Properties

Label 729.2.g.a.28.5
Level $729$
Weight $2$
Character 729.28
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 28.5
Character \(\chi\) \(=\) 729.28
Dual form 729.2.g.a.703.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.103498 - 0.0680719i) q^{2} +(-0.786081 + 1.82234i) q^{4} +(-2.31283 + 2.45146i) q^{5} +(3.71541 + 0.434269i) q^{7} +(0.0857144 + 0.486111i) q^{8} +O(q^{10})\) \(q+(0.103498 - 0.0680719i) q^{2} +(-0.786081 + 1.82234i) q^{4} +(-2.31283 + 2.45146i) q^{5} +(3.71541 + 0.434269i) q^{7} +(0.0857144 + 0.486111i) q^{8} +(-0.0724987 + 0.411161i) q^{10} +(-1.30961 + 4.37439i) q^{11} +(0.0739164 - 1.26910i) q^{13} +(0.414100 - 0.207969i) q^{14} +(-2.68194 - 2.84269i) q^{16} +(1.54764 - 0.563296i) q^{17} +(-4.14528 - 1.50876i) q^{19} +(-2.64932 - 6.14181i) q^{20} +(0.162231 + 0.541890i) q^{22} +(-1.06063 + 0.123970i) q^{23} +(-0.369733 - 6.34808i) q^{25} +(-0.0787396 - 0.136381i) q^{26} +(-3.71200 + 6.42938i) q^{28} +(-1.61142 - 0.809287i) q^{29} +(4.05312 + 5.44429i) q^{31} +(-1.43169 - 0.339317i) q^{32} +(0.121834 - 0.163651i) q^{34} +(-9.65772 + 8.10379i) q^{35} +(-2.46619 - 2.06938i) q^{37} +(-0.531734 + 0.126023i) q^{38} +(-1.38992 - 0.914167i) q^{40} +(-0.842295 - 0.553986i) q^{41} +(-2.24075 + 0.531068i) q^{43} +(-6.94218 - 5.82518i) q^{44} +(-0.101335 + 0.0850299i) q^{46} +(-5.68936 + 7.64213i) q^{47} +(6.80439 + 1.61267i) q^{49} +(-0.470392 - 0.631847i) q^{50} +(2.25462 + 1.13231i) q^{52} +(-1.43978 + 2.49378i) q^{53} +(-7.69474 - 13.3277i) q^{55} +(0.107361 + 1.84333i) q^{56} +(-0.221869 + 0.0259328i) q^{58} +(-3.05432 - 10.2021i) q^{59} +(2.10265 + 4.87448i) q^{61} +(0.790095 + 0.287571i) q^{62} +(7.17367 - 2.61100i) q^{64} +(2.94018 + 3.11641i) q^{65} +(-2.71756 + 1.36481i) q^{67} +(-0.190056 + 3.26313i) q^{68} +(-0.447917 + 1.49615i) q^{70} +(0.346694 - 1.96620i) q^{71} +(2.80114 + 15.8860i) q^{73} +(-0.396113 - 0.0462990i) q^{74} +(6.00801 - 6.36811i) q^{76} +(-6.76540 + 15.6840i) q^{77} +(4.69457 - 3.08767i) q^{79} +13.1716 q^{80} -0.124887 q^{82} +(10.0739 - 6.62572i) q^{83} +(-2.19854 + 5.09679i) q^{85} +(-0.195763 + 0.207497i) q^{86} +(-2.23869 - 0.261666i) q^{88} +(-1.69819 - 9.63089i) q^{89} +(0.825760 - 4.68312i) q^{91} +(0.607827 - 2.03028i) q^{92} +(-0.0686242 + 1.17823i) q^{94} +(13.2860 - 6.67248i) q^{95} +(6.44760 + 6.83405i) q^{97} +(0.814020 - 0.296279i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{22}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.103498 0.0680719i 0.0731843 0.0481341i −0.512390 0.858753i \(-0.671240\pi\)
0.585574 + 0.810619i \(0.300869\pi\)
\(3\) 0 0
\(4\) −0.786081 + 1.82234i −0.393041 + 0.911171i
\(5\) −2.31283 + 2.45146i −1.03433 + 1.09633i −0.0390538 + 0.999237i \(0.512434\pi\)
−0.995276 + 0.0970882i \(0.969047\pi\)
\(6\) 0 0
\(7\) 3.71541 + 0.434269i 1.40429 + 0.164138i 0.784258 0.620435i \(-0.213044\pi\)
0.620036 + 0.784573i \(0.287118\pi\)
\(8\) 0.0857144 + 0.486111i 0.0303046 + 0.171866i
\(9\) 0 0
\(10\) −0.0724987 + 0.411161i −0.0229261 + 0.130020i
\(11\) −1.30961 + 4.37439i −0.394861 + 1.31893i 0.497444 + 0.867496i \(0.334272\pi\)
−0.892305 + 0.451433i \(0.850913\pi\)
\(12\) 0 0
\(13\) 0.0739164 1.26910i 0.0205007 0.351984i −0.972423 0.233226i \(-0.925072\pi\)
0.992923 0.118758i \(-0.0378912\pi\)
\(14\) 0.414100 0.207969i 0.110673 0.0555821i
\(15\) 0 0
\(16\) −2.68194 2.84269i −0.670486 0.710673i
\(17\) 1.54764 0.563296i 0.375359 0.136619i −0.147450 0.989070i \(-0.547107\pi\)
0.522808 + 0.852450i \(0.324884\pi\)
\(18\) 0 0
\(19\) −4.14528 1.50876i −0.950993 0.346133i −0.180495 0.983576i \(-0.557770\pi\)
−0.770498 + 0.637443i \(0.779992\pi\)
\(20\) −2.64932 6.14181i −0.592406 1.37335i
\(21\) 0 0
\(22\) 0.162231 + 0.541890i 0.0345878 + 0.115531i
\(23\) −1.06063 + 0.123970i −0.221157 + 0.0258495i −0.225950 0.974139i \(-0.572548\pi\)
0.00479276 + 0.999989i \(0.498474\pi\)
\(24\) 0 0
\(25\) −0.369733 6.34808i −0.0739467 1.26962i
\(26\) −0.0787396 0.136381i −0.0154421 0.0267465i
\(27\) 0 0
\(28\) −3.71200 + 6.42938i −0.701503 + 1.21504i
\(29\) −1.61142 0.809287i −0.299234 0.150281i 0.292847 0.956159i \(-0.405397\pi\)
−0.592081 + 0.805878i \(0.701693\pi\)
\(30\) 0 0
\(31\) 4.05312 + 5.44429i 0.727963 + 0.977823i 0.999880 + 0.0155028i \(0.00493490\pi\)
−0.271917 + 0.962321i \(0.587658\pi\)
\(32\) −1.43169 0.339317i −0.253090 0.0599834i
\(33\) 0 0
\(34\) 0.121834 0.163651i 0.0208943 0.0280659i
\(35\) −9.65772 + 8.10379i −1.63245 + 1.36979i
\(36\) 0 0
\(37\) −2.46619 2.06938i −0.405439 0.340204i 0.417152 0.908837i \(-0.363028\pi\)
−0.822592 + 0.568633i \(0.807473\pi\)
\(38\) −0.531734 + 0.126023i −0.0862586 + 0.0204437i
\(39\) 0 0
\(40\) −1.38992 0.914167i −0.219766 0.144542i
\(41\) −0.842295 0.553986i −0.131544 0.0865181i 0.482031 0.876154i \(-0.339899\pi\)
−0.613576 + 0.789636i \(0.710269\pi\)
\(42\) 0 0
\(43\) −2.24075 + 0.531068i −0.341711 + 0.0809871i −0.397889 0.917434i \(-0.630257\pi\)
0.0561773 + 0.998421i \(0.482109\pi\)
\(44\) −6.94218 5.82518i −1.04657 0.878179i
\(45\) 0 0
\(46\) −0.101335 + 0.0850299i −0.0149410 + 0.0125370i
\(47\) −5.68936 + 7.64213i −0.829878 + 1.11472i 0.161908 + 0.986806i \(0.448235\pi\)
−0.991785 + 0.127913i \(0.959172\pi\)
\(48\) 0 0
\(49\) 6.80439 + 1.61267i 0.972055 + 0.230381i
\(50\) −0.470392 0.631847i −0.0665235 0.0893566i
\(51\) 0 0
\(52\) 2.25462 + 1.13231i 0.312660 + 0.157024i
\(53\) −1.43978 + 2.49378i −0.197769 + 0.342547i −0.947805 0.318851i \(-0.896703\pi\)
0.750035 + 0.661398i \(0.230036\pi\)
\(54\) 0 0
\(55\) −7.69474 13.3277i −1.03756 1.79710i
\(56\) 0.107361 + 1.84333i 0.0143468 + 0.246325i
\(57\) 0 0
\(58\) −0.221869 + 0.0259328i −0.0291328 + 0.00340514i
\(59\) −3.05432 10.2021i −0.397638 1.32820i −0.889263 0.457397i \(-0.848782\pi\)
0.491625 0.870807i \(-0.336403\pi\)
\(60\) 0 0
\(61\) 2.10265 + 4.87448i 0.269216 + 0.624114i 0.998171 0.0604479i \(-0.0192529\pi\)
−0.728955 + 0.684562i \(0.759994\pi\)
\(62\) 0.790095 + 0.287571i 0.100342 + 0.0365215i
\(63\) 0 0
\(64\) 7.17367 2.61100i 0.896708 0.326375i
\(65\) 2.94018 + 3.11641i 0.364684 + 0.386543i
\(66\) 0 0
\(67\) −2.71756 + 1.36481i −0.332002 + 0.166738i −0.606989 0.794710i \(-0.707623\pi\)
0.274987 + 0.961448i \(0.411327\pi\)
\(68\) −0.190056 + 3.26313i −0.0230476 + 0.395713i
\(69\) 0 0
\(70\) −0.447917 + 1.49615i −0.0535363 + 0.178824i
\(71\) 0.346694 1.96620i 0.0411451 0.233345i −0.957300 0.289098i \(-0.906645\pi\)
0.998445 + 0.0557526i \(0.0177558\pi\)
\(72\) 0 0
\(73\) 2.80114 + 15.8860i 0.327848 + 1.85932i 0.488854 + 0.872366i \(0.337415\pi\)
−0.161006 + 0.986953i \(0.551474\pi\)
\(74\) −0.396113 0.0462990i −0.0460472 0.00538215i
\(75\) 0 0
\(76\) 6.00801 6.36811i 0.689166 0.730473i
\(77\) −6.76540 + 15.6840i −0.770989 + 1.78735i
\(78\) 0 0
\(79\) 4.69457 3.08767i 0.528181 0.347390i −0.257245 0.966346i \(-0.582815\pi\)
0.785425 + 0.618956i \(0.212444\pi\)
\(80\) 13.1716 1.47263
\(81\) 0 0
\(82\) −0.124887 −0.0137915
\(83\) 10.0739 6.62572i 1.10576 0.727267i 0.140894 0.990025i \(-0.455002\pi\)
0.964862 + 0.262758i \(0.0846320\pi\)
\(84\) 0 0
\(85\) −2.19854 + 5.09679i −0.238465 + 0.552825i
\(86\) −0.195763 + 0.207497i −0.0211097 + 0.0223750i
\(87\) 0 0
\(88\) −2.23869 0.261666i −0.238645 0.0278936i
\(89\) −1.69819 9.63089i −0.180007 1.02087i −0.932204 0.361934i \(-0.882117\pi\)
0.752197 0.658939i \(-0.228994\pi\)
\(90\) 0 0
\(91\) 0.825760 4.68312i 0.0865631 0.490924i
\(92\) 0.607827 2.03028i 0.0633703 0.211672i
\(93\) 0 0
\(94\) −0.0686242 + 1.17823i −0.00707805 + 0.121525i
\(95\) 13.2860 6.67248i 1.36312 0.684582i
\(96\) 0 0
\(97\) 6.44760 + 6.83405i 0.654654 + 0.693893i 0.966624 0.256199i \(-0.0824702\pi\)
−0.311970 + 0.950092i \(0.600989\pi\)
\(98\) 0.814020 0.296279i 0.0822284 0.0299287i
\(99\) 0 0
\(100\) 11.8590 + 4.31632i 1.18590 + 0.431632i
\(101\) 2.16870 + 5.02761i 0.215794 + 0.500266i 0.991387 0.130967i \(-0.0418083\pi\)
−0.775593 + 0.631233i \(0.782549\pi\)
\(102\) 0 0
\(103\) 0.672471 + 2.24621i 0.0662606 + 0.221326i 0.984707 0.174220i \(-0.0557405\pi\)
−0.918446 + 0.395546i \(0.870555\pi\)
\(104\) 0.623257 0.0728483i 0.0611154 0.00714336i
\(105\) 0 0
\(106\) 0.0207411 + 0.356111i 0.00201455 + 0.0345885i
\(107\) 5.88377 + 10.1910i 0.568805 + 0.985200i 0.996684 + 0.0813640i \(0.0259276\pi\)
−0.427879 + 0.903836i \(0.640739\pi\)
\(108\) 0 0
\(109\) −0.211790 + 0.366831i −0.0202858 + 0.0351361i −0.875990 0.482329i \(-0.839791\pi\)
0.855704 + 0.517465i \(0.173124\pi\)
\(110\) −1.70363 0.855597i −0.162435 0.0815779i
\(111\) 0 0
\(112\) −8.73003 11.7265i −0.824910 1.10805i
\(113\) 13.3588 + 3.16609i 1.25669 + 0.297840i 0.804430 0.594047i \(-0.202471\pi\)
0.452257 + 0.891888i \(0.350619\pi\)
\(114\) 0 0
\(115\) 2.14915 2.88681i 0.200410 0.269197i
\(116\) 2.74151 2.30040i 0.254542 0.213586i
\(117\) 0 0
\(118\) −1.01059 0.847990i −0.0930328 0.0780638i
\(119\) 5.99475 1.42078i 0.549538 0.130243i
\(120\) 0 0
\(121\) −8.22988 5.41288i −0.748171 0.492080i
\(122\) 0.549436 + 0.361370i 0.0497436 + 0.0327169i
\(123\) 0 0
\(124\) −13.1074 + 3.10652i −1.17708 + 0.278974i
\(125\) 3.50823 + 2.94375i 0.313785 + 0.263297i
\(126\) 0 0
\(127\) 2.77429 2.32790i 0.246178 0.206568i −0.511346 0.859375i \(-0.670853\pi\)
0.757524 + 0.652807i \(0.226409\pi\)
\(128\) 2.32199 3.11897i 0.205237 0.275681i
\(129\) 0 0
\(130\) 0.516443 + 0.122399i 0.0452951 + 0.0107351i
\(131\) 3.73212 + 5.01310i 0.326077 + 0.437997i 0.934687 0.355473i \(-0.115680\pi\)
−0.608610 + 0.793469i \(0.708273\pi\)
\(132\) 0 0
\(133\) −14.7462 7.40584i −1.27866 0.642167i
\(134\) −0.188357 + 0.326245i −0.0162716 + 0.0281832i
\(135\) 0 0
\(136\) 0.406480 + 0.704043i 0.0348553 + 0.0603712i
\(137\) −0.952195 16.3486i −0.0813515 1.39675i −0.754041 0.656827i \(-0.771898\pi\)
0.672690 0.739925i \(-0.265139\pi\)
\(138\) 0 0
\(139\) −19.4102 + 2.26873i −1.64635 + 0.192431i −0.888139 0.459574i \(-0.848002\pi\)
−0.758214 + 0.652006i \(0.773928\pi\)
\(140\) −7.17612 23.9699i −0.606492 2.02583i
\(141\) 0 0
\(142\) −0.0979608 0.227099i −0.00822069 0.0190577i
\(143\) 5.45472 + 1.98536i 0.456147 + 0.166024i
\(144\) 0 0
\(145\) 5.71088 2.07859i 0.474263 0.172617i
\(146\) 1.37131 + 1.45350i 0.113490 + 0.120292i
\(147\) 0 0
\(148\) 5.70974 2.86754i 0.469338 0.235710i
\(149\) −0.238124 + 4.08844i −0.0195079 + 0.334938i 0.974407 + 0.224790i \(0.0721695\pi\)
−0.993915 + 0.110148i \(0.964868\pi\)
\(150\) 0 0
\(151\) −2.54334 + 8.49534i −0.206974 + 0.691341i 0.789965 + 0.613152i \(0.210099\pi\)
−0.996939 + 0.0781885i \(0.975086\pi\)
\(152\) 0.378114 2.14439i 0.0306691 0.173933i
\(153\) 0 0
\(154\) 0.367429 + 2.08380i 0.0296083 + 0.167917i
\(155\) −22.7206 2.65566i −1.82497 0.213308i
\(156\) 0 0
\(157\) −3.63877 + 3.85687i −0.290406 + 0.307812i −0.856107 0.516798i \(-0.827124\pi\)
0.565702 + 0.824610i \(0.308605\pi\)
\(158\) 0.275697 0.639137i 0.0219333 0.0508470i
\(159\) 0 0
\(160\) 4.14309 2.72495i 0.327540 0.215426i
\(161\) −3.99452 −0.314812
\(162\) 0 0
\(163\) −4.86655 −0.381178 −0.190589 0.981670i \(-0.561040\pi\)
−0.190589 + 0.981670i \(0.561040\pi\)
\(164\) 1.67166 1.09947i 0.130535 0.0858543i
\(165\) 0 0
\(166\) 0.591608 1.37150i 0.0459177 0.106449i
\(167\) −15.3368 + 16.2561i −1.18680 + 1.25793i −0.228060 + 0.973647i \(0.573238\pi\)
−0.958739 + 0.284286i \(0.908243\pi\)
\(168\) 0 0
\(169\) 11.3070 + 1.32159i 0.869766 + 0.101661i
\(170\) 0.119403 + 0.677168i 0.00915779 + 0.0519364i
\(171\) 0 0
\(172\) 0.793626 4.50088i 0.0605134 0.343189i
\(173\) −1.00106 + 3.34376i −0.0761089 + 0.254221i −0.987574 0.157157i \(-0.949767\pi\)
0.911465 + 0.411378i \(0.134952\pi\)
\(174\) 0 0
\(175\) 1.38306 23.7463i 0.104550 1.79505i
\(176\) 15.9474 8.00906i 1.20208 0.603706i
\(177\) 0 0
\(178\) −0.831352 0.881182i −0.0623125 0.0660474i
\(179\) 14.1428 5.14757i 1.05709 0.384748i 0.245753 0.969333i \(-0.420965\pi\)
0.811332 + 0.584585i \(0.198743\pi\)
\(180\) 0 0
\(181\) −2.01428 0.733137i −0.149720 0.0544936i 0.266073 0.963953i \(-0.414274\pi\)
−0.415793 + 0.909459i \(0.636496\pi\)
\(182\) −0.233324 0.540906i −0.0172951 0.0400946i
\(183\) 0 0
\(184\) −0.151175 0.504958i −0.0111447 0.0372260i
\(185\) 10.7769 1.25964i 0.792332 0.0926103i
\(186\) 0 0
\(187\) 0.437273 + 7.50769i 0.0319766 + 0.549017i
\(188\) −9.45428 16.3753i −0.689524 1.19429i
\(189\) 0 0
\(190\) 0.920870 1.59499i 0.0668069 0.115713i
\(191\) 18.6097 + 9.34613i 1.34655 + 0.676262i 0.968381 0.249475i \(-0.0802580\pi\)
0.378168 + 0.925737i \(0.376554\pi\)
\(192\) 0 0
\(193\) 8.41707 + 11.3061i 0.605874 + 0.813830i 0.994184 0.107699i \(-0.0343484\pi\)
−0.388310 + 0.921529i \(0.626941\pi\)
\(194\) 1.13252 + 0.268413i 0.0813104 + 0.0192709i
\(195\) 0 0
\(196\) −8.28764 + 11.1322i −0.591974 + 0.795159i
\(197\) −1.46772 + 1.23157i −0.104571 + 0.0877455i −0.693574 0.720385i \(-0.743965\pi\)
0.589003 + 0.808131i \(0.299521\pi\)
\(198\) 0 0
\(199\) 12.3341 + 10.3495i 0.874339 + 0.733658i 0.965007 0.262223i \(-0.0844557\pi\)
−0.0906679 + 0.995881i \(0.528900\pi\)
\(200\) 3.05418 0.723853i 0.215963 0.0511841i
\(201\) 0 0
\(202\) 0.566696 + 0.372722i 0.0398726 + 0.0262246i
\(203\) −5.63565 3.70662i −0.395545 0.260154i
\(204\) 0 0
\(205\) 3.30616 0.783574i 0.230912 0.0547272i
\(206\) 0.222503 + 0.186703i 0.0155025 + 0.0130082i
\(207\) 0 0
\(208\) −3.80589 + 3.19352i −0.263891 + 0.221431i
\(209\) 12.0286 16.1572i 0.832036 1.11762i
\(210\) 0 0
\(211\) 3.75461 + 0.889860i 0.258478 + 0.0612605i 0.357812 0.933794i \(-0.383523\pi\)
−0.0993336 + 0.995054i \(0.531671\pi\)
\(212\) −3.41273 4.58409i −0.234387 0.314837i
\(213\) 0 0
\(214\) 1.30268 + 0.654231i 0.0890494 + 0.0447223i
\(215\) 3.88059 6.72138i 0.264654 0.458394i
\(216\) 0 0
\(217\) 12.6947 + 21.9879i 0.861775 + 1.49264i
\(218\) 0.00305098 + 0.0523834i 0.000206639 + 0.00354785i
\(219\) 0 0
\(220\) 30.3363 3.54580i 2.04527 0.239058i
\(221\) −0.600480 2.00574i −0.0403927 0.134921i
\(222\) 0 0
\(223\) 1.18505 + 2.74725i 0.0793567 + 0.183970i 0.953275 0.302103i \(-0.0976885\pi\)
−0.873919 + 0.486072i \(0.838429\pi\)
\(224\) −5.17198 1.88245i −0.345567 0.125776i
\(225\) 0 0
\(226\) 1.59813 0.581672i 0.106306 0.0386923i
\(227\) 16.4925 + 17.4810i 1.09465 + 1.16026i 0.986098 + 0.166167i \(0.0531390\pi\)
0.108549 + 0.994091i \(0.465380\pi\)
\(228\) 0 0
\(229\) −4.22971 + 2.12424i −0.279507 + 0.140374i −0.583031 0.812450i \(-0.698133\pi\)
0.303523 + 0.952824i \(0.401837\pi\)
\(230\) 0.0259228 0.445077i 0.00170930 0.0293475i
\(231\) 0 0
\(232\) 0.255281 0.852697i 0.0167600 0.0559823i
\(233\) 1.81475 10.2920i 0.118888 0.674250i −0.865863 0.500282i \(-0.833230\pi\)
0.984751 0.173968i \(-0.0556591\pi\)
\(234\) 0 0
\(235\) −5.57584 31.6222i −0.363728 2.06280i
\(236\) 20.9927 + 2.45370i 1.36651 + 0.159722i
\(237\) 0 0
\(238\) 0.523731 0.555123i 0.0339485 0.0359833i
\(239\) 6.26895 14.5331i 0.405504 0.940065i −0.586038 0.810283i \(-0.699313\pi\)
0.991543 0.129782i \(-0.0414276\pi\)
\(240\) 0 0
\(241\) −14.7387 + 9.69379i −0.949402 + 0.624432i −0.926897 0.375315i \(-0.877535\pi\)
−0.0225049 + 0.999747i \(0.507164\pi\)
\(242\) −1.22024 −0.0784402
\(243\) 0 0
\(244\) −10.5358 −0.674487
\(245\) −19.6908 + 12.9508i −1.25800 + 0.827399i
\(246\) 0 0
\(247\) −2.22117 + 5.14924i −0.141329 + 0.327638i
\(248\) −2.29912 + 2.43692i −0.145994 + 0.154745i
\(249\) 0 0
\(250\) 0.563482 + 0.0658616i 0.0356377 + 0.00416545i
\(251\) 3.58499 + 20.3315i 0.226282 + 1.28331i 0.860218 + 0.509926i \(0.170327\pi\)
−0.633936 + 0.773386i \(0.718562\pi\)
\(252\) 0 0
\(253\) 0.846717 4.80197i 0.0532326 0.301897i
\(254\) 0.128669 0.429785i 0.00807342 0.0269671i
\(255\) 0 0
\(256\) −0.859754 + 14.7614i −0.0537346 + 0.922588i
\(257\) −6.51246 + 3.27068i −0.406236 + 0.204019i −0.640170 0.768233i \(-0.721136\pi\)
0.233934 + 0.972252i \(0.424840\pi\)
\(258\) 0 0
\(259\) −8.26425 8.75959i −0.513515 0.544294i
\(260\) −7.99038 + 2.90826i −0.495542 + 0.180363i
\(261\) 0 0
\(262\) 0.727519 + 0.264795i 0.0449463 + 0.0163591i
\(263\) 4.13582 + 9.58791i 0.255026 + 0.591216i 0.996844 0.0793849i \(-0.0252956\pi\)
−0.741818 + 0.670601i \(0.766036\pi\)
\(264\) 0 0
\(265\) −2.78342 9.29726i −0.170984 0.571126i
\(266\) −2.03034 + 0.237313i −0.124488 + 0.0145506i
\(267\) 0 0
\(268\) −0.350926 6.02517i −0.0214362 0.368046i
\(269\) 11.1578 + 19.3259i 0.680304 + 1.17832i 0.974888 + 0.222695i \(0.0714854\pi\)
−0.294585 + 0.955625i \(0.595181\pi\)
\(270\) 0 0
\(271\) 11.6312 20.1458i 0.706544 1.22377i −0.259588 0.965720i \(-0.583587\pi\)
0.966132 0.258050i \(-0.0830800\pi\)
\(272\) −5.75197 2.88875i −0.348764 0.175156i
\(273\) 0 0
\(274\) −1.21143 1.62723i −0.0731850 0.0983046i
\(275\) 28.2532 + 6.69613i 1.70373 + 0.403792i
\(276\) 0 0
\(277\) 5.29170 7.10799i 0.317948 0.427078i −0.614203 0.789148i \(-0.710522\pi\)
0.932151 + 0.362070i \(0.117930\pi\)
\(278\) −1.85449 + 1.55610i −0.111225 + 0.0933287i
\(279\) 0 0
\(280\) −4.76714 4.00011i −0.284891 0.239052i
\(281\) −20.9045 + 4.95445i −1.24706 + 0.295558i −0.800574 0.599234i \(-0.795472\pi\)
−0.446483 + 0.894792i \(0.647324\pi\)
\(282\) 0 0
\(283\) 0.511009 + 0.336096i 0.0303763 + 0.0199788i 0.564606 0.825360i \(-0.309028\pi\)
−0.534230 + 0.845339i \(0.679398\pi\)
\(284\) 3.31056 + 2.17739i 0.196446 + 0.129204i
\(285\) 0 0
\(286\) 0.699702 0.165832i 0.0413742 0.00980587i
\(287\) −2.88890 2.42407i −0.170526 0.143088i
\(288\) 0 0
\(289\) −10.9449 + 9.18383i −0.643815 + 0.540225i
\(290\) 0.449573 0.603881i 0.0263998 0.0354611i
\(291\) 0 0
\(292\) −31.1517 7.38309i −1.82302 0.432063i
\(293\) −18.4868 24.8321i −1.08001 1.45071i −0.882443 0.470419i \(-0.844103\pi\)
−0.197569 0.980289i \(-0.563305\pi\)
\(294\) 0 0
\(295\) 32.0742 + 16.1083i 1.86743 + 0.937860i
\(296\) 0.794559 1.37622i 0.0461828 0.0799910i
\(297\) 0 0
\(298\) 0.253662 + 0.439356i 0.0146943 + 0.0254512i
\(299\) 0.0789318 + 1.35521i 0.00456474 + 0.0783736i
\(300\) 0 0
\(301\) −8.55594 + 1.00005i −0.493156 + 0.0576417i
\(302\) 0.315063 + 1.05238i 0.0181298 + 0.0605578i
\(303\) 0 0
\(304\) 6.82847 + 15.8302i 0.391640 + 0.907923i
\(305\) −16.8127 6.11931i −0.962690 0.350391i
\(306\) 0 0
\(307\) −21.3773 + 7.78069i −1.22007 + 0.444068i −0.870184 0.492726i \(-0.836000\pi\)
−0.349882 + 0.936794i \(0.613778\pi\)
\(308\) −23.2634 24.6577i −1.32555 1.40500i
\(309\) 0 0
\(310\) −2.53232 + 1.27178i −0.143826 + 0.0722323i
\(311\) −1.78117 + 30.5816i −0.101001 + 1.73412i 0.444298 + 0.895879i \(0.353453\pi\)
−0.545299 + 0.838242i \(0.683584\pi\)
\(312\) 0 0
\(313\) 6.54199 21.8518i 0.369775 1.23513i −0.547475 0.836822i \(-0.684411\pi\)
0.917250 0.398312i \(-0.130404\pi\)
\(314\) −0.114062 + 0.646878i −0.00643689 + 0.0365054i
\(315\) 0 0
\(316\) 1.93647 + 10.9823i 0.108935 + 0.617801i
\(317\) −7.96795 0.931320i −0.447525 0.0523081i −0.110654 0.993859i \(-0.535294\pi\)
−0.336871 + 0.941551i \(0.609369\pi\)
\(318\) 0 0
\(319\) 5.65047 5.98915i 0.316365 0.335328i
\(320\) −10.1907 + 23.6247i −0.569679 + 1.32066i
\(321\) 0 0
\(322\) −0.413426 + 0.271915i −0.0230393 + 0.0151532i
\(323\) −7.26530 −0.404252
\(324\) 0 0
\(325\) −8.08365 −0.448400
\(326\) −0.503680 + 0.331275i −0.0278962 + 0.0183476i
\(327\) 0 0
\(328\) 0.197102 0.456933i 0.0108831 0.0252299i
\(329\) −24.4570 + 25.9230i −1.34836 + 1.42918i
\(330\) 0 0
\(331\) −18.2750 2.13604i −1.00448 0.117407i −0.402085 0.915602i \(-0.631714\pi\)
−0.602399 + 0.798195i \(0.705788\pi\)
\(332\) 4.15540 + 23.5665i 0.228057 + 1.29338i
\(333\) 0 0
\(334\) −0.480753 + 2.72648i −0.0263056 + 0.149187i
\(335\) 2.93948 9.81855i 0.160601 0.536445i
\(336\) 0 0
\(337\) −1.55141 + 26.6366i −0.0845105 + 1.45099i 0.643512 + 0.765436i \(0.277477\pi\)
−0.728022 + 0.685553i \(0.759560\pi\)
\(338\) 1.26021 0.632903i 0.0685466 0.0344254i
\(339\) 0 0
\(340\) −7.55986 8.01298i −0.409991 0.434565i
\(341\) −29.1235 + 10.6001i −1.57712 + 0.574026i
\(342\) 0 0
\(343\) −0.0250188 0.00910611i −0.00135089 0.000491683i
\(344\) −0.450222 1.04373i −0.0242744 0.0562743i
\(345\) 0 0
\(346\) 0.124009 + 0.414217i 0.00666674 + 0.0222685i
\(347\) 24.3715 2.84862i 1.30833 0.152922i 0.566807 0.823850i \(-0.308178\pi\)
0.741522 + 0.670929i \(0.234104\pi\)
\(348\) 0 0
\(349\) −0.975561 16.7497i −0.0522206 0.896592i −0.918102 0.396344i \(-0.870279\pi\)
0.865882 0.500249i \(-0.166758\pi\)
\(350\) −1.47331 2.55185i −0.0787517 0.136402i
\(351\) 0 0
\(352\) 3.35926 5.81841i 0.179049 0.310123i
\(353\) −17.5821 8.83007i −0.935802 0.469977i −0.0855386 0.996335i \(-0.527261\pi\)
−0.850263 + 0.526357i \(0.823557\pi\)
\(354\) 0 0
\(355\) 4.01822 + 5.39740i 0.213265 + 0.286464i
\(356\) 18.8857 + 4.47599i 1.00094 + 0.237227i
\(357\) 0 0
\(358\) 1.11335 1.49549i 0.0588426 0.0790393i
\(359\) 27.1083 22.7466i 1.43072 1.20052i 0.485436 0.874272i \(-0.338661\pi\)
0.945285 0.326245i \(-0.105784\pi\)
\(360\) 0 0
\(361\) 0.352176 + 0.295511i 0.0185356 + 0.0155532i
\(362\) −0.258380 + 0.0612372i −0.0135802 + 0.00321856i
\(363\) 0 0
\(364\) 7.88512 + 5.18613i 0.413293 + 0.271827i
\(365\) −45.4225 29.8748i −2.37752 1.56372i
\(366\) 0 0
\(367\) 19.0674 4.51906i 0.995312 0.235893i 0.299484 0.954101i \(-0.403186\pi\)
0.695828 + 0.718208i \(0.255037\pi\)
\(368\) 3.19696 + 2.68257i 0.166653 + 0.139839i
\(369\) 0 0
\(370\) 1.02964 0.863973i 0.0535286 0.0449158i
\(371\) −6.43236 + 8.64016i −0.333952 + 0.448575i
\(372\) 0 0
\(373\) 31.5367 + 7.47433i 1.63291 + 0.387006i 0.941914 0.335854i \(-0.109025\pi\)
0.690994 + 0.722860i \(0.257173\pi\)
\(374\) 0.556320 + 0.747268i 0.0287666 + 0.0386403i
\(375\) 0 0
\(376\) −4.20258 2.11062i −0.216732 0.108847i
\(377\) −1.14617 + 1.98523i −0.0590309 + 0.102245i
\(378\) 0 0
\(379\) 7.22233 + 12.5094i 0.370986 + 0.642567i 0.989718 0.143036i \(-0.0456863\pi\)
−0.618731 + 0.785603i \(0.712353\pi\)
\(380\) 1.71566 + 29.4568i 0.0880115 + 1.51110i
\(381\) 0 0
\(382\) 2.56228 0.299487i 0.131098 0.0153231i
\(383\) −6.27015 20.9437i −0.320390 1.07018i −0.954817 0.297193i \(-0.903949\pi\)
0.634428 0.772982i \(-0.281236\pi\)
\(384\) 0 0
\(385\) −22.8013 52.8594i −1.16206 2.69397i
\(386\) 1.64078 + 0.597194i 0.0835134 + 0.0303964i
\(387\) 0 0
\(388\) −17.5223 + 6.37760i −0.889561 + 0.323774i
\(389\) −12.8716 13.6431i −0.652617 0.691734i 0.313573 0.949564i \(-0.398474\pi\)
−0.966190 + 0.257830i \(0.916992\pi\)
\(390\) 0 0
\(391\) −1.57165 + 0.789311i −0.0794816 + 0.0399172i
\(392\) −0.200702 + 3.44592i −0.0101370 + 0.174045i
\(393\) 0 0
\(394\) −0.0680719 + 0.227376i −0.00342941 + 0.0114550i
\(395\) −3.28846 + 18.6498i −0.165461 + 0.938374i
\(396\) 0 0
\(397\) −3.33925 18.9379i −0.167592 0.950463i −0.946351 0.323140i \(-0.895262\pi\)
0.778759 0.627323i \(-0.215850\pi\)
\(398\) 1.98107 + 0.231554i 0.0993019 + 0.0116067i
\(399\) 0 0
\(400\) −17.0540 + 18.0762i −0.852702 + 0.903811i
\(401\) 1.78850 4.14622i 0.0893137 0.207052i −0.867704 0.497080i \(-0.834405\pi\)
0.957018 + 0.290028i \(0.0936647\pi\)
\(402\) 0 0
\(403\) 7.20892 4.74138i 0.359102 0.236185i
\(404\) −10.8668 −0.540643
\(405\) 0 0
\(406\) −0.835597 −0.0414700
\(407\) 12.2820 8.07801i 0.608797 0.400412i
\(408\) 0 0
\(409\) 14.1854 32.8854i 0.701422 1.62608i −0.0760060 0.997107i \(-0.524217\pi\)
0.777428 0.628972i \(-0.216524\pi\)
\(410\) 0.288843 0.306155i 0.0142649 0.0151199i
\(411\) 0 0
\(412\) −4.62198 0.540232i −0.227709 0.0266153i
\(413\) −6.91757 39.2315i −0.340392 1.93046i
\(414\) 0 0
\(415\) −7.05659 + 40.0199i −0.346395 + 1.96450i
\(416\) −0.536452 + 1.79187i −0.0263017 + 0.0878539i
\(417\) 0 0
\(418\) 0.145087 2.49105i 0.00709646 0.121841i
\(419\) −22.2824 + 11.1906i −1.08857 + 0.546698i −0.900233 0.435408i \(-0.856604\pi\)
−0.188332 + 0.982105i \(0.560308\pi\)
\(420\) 0 0
\(421\) 24.7669 + 26.2513i 1.20706 + 1.27941i 0.949723 + 0.313092i \(0.101365\pi\)
0.257340 + 0.966321i \(0.417154\pi\)
\(422\) 0.449170 0.163485i 0.0218653 0.00795831i
\(423\) 0 0
\(424\) −1.33566 0.486141i −0.0648655 0.0236091i
\(425\) −4.14806 9.61629i −0.201211 0.466458i
\(426\) 0 0
\(427\) 5.69536 + 19.0238i 0.275618 + 0.920628i
\(428\) −23.1966 + 2.71129i −1.12125 + 0.131055i
\(429\) 0 0
\(430\) −0.0559026 0.959810i −0.00269586 0.0462862i
\(431\) −12.8170 22.1998i −0.617375 1.06933i −0.989963 0.141329i \(-0.954863\pi\)
0.372587 0.927997i \(-0.378471\pi\)
\(432\) 0 0
\(433\) −2.49590 + 4.32302i −0.119945 + 0.207751i −0.919746 0.392515i \(-0.871605\pi\)
0.799801 + 0.600266i \(0.204939\pi\)
\(434\) 2.81064 + 1.41156i 0.134915 + 0.0677570i
\(435\) 0 0
\(436\) −0.502008 0.674313i −0.0240418 0.0322937i
\(437\) 4.58366 + 1.08635i 0.219266 + 0.0519670i
\(438\) 0 0
\(439\) 2.00946 2.69917i 0.0959061 0.128824i −0.751580 0.659642i \(-0.770708\pi\)
0.847486 + 0.530818i \(0.178115\pi\)
\(440\) 5.81918 4.88287i 0.277418 0.232782i
\(441\) 0 0
\(442\) −0.198684 0.166715i −0.00945041 0.00792984i
\(443\) 13.0248 3.08693i 0.618825 0.146664i 0.0907666 0.995872i \(-0.471068\pi\)
0.528059 + 0.849208i \(0.322920\pi\)
\(444\) 0 0
\(445\) 27.5373 + 18.1116i 1.30540 + 0.858572i
\(446\) 0.309661 + 0.203667i 0.0146629 + 0.00964393i
\(447\) 0 0
\(448\) 27.7870 6.58564i 1.31281 0.311142i
\(449\) 25.1690 + 21.1193i 1.18780 + 0.996683i 0.999895 + 0.0144961i \(0.00461441\pi\)
0.187906 + 0.982187i \(0.439830\pi\)
\(450\) 0 0
\(451\) 3.52643 2.95903i 0.166053 0.139335i
\(452\) −16.2708 + 21.8554i −0.765313 + 1.02799i
\(453\) 0 0
\(454\) 2.89692 + 0.686582i 0.135959 + 0.0322229i
\(455\) 9.57062 + 12.8556i 0.448678 + 0.602679i
\(456\) 0 0
\(457\) −18.9412 9.51261i −0.886031 0.444981i −0.0532479 0.998581i \(-0.516957\pi\)
−0.832783 + 0.553600i \(0.813254\pi\)
\(458\) −0.293167 + 0.507780i −0.0136988 + 0.0237270i
\(459\) 0 0
\(460\) 3.57135 + 6.18576i 0.166515 + 0.288413i
\(461\) 0.964285 + 16.5561i 0.0449112 + 0.771096i 0.943309 + 0.331914i \(0.107695\pi\)
−0.898398 + 0.439182i \(0.855268\pi\)
\(462\) 0 0
\(463\) −3.39720 + 0.397076i −0.157881 + 0.0184537i −0.194666 0.980870i \(-0.562362\pi\)
0.0367850 + 0.999323i \(0.488288\pi\)
\(464\) 2.02119 + 6.75124i 0.0938313 + 0.313418i
\(465\) 0 0
\(466\) −0.512771 1.18874i −0.0237536 0.0550671i
\(467\) −8.87582 3.23054i −0.410724 0.149491i 0.128391 0.991724i \(-0.459019\pi\)
−0.539115 + 0.842232i \(0.681241\pi\)
\(468\) 0 0
\(469\) −10.6895 + 3.89067i −0.493597 + 0.179655i
\(470\) −2.72967 2.89328i −0.125910 0.133457i
\(471\) 0 0
\(472\) 4.69756 2.35921i 0.216223 0.108591i
\(473\) 0.611405 10.4974i 0.0281124 0.482672i
\(474\) 0 0
\(475\) −8.04507 + 26.8724i −0.369133 + 1.23299i
\(476\) −2.12321 + 12.0413i −0.0973173 + 0.551914i
\(477\) 0 0
\(478\) −0.340467 1.93089i −0.0155726 0.0883166i
\(479\) 18.1464 + 2.12101i 0.829130 + 0.0969114i 0.520062 0.854128i \(-0.325909\pi\)
0.309068 + 0.951040i \(0.399983\pi\)
\(480\) 0 0
\(481\) −2.80853 + 2.97687i −0.128058 + 0.135734i
\(482\) −0.865554 + 2.00658i −0.0394249 + 0.0913972i
\(483\) 0 0
\(484\) 16.3335 10.7427i 0.742430 0.488304i
\(485\) −31.6656 −1.43786
\(486\) 0 0
\(487\) 31.2157 1.41452 0.707260 0.706954i \(-0.249931\pi\)
0.707260 + 0.706954i \(0.249931\pi\)
\(488\) −2.18931 + 1.43993i −0.0991055 + 0.0651827i
\(489\) 0 0
\(490\) −1.15638 + 2.68078i −0.0522397 + 0.121105i
\(491\) 1.50047 1.59041i 0.0677154 0.0717741i −0.692630 0.721293i \(-0.743548\pi\)
0.760346 + 0.649519i \(0.225030\pi\)
\(492\) 0 0
\(493\) −2.94977 0.344779i −0.132851 0.0155281i
\(494\) 0.120632 + 0.684137i 0.00542748 + 0.0307808i
\(495\) 0 0
\(496\) 4.60620 26.1231i 0.206825 1.17296i
\(497\) 2.14197 7.15469i 0.0960807 0.320932i
\(498\) 0 0
\(499\) −0.0365869 + 0.628173i −0.00163785 + 0.0281209i −0.999028 0.0440786i \(-0.985965\pi\)
0.997390 + 0.0721995i \(0.0230018\pi\)
\(500\) −8.12227 + 4.07916i −0.363239 + 0.182425i
\(501\) 0 0
\(502\) 1.75504 + 1.86024i 0.0783314 + 0.0830264i
\(503\) −5.84089 + 2.12591i −0.260432 + 0.0947897i −0.468937 0.883232i \(-0.655363\pi\)
0.208504 + 0.978021i \(0.433141\pi\)
\(504\) 0 0
\(505\) −17.3408 6.31154i −0.771656 0.280860i
\(506\) −0.239245 0.554633i −0.0106358 0.0246565i
\(507\) 0 0
\(508\) 2.06142 + 6.88562i 0.0914606 + 0.305500i
\(509\) 18.5886 2.17270i 0.823927 0.0963032i 0.306327 0.951926i \(-0.400900\pi\)
0.517600 + 0.855623i \(0.326826\pi\)
\(510\) 0 0
\(511\) 3.50856 + 60.2396i 0.155209 + 2.66484i
\(512\) 4.80425 + 8.32121i 0.212320 + 0.367749i
\(513\) 0 0
\(514\) −0.451387 + 0.781825i −0.0199098 + 0.0344848i
\(515\) −7.06180 3.54657i −0.311180 0.156281i
\(516\) 0 0
\(517\) −25.9789 34.8957i −1.14255 1.53471i
\(518\) −1.45162 0.344040i −0.0637804 0.0151162i
\(519\) 0 0
\(520\) −1.26290 + 1.69637i −0.0553820 + 0.0743909i
\(521\) 10.7516 9.02171i 0.471038 0.395248i −0.376135 0.926565i \(-0.622747\pi\)
0.847173 + 0.531317i \(0.178303\pi\)
\(522\) 0 0
\(523\) −15.7777 13.2390i −0.689910 0.578903i 0.228973 0.973433i \(-0.426463\pi\)
−0.918883 + 0.394530i \(0.870908\pi\)
\(524\) −12.0693 + 2.86048i −0.527251 + 0.124961i
\(525\) 0 0
\(526\) 1.08072 + 0.710799i 0.0471215 + 0.0309923i
\(527\) 9.33954 + 6.14271i 0.406837 + 0.267581i
\(528\) 0 0
\(529\) −21.2705 + 5.04119i −0.924803 + 0.219182i
\(530\) −0.920961 0.772778i −0.0400040 0.0335673i
\(531\) 0 0
\(532\) 25.0877 21.0511i 1.08769 0.912680i
\(533\) −0.765321 + 1.02800i −0.0331497 + 0.0445278i
\(534\) 0 0
\(535\) −38.5909 9.14622i −1.66843 0.395426i
\(536\) −0.896382 1.20405i −0.0387178 0.0520070i
\(537\) 0 0
\(538\) 2.47036 + 1.24066i 0.106505 + 0.0534888i
\(539\) −15.9655 + 27.6531i −0.687684 + 1.19110i
\(540\) 0 0
\(541\) −19.2442 33.3319i −0.827372 1.43305i −0.900093 0.435698i \(-0.856502\pi\)
0.0727213 0.997352i \(-0.476832\pi\)
\(542\) −0.167555 2.87681i −0.00719711 0.123570i
\(543\) 0 0
\(544\) −2.40689 + 0.281325i −0.103194 + 0.0120617i
\(545\) −0.409437 1.36761i −0.0175383 0.0585821i
\(546\) 0 0
\(547\) 7.31275 + 16.9529i 0.312671 + 0.724852i 0.999999 0.00149506i \(-0.000475892\pi\)
−0.687328 + 0.726347i \(0.741217\pi\)
\(548\) 30.5412 + 11.1161i 1.30465 + 0.474855i
\(549\) 0 0
\(550\) 3.37997 1.23021i 0.144123 0.0524563i
\(551\) 5.45878 + 5.78597i 0.232552 + 0.246491i
\(552\) 0 0
\(553\) 18.7832 9.43326i 0.798741 0.401143i
\(554\) 0.0638278 1.09588i 0.00271178 0.0465595i
\(555\) 0 0
\(556\) 11.1236 37.1555i 0.471746 1.57574i
\(557\) −1.24763 + 7.07568i −0.0528639 + 0.299806i −0.999764 0.0217217i \(-0.993085\pi\)
0.946900 + 0.321528i \(0.104196\pi\)
\(558\) 0 0
\(559\) 0.508348 + 2.88298i 0.0215008 + 0.121937i
\(560\) 48.9380 + 5.72004i 2.06801 + 0.241716i
\(561\) 0 0
\(562\) −1.82632 + 1.93578i −0.0770386 + 0.0816561i
\(563\) 12.1926 28.2655i 0.513855 1.19125i −0.441894 0.897067i \(-0.645693\pi\)
0.955749 0.294183i \(-0.0950476\pi\)
\(564\) 0 0
\(565\) −38.6581 + 25.4258i −1.62636 + 1.06967i
\(566\) 0.0757672 0.00318473
\(567\) 0 0
\(568\) 0.985508 0.0413510
\(569\) −25.2451 + 16.6040i −1.05833 + 0.696075i −0.954407 0.298510i \(-0.903510\pi\)
−0.103925 + 0.994585i \(0.533140\pi\)
\(570\) 0 0
\(571\) −3.12787 + 7.25122i −0.130897 + 0.303454i −0.971042 0.238908i \(-0.923211\pi\)
0.840145 + 0.542362i \(0.182470\pi\)
\(572\) −7.90585 + 8.37972i −0.330560 + 0.350374i
\(573\) 0 0
\(574\) −0.464007 0.0542346i −0.0193673 0.00226371i
\(575\) 1.17912 + 6.68713i 0.0491728 + 0.278873i
\(576\) 0 0
\(577\) −1.81528 + 10.2950i −0.0755710 + 0.428585i 0.923425 + 0.383780i \(0.125378\pi\)
−0.998996 + 0.0448050i \(0.985733\pi\)
\(578\) −0.507614 + 1.69555i −0.0211139 + 0.0705255i
\(579\) 0 0
\(580\) −0.701315 + 12.0411i −0.0291205 + 0.499980i
\(581\) 40.3061 20.2425i 1.67218 0.839800i
\(582\) 0 0
\(583\) −9.02322 9.56405i −0.373703 0.396102i
\(584\) −7.48227 + 2.72332i −0.309619 + 0.112692i
\(585\) 0 0
\(586\) −3.60373 1.31165i −0.148869 0.0541837i
\(587\) 5.96314 + 13.8241i 0.246125 + 0.570582i 0.995834 0.0911857i \(-0.0290657\pi\)
−0.749709 + 0.661768i \(0.769806\pi\)
\(588\) 0 0
\(589\) −8.58722 28.6833i −0.353830 1.18188i
\(590\) 4.41615 0.516174i 0.181810 0.0212505i
\(591\) 0 0
\(592\) 0.731570 + 12.5606i 0.0300674 + 0.516237i
\(593\) −9.50914 16.4703i −0.390494 0.676355i 0.602021 0.798480i \(-0.294362\pi\)
−0.992515 + 0.122125i \(0.961029\pi\)
\(594\) 0 0
\(595\) −10.3819 + 17.9819i −0.425615 + 0.737187i
\(596\) −7.26334 3.64779i −0.297518 0.149419i
\(597\) 0 0
\(598\) 0.100421 + 0.134888i 0.00410651 + 0.00551600i
\(599\) 38.7477 + 9.18337i 1.58319 + 0.375222i 0.925704 0.378248i \(-0.123473\pi\)
0.657482 + 0.753470i \(0.271621\pi\)
\(600\) 0 0
\(601\) 3.33430 4.47874i 0.136009 0.182691i −0.728901 0.684620i \(-0.759968\pi\)
0.864909 + 0.501928i \(0.167376\pi\)
\(602\) −0.817450 + 0.685922i −0.0333168 + 0.0279561i
\(603\) 0 0
\(604\) −13.4821 11.3129i −0.548580 0.460314i
\(605\) 32.3038 7.65613i 1.31333 0.311266i
\(606\) 0 0
\(607\) −11.7624 7.73624i −0.477420 0.314004i 0.287892 0.957663i \(-0.407045\pi\)
−0.765313 + 0.643658i \(0.777416\pi\)
\(608\) 5.42282 + 3.56665i 0.219925 + 0.144647i
\(609\) 0 0
\(610\) −2.15663 + 0.511132i −0.0873196 + 0.0206951i
\(611\) 9.27806 + 7.78522i 0.375350 + 0.314956i
\(612\) 0 0
\(613\) −13.7550 + 11.5418i −0.555561 + 0.466171i −0.876819 0.480821i \(-0.840339\pi\)
0.321258 + 0.946992i \(0.395894\pi\)
\(614\) −1.68287 + 2.26048i −0.0679149 + 0.0912256i
\(615\) 0 0
\(616\) −8.20403 1.94439i −0.330550 0.0783417i
\(617\) −20.4332 27.4466i −0.822611 1.10496i −0.992828 0.119552i \(-0.961854\pi\)
0.170217 0.985407i \(-0.445553\pi\)
\(618\) 0 0
\(619\) −30.9588 15.5481i −1.24434 0.624931i −0.300012 0.953935i \(-0.596991\pi\)
−0.944329 + 0.329004i \(0.893287\pi\)
\(620\) 22.6998 39.3172i 0.911646 1.57902i
\(621\) 0 0
\(622\) 1.89740 + 3.28639i 0.0760787 + 0.131772i
\(623\) −2.12706 36.5202i −0.0852189 1.46315i
\(624\) 0 0
\(625\) 16.2488 1.89921i 0.649951 0.0759684i
\(626\) −0.810406 2.70695i −0.0323903 0.108191i
\(627\) 0 0
\(628\) −4.16817 9.66290i −0.166328 0.385592i
\(629\) −4.98245 1.81347i −0.198663 0.0723076i
\(630\) 0 0
\(631\) 40.5340 14.7532i 1.61363 0.587314i 0.631478 0.775394i \(-0.282449\pi\)
0.982154 + 0.188080i \(0.0602263\pi\)
\(632\) 1.90334 + 2.01742i 0.0757109 + 0.0802488i
\(633\) 0 0
\(634\) −0.888066 + 0.446003i −0.0352696 + 0.0177131i
\(635\) −0.709701 + 12.1851i −0.0281636 + 0.483551i
\(636\) 0 0
\(637\) 2.54959 8.51622i 0.101018 0.337425i
\(638\) 0.177121 1.00450i 0.00701230 0.0397687i
\(639\) 0 0
\(640\) 2.27566 + 12.9059i 0.0899534 + 0.510151i
\(641\) 4.77410 + 0.558012i 0.188566 + 0.0220402i 0.209851 0.977733i \(-0.432702\pi\)
−0.0212859 + 0.999773i \(0.506776\pi\)
\(642\) 0 0
\(643\) −5.69244 + 6.03363i −0.224488 + 0.237943i −0.829822 0.558028i \(-0.811558\pi\)
0.605334 + 0.795971i \(0.293040\pi\)
\(644\) 3.14002 7.27938i 0.123734 0.286848i
\(645\) 0 0
\(646\) −0.751946 + 0.494563i −0.0295849 + 0.0194583i
\(647\) 24.6332 0.968431 0.484215 0.874949i \(-0.339105\pi\)
0.484215 + 0.874949i \(0.339105\pi\)
\(648\) 0 0
\(649\) 48.6281 1.90882
\(650\) −0.836644 + 0.550269i −0.0328159 + 0.0215833i
\(651\) 0 0
\(652\) 3.82551 8.86852i 0.149818 0.347318i
\(653\) 7.36051 7.80169i 0.288039 0.305304i −0.567155 0.823611i \(-0.691956\pi\)
0.855195 + 0.518307i \(0.173438\pi\)
\(654\) 0 0
\(655\) −20.9212 2.44533i −0.817458 0.0955471i
\(656\) 0.684175 + 3.88015i 0.0267125 + 0.151494i
\(657\) 0 0
\(658\) −0.766638 + 4.34782i −0.0298867 + 0.169496i
\(659\) 4.87841 16.2950i 0.190036 0.634764i −0.808870 0.587988i \(-0.799920\pi\)
0.998905 0.0467759i \(-0.0148947\pi\)
\(660\) 0 0
\(661\) 1.81584 31.1767i 0.0706279 1.21263i −0.757781 0.652509i \(-0.773716\pi\)
0.828409 0.560124i \(-0.189247\pi\)
\(662\) −2.03683 + 1.02294i −0.0791638 + 0.0397575i
\(663\) 0 0
\(664\) 4.08431 + 4.32912i 0.158502 + 0.168002i
\(665\) 52.2606 19.0213i 2.02658 0.737615i
\(666\) 0 0
\(667\) 1.80945 + 0.658587i 0.0700622 + 0.0255006i
\(668\) −17.5681 40.7275i −0.679732 1.57580i
\(669\) 0 0
\(670\) −0.364136 1.21630i −0.0140678 0.0469897i
\(671\) −24.0765 + 2.81415i −0.929465 + 0.108639i
\(672\) 0 0
\(673\) 0.474625 + 8.14899i 0.0182954 + 0.314121i 0.995024 + 0.0996395i \(0.0317690\pi\)
−0.976728 + 0.214481i \(0.931194\pi\)
\(674\) 1.65264 + 2.86245i 0.0636572 + 0.110258i
\(675\) 0 0
\(676\) −11.2966 + 19.5663i −0.434484 + 0.752548i
\(677\) 4.87031 + 2.44596i 0.187181 + 0.0940060i 0.539922 0.841715i \(-0.318454\pi\)
−0.352740 + 0.935721i \(0.614750\pi\)
\(678\) 0 0
\(679\) 20.9877 + 28.1913i 0.805433 + 1.08188i
\(680\) −2.66605 0.631866i −0.102238 0.0242309i
\(681\) 0 0
\(682\) −2.29266 + 3.07958i −0.0877906 + 0.117923i
\(683\) 2.37757 1.99502i 0.0909753 0.0763374i −0.596166 0.802861i \(-0.703310\pi\)
0.687141 + 0.726524i \(0.258865\pi\)
\(684\) 0 0
\(685\) 42.2801 + 35.4772i 1.61544 + 1.35551i
\(686\) −0.00320928 0.000760612i −0.000122531 2.90403e-5i
\(687\) 0 0
\(688\) 7.51923 + 4.94548i 0.286668 + 0.188544i
\(689\) 3.05842 + 2.01155i 0.116517 + 0.0766341i
\(690\) 0 0
\(691\) 24.6994 5.85387i 0.939610 0.222692i 0.267850 0.963461i \(-0.413687\pi\)
0.671760 + 0.740769i \(0.265539\pi\)
\(692\) −5.30656 4.45274i −0.201725 0.169268i
\(693\) 0 0
\(694\) 2.32850 1.95384i 0.0883885 0.0741667i
\(695\) 39.3309 52.8305i 1.49191 2.00398i
\(696\) 0 0
\(697\) −1.61563 0.382911i −0.0611964 0.0145038i
\(698\) −1.24115 1.66716i −0.0469784 0.0631029i
\(699\) 0 0
\(700\) 42.1866 + 21.1869i 1.59451 + 0.800791i
\(701\) −0.473675 + 0.820430i −0.0178905 + 0.0309872i −0.874832 0.484426i \(-0.839028\pi\)
0.856942 + 0.515414i \(0.172362\pi\)
\(702\) 0 0
\(703\) 7.10086 + 12.2991i 0.267814 + 0.463868i
\(704\) 2.02686 + 34.7998i 0.0763901 + 1.31157i
\(705\) 0 0
\(706\) −2.42080 + 0.282951i −0.0911080 + 0.0106490i
\(707\) 5.87427 + 19.6214i 0.220925 + 0.737940i
\(708\) 0 0
\(709\) 12.7765 + 29.6192i 0.479831 + 1.11237i 0.970516 + 0.241036i \(0.0774871\pi\)
−0.490686 + 0.871337i \(0.663254\pi\)
\(710\) 0.783290 + 0.285094i 0.0293963 + 0.0106994i
\(711\) 0 0
\(712\) 4.53612 1.65101i 0.169998 0.0618743i
\(713\) −4.97380 5.27192i −0.186270 0.197435i
\(714\) 0 0
\(715\) −17.4829 + 8.78023i −0.653822 + 0.328362i
\(716\) −1.73679 + 29.8195i −0.0649068 + 1.11441i
\(717\) 0 0
\(718\) 1.25726 4.19954i 0.0469206 0.156726i
\(719\) 4.35548 24.7012i 0.162432 0.921198i −0.789241 0.614084i \(-0.789526\pi\)
0.951673 0.307114i \(-0.0993633\pi\)
\(720\) 0 0
\(721\) 1.52305 + 8.63763i 0.0567213 + 0.321682i
\(722\) 0.0565657 + 0.00661158i 0.00210516 + 0.000246057i
\(723\) 0 0
\(724\) 2.91941 3.09440i 0.108499 0.115002i
\(725\) −4.54162 + 10.5287i −0.168671 + 0.391024i
\(726\) 0 0
\(727\) 7.26093 4.77559i 0.269293 0.177117i −0.407680 0.913125i \(-0.633662\pi\)
0.676973 + 0.736008i \(0.263292\pi\)
\(728\) 2.34729 0.0869964
\(729\) 0 0
\(730\) −6.73479 −0.249266
\(731\) −3.16873 + 2.08411i −0.117200 + 0.0770836i
\(732\) 0 0
\(733\) 3.43532 7.96396i 0.126886 0.294156i −0.842917 0.538043i \(-0.819164\pi\)
0.969803 + 0.243888i \(0.0784229\pi\)
\(734\) 1.66583 1.76567i 0.0614867 0.0651721i
\(735\) 0 0
\(736\) 1.56056 + 0.182404i 0.0575231 + 0.00672349i
\(737\) −2.41128 13.6750i −0.0888205 0.503726i
\(738\) 0 0
\(739\) −0.311908 + 1.76892i −0.0114737 + 0.0650707i −0.990007 0.141018i \(-0.954962\pi\)
0.978533 + 0.206089i \(0.0660736\pi\)
\(740\) −6.17602 + 20.6293i −0.227035 + 0.758349i
\(741\) 0 0
\(742\) −0.0775863 + 1.33211i −0.00284828 + 0.0489031i
\(743\) −20.8516 + 10.4721i −0.764972 + 0.384183i −0.788098 0.615549i \(-0.788934\pi\)
0.0231267 + 0.999733i \(0.492638\pi\)
\(744\) 0 0
\(745\) −9.47189 10.0396i −0.347023 0.367823i
\(746\) 3.77279 1.37318i 0.138132 0.0502758i
\(747\) 0 0
\(748\) −14.0253 5.10480i −0.512816 0.186650i
\(749\) 17.4350 + 40.4189i 0.637061 + 1.47687i
\(750\) 0 0
\(751\) −5.56559 18.5904i −0.203091 0.678373i −0.997479 0.0709615i \(-0.977393\pi\)
0.794388 0.607411i \(-0.207792\pi\)
\(752\) 36.9828 4.32267i 1.34862 0.157631i
\(753\) 0 0
\(754\) 0.0165114 + 0.283490i 0.000601310 + 0.0103241i
\(755\) −14.9437 25.8832i −0.543855 0.941985i
\(756\) 0 0
\(757\) −8.52025 + 14.7575i −0.309674 + 0.536371i −0.978291 0.207236i \(-0.933553\pi\)
0.668617 + 0.743607i \(0.266886\pi\)
\(758\) 1.59904 + 0.803069i 0.0580798 + 0.0291688i
\(759\) 0 0
\(760\) 4.38237 + 5.88654i 0.158965 + 0.213527i
\(761\) −41.7260 9.88923i −1.51256 0.358484i −0.611176 0.791495i \(-0.709303\pi\)
−0.901389 + 0.433011i \(0.857451\pi\)
\(762\) 0 0
\(763\) −0.946191 + 1.27096i −0.0342544 + 0.0460117i
\(764\) −31.6606 + 26.5664i −1.14544 + 0.961137i
\(765\) 0 0
\(766\) −2.07463 1.74082i −0.0749594 0.0628984i
\(767\) −13.1732 + 3.12212i −0.475658 + 0.112733i
\(768\) 0 0
\(769\) −23.8376 15.6782i −0.859605 0.565371i 0.0414182 0.999142i \(-0.486812\pi\)
−0.901023 + 0.433771i \(0.857183\pi\)
\(770\) −5.95814 3.91873i −0.214716 0.141221i
\(771\) 0 0
\(772\) −27.2200 + 6.45127i −0.979671 + 0.232186i
\(773\) −31.5157 26.4448i −1.13354 0.951155i −0.134334 0.990936i \(-0.542889\pi\)
−0.999208 + 0.0397813i \(0.987334\pi\)
\(774\) 0 0
\(775\) 33.0622 27.7425i 1.18763 0.996539i
\(776\) −2.76945 + 3.72002i −0.0994176 + 0.133541i
\(777\) 0 0
\(778\) −2.26090 0.535844i −0.0810573 0.0192109i
\(779\) 2.65572 + 3.56725i 0.0951511 + 0.127810i
\(780\) 0 0
\(781\) 8.14691 + 4.09153i 0.291519 + 0.146406i
\(782\) −0.108933 + 0.188677i −0.00389543 + 0.00674709i
\(783\)