25578i −0.895468 + 0.449721i −0.836139 0.548517i \(-0.815192\pi\)
−0.0593292 + 0.998238i \(0.518896\pi\)
\(338\) 12.0532 + 7.92755i 0.655610 + 0.431202i
\(339\) 0 0
\(340\) 6.99722 1.65837i 0.379477 0.0899378i
\(341\) −2.80323 + 1.02029i −0.151803 + 0.0552519i
\(342\) 0 0
\(343\) −9.01506 3.28121i −0.486767 0.177169i
\(344\) −5.94806 0.695228i −0.320698 0.0374842i
\(345\) 0 0
\(346\) −22.5228 + 23.8728i −1.21083 + 1.28341i
\(347\) 10.0986 + 13.5648i 0.542122 + 0.728196i 0.985788 0.167996i \(-0.0537296\pi\)
−0.443665 + 0.896192i \(0.646322\pi\)
\(348\) 0 0
\(349\) 7.29849 + 3.66544i 0.390679 + 0.196206i 0.633285 0.773918i \(-0.281706\pi\)
−0.242606 + 0.970125i \(0.578002\pi\)
\(350\) 35.8291 + 62.0578i 1.91514 + 3.31713i
\(351\) 0 0
\(352\) −3.02043 + 5.23154i −0.160989 + 0.278842i
\(353\) 20.5651 13.5258i 1.09457 0.719908i 0.132081 0.991239i \(-0.457834\pi\)
0.962486 + 0.271331i \(0.0874637\pi\)
\(354\) 0 0
\(355\) 10.4138 24.1418i 0.552705 1.28131i
\(356\) −3.82653 12.7815i −0.202806 0.677418i
\(357\) 0 0
\(358\) 6.02381 + 13.9648i 0.318368 + 0.738060i
\(359\) 9.68682 8.12821i 0.511251 0.428990i −0.350318 0.936631i \(-0.613927\pi\)
0.861569 + 0.507640i \(0.169482\pi\)
\(360\) 0 0
\(361\) 0.875105 + 0.734300i 0.0460582 + 0.0386474i
\(362\) 4.69532 15.6835i 0.246780 0.824304i
\(363\) 0 0
\(364\) 1.19398 20.4999i 0.0625817 1.07449i
\(365\) 1.79525 30.8232i 0.0939675 1.61336i
\(366\) 0 0
\(367\) 3.00976 10.0533i 0.157108 0.524777i −0.842802 0.538224i \(-0.819095\pi\)
0.999910 + 0.0134470i \(0.00428046\pi\)
\(368\) −4.94019 4.14531i −0.257525 0.216089i
\(369\) 0 0
\(370\) 30.0118 25.1829i 1.56024 1.30920i
\(371\) −15.1993 35.2359i −0.789108 1.82936i
\(372\) 0 0
\(373\) −3.38324 11.3008i −0.175178 0.585135i −0.999811 0.0194660i \(-0.993803\pi\)
0.824633 0.565668i \(-0.191382\pi\)
\(374\) 0.473023 1.09659i 0.0244594 0.0567033i
\(375\) 0 0
\(376\) −9.06703 + 5.96348i −0.467596 + 0.307543i
\(377\) 0.576797 0.999042i 0.0297066 0.0514533i
\(378\) 0 0
\(379\) −9.06853 15.7072i −0.465819 0.806823i 0.533419 0.845851i \(-0.320907\pi\)
−0.999238 + 0.0390286i \(0.987574\pi\)
\(380\) 38.6649 + 19.4182i 1.98347 + 0.996134i
\(381\) 0 0
\(382\) 12.7332 + 17.1036i 0.651486 + 0.875097i
\(383\) 10.6488 11.2871i 0.544131 0.576745i −0.395702 0.918379i \(-0.629499\pi\)
0.939833 + 0.341634i \(0.110980\pi\)
\(384\) 0 0
\(385\) 9.75879 + 1.14064i 0.497354 + 0.0581323i
\(386\) 31.7952 + 11.5725i 1.61833 + 0.589025i
\(387\) 0 0
\(388\) −22.0802 + 8.03653i −1.12095 + 0.407993i
\(389\) 15.0183 3.55940i 0.761457 0.180469i 0.168499 0.985702i \(-0.446108\pi\)
0.592958 + 0.805233i \(0.297960\pi\)
\(390\) 0 0
\(391\) 1.42509 + 0.937299i 0.0720701 + 0.0474012i
\(392\) 3.71435 1.86542i 0.187603 0.0942179i
\(393\) 0 0
\(394\) 15.9275 + 16.8822i 0.802417 + 0.850512i
\(395\) −2.91816 + 16.5497i −0.146828 + 0.832705i
\(396\) 0 0
\(397\) 0.354695 + 2.01157i 0.0178016 + 0.100958i 0.992414 0.122941i \(-0.0392326\pi\)
−0.974612 + 0.223899i \(0.928121\pi\)
\(398\) 4.43559 5.95804i 0.222336 0.298649i
\(399\) 0 0
\(400\) −27.8669 6.60458i −1.39335 0.330229i
\(401\) 14.8530 1.73607i 0.741725 0.0866952i 0.263166 0.964751i \(-0.415233\pi\)
0.478559 + 0.878055i \(0.341159\pi\)
\(402\) 0 0
\(403\) 0.569878 + 9.78443i 0.0283876 + 0.487397i
\(404\) 30.4790 1.51639
\(405\) 0 0
\(406\) 3.27415 0.162493
\(407\) −0.209291 3.59338i −0.0103742 0.178117i
\(408\) 0 0
\(409\) −10.3183 + 1.20604i −0.510208 + 0.0596348i −0.367302 0.930102i \(-0.619719\pi\)
−0.142906 + 0.989736i \(0.545645\pi\)
\(410\) 39.2109 + 9.29316i 1.93649 + 0.458957i
\(411\) 0 0
\(412\) 24.6523 33.1138i 1.21453 1.63140i
\(413\) −2.40300 13.6281i −0.118244 0.670595i
\(414\) 0 0
\(415\) −1.72170 + 9.76427i −0.0845151 + 0.479309i
\(416\) 13.6199 + 14.4362i 0.667770 + 0.707795i
\(417\) 0 0
\(418\) 6.42131 3.22490i 0.314076 0.157735i
\(419\) 0.442896 + 0.291298i 0.0216369 + 0.0142308i 0.560281 0.828302i \(-0.310693\pi\)
−0.538644 + 0.842533i \(0.681063\pi\)
\(420\) 0 0
\(421\) −31.2014 + 7.39486i −1.52066 + 0.360403i −0.904244 0.427017i \(-0.859565\pi\)
−0.616417 + 0.787420i \(0.711416\pi\)
\(422\) 15.2765 5.56019i 0.743649 0.270666i
\(423\) 0 0
\(424\) −10.8984 3.96668i −0.529272 0.192639i
\(425\) 7.52355 + 0.879377i 0.364946 + 0.0426560i
\(426\) 0 0
\(427\) 0.611593 0.648250i 0.0295970 0.0313710i
\(428\) 5.46257 + 7.33750i 0.264043 + 0.354671i
\(429\) 0 0
\(430\) −43.7288 21.9614i −2.10879 1.05907i
\(431\) 2.69146 + 4.66175i 0.129643 + 0.224549i 0.923538 0.383506i \(-0.125283\pi\)
−0.793895 + 0.608055i \(0.791950\pi\)
\(432\) 0 0
\(433\) −16.6465 + 28.8325i −0.799978 + 1.38560i 0.119652 + 0.992816i \(0.461822\pi\)
−0.919630 + 0.392787i \(0.871511\pi\)
\(434\) −23.2411 + 15.2859i −1.11561 + 0.733746i
\(435\) 0 0
\(436\) −17.0074 + 39.4275i −0.814505 + 1.88823i
\(437\) 2.94342 + 9.83170i 0.140803 + 0.470314i
\(438\) 0 0
\(439\) −7.39954 17.1541i −0.353161 0.818719i −0.998496 0.0548196i \(-0.982542\pi\)
0.645335 0.763899i \(-0.276718\pi\)
\(440\) 2.27474 1.90873i 0.108444 0.0909953i
\(441\) 0 0
\(442\) −3.00574 2.52212i −0.142968 0.119965i
\(443\) −5.41212 + 18.0777i −0.257138 + 0.858900i 0.727770 + 0.685821i \(0.240557\pi\)
−0.984908 + 0.173079i \(0.944628\pi\)
\(444\) 0 0
\(445\) 1.21951 20.9382i 0.0578103 0.992565i
\(446\) −1.33407 + 22.9050i −0.0631698 + 1.08458i
\(447\) 0 0
\(448\) −10.7604 + 35.9424i −0.508383 + 1.69812i
\(449\) 5.33643 + 4.47780i 0.251842 + 0.211320i 0.759965 0.649964i \(-0.225216\pi\)
−0.508123 + 0.861284i \(0.669661\pi\)
\(450\) 0 0
\(451\) 2.83615 2.37981i 0.133549 0.112061i
\(452\) 10.1117 + 23.4416i 0.475615 + 1.10260i
\(453\) 0 0
\(454\) −6.59072 22.0146i −0.309318 1.03319i
\(455\) 12.7857 29.6405i 0.599401 1.38957i
\(456\) 0 0
\(457\) −31.4124 + 20.6603i −1.46941 + 0.966447i −0.473066 + 0.881027i \(0.656853\pi\)
−0.996345 + 0.0854197i \(0.972777\pi\)
\(458\) −2.42197 + 4.19498i −0.113171 + 0.196018i
\(459\) 0 0
\(460\) 11.0226 + 19.0917i 0.513932 + 0.890157i
\(461\) 24.6974 + 12.4035i 1.15027 + 0.577688i 0.918632 0.395114i \(-0.129295\pi\)
0.231639 + 0.972802i \(0.425591\pi\)
\(462\) 0 0
\(463\) 14.6706 + 19.7060i 0.681800 + 0.915817i 0.999476 0.0323827i \(-0.0103095\pi\)
−0.317675 + 0.948200i \(0.602902\pi\)
\(464\) −0.897978 + 0.951801i −0.0416876 + 0.0441862i
\(465\) 0 0
\(466\) 37.4291 + 4.37484i 1.73387 + 0.202660i
\(467\) 7.38677 + 2.68856i 0.341819 + 0.124412i 0.507225 0.861814i \(-0.330671\pi\)
−0.165406 + 0.986226i \(0.552893\pi\)
\(468\) 0 0
\(469\) −6.00971 + 2.18735i −0.277503 + 0.101003i
\(470\) −86.2868 + 20.4503i −3.98011 + 0.943304i
\(471\) 0 0
\(472\) −3.49430 2.29823i −0.160838 0.105785i
\(473\) −4.01761 + 2.01772i −0.184730 + 0.0927749i
\(474\) 0 0
\(475\) 31.2760 + 33.1506i 1.43504 + 1.52106i
\(476\) 1.06981 6.06719i 0.0490346 0.278089i
\(477\) 0 0
\(478\) 4.50659 + 25.5581i 0.206127 + 1.16900i
\(479\) 10.5766 14.2069i 0.483258 0.649129i −0.491896 0.870654i \(-0.663696\pi\)
0.975155 + 0.221525i \(0.0711035\pi\)
\(480\) 0 0
\(481\) −11.5072 2.72726i −0.524683 0.124352i
\(482\) −36.7743 + 4.29829i −1.67502 + 0.195782i
\(483\) 0 0
\(484\) 1.50145 + 25.7788i 0.0682475 + 1.17176i
\(485\) −36.9377 −1.67725
\(486\) 0 0
\(487\) −42.1146 −1.90840 −0.954198 0.299175i \(-0.903289\pi\)
−0.954198 + 0.299175i \(0.903289\pi\)
\(488\) −0.0156614 0.268897i −0.000708960 0.0121724i
\(489\) 0 0
\(490\) 33.7337 3.94291i 1.52394 0.178122i
\(491\) 7.08138 + 1.67832i 0.319578 + 0.0757415i 0.387274 0.921965i \(-0.373417\pi\)
−0.0676959 + 0.997706i \(0.521565\pi\)
\(492\) 0 0
\(493\) 0.206677 0.277615i 0.00930825 0.0125032i
\(494\) −4.09952 23.2495i −0.184446 1.04604i
\(495\) 0 0
\(496\) 1.93053 10.9486i 0.0866833 0.491606i
\(497\) −15.4577 16.3842i −0.693374 0.734933i
\(498\) 0 0
\(499\) 14.4143 7.23914i 0.645273 0.324068i −0.0958915 0.995392i \(-0.530570\pi\)
0.741164 + 0.671324i \(0.234274\pi\)
\(500\) 41.5211 + 27.3089i 1.85688 + 1.22129i
\(501\) 0 0
\(502\) −38.7457 + 9.18290i −1.72931 + 0.409853i
\(503\) −34.7114 + 12.6339i −1.54771 + 0.563319i −0.967878 0.251421i \(-0.919102\pi\)
−0.579827 + 0.814739i \(0.696880\pi\)
\(504\) 0 0
\(505\) 45.0235 + 16.3872i 2.00352 + 0.729221i
\(506\) 3.63643 + 0.425038i 0.161659 + 0.0188952i
\(507\) 0 0
\(508\) 22.4545 23.8003i 0.996256 1.05597i
\(509\) −6.97597 9.37035i −0.309204 0.415333i 0.620173 0.784465i \(-0.287062\pi\)
−0.929377 + 0.369132i \(0.879655\pi\)
\(510\) 0 0
\(511\) −23.6383 11.8716i −1.04570 0.525168i
\(512\) −14.0992 24.4205i −0.623101 1.07924i
\(513\) 0 0
\(514\) 18.2411 31.5945i 0.804580 1.39357i
\(515\) 54.2202 35.6612i 2.38923 1.57142i
\(516\) 0 0
\(517\) −3.22697 + 7.48095i −0.141922 + 0.329012i
\(518\) −9.62644 32.1545i −0.422961 1.41279i
\(519\) 0 0
\(520\) −3.86419 8.95820i −0.169456 0.392843i
\(521\) 0.659940 0.553755i 0.0289125 0.0242605i −0.628217 0.778038i \(-0.716215\pi\)
0.657129 + 0.753778i \(0.271771\pi\)
\(522\) 0 0
\(523\) −6.06895 5.09246i −0.265377 0.222678i 0.500383 0.865804i \(-0.333192\pi\)
−0.765760 + 0.643126i \(0.777637\pi\)
\(524\) 7.14602 23.8694i 0.312176 1.04274i
\(525\) 0 0
\(526\) −3.02772 + 51.9839i −0.132015 + 2.26660i
\(527\) −0.170974 + 2.93551i −0.00744775 + 0.127873i
\(528\) 0 0
\(529\) 5.09676 17.0244i 0.221598 0.740189i
\(530\) −72.5967 60.9158i −3.15340 2.64601i
\(531\) 0 0
\(532\) 28.3958 23.8269i 1.23112 1.03303i
\(533\) −4.81787 11.1691i −0.208685 0.483787i
\(534\) 0 0
\(535\) 4.12424 + 13.7759i 0.178307 + 0.595585i
\(536\) −0.765571 + 1.77479i −0.0330676 + 0.0766594i
\(537\) 0 0
\(538\) 18.8240 12.3808i 0.811562 0.533773i
\(539\) 1.56020 2.70235i 0.0672028 0.116399i
\(540\) 0 0
\(541\) 6.01461 + 10.4176i 0.258588 + 0.447888i 0.965864 0.259050i \(-0.0834094\pi\)
−0.707276 + 0.706938i \(0.750076\pi\)
\(542\) −8.91723 4.47840i −0.383028 0.192364i
\(543\) 0 0
\(544\) 3.55578 + 4.77624i 0.152453 + 0.204780i
\(545\) −46.3217 + 49.0981i −1.98420 + 2.10313i
\(546\) 0 0
\(547\) 6.33792 + 0.740797i 0.270990 + 0.0316742i 0.250503 0.968116i \(-0.419404\pi\)
0.0204874 + 0.999790i \(0.493478\pi\)
\(548\) −22.0342 8.01980i −0.941255 0.342589i
\(549\) 0 0
\(550\) 15.2783 5.56083i 0.651467 0.237115i
\(551\) 2.02628 0.480237i 0.0863225 0.0204588i
\(552\) 0 0
\(553\) 12.0288 + 7.91146i 0.511516 + 0.336429i
\(554\) −12.5006 + 6.27805i −0.531101 + 0.266729i
\(555\) 0 0
\(556\) 17.8445 + 18.9141i 0.756776 + 0.802136i
\(557\) 6.99671 39.6803i 0.296460 1.68131i −0.364747 0.931107i \(-0.618844\pi\)
0.661207 0.750203i \(-0.270044\pi\)
\(558\) 0 0
\(559\) 2.56494 + 14.5465i 0.108485 + 0.615251i
\(560\) −21.8658 + 29.3709i −0.923999 + 1.24115i
\(561\) 0 0
\(562\) 5.09780 + 1.20820i 0.215038 + 0.0509649i
\(563\) −1.57494 + 0.184085i −0.0663760 + 0.00775824i −0.149216 0.988805i \(-0.547675\pi\)
0.0828401 + 0.996563i \(0.473601\pi\)
\(564\) 0 0
\(565\) 2.33349 + 40.0645i 0.0981708 + 1.68553i
\(566\) 1.96163 0.0824536
\(567\) 0 0
\(568\) −6.80775 −0.285647
\(569\) 0.642162 + 11.0255i 0.0269208 + 0.462213i 0.984650 + 0.174541i \(0.0558442\pi\)
−0.957729 + 0.287672i \(0.907119\pi\)
\(570\) 0 0
\(571\) −7.85448 + 0.918056i −0.328700 + 0.0384195i −0.278842 0.960337i \(-0.589951\pi\)
−0.0498572 + 0.998756i \(0.515877\pi\)
\(572\) −4.53359 1.07448i −0.189559 0.0449263i
\(573\) 0 0
\(574\) 20.6161 27.6923i 0.860501 1.15585i
\(575\) 4.03238 + 22.8688i 0.168162 + 0.953695i
\(576\) 0 0
\(577\) −8.01656 + 45.4642i −0.333734 + 1.89270i 0.105658 + 0.994402i \(0.466305\pi\)
−0.439392 + 0.898295i \(0.644806\pi\)
\(578\) 23.8748 + 25.3058i 0.993061 + 1.05258i
\(579\) 0 0
\(580\) 3.99735 2.00755i 0.165981 0.0833588i
\(581\) 7.09695 + 4.66774i 0.294431 + 0.193650i
\(582\) 0 0
\(583\) −8.47220 + 2.00795i −0.350883 + 0.0831607i
\(584\) −7.51238 + 2.73428i −0.310865 + 0.113145i
\(585\) 0 0
\(586\) 4.66235 + 1.69696i 0.192600 + 0.0701007i
\(587\) 36.5119 + 4.26763i 1.50701 + 0.176144i 0.829140 0.559041i \(-0.188830\pi\)
0.677867 + 0.735184i \(0.262904\pi\)
\(588\) 0 0
\(589\) −12.1412 + 12.8689i −0.500269 + 0.530254i
\(590\) −20.4078 27.4124i −0.840175 1.12855i
\(591\) 0 0
\(592\) 11.9876 + 6.02038i 0.492686 + 0.247436i
\(593\) 7.17407 + 12.4258i 0.294604 + 0.510268i 0.974893 0.222676i \(-0.0714791\pi\)
−0.680289 + 0.732944i \(0.738146\pi\)
\(594\) 0 0
\(595\) 4.84238 8.38725i 0.198518 0.343844i
\(596\) 25.7167 16.9141i 1.05340 0.692829i
\(597\) 0 0
\(598\) 4.76434 11.0450i 0.194828 0.451663i
\(599\) −3.73299 12.4691i −0.152526 0.509472i 0.847238 0.531214i \(-0.178264\pi\)
−0.999764 + 0.0217420i \(0.993079\pi\)
\(600\) 0 0
\(601\) −2.49445 5.78278i −0.101751 0.235885i 0.859735 0.510741i \(-0.170629\pi\)
−0.961485 + 0.274857i \(0.911370\pi\)
\(602\) −32.1148 + 26.9476i −1.30890 + 1.09830i
\(603\) 0 0
\(604\) −34.5775 29.0140i −1.40694 1.18056i
\(605\) −11.6422 + 38.8877i −0.473323 + 1.58101i
\(606\) 0 0
\(607\) −0.764581 + 13.1274i −0.0310334 + 0.532823i 0.946587 + 0.322448i \(0.104506\pi\)
−0.977621 + 0.210375i \(0.932531\pi\)
\(608\) −2.08315 + 35.7664i −0.0844830 + 1.45052i
\(609\) 0 0
\(610\) 0.631235 2.10847i 0.0255580 0.0853696i
\(611\) 20.5052 + 17.2059i 0.829552 + 0.696076i
\(612\) 0 0
\(613\) −28.3321 + 23.7734i −1.14432 + 0.960200i −0.999572 0.0292684i \(-0.990682\pi\)
−0.144750 + 0.989468i \(0.546238\pi\)
\(614\) −12.7861 29.6415i −0.516005 1.19623i
\(615\) 0 0
\(616\) −0.729634 2.43715i −0.0293978 0.0981955i
\(617\) −12.8638 + 29.8216i −0.517877 + 1.20057i 0.435883 + 0.900003i \(0.356436\pi\)
−0.953760 + 0.300570i \(0.902823\pi\)
\(618\) 0 0
\(619\) 35.8601 23.5855i 1.44134 0.947982i 0.442653 0.896693i \(-0.354037\pi\)
0.998684 0.0512897i \(-0.0163332\pi\)
\(620\) −19.0021 + 32.9126i −0.763142 + 1.32180i
\(621\) 0 0
\(622\) −17.7127 30.6793i −0.710215 1.23013i
\(623\) −16.0575 8.06436i −0.643328 0.323092i
\(624\) 0 0
\(625\) 16.3315 + 21.9370i 0.653260 + 0.877480i
\(626\) −47.2939 + 50.1286i −1.89024 + 2.00354i
\(627\) 0 0
\(628\) −57.4873 6.71930i −2.29399 0.268129i
\(629\) −3.33404 1.21349i −0.132937 0.0483851i
\(630\) 0 0
\(631\) 13.0635 4.75472i 0.520049 0.189282i −0.0686408 0.997641i \(-0.521866\pi\)
0.588690 + 0.808359i \(0.299644\pi\)
\(632\) 4.23399 1.00347i 0.168419 0.0399161i
\(633\) 0 0
\(634\) 38.3073 + 25.1951i 1.52138 + 1.00063i
\(635\) 45.9661 23.0851i 1.82411 0.916102i
\(636\) 0 0
\(637\) −7.03536 7.45705i −0.278751 0.295459i
\(638\) 0.129000 0.731597i 0.00510717 0.0289642i
\(639\) 0 0
\(640\) 5.29656 + 30.0383i 0.209365 + 1.18737i
\(641\) 1.56433 2.10126i 0.0617874 0.0829948i −0.770155 0.637856i \(-0.779821\pi\)
0.831943 + 0.554862i \(0.187229\pi\)
\(642\) 0 0
\(643\) −0.0997430 0.0236395i −0.00393348 0.000932252i 0.228649 0.973509i \(-0.426569\pi\)
−0.232582 + 0.972577i \(0.574717\pi\)
\(644\) 18.7591 2.19262i 0.739212 0.0864015i
\(645\) 0 0
\(646\) −0.411834 7.07092i −0.0162034 0.278202i
\(647\) 25.1564 0.988998 0.494499 0.869178i \(-0.335351\pi\)
0.494499 + 0.869178i \(0.335351\pi\)
\(648\) 0 0
\(649\) −3.13983 −0.123249
\(650\) −3.10597 53.3274i −0.121826 2.09167i
\(651\) 0 0
\(652\) −28.8367 + 3.37053i −1.12933 + 0.132000i
\(653\) 7.25844 + 1.72028i 0.284045 + 0.0673198i 0.370169 0.928965i \(-0.379300\pi\)
−0.0861238 + 0.996284i \(0.527448\pi\)
\(654\) 0 0
\(655\) 23.3896 31.4177i 0.913908 1.22759i
\(656\) 2.39595 + 13.5881i 0.0935463 + 0.530527i
\(657\) 0 0
\(658\) −13.1924 + 74.8181i −0.514295 + 2.91671i
\(659\) 11.1583 + 11.8271i 0.434664 + 0.460717i 0.907265 0.420559i \(-0.138166\pi\)
−0.472601 + 0.881277i \(0.656685\pi\)
\(660\) 0 0
\(661\) 16.8629 8.46886i 0.655890 0.329401i −0.0895407 0.995983i \(-0.528540\pi\)
0.745431 + 0.666583i \(0.232244\pi\)
\(662\) −42.0925 27.6847i −1.63597 1.07600i
\(663\) 0 0
\(664\) 2.49804 0.592047i 0.0969429 0.0229759i
\(665\) 54.7570 19.9299i 2.12339 0.772849i
\(666\) 0 0
\(667\) 0.997034 + 0.362891i 0.0386053 + 0.0140512i
\(668\) −59.5563 6.96113i −2.30430 0.269334i
\(669\) 0 0
\(670\) −10.8384 + 11.4881i −0.418725 + 0.443823i
\(671\) −0.120753 0.162199i −0.00466161 0.00626163i
\(672\) 0 0
\(673\) −7.31091 3.67168i −0.281815 0.141533i 0.302277 0.953220i \(-0.402253\pi\)
−0.584092 + 0.811687i \(0.698549\pi\)
\(674\) 19.4599 + 33.7056i 0.749569 + 1.29829i
\(675\) 0 0
\(676\) 8.44293 14.6236i 0.324728 0.562445i
\(677\) −19.2931 + 12.6892i −0.741493 + 0.487687i −0.863190 0.504880i \(-0.831537\pi\)
0.121697 + 0.992567i \(0.461166\pi\)
\(678\) 0 0
\(679\) −12.5342 + 29.0575i −0.481018 + 1.11512i
\(680\) −0.839476 2.80405i −0.0321924 0.107530i
\(681\) 0 0
\(682\) 2.49989 + 5.79540i 0.0957257 + 0.221917i
\(683\) 14.3566 12.0466i 0.549340 0.460951i −0.325378 0.945584i \(-0.605491\pi\)
0.874717 + 0.484633i \(0.161047\pi\)
\(684\) 0 0
\(685\) −28.2370 23.6937i −1.07888 0.905289i
\(686\) −5.82146 + 19.4450i −0.222265 + 0.742415i
\(687\) 0 0
\(688\) 0.974212 16.7266i 0.0371415 0.637695i
\(689\) −1.66331 + 28.5579i −0.0633669 + 1.08797i
\(690\) 0 0
\(691\) 1.90704 6.36996i 0.0725472 0.242325i −0.914023 0.405662i \(-0.867041\pi\)
0.986570 + 0.163338i \(0.0522261\pi\)
\(692\) 29.4279 + 24.6929i 1.11868 + 0.938684i
\(693\) 0 0
\(694\) 27.4089 22.9988i 1.04043 0.873023i
\(695\) 16.1906 + 37.5341i 0.614146 + 1.42375i
\(696\) 0 0
\(697\) −1.04666 3.49609i −0.0396451 0.132424i
\(698\) 6.84419 15.8666i 0.259056 0.600560i
\(699\) 0 0
\(700\) 70.0752 46.0892i 2.64860 1.74201i
\(701\) −12.1477 + 21.0405i −0.458813 + 0.794687i −0.998899 0.0469230i \(-0.985058\pi\)
0.540086 + 0.841610i \(0.318392\pi\)
\(702\) 0 0
\(703\) −10.6738 18.4876i −0.402571 0.697274i
\(704\) 7.60724 + 3.82050i 0.286709 + 0.143991i
\(705\) 0 0
\(706\) −31.0989 41.7731i −1.17042 1.57215i
\(707\) 28.1692 29.8576i 1.05941 1.12291i
\(708\) 0 0
\(709\) −29.7197 3.47374i −1.11615 0.130459i −0.462039 0.886860i \(-0.652882\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(710\) −52.2729 19.0258i −1.96177 0.714024i
\(711\) 0 0
\(712\) −5.10315 + 1.85740i −0.191249 + 0.0696089i
\(713\) −8.77152 + 2.07889i −0.328496 + 0.0778550i
\(714\) 0 0
\(715\) −6.11932 4.02474i −0.228850 0.150517i
\(716\) 15.9077 7.98913i 0.594497 0.298568i
\(717\) 0 0
\(718\) −18.3599 19.4603i −0.685185 0.726253i
\(719\) 2.12889 12.0735i 0.0793943 0.450267i −0.919032 0.394183i \(-0.871027\pi\)
0.998426 0.0560838i \(-0.0178614\pi\)
\(720\) 0 0
\(721\) −9.65461 54.7540i −0.359556 2.03915i
\(722\) 1.44332 1.93871i 0.0537146 0.0721513i
\(723\) 0 0
\(724\) −18.6454 4.41905i −0.692953 0.164233i
\(725\) 4.67998 0.547011i 0.173810 0.0203155i
\(726\) 0 0
\(727\) 2.85025 + 48.9370i 0.105710 + 1.81497i 0.468895 + 0.883254i \(0.344652\pi\)
−0.363185 + 0.931717i \(0.618311\pi\)
\(728\) −8.35832 −0.309780
\(729\) 0 0
\(730\) −65.3249 −2.41778
\(731\) 0.257672 + 4.42405i 0.00953033 + 0.163630i
\(732\) 0 0
\(733\) 20.0628 2.34500i 0.741035 0.0866146i 0.262805 0.964849i \(-0.415352\pi\)
0.478230 + 0.878234i \(0.341278\pi\)
\(734\) −21.6046 5.12038i −0.797439 0.188997i
\(735\) 0 0
\(736\) −10.9008 + 14.6423i −0.401808 + 0.539722i
\(737\) 0.251977 + 1.42903i 0.00928168 + 0.0526390i
\(738\) 0 0
\(739\) 0.349401 1.98155i 0.0128529 0.0728925i −0.977707 0.209975i \(-0.932662\pi\)
0.990560 + 0.137083i \(0.0437727\pi\)
\(740\) −31.4684 33.3545i −1.15680 1.22614i
\(741\) 0 0
\(742\) −72.5546 + 36.4383i −2.66356 + 1.33769i
\(743\) 18.0232 + 11.8540i 0.661207 + 0.434883i 0.835261 0.549853i \(-0.185316\pi\)
−0.174054 + 0.984736i \(0.555687\pi\)
\(744\) 0 0
\(745\) 47.0826 11.1588i 1.72497 0.408826i
\(746\) −23.4531 + 8.53624i −0.858680 + 0.312534i
\(747\) 0 0
\(748\) −1.31354 0.478091i −0.0480279 0.0174807i
\(749\) 12.2365 + 1.43024i 0.447112 + 0.0522599i
\(750\) 0 0
\(751\) 9.93510 10.5306i 0.362537 0.384267i −0.520271 0.854001i \(-0.674169\pi\)
0.882808 + 0.469735i \(0.155650\pi\)
\(752\) −18.1316 24.3549i −0.661190 0.888132i
\(753\) 0 0
\(754\) −2.18111 1.09539i −0.0794313 0.0398919i
\(755\) −35.4783 61.4503i −1.29119 2.23640i
\(756\) 0 0
\(757\) −5.26451 + 9.11840i −0.191342 + 0.331414i −0.945695 0.325055i \(-0.894617\pi\)
0.754353 + 0.656469i \(0.227951\pi\)
\(758\) −32.0607 + 21.0866i −1.16450 + 0.765901i
\(759\) 0 0
\(760\) 6.97545 16.1709i 0.253026 0.586580i
\(761\) −12.1247 40.4993i −0.439520 1.46810i −0.835321 0.549763i \(-0.814718\pi\)
0.395801 0.918336i \(-0.370467\pi\)
\(762\) 0 0
\(763\) 22.9052 + 53.1001i 0.829223 + 1.92235i
\(764\) 19.1188 16.0425i 0.691693 0.580399i
\(765\) 0 0
\(766\) −25.1504 21.1037i −0.908721 0.762507i
\(767\) −2.95862 + 9.88247i −0.106829 + 0.356835i
\(768\) 0 0
\(769\) 0.524422 9.00399i 0.0189112 0.324692i −0.975564 0.219717i \(-0.929487\pi\)
0.994475 0.104975i \(-0.0334763\pi\)
\(770\) 1.20870 20.7526i 0.0435586 0.747872i
\(771\) 0 0
\(772\) 11.3584 37.9399i 0.408799 1.36549i
\(773\) −0.551231 0.462537i −0.0198264 0.0166363i 0.632821 0.774298i \(-0.281897\pi\)
−0.652647 + 0.757662i \(0.726342\pi\)
\(774\) 0 0
\(775\) −30.6663 + 25.7321i −1.10157 + 0.924325i
\(776\) 3.78819 + 8.78200i 0.135988 + 0.315255i
\(777\) 0 0
\(778\) −9.36562 31.2834i −0.335774 1.12156i
\(779\) 8.69699 20.1619i 0.311602 0.722375i
\(780\) 0 0
\(781\) −4.27003 + 2.80844i −0.152794 + 0.100494i
\(782\) 1.80442 3.12535i 0.0645261 0.111762i
\(783\) 0 0
\(784\) 5.81453 + 10.0711i 0.207662 + 0.359681i
\(785\) −81.3075 40.8341i −2.90199 1.45743i
\(786\) 0 0
\(787\) 9.21263 + 12.3747i 0.328395 + 0.441111i 0.935402 0.353585i \(-0.115038\pi\)
−0.607008 + 0.794696i \(0.707630\pi\)
\(788\) 18.6426 19.7600i 0.664116 0.703922i
\(789\) 0 0
\(790\) 35.3148 + 4.12771i 1.25645 + 0.146857i
\(791\) 32.3091 + 11.7595i 1.14878 + 0.418121i
\(792\) 0 0
\(793\) −0.624297 + 0.227226i −0.0221695 + 0.00806902i
\(794\) 4.20516 0.996642i 0.149236 0.0353695i
\(795\) 0 0
\(796\) −7.26376 4.77745i −0.257457 0.169332i
\(797\) −12.4488 + 6.25200i −0.440957 + 0.221457i −0.655404 0.755279i \(-0.727502\pi\)
0.214446 + 0.976736i \(0.431205\pi\)
\(798\) 0 0
\(799\) 5.51107 + 5.84139i 0.194968 + 0.206654i
\(800\) −14.0768 + 79.8335i −0.497690 + 2.82254i
\(801\) 0 0
\(802\) −5.49411 31.1586i −0.194004 1.10025i
\(803\) −3.58401 + 4.81416i −0.126477 + 0.169888i
\(804\) 0 0
\(805\) 28.8898 + 6.84701i 1.01823 + 0.241325i
\(806\) 20.5963 2.40736i 0.725475 0.0847958i
\(807\) 0 0
\(808\) −0.721345 12.3850i −0.0253768 0.435704i
\(809\) 40.8781 1.43720 0.718599 0.695424i \(-0.244784\pi\)
0.718599 + 0.695424i \(0.244784\pi\)
\(810\) 0 0
\(811\) 51.1039 1.79450 0.897250 0.441524i \(-0.145562\pi\)
0.897250 + 0.441524i \(0.145562\pi\)
\(812\) −0.222827 3.82580i −0.00781970 0.134259i
\(813\) 0 0
\(814\) −7.56411 + 0.884117i −0.265122 + 0.0309883i
\(815\) −44.4098 10.5253i −1.55561 0.368685i
\(816\) 0 0
\(817\) −15.9225 + 21.3876i −0.557057 + 0.748257i
\(818\) 3.81673 + 21.6457i 0.133449 + 0.756825i
\(819\) 0 0
\(820\) 8.19037 46.4499i 0.286020 1.62210i
\(821\) −33.3316 35.3295i −1.16328 1.23301i −0.967641 0.252331i \(-0.918803\pi\)
−0.195641 0.980676i \(-0.562679\pi\)
\(822\) 0 0
\(823\) 24.1523 12.1298i 0.841898 0.422817i 0.0250611 0.999686i \(-0.492022\pi\)
0.816837 + 0.576869i \(0.195726\pi\)
\(824\) −14.0391 9.23367i −0.489076 0.321670i
\(825\) 0 0
\(826\) −28.4893 + 6.75210i −0.991271 + 0.234936i
\(827\) 14.9793 5.45201i 0.520880 0.189585i −0.0681816 0.997673i \(-0.521720\pi\)
0.589062 + 0.808088i \(0.299497\pi\)
\(828\) 0 0
\(829\) 1.59698 + 0.581253i 0.0554654 + 0.0201877i 0.369604 0.929189i \(-0.379493\pi\)
−0.314138 + 0.949377i \(0.601716\pi\)
\(830\) 20.8357 + 2.43534i 0.723216 + 0.0845319i
\(831\) 0 0
\(832\) 19.1930 20.3434i 0.665398 0.705281i
\(833\) −1.83674 2.46717i −0.0636393 0.0854824i
\(834\) 0 0
\(835\) −84.2338 42.3038i −2.91503 1.46398i
\(836\) −4.20527 7.28373i −0.145442 0.251913i
\(837\) 0 0
\(838\) 0.560786 0.971310i 0.0193720 0.0335534i
\(839\) −38.7261 + 25.4706i −1.33697 + 0.879342i −0.998108 0.0614919i \(-0.980414\pi\)
−0.338867 + 0.940834i \(0.610044\pi\)
\(840\) 0 0
\(841\) −11.4010 + 26.4306i −0.393139 + 0.911399i
\(842\) 19.4576 + 64.9930i 0.670554 + 2.23981i
\(843\) 0 0
\(844\) −7.53668 17.4720i −0.259423 0.601410i
\(845\) 20.3343 17.0625i 0.699523 0.586969i
\(846\) 0 0
\(847\) 26.6409 + 22.3544i 0.915393 + 0.768106i
\(848\) 9.30638 31.0855i 0.319582 1.06748i
\(849\) 0 0
\(850\) 0.931850 15.9992i 0.0319622 0.548769i
\(851\) 0.632439 10.8586i 0.0216797 0.372227i
\(852\) 0 0
\(853\) 6.93914 23.1783i 0.237592 0.793611i −0.753150 0.657849i \(-0.771466\pi\)
0.990741 0.135762i \(-0.0433483\pi\)
\(854\) −1.44446 1.21204i −0.0494283 0.0414753i
\(855\) 0 0
\(856\) 2.85228 2.39335i 0.0974891 0.0818031i
\(857\) 5.08115 + 11.7794i 0.173569 + 0.402378i 0.982688 0.185266i \(-0.0593148\pi\)
−0.809119 + 0.587644i \(0.800055\pi\)
\(858\) 0 0
\(859\) −5.88521 19.6580i −0.200801 0.670721i −0.997773 0.0667049i \(-0.978751\pi\)
0.796972 0.604016i \(-0.206434\pi\)
\(860\) −22.6856 + 52.5911i −0.773572 + 1.79334i
\(861\) 0 0
\(862\) 9.51534 6.25834i 0.324094 0.213160i
\(863\) −18.5110 + 32.0620i −0.630121 + 1.09140i 0.357405 + 0.933949i \(0.383662\pi\)
−0.987527 + 0.157453i \(0.949672\pi\)
\(864\) 0 0
\(865\) 30.1945 + 52.2984i 1.02664 + 1.77820i
\(866\) 62.9472 + 31.6133i 2.13903 + 1.07426i
\(867\) 0 0
\(868\) 19.4431 + 26.1165i 0.659940 + 0.886453i
\(869\) 2.24172 2.37609i 0.0760452 0.0806032i
\(870\) 0 0
\(871\) 4.73524 + 0.553470i 0.160447 + 0.0187536i
\(872\) 16.4237 + 5.97775i 0.556178 + 0.202432i
\(873\) 0 0
\(874\) 20.4042 7.42652i 0.690182 0.251206i
\(875\) 65.1266 15.4353i 2.20168 0.521808i
\(876\) 0 0
\(877\) −36.2333 23.8310i −1.22351 0.804715i −0.237498 0.971388i \(-0.576327\pi\)
−0.986012 + 0.166673i \(0.946698\pi\)
\(878\) −35.3221 + 17.7394i −1.19206 + 0.598677i
\(879\) 0 0
\(880\) 5.70132 + 6.04305i 0.192191 + 0.203711i
\(881\) −1.78531 + 10.1250i −0.0601486 + 0.341120i −1.00000 0.000464198i \(-0.999852\pi\)
0.939851 + 0.341584i \(0.110963\pi\)
\(882\) 0 0
\(883\) 1.36337 + 7.73205i 0.0458810 + 0.260204i 0.999117 0.0420240i \(-0.0133806\pi\)
−0.953236 + 0.302228i \(0.902269\pi\)
\(884\) −2.74250 + 3.68381i −0.0922402 + 0.123900i
\(885\) 0 0
\(886\) 38.8492 + 9.20743i 1.30516 + 0.309330i
\(887\) −34.7570 + 4.06251i −1.16703 + 0.136406i −0.677459 0.735560i \(-0.736919\pi\)
−0.489566 + 0.871966i \(0.662845\pi\)
\(888\) 0 0
\(889\) −2.56232 43.9933i −0.0859375 1.47549i
\(890\) −44.3751 −1.48746
\(891\) 0 0
\(892\) 26.8550 0.899172
\(893\) 2.80954 + 48.2379i 0.0940176 + 1.61422i
\(894\) 0 0
\(895\) 27.7942 3.24867i 0.929057 0.108591i
\(896\) 25.4273 + 6.02638i 0.849467 + 0.201327i
\(897\) 0 0
\(898\) 8.80140 11.8223i 0.293707 0.394516i
\(899\) 0.317622 + 1.80133i 0.0105933 + 0.0600776i
\(900\) 0 0
\(901\) −1.49032 + 8.45204i −0.0496498 + 0.281578i
\(902\) −5.37548 5.69768i −0.178984 0.189712i
\(903\) 0 0
\(904\) 9.28610 4.66365i 0.308851 0.155111i
\(905\) −25.1671 16.5527i −0.836583 0.550229i
\(906\) 0 0
\(907\) −48.8847 + 11.5859i −1.62319 + 0.384703i −0.938813 0.344427i \(-0.888073\pi\)
−0.684375 + 0.729130i \(0.739925\pi\)
\(908\) −25.2752 + 9.19941i −0.838786 + 0.305293i
\(909\) 0 0
\(910\) −64.1788 23.3592i −2.12751 0.774349i
\(911\) −24.4948 2.86303i −0.811548 0.0948564i −0.299811 0.953999i \(-0.596924\pi\)
−0.511737 + 0.859142i \(0.670998\pi\)
\(912\) 0 0
\(913\) 1.32261 1.40188i 0.0437720 0.0463956i
\(914\) 47.5025 + 63.8069i 1.57124 + 2.11055i
\(915\) 0 0
\(916\) 5.06661 + 2.54455i 0.167405 + 0.0840741i
\(917\) −16.7783 29.0608i −0.554067 0.959672i
\(918\) 0 0
\(919\) −4.12738 + 7.14883i −0.136150 + 0.235818i −0.926036 0.377435i \(-0.876806\pi\)
0.789886 + 0.613253i \(0.210139\pi\)
\(920\) 7.49699 4.93085i 0.247168 0.162565i
\(921\) 0 0
\(922\) 23.1601 53.6911i 0.762736 1.76822i
\(923\) 4.81585 + 16.0861i 0.158516 + 0.529479i
\(924\) 0 0
\(925\) −19.1318 44.3526i −0.629051 1.45830i
\(926\) 39.8178 33.4111i 1.30849 1.09796i
\(927\) 0 0
\(928\) 2.83740 + 2.38086i 0.0931422 + 0.0781556i
\(929\) −2.81291 + 9.39578i −0.0922886 + 0.308266i −0.991653 0.128934i \(-0.958844\pi\)
0.899365 + 0.437200i \(0.144030\pi\)
\(930\) 0 0
\(931\) 1.07605 18.4751i 0.0352663 0.605498i
\(932\) 2.56464 44.0331i 0.0840075 1.44235i
\(933\) 0 0
\(934\) 4.77000 15.9329i 0.156079 0.521341i
\(935\) −1.68332 1.41247i −0.0550503 0.0461927i
\(936\) 0 0
\(937\) 33.8490 28.4027i 1.10580 0.927875i 0.107997 0.994151i \(-0.465556\pi\)
0.997801 + 0.0662763i \(0.0211119\pi\)
\(938\) 5.35939 + 12.4245i 0.174990 + 0.405673i
\(939\) 0 0
\(940\) 29.7683 + 99.4332i 0.970936 + 3.24315i
\(941\) 4.21441 9.77010i 0.137386 0.318496i −0.835608 0.549326i \(-0.814885\pi\)
0.972994 + 0.230829i \(0.0741440\pi\)
\(942\) 0 0
\(943\) 9.34725 6.14779i 0.304388 0.200199i
\(944\) 5.85073 10.1338i 0.190425 0.329826i
\(945\) 0 0
\(946\) 4.75603 + 8.23768i 0.154632 + 0.267830i
\(947\) 9.82476 + 4.93418i 0.319262 + 0.160339i 0.601212 0.799090i \(-0.294685\pi\)
−0.281950 + 0.959429i \(0.590981\pi\)
\(948\) 0 0
\(949\) 11.7752 + 15.8168i 0.382238 + 0.513434i
\(950\) 66.1724 70.1386i 2.14692 2.27560i
\(951\) 0 0
\(952\) −2.49070 0.291121i −0.0807240 0.00943529i
\(953\) −39.7723 14.4759i −1.28835 0.468921i −0.395165 0.918610i \(-0.629313\pi\)
−0.893185 + 0.449689i \(0.851535\pi\)
\(954\) 0 0
\(955\) 36.8676 13.4187i 1.19301 0.434219i
\(956\) 29.5576 7.00528i 0.955962 0.226567i
\(957\) 0 0
\(958\) −31.3086 20.5920i −1.01153 0.665296i
\(959\) −28.2207 + 14.1730i −0.911293 + 0.457669i
\(960\) 0 0
\(961\) 10.6091 + 11.2450i 0.342230 + 0.362742i
\(962\) −4.34483 + 24.6407i −0.140083 + 0.794449i
\(963\) 0 0
\(964\) 7.52523 + 42.6777i 0.242371 + 1.37456i
\(965\) 37.1773 49.9378i 1.19678 1.60755i
\(966\) 0 0
\(967\) −8.08740 1.91675i −0.260073 0.0616385i 0.0985107 0.995136i \(-0.468592\pi\)
−0.358584 + 0.933498i \(0.616740\pi\)
\(968\) 10.4396 1.22021i 0.335541 0.0392192i
\(969\) 0 0
\(970\) 4.54408 + 78.0189i 0.145902 + 2.50504i
\(971\) 17.9539 0.576169 0.288084 0.957605i \(-0.406982\pi\)
0.288084 + 0.957605i \(0.406982\pi\)
\(972\) 0 0
\(973\) 35.0207 1.12271
\(974\) 5.18095 + 88.9535i 0.166008 + 2.85026i
\(975\) 0 0
\(976\) 0.748505 0.0874877i 0.0239591 0.00280041i
\(977\) 23.7522 + 5.62938i 0.759901 + 0.180100i 0.592259 0.805748i \(-0.298236\pi\)
0.167643 + 0.985848i \(0.446385\pi\)
\(978\) 0 0
\(979\) −2.43461 + 3.27025i −0.0778106 + 0.104518i
\(980\) −6.90304 39.1491i −0.220509 1.25057i
\(981\) 0 0
\(982\) 2.67375 15.1636i 0.0853228 0.483890i
\(983\) 31.9879 + 33.9052i 1.02026 + 1.08141i 0.996658 + 0.0816861i \(0.0260305\pi\)
0.0235974 + 0.999722i \(0.492488\pi\)
\(984\) 0 0
\(985\) 38.1630 19.1662i 1.21597 0.610685i
\(986\) −0.611797 0.402385i −0.0194836 0.0128146i
\(987\) 0 0
\(988\) −26.8877 + 6.37251i −0.855413 + 0.202737i
\(989\) −12.7663 + 4.64654i −0.405944 + 0.147751i
\(990\) 0 0
\(991\) −55.3339 20.1399i −1.75774 0.639765i −0.757820 0.652464i \(-0.773735\pi\)
−0.999919 + 0.0126995i \(0.995958\pi\)
\(992\) −31.2563 3.65334i −0.992388 0.115994i
\(993\) 0 0
\(994\) −32.7048 + 34.6650i −1.03733 + 1.09951i
\(995\) −8.16139 10.9626i −0.258733 0.347539i
\(996\) 0 0
\(997\) 53.8777 + 27.0584i 1.70632 + 0.856948i 0.986694 + 0.162590i \(0.0519847\pi\)
0.719630 + 0.694358i \(0.244312\pi\)
\(998\) −17.0636 29.5550i −0.540138 0.935547i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.514.2 144
3.2 odd 2 729.2.g.d.514.7 144
9.2 odd 6 729.2.g.c.28.7 144
9.4 even 3 243.2.g.a.10.7 144
9.5 odd 6 81.2.g.a.13.2 144
9.7 even 3 729.2.g.b.28.2 144
81.2 odd 54 729.2.g.d.217.7 144
81.22 even 27 6561.2.a.d.1.61 72
81.25 even 27 729.2.g.b.703.2 144
81.29 odd 54 81.2.g.a.25.2 yes 144
81.52 even 27 243.2.g.a.73.7 144
81.56 odd 54 729.2.g.c.703.7 144
81.59 odd 54 6561.2.a.c.1.12 72
81.79 even 27 inner 729.2.g.a.217.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.2 144 9.5 odd 6
81.2.g.a.25.2 yes 144 81.29 odd 54
243.2.g.a.10.7 144 9.4 even 3
243.2.g.a.73.7 144 81.52 even 27
729.2.g.a.217.2 144 81.79 even 27 inner
729.2.g.a.514.2 144 1.1 even 1 trivial
729.2.g.b.28.2 144 9.7 even 3
729.2.g.b.703.2 144 81.25 even 27
729.2.g.c.28.7 144 9.2 odd 6
729.2.g.c.703.7 144 81.56 odd 54
729.2.g.d.217.7 144 81.2 odd 54
729.2.g.d.514.7 144 3.2 odd 2
6561.2.a.c.1.12 72 81.59 odd 54
6561.2.a.d.1.61 72 81.22 even 27