Properties

Label 729.2.g.a.379.5
Level $729$
Weight $2$
Character 729.379
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 379.5
Character \(\chi\) \(=\) 729.379
Dual form 729.2.g.a.352.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0693332 + 0.231589i) q^{2} +(1.62215 - 1.06690i) q^{4} +(1.68251 + 3.90051i) q^{5} +(0.0669917 - 1.15020i) q^{7} +(0.729927 + 0.612481i) q^{8} +(-0.786660 + 0.660086i) q^{10} +(-1.17914 - 1.58386i) q^{11} +(2.74852 + 2.91326i) q^{13} +(0.271019 - 0.0642327i) q^{14} +(1.44679 - 3.35403i) q^{16} +(0.731666 + 4.14948i) q^{17} +(0.525049 - 2.97770i) q^{19} +(6.89075 + 4.53212i) q^{20} +(0.285051 - 0.382890i) q^{22} +(-0.0709339 - 1.21789i) q^{23} +(-8.95188 + 9.48844i) q^{25} +(-0.484116 + 0.838513i) q^{26} +(-1.11849 - 1.93728i) q^{28} +(0.580763 + 0.137643i) q^{29} +(-1.73853 - 0.873122i) q^{31} +(2.76989 + 0.323753i) q^{32} +(-0.910246 + 0.457143i) q^{34} +(4.59909 - 1.67393i) q^{35} +(-4.95333 - 1.80287i) q^{37} +(0.726006 - 0.0848579i) q^{38} +(-1.16087 + 3.87759i) q^{40} +(1.64295 - 5.48784i) q^{41} +(-7.24960 + 0.847356i) q^{43} +(-3.60257 - 1.31123i) q^{44} +(0.277132 - 0.100868i) q^{46} +(0.390214 - 0.195973i) q^{47} +(5.63419 + 0.658542i) q^{49} +(-2.81808 - 1.41529i) q^{50} +(7.56669 + 1.79334i) q^{52} +(2.23695 + 3.87450i) q^{53} +(4.19394 - 7.26412i) q^{55} +(0.753377 - 0.798533i) q^{56} +(0.00838947 + 0.144042i) q^{58} +(-4.97611 + 6.68408i) q^{59} +(8.81180 + 5.79561i) q^{61} +(0.0816677 - 0.463161i) q^{62} +(-1.15153 - 6.53063i) q^{64} +(-6.73877 + 15.6222i) q^{65} +(7.12830 - 1.68944i) q^{67} +(5.61397 + 5.95046i) q^{68} +(0.706534 + 0.949039i) q^{70} +(3.66891 - 3.07858i) q^{71} +(5.52198 + 4.63349i) q^{73} +(0.0740935 - 1.27214i) q^{74} +(-2.32521 - 5.39045i) q^{76} +(-1.90076 + 1.25015i) q^{77} +(-3.61455 - 12.0734i) q^{79} +15.5167 q^{80} +1.38483 q^{82} +(-3.32012 - 11.0900i) q^{83} +(-14.9540 + 9.83543i) q^{85} +(-0.698876 - 1.62018i) q^{86} +(0.109399 - 1.87830i) q^{88} +(-8.43420 - 7.07713i) q^{89} +(3.53497 - 2.96620i) q^{91} +(-1.41444 - 1.89992i) q^{92} +(0.0724400 + 0.0767819i) q^{94} +(12.4979 - 2.96206i) q^{95} +(2.49045 - 5.77351i) q^{97} +(0.238125 + 1.35047i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0693332 + 0.231589i 0.0490260 + 0.163758i 0.978997 0.203875i \(-0.0653535\pi\)
−0.929971 + 0.367633i \(0.880168\pi\)
\(3\) 0 0
\(4\) 1.62215 1.06690i 0.811075 0.533452i
\(5\) 1.68251 + 3.90051i 0.752443 + 1.74436i 0.663317 + 0.748339i \(0.269148\pi\)
0.0891264 + 0.996020i \(0.471593\pi\)
\(6\) 0 0
\(7\) 0.0669917 1.15020i 0.0253205 0.434736i −0.961696 0.274118i \(-0.911614\pi\)
0.987017 0.160618i \(-0.0513488\pi\)
\(8\) 0.729927 + 0.612481i 0.258068 + 0.216545i
\(9\) 0 0
\(10\) −0.786660 + 0.660086i −0.248764 + 0.208738i
\(11\) −1.17914 1.58386i −0.355524 0.477552i 0.587997 0.808863i \(-0.299917\pi\)
−0.943522 + 0.331311i \(0.892509\pi\)
\(12\) 0 0
\(13\) 2.74852 + 2.91326i 0.762303 + 0.807994i 0.986014 0.166661i \(-0.0532987\pi\)
−0.223711 + 0.974655i \(0.571817\pi\)
\(14\) 0.271019 0.0642327i 0.0724329 0.0171669i
\(15\) 0 0
\(16\) 1.44679 3.35403i 0.361697 0.838509i
\(17\) 0.731666 + 4.14948i 0.177455 + 1.00640i 0.935272 + 0.353930i \(0.115155\pi\)
−0.757817 + 0.652467i \(0.773734\pi\)
\(18\) 0 0
\(19\) 0.525049 2.97770i 0.120454 0.683131i −0.863450 0.504435i \(-0.831701\pi\)
0.983904 0.178696i \(-0.0571880\pi\)
\(20\) 6.89075 + 4.53212i 1.54082 + 1.01341i
\(21\) 0 0
\(22\) 0.285051 0.382890i 0.0607731 0.0816325i
\(23\) −0.0709339 1.21789i −0.0147907 0.253947i −0.997596 0.0693011i \(-0.977923\pi\)
0.982805 0.184646i \(-0.0591139\pi\)
\(24\) 0 0
\(25\) −8.95188 + 9.48844i −1.79038 + 1.89769i
\(26\) −0.484116 + 0.838513i −0.0949430 + 0.164446i
\(27\) 0 0
\(28\) −1.11849 1.93728i −0.211374 0.366111i
\(29\) 0.580763 + 0.137643i 0.107845 + 0.0255597i 0.284184 0.958770i \(-0.408277\pi\)
−0.176339 + 0.984329i \(0.556425\pi\)
\(30\) 0 0
\(31\) −1.73853 0.873122i −0.312249 0.156817i 0.285772 0.958298i \(-0.407750\pi\)
−0.598021 + 0.801480i \(0.704046\pi\)
\(32\) 2.76989 + 0.323753i 0.489651 + 0.0572320i
\(33\) 0 0
\(34\) −0.910246 + 0.457143i −0.156106 + 0.0783993i
\(35\) 4.59909 1.67393i 0.777388 0.282946i
\(36\) 0 0
\(37\) −4.95333 1.80287i −0.814323 0.296389i −0.0989148 0.995096i \(-0.531537\pi\)
−0.715408 + 0.698706i \(0.753759\pi\)
\(38\) 0.726006 0.0848579i 0.117774 0.0137658i
\(39\) 0 0
\(40\) −1.16087 + 3.87759i −0.183550 + 0.613101i
\(41\) 1.64295 5.48784i 0.256586 0.857057i −0.728508 0.685038i \(-0.759786\pi\)
0.985094 0.172019i \(-0.0550291\pi\)
\(42\) 0 0
\(43\) −7.24960 + 0.847356i −1.10555 + 0.129221i −0.649229 0.760593i \(-0.724908\pi\)
−0.456324 + 0.889814i \(0.650834\pi\)
\(44\) −3.60257 1.31123i −0.543108 0.197675i
\(45\) 0 0
\(46\) 0.277132 0.100868i 0.0408608 0.0148721i
\(47\) 0.390214 0.195973i 0.0569186 0.0285856i −0.420112 0.907472i \(-0.638009\pi\)
0.477031 + 0.878887i \(0.341713\pi\)
\(48\) 0 0
\(49\) 5.63419 + 0.658542i 0.804884 + 0.0940775i
\(50\) −2.81808 1.41529i −0.398537 0.200153i
\(51\) 0 0
\(52\) 7.56669 + 1.79334i 1.04931 + 0.248691i
\(53\) 2.23695 + 3.87450i 0.307268 + 0.532204i 0.977764 0.209710i \(-0.0672518\pi\)
−0.670496 + 0.741913i \(0.733919\pi\)
\(54\) 0 0
\(55\) 4.19394 7.26412i 0.565511 0.979493i
\(56\) 0.753377 0.798533i 0.100674 0.106708i
\(57\) 0 0
\(58\) 0.00838947 + 0.144042i 0.00110159 + 0.0189136i
\(59\) −4.97611 + 6.68408i −0.647835 + 0.870193i −0.997781 0.0665767i \(-0.978792\pi\)
0.349947 + 0.936770i \(0.386200\pi\)
\(60\) 0 0
\(61\) 8.81180 + 5.79561i 1.12823 + 0.742052i 0.969457 0.245263i \(-0.0788742\pi\)
0.158778 + 0.987314i \(0.449245\pi\)
\(62\) 0.0816677 0.463161i 0.0103718 0.0588215i
\(63\) 0 0
\(64\) −1.15153 6.53063i −0.143941 0.816329i
\(65\) −6.73877 + 15.6222i −0.835842 + 1.93770i
\(66\) 0 0
\(67\) 7.12830 1.68944i 0.870861 0.206398i 0.229194 0.973381i \(-0.426391\pi\)
0.641667 + 0.766983i \(0.278243\pi\)
\(68\) 5.61397 + 5.95046i 0.680794 + 0.721600i
\(69\) 0 0
\(70\) 0.706534 + 0.949039i 0.0844469 + 0.113432i
\(71\) 3.66891 3.07858i 0.435420 0.365361i −0.398572 0.917137i \(-0.630494\pi\)
0.833992 + 0.551776i \(0.186050\pi\)
\(72\) 0 0
\(73\) 5.52198 + 4.63349i 0.646298 + 0.542309i 0.905945 0.423395i \(-0.139162\pi\)
−0.259647 + 0.965704i \(0.583606\pi\)
\(74\) 0.0740935 1.27214i 0.00861319 0.147883i
\(75\) 0 0
\(76\) −2.32521 5.39045i −0.266720 0.618327i
\(77\) −1.90076 + 1.25015i −0.216611 + 0.142467i
\(78\) 0 0
\(79\) −3.61455 12.0734i −0.406668 1.35837i −0.878948 0.476918i \(-0.841754\pi\)
0.472280 0.881449i \(-0.343431\pi\)
\(80\) 15.5167 1.73482
\(81\) 0 0
\(82\) 1.38483 0.152929
\(83\) −3.32012 11.0900i −0.364431 1.21728i −0.922012 0.387161i \(-0.873456\pi\)
0.557581 0.830122i \(-0.311730\pi\)
\(84\) 0 0
\(85\) −14.9540 + 9.83543i −1.62199 + 1.06680i
\(86\) −0.698876 1.62018i −0.0753617 0.174708i
\(87\) 0 0
\(88\) 0.109399 1.87830i 0.0116619 0.200228i
\(89\) −8.43420 7.07713i −0.894023 0.750174i 0.0749899 0.997184i \(-0.476108\pi\)
−0.969013 + 0.247010i \(0.920552\pi\)
\(90\) 0 0
\(91\) 3.53497 2.96620i 0.370566 0.310942i
\(92\) −1.41444 1.89992i −0.147465 0.198080i
\(93\) 0 0
\(94\) 0.0724400 + 0.0767819i 0.00747161 + 0.00791945i
\(95\) 12.4979 2.96206i 1.28226 0.303901i
\(96\) 0 0
\(97\) 2.49045 5.77351i 0.252867 0.586211i −0.743745 0.668464i \(-0.766952\pi\)
0.996612 + 0.0822525i \(0.0262114\pi\)
\(98\) 0.238125 + 1.35047i 0.0240543 + 0.136419i
\(99\) 0 0
\(100\) −4.39803 + 24.9425i −0.439803 + 2.49425i
\(101\) −3.38189 2.22431i −0.336511 0.221327i 0.369995 0.929034i \(-0.379359\pi\)
−0.706506 + 0.707707i \(0.749730\pi\)
\(102\) 0 0
\(103\) 4.94733 6.64542i 0.487475 0.654793i −0.488528 0.872548i \(-0.662466\pi\)
0.976003 + 0.217755i \(0.0698734\pi\)
\(104\) 0.221901 + 3.80989i 0.0217592 + 0.373590i
\(105\) 0 0
\(106\) −0.742198 + 0.786684i −0.0720886 + 0.0764095i
\(107\) −7.95369 + 13.7762i −0.768912 + 1.33179i 0.169241 + 0.985575i \(0.445868\pi\)
−0.938153 + 0.346220i \(0.887465\pi\)
\(108\) 0 0
\(109\) 1.81056 + 3.13598i 0.173420 + 0.300372i 0.939613 0.342238i \(-0.111185\pi\)
−0.766193 + 0.642610i \(0.777852\pi\)
\(110\) 1.97307 + 0.467626i 0.188125 + 0.0445864i
\(111\) 0 0
\(112\) −3.76090 1.88879i −0.355372 0.178474i
\(113\) −9.43092 1.10232i −0.887187 0.103697i −0.339722 0.940526i \(-0.610333\pi\)
−0.547465 + 0.836829i \(0.684407\pi\)
\(114\) 0 0
\(115\) 4.63103 2.32579i 0.431846 0.216881i
\(116\) 1.08894 0.396341i 0.101105 0.0367993i
\(117\) 0 0
\(118\) −1.89297 0.688984i −0.174262 0.0634261i
\(119\) 4.82177 0.563584i 0.442011 0.0516636i
\(120\) 0 0
\(121\) 2.03659 6.80269i 0.185145 0.618426i
\(122\) −0.731249 + 2.44254i −0.0662042 + 0.221137i
\(123\) 0 0
\(124\) −3.75169 + 0.438510i −0.336912 + 0.0393794i
\(125\) −32.1127 11.6881i −2.87225 1.04541i
\(126\) 0 0
\(127\) −10.4753 + 3.81269i −0.929532 + 0.338322i −0.762024 0.647549i \(-0.775794\pi\)
−0.167508 + 0.985871i \(0.553572\pi\)
\(128\) 6.41681 3.22264i 0.567171 0.284844i
\(129\) 0 0
\(130\) −4.08516 0.477487i −0.358292 0.0418783i
\(131\) −10.8409 5.44450i −0.947174 0.475689i −0.0929942 0.995667i \(-0.529644\pi\)
−0.854180 + 0.519978i \(0.825940\pi\)
\(132\) 0 0
\(133\) −3.38979 0.803394i −0.293932 0.0696631i
\(134\) 0.885484 + 1.53370i 0.0764941 + 0.132492i
\(135\) 0 0
\(136\) −2.00742 + 3.47695i −0.172135 + 0.298146i
\(137\) −0.205335 + 0.217643i −0.0175430 + 0.0185945i −0.736086 0.676888i \(-0.763328\pi\)
0.718543 + 0.695483i \(0.244809\pi\)
\(138\) 0 0
\(139\) 0.326168 + 5.60010i 0.0276652 + 0.474994i 0.983479 + 0.181021i \(0.0579404\pi\)
−0.955814 + 0.293972i \(0.905023\pi\)
\(140\) 5.67448 7.62216i 0.479581 0.644190i
\(141\) 0 0
\(142\) 0.967343 + 0.636232i 0.0811777 + 0.0533914i
\(143\) 1.37331 7.78843i 0.114842 0.651301i
\(144\) 0 0
\(145\) 0.440263 + 2.49686i 0.0365619 + 0.207353i
\(146\) −0.690209 + 1.60008i −0.0571221 + 0.132424i
\(147\) 0 0
\(148\) −9.95853 + 2.36022i −0.818586 + 0.194009i
\(149\) −9.35092 9.91140i −0.766057 0.811973i 0.220500 0.975387i \(-0.429231\pi\)
−0.986558 + 0.163413i \(0.947750\pi\)
\(150\) 0 0
\(151\) −5.64512 7.58271i −0.459393 0.617072i 0.510714 0.859751i \(-0.329381\pi\)
−0.970107 + 0.242679i \(0.921974\pi\)
\(152\) 2.20703 1.85192i 0.179014 0.150211i
\(153\) 0 0
\(154\) −0.421306 0.353517i −0.0339498 0.0284872i
\(155\) 0.480519 8.25019i 0.0385962 0.662671i
\(156\) 0 0
\(157\) −3.61315 8.37622i −0.288361 0.668495i 0.711039 0.703153i \(-0.248225\pi\)
−0.999399 + 0.0346581i \(0.988966\pi\)
\(158\) 2.54546 1.67418i 0.202506 0.133190i
\(159\) 0 0
\(160\) 3.39757 + 11.3487i 0.268601 + 0.897191i
\(161\) −1.40557 −0.110775
\(162\) 0 0
\(163\) 7.94158 0.622033 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(164\) −3.18989 10.6550i −0.249088 0.832013i
\(165\) 0 0
\(166\) 2.33812 1.53781i 0.181474 0.119357i
\(167\) 1.76055 + 4.08141i 0.136235 + 0.315829i 0.972653 0.232264i \(-0.0746133\pi\)
−0.836418 + 0.548093i \(0.815354\pi\)
\(168\) 0 0
\(169\) −0.176847 + 3.03634i −0.0136036 + 0.233564i
\(170\) −3.31459 2.78127i −0.254217 0.213314i
\(171\) 0 0
\(172\) −10.8559 + 9.10916i −0.827753 + 0.694567i
\(173\) −1.86223 2.50141i −0.141583 0.190178i 0.725676 0.688037i \(-0.241527\pi\)
−0.867258 + 0.497859i \(0.834120\pi\)
\(174\) 0 0
\(175\) 10.3139 + 10.9321i 0.779660 + 0.826392i
\(176\) −7.01829 + 1.66337i −0.529024 + 0.125381i
\(177\) 0 0
\(178\) 1.05422 2.44395i 0.0790168 0.183182i
\(179\) 2.47200 + 14.0194i 0.184766 + 1.04786i 0.926255 + 0.376897i \(0.123009\pi\)
−0.741489 + 0.670965i \(0.765880\pi\)
\(180\) 0 0
\(181\) 2.75966 15.6508i 0.205124 1.16332i −0.692120 0.721783i \(-0.743323\pi\)
0.897244 0.441535i \(-0.145566\pi\)
\(182\) 0.932029 + 0.613005i 0.0690866 + 0.0454390i
\(183\) 0 0
\(184\) 0.694157 0.932415i 0.0511740 0.0687386i
\(185\) −1.30196 22.3539i −0.0957223 1.64349i
\(186\) 0 0
\(187\) 5.70947 6.05168i 0.417518 0.442543i
\(188\) 0.423901 0.734219i 0.0309162 0.0535484i
\(189\) 0 0
\(190\) 1.55250 + 2.68901i 0.112630 + 0.195082i
\(191\) −19.7601 4.68324i −1.42979 0.338867i −0.558449 0.829539i \(-0.688603\pi\)
−0.871344 + 0.490672i \(0.836751\pi\)
\(192\) 0 0
\(193\) −2.38819 1.19939i −0.171906 0.0863342i 0.360766 0.932657i \(-0.382515\pi\)
−0.532671 + 0.846322i \(0.678812\pi\)
\(194\) 1.50975 + 0.176465i 0.108394 + 0.0126694i
\(195\) 0 0
\(196\) 9.84210 4.94289i 0.703007 0.353063i
\(197\) 15.7132 5.71915i 1.11952 0.407473i 0.285044 0.958514i \(-0.407992\pi\)
0.834478 + 0.551042i \(0.185770\pi\)
\(198\) 0 0
\(199\) −1.83812 0.669021i −0.130301 0.0474257i 0.276047 0.961144i \(-0.410976\pi\)
−0.406348 + 0.913719i \(0.633198\pi\)
\(200\) −12.3457 + 1.44301i −0.872973 + 0.102036i
\(201\) 0 0
\(202\) 0.280647 0.937427i 0.0197463 0.0659572i
\(203\) 0.197224 0.658775i 0.0138424 0.0462369i
\(204\) 0 0
\(205\) 24.1696 2.82503i 1.68808 0.197308i
\(206\) 1.88202 + 0.685000i 0.131127 + 0.0477262i
\(207\) 0 0
\(208\) 13.7477 5.00376i 0.953233 0.346948i
\(209\) −5.33537 + 2.67952i −0.369055 + 0.185347i
\(210\) 0 0
\(211\) −10.2942 1.20322i −0.708684 0.0828333i −0.245888 0.969298i \(-0.579080\pi\)
−0.462796 + 0.886465i \(0.653154\pi\)
\(212\) 7.76238 + 3.89842i 0.533123 + 0.267744i
\(213\) 0 0
\(214\) −3.74187 0.886839i −0.255789 0.0606231i
\(215\) −15.5027 26.8514i −1.05727 1.83125i
\(216\) 0 0
\(217\) −1.12074 + 1.94117i −0.0760805 + 0.131775i
\(218\) −0.600726 + 0.636732i −0.0406863 + 0.0431249i
\(219\) 0 0
\(220\) −0.946921 16.2580i −0.0638414 1.09612i
\(221\) −10.0775 + 13.5365i −0.677889 + 0.910563i
\(222\) 0 0
\(223\) −6.12253 4.02685i −0.409995 0.269658i 0.327714 0.944777i \(-0.393722\pi\)
−0.737709 + 0.675119i \(0.764092\pi\)
\(224\) 0.557941 3.16424i 0.0372790 0.211420i
\(225\) 0 0
\(226\) −0.398592 2.26052i −0.0265139 0.150368i
\(227\) 9.21984 21.3740i 0.611942 1.41864i −0.277111 0.960838i \(-0.589377\pi\)
0.889053 0.457804i \(-0.151364\pi\)
\(228\) 0 0
\(229\) −0.0485690 + 0.0115111i −0.00320953 + 0.000760672i −0.232220 0.972663i \(-0.574599\pi\)
0.229011 + 0.973424i \(0.426451\pi\)
\(230\) 0.859712 + 0.911242i 0.0566878 + 0.0600855i
\(231\) 0 0
\(232\) 0.339610 + 0.456176i 0.0222965 + 0.0299494i
\(233\) 17.1664 14.4043i 1.12461 0.943660i 0.125782 0.992058i \(-0.459856\pi\)
0.998828 + 0.0483977i \(0.0154115\pi\)
\(234\) 0 0
\(235\) 1.42093 + 1.19231i 0.0926916 + 0.0777775i
\(236\) −0.940724 + 16.1516i −0.0612359 + 1.05138i
\(237\) 0 0
\(238\) 0.464828 + 1.07759i 0.0301303 + 0.0698500i
\(239\) −17.1551 + 11.2831i −1.10967 + 0.729844i −0.965680 0.259735i \(-0.916365\pi\)
−0.143994 + 0.989579i \(0.545994\pi\)
\(240\) 0 0
\(241\) 8.25619 + 27.5776i 0.531828 + 1.77643i 0.624828 + 0.780762i \(0.285169\pi\)
−0.0930005 + 0.995666i \(0.529646\pi\)
\(242\) 1.71663 0.110349
\(243\) 0 0
\(244\) 20.4774 1.31093
\(245\) 6.91095 + 23.0842i 0.441525 + 1.47479i
\(246\) 0 0
\(247\) 10.1179 6.65467i 0.643789 0.423426i
\(248\) −0.734228 1.70213i −0.0466235 0.108085i
\(249\) 0 0
\(250\) 0.480352 8.24732i 0.0303801 0.521606i
\(251\) 7.80826 + 6.55190i 0.492853 + 0.413553i 0.855047 0.518550i \(-0.173528\pi\)
−0.362195 + 0.932102i \(0.617972\pi\)
\(252\) 0 0
\(253\) −1.84533 + 1.54841i −0.116015 + 0.0973479i
\(254\) −1.60926 2.16162i −0.100974 0.135632i
\(255\) 0 0
\(256\) −7.91023 8.38436i −0.494390 0.524022i
\(257\) −5.89713 + 1.39764i −0.367853 + 0.0871827i −0.410385 0.911912i \(-0.634606\pi\)
0.0425323 + 0.999095i \(0.486457\pi\)
\(258\) 0 0
\(259\) −2.40550 + 5.57657i −0.149470 + 0.346511i
\(260\) 5.73613 + 32.5312i 0.355740 + 2.01750i
\(261\) 0 0
\(262\) 0.509253 2.88812i 0.0314618 0.178429i
\(263\) 11.2105 + 7.37325i 0.691268 + 0.454654i 0.845916 0.533315i \(-0.179054\pi\)
−0.154648 + 0.987970i \(0.549424\pi\)
\(264\) 0 0
\(265\) −11.3488 + 15.2441i −0.697153 + 0.936439i
\(266\) −0.0489675 0.840739i −0.00300239 0.0515490i
\(267\) 0 0
\(268\) 9.76070 10.3457i 0.596230 0.631967i
\(269\) −1.44120 + 2.49623i −0.0878715 + 0.152198i −0.906611 0.421967i \(-0.861340\pi\)
0.818740 + 0.574165i \(0.194673\pi\)
\(270\) 0 0
\(271\) −1.60573 2.78120i −0.0975410 0.168946i 0.813125 0.582089i \(-0.197764\pi\)
−0.910666 + 0.413143i \(0.864431\pi\)
\(272\) 14.9761 + 3.54940i 0.908058 + 0.215214i
\(273\) 0 0
\(274\) −0.0646403 0.0324636i −0.00390506 0.00196120i
\(275\) 25.5839 + 2.99033i 1.54277 + 0.180324i
\(276\) 0 0
\(277\) −3.04397 + 1.52874i −0.182894 + 0.0918529i −0.537890 0.843015i \(-0.680779\pi\)
0.354996 + 0.934868i \(0.384482\pi\)
\(278\) −1.27431 + 0.463810i −0.0764278 + 0.0278174i
\(279\) 0 0
\(280\) 4.38225 + 1.59501i 0.261889 + 0.0953200i
\(281\) −11.4072 + 1.33331i −0.680497 + 0.0795387i −0.449317 0.893372i \(-0.648333\pi\)
−0.231180 + 0.972911i \(0.574259\pi\)
\(282\) 0 0
\(283\) −7.26806 + 24.2770i −0.432041 + 1.44312i 0.414135 + 0.910216i \(0.364084\pi\)
−0.846176 + 0.532903i \(0.821101\pi\)
\(284\) 2.66697 8.90830i 0.158256 0.528610i
\(285\) 0 0
\(286\) 1.89893 0.221953i 0.112286 0.0131244i
\(287\) −6.20207 2.25737i −0.366097 0.133248i
\(288\) 0 0
\(289\) −0.708104 + 0.257729i −0.0416532 + 0.0151605i
\(290\) −0.547720 + 0.275075i −0.0321632 + 0.0161530i
\(291\) 0 0
\(292\) 13.9010 + 1.62479i 0.813492 + 0.0950836i
\(293\) 3.58895 + 1.80244i 0.209669 + 0.105300i 0.550535 0.834812i \(-0.314424\pi\)
−0.340866 + 0.940112i \(0.610720\pi\)
\(294\) 0 0
\(295\) −34.4437 8.16330i −2.00539 0.475286i
\(296\) −2.51135 4.34978i −0.145969 0.252826i
\(297\) 0 0
\(298\) 1.64704 2.85276i 0.0954106 0.165256i
\(299\) 3.35307 3.55404i 0.193913 0.205536i
\(300\) 0 0
\(301\) 0.488969 + 8.39528i 0.0281837 + 0.483896i
\(302\) 1.36468 1.83308i 0.0785284 0.105482i
\(303\) 0 0
\(304\) −9.22767 6.06913i −0.529243 0.348089i
\(305\) −7.77984 + 44.1216i −0.445472 + 2.52640i
\(306\) 0 0
\(307\) 3.45206 + 19.5776i 0.197020 + 1.11735i 0.909513 + 0.415675i \(0.136455\pi\)
−0.712493 + 0.701679i \(0.752434\pi\)
\(308\) −1.74952 + 4.05585i −0.0996883 + 0.231103i
\(309\) 0 0
\(310\) 1.94397 0.460729i 0.110410 0.0261676i
\(311\) 1.05969 + 1.12320i 0.0600893 + 0.0636909i 0.756721 0.653738i \(-0.226800\pi\)
−0.696632 + 0.717429i \(0.745319\pi\)
\(312\) 0 0
\(313\) −10.4498 14.0365i −0.590656 0.793389i 0.401834 0.915712i \(-0.368373\pi\)
−0.992490 + 0.122324i \(0.960965\pi\)
\(314\) 1.68933 1.41751i 0.0953343 0.0799950i
\(315\) 0 0
\(316\) −18.7445 15.7285i −1.05446 0.884799i
\(317\) 0.114225 1.96117i 0.00641553 0.110150i −0.993580 0.113131i \(-0.963912\pi\)
0.999996 + 0.00298109i \(0.000948911\pi\)
\(318\) 0 0
\(319\) −0.466794 1.08215i −0.0261354 0.0605887i
\(320\) 23.5353 15.4794i 1.31566 0.865326i
\(321\) 0 0
\(322\) −0.0974528 0.325515i −0.00543083 0.0181402i
\(323\) 12.7401 0.708877
\(324\) 0 0
\(325\) −52.2468 −2.89813
\(326\) 0.550615 + 1.83918i 0.0304958 + 0.101863i
\(327\) 0 0
\(328\) 4.56043 2.99944i 0.251808 0.165617i
\(329\) −0.199268 0.461954i −0.0109860 0.0254684i
\(330\) 0 0
\(331\) −2.00496 + 34.4239i −0.110203 + 1.89211i 0.263646 + 0.964619i \(0.415075\pi\)
−0.373849 + 0.927490i \(0.621962\pi\)
\(332\) −17.2177 14.4474i −0.944943 0.792901i
\(333\) 0 0
\(334\) −0.823144 + 0.690700i −0.0450405 + 0.0377934i
\(335\) 18.5831 + 24.9615i 1.01531 + 1.36379i
\(336\) 0 0
\(337\) −11.1007 11.7661i −0.604694 0.640938i 0.350625 0.936516i \(-0.385969\pi\)
−0.955319 + 0.295578i \(0.904488\pi\)
\(338\) −0.715444 + 0.169563i −0.0389150 + 0.00922303i
\(339\) 0 0
\(340\) −13.7642 + 31.9091i −0.746470 + 1.73051i
\(341\) 0.667067 + 3.78313i 0.0361237 + 0.204868i
\(342\) 0 0
\(343\) 2.53539 14.3789i 0.136898 0.776387i
\(344\) −5.81066 3.82173i −0.313290 0.206054i
\(345\) 0 0
\(346\) 0.450184 0.604702i 0.0242020 0.0325090i
\(347\) 1.84987 + 31.7610i 0.0993060 + 1.70502i 0.569121 + 0.822254i \(0.307284\pi\)
−0.469815 + 0.882765i \(0.655679\pi\)
\(348\) 0 0
\(349\) 11.8962 12.6092i 0.636789 0.674957i −0.325950 0.945387i \(-0.605684\pi\)
0.962740 + 0.270430i \(0.0871658\pi\)
\(350\) −1.81666 + 3.14655i −0.0971048 + 0.168190i
\(351\) 0 0
\(352\) −2.75331 4.76887i −0.146752 0.254181i
\(353\) 3.30817 + 0.784050i 0.176076 + 0.0417308i 0.317708 0.948189i \(-0.397087\pi\)
−0.141632 + 0.989919i \(0.545235\pi\)
\(354\) 0 0
\(355\) 18.1810 + 9.13085i 0.964949 + 0.484615i
\(356\) −21.2321 2.48168i −1.12530 0.131529i
\(357\) 0 0
\(358\) −3.07535 + 1.54450i −0.162538 + 0.0816294i
\(359\) −9.53489 + 3.47042i −0.503232 + 0.183162i −0.581147 0.813798i \(-0.697396\pi\)
0.0779150 + 0.996960i \(0.475174\pi\)
\(360\) 0 0
\(361\) 9.26314 + 3.37151i 0.487534 + 0.177448i
\(362\) 3.81590 0.446015i 0.200559 0.0234420i
\(363\) 0 0
\(364\) 2.56961 8.58309i 0.134684 0.449876i
\(365\) −8.78215 + 29.3344i −0.459678 + 1.53543i
\(366\) 0 0
\(367\) −14.7635 + 1.72560i −0.770646 + 0.0900756i −0.492324 0.870412i \(-0.663852\pi\)
−0.278322 + 0.960488i \(0.589778\pi\)
\(368\) −4.18747 1.52411i −0.218287 0.0794499i
\(369\) 0 0
\(370\) 5.08664 1.85138i 0.264442 0.0962489i
\(371\) 4.60632 2.31338i 0.239148 0.120105i
\(372\) 0 0
\(373\) 20.9383 + 2.44734i 1.08415 + 0.126718i 0.639351 0.768915i \(-0.279203\pi\)
0.444794 + 0.895633i \(0.353277\pi\)
\(374\) 1.79736 + 0.902668i 0.0929392 + 0.0466758i
\(375\) 0 0
\(376\) 0.404858 + 0.0959530i 0.0208789 + 0.00494840i
\(377\) 1.19525 + 2.07023i 0.0615585 + 0.106622i
\(378\) 0 0
\(379\) −3.47462 + 6.01822i −0.178479 + 0.309135i −0.941360 0.337404i \(-0.890451\pi\)
0.762880 + 0.646540i \(0.223784\pi\)
\(380\) 17.1133 18.1390i 0.877893 0.930512i
\(381\) 0 0
\(382\) −0.285447 4.90093i −0.0146047 0.250754i
\(383\) 21.0990 28.3409i 1.07811 1.44815i 0.193922 0.981017i \(-0.437879\pi\)
0.884187 0.467134i \(-0.154713\pi\)
\(384\) 0 0
\(385\) −8.07425 5.31052i −0.411502 0.270649i
\(386\) 0.112186 0.636236i 0.00571010 0.0323836i
\(387\) 0 0
\(388\) −2.11990 12.0226i −0.107622 0.610354i
\(389\) 10.1886 23.6198i 0.516582 1.19757i −0.437823 0.899061i \(-0.644251\pi\)
0.954406 0.298512i \(-0.0964902\pi\)
\(390\) 0 0
\(391\) 5.00171 1.18543i 0.252947 0.0599496i
\(392\) 3.70920 + 3.93152i 0.187343 + 0.198572i
\(393\) 0 0
\(394\) 2.41394 + 3.24249i 0.121613 + 0.163354i
\(395\) 41.0109 34.4123i 2.06348 1.73147i
\(396\) 0 0
\(397\) 14.2470 + 11.9547i 0.715038 + 0.599988i 0.926008 0.377504i \(-0.123218\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(398\) 0.0274952 0.472074i 0.00137821 0.0236629i
\(399\) 0 0
\(400\) 18.8731 + 43.7527i 0.943653 + 2.18763i
\(401\) −3.86305 + 2.54077i −0.192912 + 0.126880i −0.642290 0.766461i \(-0.722016\pi\)
0.449379 + 0.893341i \(0.351645\pi\)
\(402\) 0 0
\(403\) −2.23475 7.46459i −0.111321 0.371838i
\(404\) −7.85906 −0.391003
\(405\) 0 0
\(406\) 0.166239 0.00825031
\(407\) 2.98519 + 9.97123i 0.147970 + 0.494256i
\(408\) 0 0
\(409\) 9.13943 6.01109i 0.451916 0.297230i −0.303073 0.952967i \(-0.598013\pi\)
0.754989 + 0.655738i \(0.227642\pi\)
\(410\) 2.33000 + 5.40156i 0.115071 + 0.266764i
\(411\) 0 0
\(412\) 0.935284 16.0582i 0.0460781 0.791131i
\(413\) 7.35469 + 6.17132i 0.361901 + 0.303671i
\(414\) 0 0
\(415\) 37.6704 31.6092i 1.84917 1.55163i
\(416\) 6.66991 + 8.95925i 0.327019 + 0.439263i
\(417\) 0 0
\(418\) −0.990466 1.04983i −0.0484453 0.0513490i
\(419\) 32.6371 7.73513i 1.59443 0.377886i 0.664985 0.746857i \(-0.268438\pi\)
0.929441 + 0.368971i \(0.120290\pi\)
\(420\) 0 0
\(421\) 0.656955 1.52299i 0.0320180 0.0742262i −0.901457 0.432869i \(-0.857501\pi\)
0.933475 + 0.358643i \(0.116760\pi\)
\(422\) −0.435079 2.46745i −0.0211793 0.120114i
\(423\) 0 0
\(424\) −0.740254 + 4.19819i −0.0359499 + 0.203882i
\(425\) −45.9219 30.2033i −2.22754 1.46508i
\(426\) 0 0
\(427\) 7.25645 9.74710i 0.351164 0.471695i
\(428\) 1.79581 + 30.8329i 0.0868037 + 1.49036i
\(429\) 0 0
\(430\) 5.14364 5.45194i 0.248048 0.262916i
\(431\) −7.55425 + 13.0843i −0.363876 + 0.630251i −0.988595 0.150598i \(-0.951880\pi\)
0.624720 + 0.780849i \(0.285213\pi\)
\(432\) 0 0
\(433\) −2.46655 4.27218i −0.118535 0.205308i 0.800653 0.599129i \(-0.204486\pi\)
−0.919187 + 0.393821i \(0.871153\pi\)
\(434\) −0.527258 0.124962i −0.0253092 0.00599839i
\(435\) 0 0
\(436\) 6.28278 + 3.15533i 0.300891 + 0.151113i
\(437\) −3.66375 0.428231i −0.175261 0.0204851i
\(438\) 0 0
\(439\) −18.0341 + 9.05705i −0.860719 + 0.432269i −0.823687 0.567045i \(-0.808087\pi\)
−0.0370321 + 0.999314i \(0.511790\pi\)
\(440\) 7.51040 2.73356i 0.358044 0.130318i
\(441\) 0 0
\(442\) −3.83361 1.39532i −0.182346 0.0663686i
\(443\) 27.9957 3.27223i 1.33012 0.155468i 0.578833 0.815446i \(-0.303508\pi\)
0.751285 + 0.659978i \(0.229434\pi\)
\(444\) 0 0
\(445\) 13.4137 44.8050i 0.635872 2.12396i
\(446\) 0.508080 1.69711i 0.0240583 0.0803603i
\(447\) 0 0
\(448\) −7.58870 + 0.886992i −0.358532 + 0.0419064i
\(449\) 0.407937 + 0.148477i 0.0192517 + 0.00700706i 0.351628 0.936140i \(-0.385628\pi\)
−0.332376 + 0.943147i \(0.607850\pi\)
\(450\) 0 0
\(451\) −10.6293 + 3.86873i −0.500512 + 0.182171i
\(452\) −16.4744 + 8.27377i −0.774892 + 0.389165i
\(453\) 0 0
\(454\) 5.58922 + 0.653286i 0.262315 + 0.0306602i
\(455\) 17.5173 + 8.79752i 0.821224 + 0.412434i
\(456\) 0 0
\(457\) 26.3714 + 6.25014i 1.23360 + 0.292369i 0.795165 0.606393i \(-0.207384\pi\)
0.438437 + 0.898762i \(0.355532\pi\)
\(458\) −0.00603328 0.0104499i −0.000281917 0.000488294i
\(459\) 0 0
\(460\) 5.03083 8.71365i 0.234564 0.406276i
\(461\) −29.3205 + 31.0779i −1.36559 + 1.44744i −0.610003 + 0.792399i \(0.708832\pi\)
−0.755590 + 0.655045i \(0.772650\pi\)
\(462\) 0 0
\(463\) 1.76421 + 30.2903i 0.0819897 + 1.40771i 0.748956 + 0.662620i \(0.230556\pi\)
−0.666966 + 0.745088i \(0.732407\pi\)
\(464\) 1.30190 1.74876i 0.0604393 0.0811841i
\(465\) 0 0
\(466\) 4.52609 + 2.97686i 0.209667 + 0.137900i
\(467\) −2.33662 + 13.2516i −0.108126 + 0.613212i 0.881800 + 0.471624i \(0.156332\pi\)
−0.989926 + 0.141588i \(0.954779\pi\)
\(468\) 0 0
\(469\) −1.46566 8.31218i −0.0676779 0.383821i
\(470\) −0.177607 + 0.411739i −0.00819240 + 0.0189921i
\(471\) 0 0
\(472\) −7.72607 + 1.83111i −0.355621 + 0.0842838i
\(473\) 9.89039 + 10.4832i 0.454761 + 0.482018i
\(474\) 0 0
\(475\) 23.5536 + 31.6379i 1.08071 + 1.45165i
\(476\) 7.22033 6.05858i 0.330943 0.277695i
\(477\) 0 0
\(478\) −3.80246 3.19065i −0.173921 0.145937i
\(479\) −1.51040 + 25.9325i −0.0690118 + 1.18489i 0.769005 + 0.639243i \(0.220752\pi\)
−0.838017 + 0.545644i \(0.816285\pi\)
\(480\) 0 0
\(481\) −8.36213 19.3856i −0.381280 0.883907i
\(482\) −5.81424 + 3.82408i −0.264831 + 0.174182i
\(483\) 0 0
\(484\) −3.95416 13.2078i −0.179735 0.600356i
\(485\) 26.7098 1.21283
\(486\) 0 0
\(487\) 2.70578 0.122611 0.0613053 0.998119i \(-0.480474\pi\)
0.0613053 + 0.998119i \(0.480474\pi\)
\(488\) 2.88226 + 9.62743i 0.130474 + 0.435813i
\(489\) 0 0
\(490\) −4.86689 + 3.20100i −0.219863 + 0.144606i
\(491\) −15.7670 36.5520i −0.711554 1.64957i −0.759326 0.650710i \(-0.774471\pi\)
0.0477722 0.998858i \(-0.484788\pi\)
\(492\) 0 0
\(493\) −0.146224 + 2.51058i −0.00658561 + 0.113071i
\(494\) 2.24266 + 1.88181i 0.100902 + 0.0846667i
\(495\) 0 0
\(496\) −5.44377 + 4.56786i −0.244432 + 0.205103i
\(497\) −3.29521 4.42624i −0.147810 0.198544i
\(498\) 0 0
\(499\) −1.70556 1.80779i −0.0763516 0.0809279i 0.688071 0.725643i \(-0.258458\pi\)
−0.764423 + 0.644715i \(0.776976\pi\)
\(500\) −64.5616 + 15.3014i −2.88728 + 0.684299i
\(501\) 0 0
\(502\) −0.975978 + 2.26257i −0.0435600 + 0.100983i
\(503\) 2.56729 + 14.5598i 0.114470 + 0.649191i 0.987011 + 0.160651i \(0.0513594\pi\)
−0.872541 + 0.488540i \(0.837530\pi\)
\(504\) 0 0
\(505\) 2.98584 16.9335i 0.132868 0.753532i
\(506\) −0.486538 0.320001i −0.0216292 0.0142258i
\(507\) 0 0
\(508\) −12.9247 + 17.3609i −0.573441 + 0.770265i
\(509\) −1.39600 23.9683i −0.0618764 1.06238i −0.876194 0.481958i \(-0.839926\pi\)
0.814318 0.580419i \(-0.197111\pi\)
\(510\) 0 0
\(511\) 5.69938 6.04099i 0.252126 0.267238i
\(512\) 8.57387 14.8504i 0.378915 0.656300i
\(513\) 0 0
\(514\) −0.732546 1.26881i −0.0323112 0.0559646i
\(515\) 34.2445 + 8.11609i 1.50899 + 0.357638i
\(516\) 0 0
\(517\) −0.770512 0.386966i −0.0338871 0.0170187i
\(518\) −1.45825 0.170445i −0.0640719 0.00748893i
\(519\) 0 0
\(520\) −14.4871 + 7.27571i −0.635303 + 0.319061i
\(521\) −18.5919 + 6.76690i −0.814526 + 0.296463i −0.715492 0.698621i \(-0.753798\pi\)
−0.0990342 + 0.995084i \(0.531575\pi\)
\(522\) 0 0
\(523\) 32.2975 + 11.7553i 1.41227 + 0.514025i 0.931796 0.362982i \(-0.118241\pi\)
0.480477 + 0.877007i \(0.340464\pi\)
\(524\) −23.3943 + 2.73440i −1.02199 + 0.119453i
\(525\) 0 0
\(526\) −0.930305 + 3.10744i −0.0405632 + 0.135491i
\(527\) 2.35098 7.85283i 0.102410 0.342075i
\(528\) 0 0
\(529\) 21.3663 2.49736i 0.928968 0.108581i
\(530\) −4.31722 1.57134i −0.187528 0.0682547i
\(531\) 0 0
\(532\) −6.35588 + 2.31335i −0.275563 + 0.100297i
\(533\) 20.5032 10.2971i 0.888093 0.446017i
\(534\) 0 0
\(535\) −67.1163 7.84477i −2.90169 0.339159i
\(536\) 6.23789 + 3.13279i 0.269436 + 0.135316i
\(537\) 0 0
\(538\) −0.678023 0.160694i −0.0292316 0.00692803i
\(539\) −5.60046 9.70029i −0.241229 0.417821i
\(540\) 0 0
\(541\) −18.0270 + 31.2237i −0.775042 + 1.34241i 0.159728 + 0.987161i \(0.448938\pi\)
−0.934771 + 0.355252i \(0.884395\pi\)
\(542\) 0.532766 0.564699i 0.0228842 0.0242559i
\(543\) 0 0
\(544\) 0.683222 + 11.7305i 0.0292929 + 0.502940i
\(545\) −9.18560 + 12.3384i −0.393468 + 0.528519i
\(546\) 0 0
\(547\) −7.21874 4.74784i −0.308651 0.203003i 0.385728 0.922613i \(-0.373950\pi\)
−0.694379 + 0.719610i \(0.744321\pi\)
\(548\) −0.100881 + 0.572123i −0.00430941 + 0.0244399i
\(549\) 0 0
\(550\) 1.08129 + 6.13228i 0.0461062 + 0.261481i
\(551\) 0.714789 1.65707i 0.0304511 0.0705935i
\(552\) 0 0
\(553\) −14.1290 + 3.34864i −0.600828 + 0.142399i
\(554\) −0.565086 0.598957i −0.0240082 0.0254472i
\(555\) 0 0
\(556\) 6.50386 + 8.73620i 0.275825 + 0.370497i
\(557\) −16.3664 + 13.7330i −0.693466 + 0.581887i −0.919906 0.392138i \(-0.871736\pi\)
0.226441 + 0.974025i \(0.427291\pi\)
\(558\) 0 0
\(559\) −22.3943 18.7910i −0.947176 0.794775i
\(560\) 1.03949 17.8473i 0.0439264 0.754187i
\(561\) 0 0
\(562\) −1.09968 2.54934i −0.0463871 0.107537i
\(563\) 23.1111 15.2004i 0.974018 0.640621i 0.0405100 0.999179i \(-0.487102\pi\)
0.933508 + 0.358558i \(0.116731\pi\)
\(564\) 0 0
\(565\) −11.5681 38.6400i −0.486672 1.62560i
\(566\) −6.12621 −0.257504
\(567\) 0 0
\(568\) 4.56361 0.191485
\(569\) 6.34020 + 21.1777i 0.265795 + 0.887817i 0.981832 + 0.189754i \(0.0607691\pi\)
−0.716037 + 0.698063i \(0.754046\pi\)
\(570\) 0 0
\(571\) −1.77808 + 1.16946i −0.0744104 + 0.0489405i −0.586169 0.810189i \(-0.699365\pi\)
0.511759 + 0.859129i \(0.328994\pi\)
\(572\) −6.08179 14.0992i −0.254293 0.589517i
\(573\) 0 0
\(574\) 0.0927725 1.59284i 0.00387225 0.0664839i
\(575\) 12.1909 + 10.2293i 0.508394 + 0.426593i
\(576\) 0 0
\(577\) −15.8954 + 13.3378i −0.661733 + 0.555260i −0.910606 0.413276i \(-0.864384\pi\)
0.248872 + 0.968536i \(0.419940\pi\)
\(578\) −0.108782 0.146120i −0.00452475 0.00607779i
\(579\) 0 0
\(580\) 3.37808 + 3.58056i 0.140267 + 0.148674i
\(581\) −12.9782 + 3.07588i −0.538425 + 0.127609i
\(582\) 0 0
\(583\) 3.49900 8.11160i 0.144914 0.335948i
\(584\) 1.19271 + 6.76421i 0.0493548 + 0.279905i
\(585\) 0 0
\(586\) −0.168592 + 0.956131i −0.00696446 + 0.0394974i
\(587\) 9.81262 + 6.45386i 0.405010 + 0.266379i 0.735629 0.677385i \(-0.236887\pi\)
−0.330618 + 0.943765i \(0.607257\pi\)
\(588\) 0 0
\(589\) −3.51271 + 4.71839i −0.144739 + 0.194418i
\(590\) −0.497559 8.54276i −0.0204842 0.351700i
\(591\) 0 0
\(592\) −13.2133 + 14.0053i −0.543064 + 0.575614i
\(593\) −10.8840 + 18.8516i −0.446952 + 0.774144i −0.998186 0.0602070i \(-0.980824\pi\)
0.551234 + 0.834351i \(0.314157\pi\)
\(594\) 0 0
\(595\) 10.3109 + 17.8591i 0.422708 + 0.732151i
\(596\) −25.7431 6.10123i −1.05448 0.249916i
\(597\) 0 0
\(598\) 1.05556 + 0.530120i 0.0431649 + 0.0216782i
\(599\) 10.1747 + 1.18926i 0.415728 + 0.0485917i 0.321386 0.946948i \(-0.395851\pi\)
0.0943421 + 0.995540i \(0.469925\pi\)
\(600\) 0 0
\(601\) 2.52233 1.26676i 0.102888 0.0516723i −0.396611 0.917987i \(-0.629814\pi\)
0.499499 + 0.866315i \(0.333517\pi\)
\(602\) −1.91035 + 0.695311i −0.0778601 + 0.0283388i
\(603\) 0 0
\(604\) −17.2472 6.27748i −0.701780 0.255427i
\(605\) 29.9605 3.50188i 1.21807 0.142372i
\(606\) 0 0
\(607\) −3.90167 + 13.0325i −0.158364 + 0.528972i −0.999938 0.0111702i \(-0.996444\pi\)
0.841574 + 0.540142i \(0.181630\pi\)
\(608\) 2.41836 8.07790i 0.0980776 0.327602i
\(609\) 0 0
\(610\) −10.7575 + 1.25737i −0.435558 + 0.0509094i
\(611\) 1.64343 + 0.598161i 0.0664862 + 0.0241990i
\(612\) 0 0
\(613\) 15.3111 5.57278i 0.618410 0.225083i −0.0137693 0.999905i \(-0.504383\pi\)
0.632179 + 0.774823i \(0.282161\pi\)
\(614\) −4.29462 + 2.15684i −0.173317 + 0.0870429i
\(615\) 0 0
\(616\) −2.15310 0.251662i −0.0867510 0.0101397i
\(617\) 6.93552 + 3.48315i 0.279214 + 0.140226i 0.582896 0.812547i \(-0.301920\pi\)
−0.303682 + 0.952774i \(0.598216\pi\)
\(618\) 0 0
\(619\) 42.6421 + 10.1064i 1.71393 + 0.406209i 0.966200 0.257793i \(-0.0829954\pi\)
0.747730 + 0.664002i \(0.231144\pi\)
\(620\) −8.02269 13.8957i −0.322199 0.558065i
\(621\) 0 0
\(622\) −0.186650 + 0.323287i −0.00748397 + 0.0129626i
\(623\) −8.70516 + 9.22693i −0.348765 + 0.369669i
\(624\) 0 0
\(625\) −4.64826 79.8075i −0.185930 3.19230i
\(626\) 2.52618 3.39325i 0.100966 0.135621i
\(627\) 0 0
\(628\) −14.7977 9.73259i −0.590492 0.388373i
\(629\) 3.85678 21.8729i 0.153780 0.872129i
\(630\) 0 0
\(631\) 3.55734 + 20.1747i 0.141615 + 0.803141i 0.970023 + 0.243015i \(0.0781363\pi\)
−0.828407 + 0.560126i \(0.810753\pi\)
\(632\) 4.75639 11.0266i 0.189199 0.438613i
\(633\) 0 0
\(634\) 0.462105 0.109521i 0.0183526 0.00434963i
\(635\) −32.4963 34.4440i −1.28957 1.36687i
\(636\) 0 0
\(637\) 13.5672 + 18.2239i 0.537552 + 0.722057i
\(638\) 0.218250 0.183133i 0.00864058 0.00725031i
\(639\) 0 0
\(640\) 23.3663 + 19.6066i 0.923634 + 0.775021i
\(641\) 2.00940 34.5001i 0.0793667 1.36267i −0.689974 0.723835i \(-0.742378\pi\)
0.769340 0.638839i \(-0.220585\pi\)
\(642\) 0 0
\(643\) 11.7800 + 27.3091i 0.464558 + 1.07697i 0.976024 + 0.217663i \(0.0698435\pi\)
−0.511466 + 0.859304i \(0.670897\pi\)
\(644\) −2.28005 + 1.49961i −0.0898464 + 0.0590929i
\(645\) 0 0
\(646\) 0.883310 + 2.95046i 0.0347534 + 0.116084i
\(647\) −43.1443 −1.69618 −0.848089 0.529853i \(-0.822247\pi\)
−0.848089 + 0.529853i \(0.822247\pi\)
\(648\) 0 0
\(649\) 16.4542 0.645884
\(650\) −3.62244 12.0998i −0.142084 0.474592i
\(651\) 0 0
\(652\) 12.8824 8.47291i 0.504515 0.331825i
\(653\) 12.3536 + 28.6388i 0.483433 + 1.12072i 0.969120 + 0.246591i \(0.0793105\pi\)
−0.485686 + 0.874133i \(0.661430\pi\)
\(654\) 0 0
\(655\) 2.99636 51.4454i 0.117077 2.01014i
\(656\) −16.0294 13.4503i −0.625843 0.525145i
\(657\) 0 0
\(658\) 0.0931677 0.0781770i 0.00363205 0.00304766i
\(659\) −24.2845 32.6198i −0.945992 1.27069i −0.962628 0.270826i \(-0.912703\pi\)
0.0166368 0.999862i \(-0.494704\pi\)
\(660\) 0 0
\(661\) −11.9150 12.6291i −0.463439 0.491217i 0.452933 0.891545i \(-0.350378\pi\)
−0.916372 + 0.400328i \(0.868896\pi\)
\(662\) −8.11121 + 1.92239i −0.315251 + 0.0747159i
\(663\) 0 0
\(664\) 4.36896 10.1284i 0.169548 0.393058i
\(665\) −2.56972 14.5736i −0.0996494 0.565140i
\(666\) 0 0
\(667\) 0.126439 0.717068i 0.00489572 0.0277650i
\(668\) 7.21034 + 4.74232i 0.278976 + 0.183486i
\(669\) 0 0
\(670\) −4.49238 + 6.03431i −0.173556 + 0.233126i
\(671\) −1.21091 20.7905i −0.0467466 0.802609i
\(672\) 0 0
\(673\) −30.2553 + 32.0688i −1.16626 + 1.23616i −0.199659 + 0.979865i \(0.563984\pi\)
−0.966598 + 0.256296i \(0.917498\pi\)
\(674\) 1.95524 3.38658i 0.0753131 0.130446i
\(675\) 0 0
\(676\) 2.95261 + 5.11407i 0.113562 + 0.196695i
\(677\) −33.7584 8.00088i −1.29744 0.307499i −0.476834 0.878993i \(-0.658216\pi\)
−0.820606 + 0.571494i \(0.806364\pi\)
\(678\) 0 0
\(679\) −6.47387 3.25130i −0.248445 0.124774i
\(680\) −16.9394 1.97993i −0.649595 0.0759268i
\(681\) 0 0
\(682\) −0.829880 + 0.416782i −0.0317778 + 0.0159594i
\(683\) 40.1564 14.6157i 1.53654 0.559256i 0.571329 0.820721i \(-0.306428\pi\)
0.965213 + 0.261465i \(0.0842057\pi\)
\(684\) 0 0
\(685\) −1.19440 0.434725i −0.0456356 0.0166100i
\(686\) 3.50578 0.409767i 0.133851 0.0156450i
\(687\) 0 0
\(688\) −7.64657 + 25.5413i −0.291523 + 0.973754i
\(689\) −5.13915 + 17.1660i −0.195786 + 0.653971i
\(690\) 0 0
\(691\) 15.9237 1.86121i 0.605764 0.0708037i 0.192319 0.981333i \(-0.438399\pi\)
0.413446 + 0.910529i \(0.364325\pi\)
\(692\) −5.68957 2.07083i −0.216285 0.0787213i
\(693\) 0 0
\(694\) −7.22724 + 2.63050i −0.274342 + 0.0998524i
\(695\) −21.2944 + 10.6945i −0.807743 + 0.405664i
\(696\) 0 0
\(697\) 23.9738 + 2.80214i 0.908072 + 0.106138i
\(698\) 3.74496 + 1.88079i 0.141749 + 0.0711890i
\(699\) 0 0
\(700\) 28.3943 + 6.72957i 1.07320 + 0.254354i
\(701\) −20.8919 36.1858i −0.789075 1.36672i −0.926534 0.376211i \(-0.877227\pi\)
0.137459 0.990507i \(-0.456106\pi\)
\(702\) 0 0
\(703\) −7.96914 + 13.8029i −0.300562 + 0.520588i
\(704\) −8.98581 + 9.52440i −0.338665 + 0.358964i
\(705\) 0 0
\(706\) 0.0477884 + 0.820496i 0.00179854 + 0.0308798i
\(707\) −2.78496 + 3.74085i −0.104739 + 0.140689i
\(708\) 0 0
\(709\) 14.1161 + 9.28427i 0.530140 + 0.348678i 0.786190 0.617985i \(-0.212051\pi\)
−0.256050 + 0.966663i \(0.582421\pi\)
\(710\) −0.854057 + 4.84360i −0.0320522 + 0.181777i
\(711\) 0 0
\(712\) −1.82174 10.3316i −0.0682724 0.387192i
\(713\) −0.940045 + 2.17927i −0.0352050 + 0.0816143i
\(714\) 0 0
\(715\) 32.6894 7.74754i 1.22252 0.289741i
\(716\) 18.9674 + 20.1042i 0.708843 + 0.751330i
\(717\) 0 0
\(718\) −1.46479 1.96756i −0.0546656 0.0734287i
\(719\) 12.7933 10.7349i 0.477111 0.400344i −0.372269 0.928125i \(-0.621420\pi\)
0.849381 + 0.527781i \(0.176976\pi\)
\(720\) 0 0
\(721\) −7.31216 6.13563i −0.272319 0.228503i
\(722\) −0.138561 + 2.37900i −0.00515670 + 0.0885372i
\(723\) 0 0
\(724\) −12.2214 28.3323i −0.454203 1.05296i
\(725\) −6.50494 + 4.27837i −0.241588 + 0.158895i
\(726\) 0 0
\(727\) −6.34386 21.1900i −0.235281 0.785893i −0.991332 0.131380i \(-0.958059\pi\)
0.756051 0.654513i \(-0.227126\pi\)
\(728\) 4.39701 0.162964
\(729\) 0 0
\(730\) −7.40242 −0.273976
\(731\) −8.82037 29.4621i −0.326233 1.08970i
\(732\) 0 0
\(733\) 10.9756 7.21876i 0.405393 0.266631i −0.330396 0.943842i \(-0.607182\pi\)
0.735788 + 0.677212i \(0.236812\pi\)
\(734\) −1.42323 3.29941i −0.0525323 0.121784i
\(735\) 0 0
\(736\) 0.197816 3.39638i 0.00729161 0.125192i
\(737\) −11.0811 9.29816i −0.408178 0.342502i
\(738\) 0 0
\(739\) −34.4177 + 28.8799i −1.26608 + 1.06236i −0.271070 + 0.962560i \(0.587378\pi\)
−0.995007 + 0.0998052i \(0.968178\pi\)
\(740\) −25.9614 34.8722i −0.954360 1.28193i
\(741\) 0 0
\(742\) 0.855125 + 0.906380i 0.0313926 + 0.0332742i
\(743\) 21.7667 5.15881i 0.798545 0.189259i 0.188965 0.981984i \(-0.439487\pi\)
0.609579 + 0.792725i \(0.291338\pi\)
\(744\) 0 0
\(745\) 22.9264 53.1494i 0.839959 1.94724i
\(746\) 0.884944 + 5.01877i 0.0324001 + 0.183750i
\(747\) 0 0
\(748\) 2.80504 15.9082i 0.102563 0.581661i
\(749\) 15.3126 + 10.0712i 0.559510 + 0.367995i
\(750\) 0 0
\(751\) 7.09785 9.53407i 0.259004 0.347903i −0.653532 0.756899i \(-0.726714\pi\)
0.912536 + 0.408996i \(0.134121\pi\)
\(752\) −0.0927423 1.59232i −0.00338196 0.0580661i
\(753\) 0 0
\(754\) −0.396573 + 0.420342i −0.0144423 + 0.0153080i
\(755\) 20.0784 34.7768i 0.730728 1.26566i
\(756\) 0 0
\(757\) −2.60890 4.51875i −0.0948221 0.164237i 0.814712 0.579865i \(-0.196895\pi\)
−0.909534 + 0.415629i \(0.863562\pi\)
\(758\) −1.63466 0.387422i −0.0593736 0.0140718i
\(759\) 0 0
\(760\) 10.9368 + 5.49266i 0.396719 + 0.199240i
\(761\) −0.693685 0.0810801i −0.0251461 0.00293915i 0.103511 0.994628i \(-0.466992\pi\)
−0.128657 + 0.991689i \(0.541067\pi\)
\(762\) 0 0
\(763\) 3.72830 1.87242i 0.134974 0.0677863i
\(764\) −37.0505 + 13.4853i −1.34044 + 0.487880i
\(765\) 0 0
\(766\) 8.02630 + 2.92133i 0.290002 + 0.105552i
\(767\) −33.1494 + 3.87461i −1.19696 + 0.139904i
\(768\) 0 0
\(769\) −3.19114 + 10.6591i −0.115075 + 0.384379i −0.996051 0.0887831i \(-0.971702\pi\)
0.880976 + 0.473162i \(0.156887\pi\)
\(770\) 0.670044 2.23810i 0.0241467 0.0806556i
\(771\) 0 0
\(772\) −5.15364 + 0.602374i −0.185483 + 0.0216799i
\(773\) 14.5554 + 5.29774i 0.523522 + 0.190546i 0.590243 0.807225i \(-0.299032\pi\)
−0.0667217 + 0.997772i \(0.521254\pi\)
\(774\) 0 0
\(775\) 23.8477 8.67985i 0.856634 0.311789i
\(776\) 5.35401 2.68889i 0.192198 0.0965254i
\(777\) 0 0
\(778\) 6.17650 + 0.721929i 0.221438 + 0.0258824i
\(779\) −15.4785 7.77360i −0.554575 0.278518i
\(780\) 0 0
\(781\) −9.20222 2.18097i −0.329281 0.0780411i
\(782\) 0.621316 + 1.07615i 0.0222182 + 0.0384831i
\(783\) 0 0
\(784\) 10.3603 17.9445i 0.370009 0.640875i
\(785\) 26.5923 28.1862i 0.949120 1.00601i
\(786\) 0 0
\(787\) 2.04878 + 35.1762i 0.0730312 + 1.25390i 0.813403 + 0.581700i \(0.197612\pi\)
−0.740372 + 0.672197i \(0.765351\pi\)
\(788\) 19.3874 26.0418i 0.690648 0.927702i
\(789\) 0 0
\(790\) 10.8129 + 7.11177i 0.384707 + 0.253025i
\(791\) −1.89968 + 10.7736i −0.0675449 + 0.383066i
\(792\) 0 0
\(793\) 7.33528 + 41.6004i 0.260483 + 1.47728i
\(794\) −1.78078 + 4.12831i −0.0631975 + 0.146508i
\(795\) 0 0
\(796\) −3.69549 + 0.875847i −0.130983 + 0.0310436i
\(797\) −18.1942 19.2847i −0.644471 0.683099i 0.319961 0.947431i \(-0.396330\pi\)
−0.964432 + 0.264332i \(0.914849\pi\)
\(798\) 0 0
\(799\) 1.09869 + 1.47580i 0.0388690 + 0.0522101i
\(800\) −27.8676 + 23.3837i −0.985268 + 0.826738i
\(801\) 0 0
\(802\) −0.856252 0.718481i −0.0302353 0.0253704i
\(803\) 0.827614 14.2096i 0.0292059 0.501445i
\(804\) 0 0
\(805\) −2.36489 5.48244i −0.0833516 0.193231i
\(806\) 1.57378 1.03509i 0.0554339 0.0364594i
\(807\) 0 0
\(808\) −1.10619 3.69493i −0.0389156 0.129987i
\(809\) 4.72350 0.166070 0.0830348 0.996547i \(-0.473539\pi\)
0.0830348 + 0.996547i \(0.473539\pi\)
\(810\) 0 0
\(811\) −14.2884 −0.501733 −0.250866 0.968022i \(-0.580716\pi\)
−0.250866 + 0.968022i \(0.580716\pi\)
\(812\) −0.382922 1.27905i −0.0134379 0.0448859i
\(813\) 0 0
\(814\) −2.10225 + 1.38267i −0.0736840 + 0.0484627i
\(815\) 13.3618 + 30.9762i 0.468044 + 1.08505i
\(816\) 0 0
\(817\) −1.28322 + 22.0320i −0.0448942 + 0.770803i
\(818\) 2.02577 + 1.69982i 0.0708294 + 0.0594329i
\(819\) 0 0
\(820\) 36.1927 30.3693i 1.26391 1.06054i
\(821\) 13.0600 + 17.5427i 0.455799 + 0.612244i 0.969311 0.245839i \(-0.0790633\pi\)
−0.513512 + 0.858082i \(0.671656\pi\)
\(822\) 0 0
\(823\) −16.1321 17.0990i −0.562329 0.596034i 0.382355 0.924016i \(-0.375113\pi\)
−0.944684 + 0.327981i \(0.893632\pi\)
\(824\) 7.68139 1.82052i 0.267594 0.0634209i
\(825\) 0 0
\(826\) −0.919285 + 2.13114i −0.0319860 + 0.0741519i
\(827\) −3.09330 17.5430i −0.107565 0.610030i −0.990165 0.139905i \(-0.955320\pi\)
0.882600 0.470124i \(-0.155791\pi\)
\(828\) 0 0
\(829\) −9.35023 + 53.0278i −0.324747 + 1.84173i 0.186700 + 0.982417i \(0.440221\pi\)
−0.511447 + 0.859315i \(0.670890\pi\)
\(830\) 9.93215 + 6.53248i 0.344750 + 0.226746i
\(831\) 0 0
\(832\) 15.8605 21.3043i 0.549863 0.738594i
\(833\) 1.38973 + 23.8608i 0.0481514 + 0.826728i
\(834\) 0 0
\(835\) −12.9574 + 13.7340i −0.448409 + 0.475286i
\(836\) −5.79597 + 10.0389i −0.200458 + 0.347203i
\(837\) 0 0
\(838\) 4.05420 + 7.02209i 0.140050 + 0.242574i
\(839\) 50.6792 + 12.0112i 1.74964 + 0.414672i 0.975792 0.218699i \(-0.0701811\pi\)
0.773848 + 0.633371i \(0.218329\pi\)
\(840\) 0 0
\(841\) −25.5970 12.8553i −0.882655 0.443286i
\(842\) 0.398257 + 0.0465496i 0.0137249 + 0.00160421i
\(843\) 0 0
\(844\) −17.9825 + 9.03115i −0.618983 + 0.310865i
\(845\) −12.1408 + 4.41889i −0.417656 + 0.152014i
\(846\) 0 0
\(847\) −7.68804 2.79822i −0.264164 0.0961480i
\(848\) 16.2316 1.89720i 0.557396 0.0651502i
\(849\) 0 0
\(850\) 3.81084 12.7291i 0.130711 0.436605i
\(851\) −1.84433 + 6.16050i −0.0632229 + 0.211179i
\(852\) 0 0
\(853\) −48.2344 + 5.63779i −1.65151 + 0.193034i −0.890271 0.455431i \(-0.849485\pi\)
−0.761244 + 0.648466i \(0.775411\pi\)
\(854\) 2.76043 + 1.00472i 0.0944601 + 0.0343807i
\(855\) 0 0
\(856\) −14.2433 + 5.18412i −0.486825 + 0.177190i
\(857\) −38.9620 + 19.5675i −1.33092 + 0.668412i −0.965004 0.262236i \(-0.915540\pi\)
−0.365914 + 0.930648i \(0.619244\pi\)
\(858\) 0 0
\(859\) −16.1938 1.89278i −0.552524 0.0645808i −0.164750 0.986335i \(-0.552682\pi\)
−0.387774 + 0.921755i \(0.626756\pi\)
\(860\) −53.7955 27.0171i −1.83441 0.921276i
\(861\) 0 0
\(862\) −3.55395 0.842302i −0.121048 0.0286889i
\(863\) 25.0920 + 43.4607i 0.854142 + 1.47942i 0.877439 + 0.479689i \(0.159251\pi\)
−0.0232963 + 0.999729i \(0.507416\pi\)
\(864\) 0 0
\(865\) 6.62352 11.4723i 0.225207 0.390069i
\(866\) 0.818377 0.867429i 0.0278096 0.0294764i
\(867\) 0 0
\(868\) 0.253043 + 4.34459i 0.00858885 + 0.147465i
\(869\) −14.8606 + 19.9612i −0.504111 + 0.677138i
\(870\) 0 0
\(871\) 24.5141 + 16.1232i 0.830628 + 0.546313i
\(872\) −0.599153 + 3.39796i −0.0202899 + 0.115070i
\(873\) 0 0
\(874\) −0.154846 0.878175i −0.00523774 0.0297047i
\(875\) −15.5949 + 36.1531i −0.527205 + 1.22220i
\(876\) 0 0
\(877\) −43.6563 + 10.3467i −1.47417 + 0.349385i −0.887638 0.460542i \(-0.847655\pi\)
−0.586531 + 0.809926i \(0.699507\pi\)
\(878\) −3.34787 3.54854i −0.112985 0.119757i
\(879\) 0 0
\(880\) −18.2963 24.5763i −0.616770 0.828466i
\(881\) −13.9661 + 11.7190i −0.470531 + 0.394822i −0.846988 0.531612i \(-0.821587\pi\)
0.376457 + 0.926434i \(0.377142\pi\)
\(882\) 0 0
\(883\) −13.4700 11.3026i −0.453300 0.380364i 0.387359 0.921929i \(-0.373388\pi\)
−0.840659 + 0.541565i \(0.817832\pi\)
\(884\) −1.90514 + 32.7100i −0.0640768 + 1.10016i
\(885\) 0 0
\(886\) 2.69885 + 6.25663i 0.0906696 + 0.210196i
\(887\) −27.5435 + 18.1156i −0.924820 + 0.608264i −0.920082 0.391725i \(-0.871878\pi\)
−0.00473763 + 0.999989i \(0.501508\pi\)
\(888\) 0 0
\(889\) 3.68362 + 12.3041i 0.123545 + 0.412667i
\(890\) 11.3064 0.378990
\(891\) 0 0
\(892\) −14.2279 −0.476386
\(893\) −0.378667 1.26484i −0.0126716 0.0423261i
\(894\) 0 0
\(895\) −50.5237 + 33.2300i −1.68882 + 1.11076i
\(896\) −3.27682 7.59652i −0.109471 0.253782i
\(897\) 0 0
\(898\) −0.00610205 + 0.104768i −0.000203628 + 0.00349616i
\(899\) −0.889494 0.746374i −0.0296663 0.0248930i
\(900\) 0 0
\(901\) −14.4405 + 12.1170i −0.481082 + 0.403676i
\(902\) −1.63292 2.19339i −0.0543702 0.0730318i
\(903\) 0 0
\(904\) −6.20873 6.58087i −0.206499 0.218877i
\(905\) 65.6894 15.5687i 2.18359 0.517520i
\(906\) 0 0
\(907\) −15.5485 + 36.0455i −0.516280 + 1.19687i 0.438277 + 0.898840i \(0.355589\pi\)
−0.954556 + 0.298031i \(0.903670\pi\)
\(908\) −7.84805 44.5085i −0.260447 1.47707i
\(909\) 0 0
\(910\) −0.822878 + 4.66678i −0.0272782 + 0.154702i
\(911\) 12.7242 + 8.36883i 0.421571 + 0.277272i 0.742519 0.669825i \(-0.233631\pi\)
−0.320948 + 0.947097i \(0.604001\pi\)
\(912\) 0 0
\(913\) −13.6501 + 18.3353i −0.451752 + 0.606809i
\(914\) 0.380951 + 6.54067i 0.0126007 + 0.216346i
\(915\) 0 0
\(916\) −0.0665050 + 0.0704911i −0.00219739 + 0.00232909i
\(917\) −6.98854 + 12.1045i −0.230782 + 0.399726i
\(918\) 0 0
\(919\) −7.39953 12.8164i −0.244088 0.422773i 0.717787 0.696263i \(-0.245155\pi\)
−0.961875 + 0.273490i \(0.911822\pi\)
\(920\) 4.80482 + 1.13876i 0.158410 + 0.0375439i
\(921\) 0 0
\(922\) −9.23020 4.63558i −0.303980 0.152665i
\(923\) 19.0528 + 2.22695i 0.627131 + 0.0733011i
\(924\) 0 0
\(925\) 61.4481 30.8604i 2.02040 1.01468i
\(926\) −6.89258 + 2.50869i −0.226504 + 0.0824407i
\(927\) 0 0
\(928\) 1.56408 + 0.569280i 0.0513436 + 0.0186875i
\(929\) 30.4001 3.55326i 0.997395 0.116579i 0.398299 0.917256i \(-0.369601\pi\)
0.599096 + 0.800677i \(0.295527\pi\)
\(930\) 0 0
\(931\) 4.91916 16.4312i 0.161219 0.538509i
\(932\) 12.4785 41.6809i 0.408745 1.36530i
\(933\) 0 0
\(934\) −3.23094 + 0.377642i −0.105719 + 0.0123568i
\(935\) 33.2109 + 12.0878i 1.08611 + 0.395313i
\(936\) 0 0
\(937\) 3.22880 1.17519i 0.105480 0.0383917i −0.288741 0.957407i \(-0.593237\pi\)
0.394221 + 0.919016i \(0.371014\pi\)
\(938\) 1.82339 0.915741i 0.0595358 0.0299000i
\(939\) 0 0
\(940\) 3.57704 + 0.418097i 0.116670 + 0.0136368i
\(941\) 17.3110 + 8.69390i 0.564321 + 0.283413i 0.708001 0.706211i \(-0.249597\pi\)
−0.143680 + 0.989624i \(0.545893\pi\)
\(942\) 0 0
\(943\) −6.80012 1.61166i −0.221442 0.0524828i
\(944\) 15.2192 + 26.3605i 0.495344 + 0.857961i
\(945\) 0 0
\(946\) −1.74206 + 3.01734i −0.0566393 + 0.0981022i
\(947\) 9.46263 10.0298i 0.307494 0.325925i −0.555136 0.831759i \(-0.687334\pi\)
0.862630 + 0.505835i \(0.168815\pi\)
\(948\) 0 0
\(949\) 1.67870 + 28.8222i 0.0544930 + 0.935609i
\(950\) −5.69395 + 7.64830i −0.184736 + 0.248144i
\(951\) 0 0
\(952\) 3.86472 + 2.54187i 0.125256 + 0.0823824i
\(953\) 6.51937 36.9732i 0.211183 1.19768i −0.676225 0.736695i \(-0.736385\pi\)
0.887408 0.460984i \(-0.152503\pi\)
\(954\) 0 0
\(955\) −14.9797 84.9541i −0.484732 2.74905i
\(956\) −15.7902 + 36.6058i −0.510691 + 1.18392i
\(957\) 0 0
\(958\) −6.11041 + 1.44819i −0.197418 + 0.0467890i
\(959\) 0.236578 + 0.250758i 0.00763950 + 0.00809739i
\(960\) 0 0
\(961\) −16.2518 21.8299i −0.524251 0.704191i
\(962\) 3.90972 3.28064i 0.126054 0.105772i
\(963\) 0 0
\(964\) 42.8154 + 35.9264i 1.37899 + 1.15711i
\(965\) 0.660080 11.3331i 0.0212487 0.364827i
\(966\) 0 0
\(967\) 9.73644 + 22.5716i 0.313103 + 0.725854i 1.00000 0.000900887i \(-0.000286761\pi\)
−0.686897 + 0.726755i \(0.741028\pi\)
\(968\) 5.65308 3.71809i 0.181697 0.119504i
\(969\) 0 0
\(970\) 1.85188 + 6.18570i 0.0594602 + 0.198611i
\(971\) −13.0415 −0.418522 −0.209261 0.977860i \(-0.567106\pi\)
−0.209261 + 0.977860i \(0.567106\pi\)
\(972\) 0 0
\(973\) 6.46310 0.207197
\(974\) 0.187601 + 0.626629i 0.00601111 + 0.0200785i
\(975\) 0 0
\(976\) 32.1875 21.1700i 1.03030 0.677636i
\(977\) −19.1859 44.4779i −0.613812 1.42298i −0.887342 0.461112i \(-0.847451\pi\)
0.273530 0.961863i \(-0.411809\pi\)
\(978\) 0 0
\(979\) −1.26409 + 21.7035i −0.0404004 + 0.693648i
\(980\) 35.8392 + 30.0727i 1.14484 + 0.960636i
\(981\) 0 0
\(982\) 7.37186 6.18573i 0.235246 0.197394i
\(983\) 19.7673 + 26.5520i 0.630477 + 0.846878i 0.996488 0.0837324i \(-0.0266841\pi\)
−0.366011 + 0.930611i \(0.619277\pi\)
\(984\) 0 0
\(985\) 48.7453 + 51.6670i 1.55315 + 1.64625i
\(986\) −0.591560 + 0.140202i −0.0188391 + 0.00446495i
\(987\) 0 0
\(988\) 9.31290 21.5897i 0.296283 0.686861i
\(989\) 1.54623 + 8.76910i 0.0491672 + 0.278841i
\(990\) 0 0
\(991\) −3.02007 + 17.1276i −0.0959355 + 0.544078i 0.898521 + 0.438930i \(0.144642\pi\)
−0.994457 + 0.105147i \(0.966469\pi\)
\(992\) −4.53285 2.98130i −0.143918 0.0946565i
\(993\) 0 0
\(994\) 0.796600 1.07002i 0.0252666 0.0339390i
\(995\) −0.483143 8.29524i −0.0153166 0.262977i
\(996\) 0 0
\(997\) 11.8606 12.5715i 0.375628 0.398142i −0.511788 0.859112i \(-0.671017\pi\)
0.887416 + 0.460969i \(0.152498\pi\)
\(998\) 0.300413 0.520330i 0.00950940 0.0164708i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.379.5 144
3.2 odd 2 729.2.g.d.379.4 144
9.2 odd 6 81.2.g.a.70.4 yes 144
9.4 even 3 729.2.g.b.136.4 144
9.5 odd 6 729.2.g.c.136.5 144
9.7 even 3 243.2.g.a.127.5 144
81.5 odd 54 81.2.g.a.22.4 144
81.7 even 27 6561.2.a.d.1.32 72
81.22 even 27 729.2.g.b.595.4 144
81.32 odd 54 729.2.g.d.352.4 144
81.49 even 27 inner 729.2.g.a.352.5 144
81.59 odd 54 729.2.g.c.595.5 144
81.74 odd 54 6561.2.a.c.1.41 72
81.76 even 27 243.2.g.a.199.5 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.4 144 81.5 odd 54
81.2.g.a.70.4 yes 144 9.2 odd 6
243.2.g.a.127.5 144 9.7 even 3
243.2.g.a.199.5 144 81.76 even 27
729.2.g.a.352.5 144 81.49 even 27 inner
729.2.g.a.379.5 144 1.1 even 1 trivial
729.2.g.b.136.4 144 9.4 even 3
729.2.g.b.595.4 144 81.22 even 27
729.2.g.c.136.5 144 9.5 odd 6
729.2.g.c.595.5 144 81.59 odd 54
729.2.g.d.352.4 144 81.32 odd 54
729.2.g.d.379.4 144 3.2 odd 2
6561.2.a.c.1.41 72 81.74 odd 54
6561.2.a.d.1.32 72 81.7 even 27