Properties

Label 729.2.g.a.28.4
Level $729$
Weight $2$
Character 729.28
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 28.4
Character \(\chi\) \(=\) 729.28
Dual form 729.2.g.a.703.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.463223 + 0.304667i) q^{2} +(-0.670406 + 1.55417i) q^{4} +(0.355980 - 0.377317i) q^{5} +(-2.24586 - 0.262503i) q^{7} +(-0.355511 - 2.01620i) q^{8} +O(q^{10})\) \(q+(-0.463223 + 0.304667i) q^{2} +(-0.670406 + 1.55417i) q^{4} +(0.355980 - 0.377317i) q^{5} +(-2.24586 - 0.262503i) q^{7} +(-0.355511 - 2.01620i) q^{8} +(-0.0499424 + 0.283238i) q^{10} +(0.352258 - 1.17662i) q^{11} +(0.226512 - 3.88906i) q^{13} +(1.12031 - 0.562641i) q^{14} +(-1.54412 - 1.63667i) q^{16} +(6.74697 - 2.45569i) q^{17} +(1.31557 + 0.478829i) q^{19} +(0.347766 + 0.806212i) q^{20} +(0.195304 + 0.652361i) q^{22} +(1.91236 - 0.223523i) q^{23} +(0.275078 + 4.72291i) q^{25} +(1.07994 + 1.87051i) q^{26} +(1.91361 - 3.31448i) q^{28} +(6.18810 + 3.10778i) q^{29} +(-4.11811 - 5.53158i) q^{31} +(5.19815 + 1.23198i) q^{32} +(-2.37718 + 3.19311i) q^{34} +(-0.898529 + 0.753956i) q^{35} +(3.62954 + 3.04555i) q^{37} +(-0.755286 + 0.179006i) q^{38} +(-0.887303 - 0.583588i) q^{40} +(1.26157 + 0.829746i) q^{41} +(-2.33285 + 0.552895i) q^{43} +(1.59252 + 1.33629i) q^{44} +(-0.817749 + 0.686173i) q^{46} +(6.75172 - 9.06914i) q^{47} +(-1.83633 - 0.435219i) q^{49} +(-1.56633 - 2.10395i) q^{50} +(5.89243 + 2.95929i) q^{52} +(-3.04317 + 5.27093i) q^{53} +(-0.318564 - 0.551769i) q^{55} +(0.269168 + 4.62143i) q^{56} +(-3.81331 + 0.445712i) q^{58} +(-3.69936 - 12.3567i) q^{59} +(2.26328 + 5.24688i) q^{61} +(3.59289 + 1.30771i) q^{62} +(1.44557 - 0.526145i) q^{64} +(-1.38678 - 1.46990i) q^{65} +(12.0102 - 6.03174i) q^{67} +(-0.706625 + 12.1323i) q^{68} +(0.186514 - 0.623002i) q^{70} +(-0.376160 + 2.13331i) q^{71} +(0.161233 + 0.914398i) q^{73} +(-2.60917 - 0.304968i) q^{74} +(-1.62615 + 1.72362i) q^{76} +(-1.09999 + 2.55007i) q^{77} +(6.48739 - 4.26682i) q^{79} -1.16722 q^{80} -0.837183 q^{82} +(3.50271 - 2.30377i) q^{83} +(1.47521 - 3.41993i) q^{85} +(0.912180 - 0.966854i) q^{86} +(-2.49755 - 0.291921i) q^{88} +(-2.46858 - 14.0000i) q^{89} +(-1.52961 + 8.67483i) q^{91} +(-0.934663 + 3.12199i) q^{92} +(-0.364490 + 6.25806i) q^{94} +(0.648988 - 0.325934i) q^{95} +(-10.6772 - 11.3172i) q^{97} +(0.983230 - 0.357866i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{22}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.463223 + 0.304667i −0.327548 + 0.215432i −0.702622 0.711563i \(-0.747988\pi\)
0.375074 + 0.926995i \(0.377617\pi\)
\(3\) 0 0
\(4\) −0.670406 + 1.55417i −0.335203 + 0.777087i
\(5\) 0.355980 0.377317i 0.159199 0.168741i −0.642864 0.765980i \(-0.722254\pi\)
0.802063 + 0.597239i \(0.203736\pi\)
\(6\) 0 0
\(7\) −2.24586 0.262503i −0.848855 0.0992170i −0.319468 0.947597i \(-0.603504\pi\)
−0.529387 + 0.848380i \(0.677578\pi\)
\(8\) −0.355511 2.01620i −0.125692 0.712835i
\(9\) 0 0
\(10\) −0.0499424 + 0.283238i −0.0157932 + 0.0895676i
\(11\) 0.352258 1.17662i 0.106210 0.354766i −0.888319 0.459227i \(-0.848127\pi\)
0.994529 + 0.104461i \(0.0333117\pi\)
\(12\) 0 0
\(13\) 0.226512 3.88906i 0.0628232 1.07863i −0.808682 0.588246i \(-0.799819\pi\)
0.871505 0.490386i \(-0.163144\pi\)
\(14\) 1.12031 0.562641i 0.299416 0.150372i
\(15\) 0 0
\(16\) −1.54412 1.63667i −0.386029 0.409167i
\(17\) 6.74697 2.45569i 1.63638 0.595593i 0.649979 0.759952i \(-0.274778\pi\)
0.986401 + 0.164359i \(0.0525555\pi\)
\(18\) 0 0
\(19\) 1.31557 + 0.478829i 0.301813 + 0.109851i 0.488487 0.872571i \(-0.337549\pi\)
−0.186675 + 0.982422i \(0.559771\pi\)
\(20\) 0.347766 + 0.806212i 0.0777628 + 0.180274i
\(21\) 0 0
\(22\) 0.195304 + 0.652361i 0.0416390 + 0.139084i
\(23\) 1.91236 0.223523i 0.398755 0.0466077i 0.0856474 0.996326i \(-0.472704\pi\)
0.313107 + 0.949718i \(0.398630\pi\)
\(24\) 0 0
\(25\) 0.275078 + 4.72291i 0.0550156 + 0.944581i
\(26\) 1.07994 + 1.87051i 0.211794 + 0.366838i
\(27\) 0 0
\(28\) 1.91361 3.31448i 0.361639 0.626377i
\(29\) 6.18810 + 3.10778i 1.14910 + 0.577100i 0.918294 0.395899i \(-0.129567\pi\)
0.230807 + 0.972999i \(0.425863\pi\)
\(30\) 0 0
\(31\) −4.11811 5.53158i −0.739635 0.993502i −0.999611 0.0278867i \(-0.991122\pi\)
0.259977 0.965615i \(-0.416285\pi\)
\(32\) 5.19815 + 1.23198i 0.918912 + 0.217786i
\(33\) 0 0
\(34\) −2.37718 + 3.19311i −0.407683 + 0.547614i
\(35\) −0.898529 + 0.753956i −0.151879 + 0.127442i
\(36\) 0 0
\(37\) 3.62954 + 3.04555i 0.596693 + 0.500685i 0.890381 0.455216i \(-0.150438\pi\)
−0.293688 + 0.955901i \(0.594883\pi\)
\(38\) −0.755286 + 0.179006i −0.122524 + 0.0290386i
\(39\) 0 0
\(40\) −0.887303 0.583588i −0.140295 0.0922734i
\(41\) 1.26157 + 0.829746i 0.197024 + 0.129585i 0.644188 0.764867i \(-0.277196\pi\)
−0.447164 + 0.894452i \(0.647566\pi\)
\(42\) 0 0
\(43\) −2.33285 + 0.552895i −0.355756 + 0.0843157i −0.404608 0.914490i \(-0.632592\pi\)
0.0488519 + 0.998806i \(0.484444\pi\)
\(44\) 1.59252 + 1.33629i 0.240082 + 0.201453i
\(45\) 0 0
\(46\) −0.817749 + 0.686173i −0.120571 + 0.101171i
\(47\) 6.75172 9.06914i 0.984840 1.32287i 0.0386515 0.999253i \(-0.487694\pi\)
0.946188 0.323617i \(-0.104899\pi\)
\(48\) 0 0
\(49\) −1.83633 0.435219i −0.262334 0.0621742i
\(50\) −1.56633 2.10395i −0.221513 0.297544i
\(51\) 0 0
\(52\) 5.89243 + 2.95929i 0.817133 + 0.410380i
\(53\) −3.04317 + 5.27093i −0.418012 + 0.724018i −0.995739 0.0922118i \(-0.970606\pi\)
0.577728 + 0.816230i \(0.303940\pi\)
\(54\) 0 0
\(55\) −0.318564 0.551769i −0.0429551 0.0744005i
\(56\) 0.269168 + 4.62143i 0.0359691 + 0.617565i
\(57\) 0 0
\(58\) −3.81331 + 0.445712i −0.500712 + 0.0585248i
\(59\) −3.69936 12.3567i −0.481616 1.60871i −0.761152 0.648574i \(-0.775366\pi\)
0.279536 0.960135i \(-0.409819\pi\)
\(60\) 0 0
\(61\) 2.26328 + 5.24688i 0.289784 + 0.671794i 0.999464 0.0327296i \(-0.0104200\pi\)
−0.709681 + 0.704524i \(0.751161\pi\)
\(62\) 3.59289 + 1.30771i 0.456298 + 0.166079i
\(63\) 0 0
\(64\) 1.44557 0.526145i 0.180696 0.0657681i
\(65\) −1.38678 1.46990i −0.172008 0.182318i
\(66\) 0 0
\(67\) 12.0102 6.03174i 1.46728 0.736894i 0.477382 0.878696i \(-0.341586\pi\)
0.989895 + 0.141802i \(0.0452895\pi\)
\(68\) −0.706625 + 12.1323i −0.0856908 + 1.47125i
\(69\) 0 0
\(70\) 0.186514 0.623002i 0.0222927 0.0744630i
\(71\) −0.376160 + 2.13331i −0.0446419 + 0.253177i −0.998959 0.0456192i \(-0.985474\pi\)
0.954317 + 0.298796i \(0.0965850\pi\)
\(72\) 0 0
\(73\) 0.161233 + 0.914398i 0.0188709 + 0.107022i 0.992788 0.119881i \(-0.0382512\pi\)
−0.973917 + 0.226903i \(0.927140\pi\)
\(74\) −2.60917 0.304968i −0.303309 0.0354518i
\(75\) 0 0
\(76\) −1.62615 + 1.72362i −0.186532 + 0.197713i
\(77\) −1.09999 + 2.55007i −0.125356 + 0.290607i
\(78\) 0 0
\(79\) 6.48739 4.26682i 0.729888 0.480055i −0.129371 0.991596i \(-0.541296\pi\)
0.859259 + 0.511542i \(0.170925\pi\)
\(80\) −1.16722 −0.130499
\(81\) 0 0
\(82\) −0.837183 −0.0924514
\(83\) 3.50271 2.30377i 0.384473 0.252872i −0.342529 0.939507i \(-0.611284\pi\)
0.727002 + 0.686636i \(0.240913\pi\)
\(84\) 0 0
\(85\) 1.47521 3.41993i 0.160009 0.370943i
\(86\) 0.912180 0.966854i 0.0983629 0.104259i
\(87\) 0 0
\(88\) −2.49755 0.291921i −0.266239 0.0311189i
\(89\) −2.46858 14.0000i −0.261669 1.48400i −0.778356 0.627824i \(-0.783946\pi\)
0.516687 0.856175i \(-0.327165\pi\)
\(90\) 0 0
\(91\) −1.52961 + 8.67483i −0.160346 + 0.909369i
\(92\) −0.934663 + 3.12199i −0.0974454 + 0.325490i
\(93\) 0 0
\(94\) −0.364490 + 6.25806i −0.0375943 + 0.645469i
\(95\) 0.648988 0.325934i 0.0665848 0.0334401i
\(96\) 0 0
\(97\) −10.6772 11.3172i −1.08410 1.14908i −0.988118 0.153700i \(-0.950881\pi\)
−0.0959862 0.995383i \(-0.530600\pi\)
\(98\) 0.983230 0.357866i 0.0993212 0.0361500i
\(99\) 0 0
\(100\) −7.52463 2.73874i −0.752463 0.273874i
\(101\) −3.61117 8.37164i −0.359325 0.833010i −0.997981 0.0635169i \(-0.979768\pi\)
0.638655 0.769493i \(-0.279491\pi\)
\(102\) 0 0
\(103\) 3.02856 + 10.1161i 0.298413 + 0.996769i 0.967349 + 0.253449i \(0.0815649\pi\)
−0.668936 + 0.743320i \(0.733250\pi\)
\(104\) −7.92167 + 0.925910i −0.776783 + 0.0907929i
\(105\) 0 0
\(106\) −0.196209 3.36877i −0.0190575 0.327204i
\(107\) −5.34166 9.25202i −0.516398 0.894427i −0.999819 0.0190389i \(-0.993939\pi\)
0.483421 0.875388i \(-0.339394\pi\)
\(108\) 0 0
\(109\) 5.00123 8.66239i 0.479031 0.829707i −0.520680 0.853752i \(-0.674321\pi\)
0.999711 + 0.0240456i \(0.00765470\pi\)
\(110\) 0.315672 + 0.158536i 0.0300981 + 0.0151158i
\(111\) 0 0
\(112\) 3.03824 + 4.08107i 0.287087 + 0.385625i
\(113\) 16.6744 + 3.95190i 1.56859 + 0.371764i 0.920795 0.390047i \(-0.127541\pi\)
0.647799 + 0.761811i \(0.275689\pi\)
\(114\) 0 0
\(115\) 0.596424 0.801136i 0.0556168 0.0747063i
\(116\) −8.97857 + 7.53392i −0.833640 + 0.699507i
\(117\) 0 0
\(118\) 5.47831 + 4.59685i 0.504320 + 0.423174i
\(119\) −15.7974 + 3.74405i −1.44814 + 0.343216i
\(120\) 0 0
\(121\) 7.93001 + 5.21565i 0.720910 + 0.474150i
\(122\) −2.64695 1.74093i −0.239644 0.157616i
\(123\) 0 0
\(124\) 11.3579 2.69186i 1.01997 0.241736i
\(125\) 3.86684 + 3.24467i 0.345861 + 0.290212i
\(126\) 0 0
\(127\) −9.19946 + 7.71927i −0.816320 + 0.684974i −0.952107 0.305764i \(-0.901088\pi\)
0.135787 + 0.990738i \(0.456644\pi\)
\(128\) −6.88954 + 9.25426i −0.608955 + 0.817969i
\(129\) 0 0
\(130\) 1.09022 + 0.258386i 0.0956183 + 0.0226619i
\(131\) −9.49207 12.7501i −0.829326 1.11398i −0.991867 0.127277i \(-0.959376\pi\)
0.162541 0.986702i \(-0.448031\pi\)
\(132\) 0 0
\(133\) −2.82889 1.42072i −0.245296 0.123192i
\(134\) −3.72572 + 6.45314i −0.321854 + 0.557467i
\(135\) 0 0
\(136\) −7.34980 12.7302i −0.630240 1.09161i
\(137\) 0.0263322 + 0.452106i 0.00224971 + 0.0386260i 0.999246 0.0388209i \(-0.0123602\pi\)
−0.996996 + 0.0774470i \(0.975323\pi\)
\(138\) 0 0
\(139\) −5.70831 + 0.667205i −0.484172 + 0.0565916i −0.354678 0.934989i \(-0.615409\pi\)
−0.129494 + 0.991580i \(0.541335\pi\)
\(140\) −0.569400 1.90193i −0.0481231 0.160742i
\(141\) 0 0
\(142\) −0.475702 1.10280i −0.0399200 0.0925450i
\(143\) −4.49618 1.63647i −0.375989 0.136849i
\(144\) 0 0
\(145\) 3.37546 1.22857i 0.280317 0.102027i
\(146\) −0.353274 0.374448i −0.0292371 0.0309896i
\(147\) 0 0
\(148\) −7.16658 + 3.59919i −0.589089 + 0.295852i
\(149\) −0.769758 + 13.2162i −0.0630611 + 1.08272i 0.807249 + 0.590212i \(0.200956\pi\)
−0.870310 + 0.492505i \(0.836081\pi\)
\(150\) 0 0
\(151\) −0.813561 + 2.71748i −0.0662067 + 0.221146i −0.984690 0.174314i \(-0.944229\pi\)
0.918484 + 0.395459i \(0.129415\pi\)
\(152\) 0.497716 2.82269i 0.0403701 0.228950i
\(153\) 0 0
\(154\) −0.267379 1.51638i −0.0215460 0.122193i
\(155\) −3.55313 0.415301i −0.285394 0.0333578i
\(156\) 0 0
\(157\) −9.58966 + 10.1644i −0.765338 + 0.811211i −0.986454 0.164036i \(-0.947549\pi\)
0.221116 + 0.975247i \(0.429030\pi\)
\(158\) −1.70515 + 3.95298i −0.135654 + 0.314482i
\(159\) 0 0
\(160\) 2.31529 1.52279i 0.183040 0.120387i
\(161\) −4.35357 −0.343109
\(162\) 0 0
\(163\) 2.66700 0.208896 0.104448 0.994530i \(-0.466692\pi\)
0.104448 + 0.994530i \(0.466692\pi\)
\(164\) −2.13533 + 1.40443i −0.166741 + 0.109668i
\(165\) 0 0
\(166\) −0.920655 + 2.13432i −0.0714567 + 0.165655i
\(167\) −14.2643 + 15.1193i −1.10381 + 1.16997i −0.119622 + 0.992820i \(0.538168\pi\)
−0.984184 + 0.177147i \(0.943313\pi\)
\(168\) 0 0
\(169\) −2.16140 0.252632i −0.166262 0.0194332i
\(170\) 0.358585 + 2.03364i 0.0275022 + 0.155973i
\(171\) 0 0
\(172\) 0.704658 3.99631i 0.0537297 0.304716i
\(173\) −3.83764 + 12.8186i −0.291770 + 0.974580i 0.678913 + 0.734218i \(0.262451\pi\)
−0.970683 + 0.240362i \(0.922734\pi\)
\(174\) 0 0
\(175\) 0.621992 10.6792i 0.0470182 0.807271i
\(176\) −2.46967 + 1.24032i −0.186159 + 0.0934924i
\(177\) 0 0
\(178\) 5.40884 + 5.73304i 0.405410 + 0.429709i
\(179\) −3.77200 + 1.37290i −0.281932 + 0.102615i −0.479116 0.877752i \(-0.659043\pi\)
0.197184 + 0.980367i \(0.436820\pi\)
\(180\) 0 0
\(181\) −12.3224 4.48500i −0.915920 0.333368i −0.159306 0.987229i \(-0.550926\pi\)
−0.756614 + 0.653862i \(0.773148\pi\)
\(182\) −1.93438 4.48440i −0.143386 0.332406i
\(183\) 0 0
\(184\) −1.13053 3.77624i −0.0833439 0.278388i
\(185\) 2.44118 0.285334i 0.179479 0.0209781i
\(186\) 0 0
\(187\) −0.512756 8.80369i −0.0374965 0.643789i
\(188\) 9.56863 + 16.5734i 0.697864 + 1.20874i
\(189\) 0 0
\(190\) −0.201325 + 0.348705i −0.0146057 + 0.0252977i
\(191\) −0.0543345 0.0272878i −0.00393151 0.00197448i 0.446832 0.894618i \(-0.352552\pi\)
−0.450764 + 0.892643i \(0.648848\pi\)
\(192\) 0 0
\(193\) −1.97643 2.65481i −0.142267 0.191097i 0.725279 0.688455i \(-0.241711\pi\)
−0.867545 + 0.497358i \(0.834304\pi\)
\(194\) 8.39388 + 1.98939i 0.602645 + 0.142830i
\(195\) 0 0
\(196\) 1.90750 2.56221i 0.136250 0.183015i
\(197\) 11.5875 9.72308i 0.825576 0.692740i −0.128695 0.991684i \(-0.541079\pi\)
0.954271 + 0.298944i \(0.0966343\pi\)
\(198\) 0 0
\(199\) −6.76072 5.67291i −0.479254 0.402142i 0.370902 0.928672i \(-0.379048\pi\)
−0.850157 + 0.526530i \(0.823493\pi\)
\(200\) 9.42454 2.23366i 0.666416 0.157943i
\(201\) 0 0
\(202\) 4.22334 + 2.77774i 0.297153 + 0.195441i
\(203\) −13.0818 8.60404i −0.918163 0.603885i
\(204\) 0 0
\(205\) 0.762171 0.180638i 0.0532323 0.0126163i
\(206\) −4.48494 3.76331i −0.312480 0.262202i
\(207\) 0 0
\(208\) −6.71487 + 5.63445i −0.465593 + 0.390679i
\(209\) 1.02682 1.37926i 0.0710268 0.0954056i
\(210\) 0 0
\(211\) 16.0628 + 3.80695i 1.10581 + 0.262081i 0.742672 0.669655i \(-0.233558\pi\)
0.363135 + 0.931736i \(0.381706\pi\)
\(212\) −6.15179 8.26328i −0.422506 0.567525i
\(213\) 0 0
\(214\) 5.29316 + 2.65833i 0.361833 + 0.181719i
\(215\) −0.621831 + 1.07704i −0.0424085 + 0.0734537i
\(216\) 0 0
\(217\) 7.79664 + 13.5042i 0.529270 + 0.916723i
\(218\) 0.322454 + 5.53633i 0.0218394 + 0.374968i
\(219\) 0 0
\(220\) 1.07111 0.125195i 0.0722143 0.00844065i
\(221\) −8.02208 26.7956i −0.539624 1.80247i
\(222\) 0 0
\(223\) 2.08802 + 4.84058i 0.139824 + 0.324149i 0.973711 0.227786i \(-0.0731487\pi\)
−0.833887 + 0.551936i \(0.813889\pi\)
\(224\) −11.3509 4.13140i −0.758415 0.276041i
\(225\) 0 0
\(226\) −8.92798 + 3.24952i −0.593880 + 0.216155i
\(227\) −4.65004 4.92876i −0.308634 0.327133i 0.554427 0.832232i \(-0.312937\pi\)
−0.863061 + 0.505099i \(0.831456\pi\)
\(228\) 0 0
\(229\) −7.65641 + 3.84519i −0.505950 + 0.254097i −0.683416 0.730029i \(-0.739506\pi\)
0.177466 + 0.984127i \(0.443210\pi\)
\(230\) −0.0321978 + 0.552815i −0.00212306 + 0.0364516i
\(231\) 0 0
\(232\) 4.06598 13.5813i 0.266945 0.891657i
\(233\) −1.32146 + 7.49440i −0.0865720 + 0.490974i 0.910434 + 0.413654i \(0.135748\pi\)
−0.997006 + 0.0773205i \(0.975364\pi\)
\(234\) 0 0
\(235\) −1.01846 5.77598i −0.0664370 0.376783i
\(236\) 21.6846 + 2.53457i 1.41155 + 0.164986i
\(237\) 0 0
\(238\) 6.17702 6.54726i 0.400397 0.424396i
\(239\) −4.56879 + 10.5916i −0.295530 + 0.685116i −0.999689 0.0249260i \(-0.992065\pi\)
0.704159 + 0.710042i \(0.251324\pi\)
\(240\) 0 0
\(241\) 0.299604 0.197052i 0.0192992 0.0126933i −0.539823 0.841779i \(-0.681509\pi\)
0.559122 + 0.829085i \(0.311138\pi\)
\(242\) −5.26240 −0.338280
\(243\) 0 0
\(244\) −9.67188 −0.619179
\(245\) −0.817915 + 0.537951i −0.0522547 + 0.0343684i
\(246\) 0 0
\(247\) 2.16019 5.00788i 0.137449 0.318644i
\(248\) −9.68876 + 10.2695i −0.615237 + 0.652113i
\(249\) 0 0
\(250\) −2.77975 0.324907i −0.175807 0.0205489i
\(251\) 1.46695 + 8.31946i 0.0925927 + 0.525120i 0.995458 + 0.0951969i \(0.0303481\pi\)
−0.902866 + 0.429923i \(0.858541\pi\)
\(252\) 0 0
\(253\) 0.410642 2.32887i 0.0258169 0.146415i
\(254\) 1.90960 6.37851i 0.119819 0.400224i
\(255\) 0 0
\(256\) 0.193037 3.31432i 0.0120648 0.207145i
\(257\) 27.9893 14.0567i 1.74592 0.876835i 0.776988 0.629516i \(-0.216747\pi\)
0.968934 0.247319i \(-0.0795495\pi\)
\(258\) 0 0
\(259\) −7.35198 7.79264i −0.456830 0.484211i
\(260\) 3.21418 1.16987i 0.199335 0.0725520i
\(261\) 0 0
\(262\) 8.28147 + 3.01421i 0.511631 + 0.186218i
\(263\) 0.790541 + 1.83268i 0.0487468 + 0.113008i 0.940849 0.338825i \(-0.110030\pi\)
−0.892103 + 0.451833i \(0.850770\pi\)
\(264\) 0 0
\(265\) 0.905503 + 3.02459i 0.0556246 + 0.185799i
\(266\) 1.74326 0.203757i 0.106886 0.0124932i
\(267\) 0 0
\(268\) 1.32269 + 22.7096i 0.0807959 + 1.38721i
\(269\) −1.73160 2.99923i −0.105578 0.182866i 0.808396 0.588639i \(-0.200336\pi\)
−0.913974 + 0.405772i \(0.867003\pi\)
\(270\) 0 0
\(271\) −14.7474 + 25.5433i −0.895843 + 1.55165i −0.0630854 + 0.998008i \(0.520094\pi\)
−0.832758 + 0.553638i \(0.813239\pi\)
\(272\) −14.4373 7.25067i −0.875388 0.439636i
\(273\) 0 0
\(274\) −0.149939 0.201403i −0.00905817 0.0121672i
\(275\) 5.65399 + 1.34002i 0.340948 + 0.0808062i
\(276\) 0 0
\(277\) −3.71802 + 4.99417i −0.223394 + 0.300071i −0.899664 0.436584i \(-0.856188\pi\)
0.676269 + 0.736655i \(0.263596\pi\)
\(278\) 2.44094 2.04820i 0.146398 0.122843i
\(279\) 0 0
\(280\) 1.83956 + 1.54358i 0.109935 + 0.0922464i
\(281\) 3.61985 0.857919i 0.215942 0.0511792i −0.121221 0.992626i \(-0.538681\pi\)
0.337163 + 0.941446i \(0.390533\pi\)
\(282\) 0 0
\(283\) −11.4175 7.50939i −0.678698 0.446387i 0.162791 0.986661i \(-0.447950\pi\)
−0.841489 + 0.540274i \(0.818321\pi\)
\(284\) −3.06335 2.01480i −0.181777 0.119556i
\(285\) 0 0
\(286\) 2.58131 0.611782i 0.152636 0.0361754i
\(287\) −2.61549 2.19466i −0.154388 0.129547i
\(288\) 0 0
\(289\) 26.4684 22.2096i 1.55696 1.30645i
\(290\) −1.18929 + 1.59749i −0.0698374 + 0.0938080i
\(291\) 0 0
\(292\) −1.52923 0.362433i −0.0894912 0.0212098i
\(293\) 10.1627 + 13.6509i 0.593712 + 0.797494i 0.992846 0.119399i \(-0.0380967\pi\)
−0.399134 + 0.916893i \(0.630689\pi\)
\(294\) 0 0
\(295\) −5.97931 3.00292i −0.348129 0.174837i
\(296\) 4.85010 8.40062i 0.281906 0.488276i
\(297\) 0 0
\(298\) −3.66998 6.35659i −0.212596 0.368227i
\(299\) −0.436122 7.48792i −0.0252216 0.433037i
\(300\) 0 0
\(301\) 5.38438 0.629344i 0.310351 0.0362748i
\(302\) −0.451066 1.50667i −0.0259559 0.0866989i
\(303\) 0 0
\(304\) −1.24771 2.89252i −0.0715612 0.165898i
\(305\) 2.78542 + 1.01381i 0.159493 + 0.0580506i
\(306\) 0 0
\(307\) 2.43196 0.885161i 0.138799 0.0505188i −0.271686 0.962386i \(-0.587581\pi\)
0.410486 + 0.911867i \(0.365359\pi\)
\(308\) −3.22581 3.41916i −0.183807 0.194825i
\(309\) 0 0
\(310\) 1.77242 0.890143i 0.100667 0.0505567i
\(311\) 0.615800 10.5729i 0.0349188 0.599533i −0.934780 0.355228i \(-0.884403\pi\)
0.969698 0.244305i \(-0.0785598\pi\)
\(312\) 0 0
\(313\) −6.25206 + 20.8833i −0.353388 + 1.18040i 0.577899 + 0.816108i \(0.303873\pi\)
−0.931286 + 0.364288i \(0.881312\pi\)
\(314\) 1.34538 7.63006i 0.0759245 0.430589i
\(315\) 0 0
\(316\) 2.28221 + 12.9430i 0.128384 + 0.728102i
\(317\) −3.56102 0.416224i −0.200007 0.0233775i 0.0154994 0.999880i \(-0.495066\pi\)
−0.215507 + 0.976502i \(0.569140\pi\)
\(318\) 0 0
\(319\) 5.83650 6.18633i 0.326781 0.346368i
\(320\) 0.316072 0.732736i 0.0176689 0.0409612i
\(321\) 0 0
\(322\) 2.01667 1.32639i 0.112385 0.0739167i
\(323\) 10.0520 0.559307
\(324\) 0 0
\(325\) 18.4300 1.02231
\(326\) −1.23542 + 0.812546i −0.0684234 + 0.0450028i
\(327\) 0 0
\(328\) 1.22443 2.83856i 0.0676081 0.156733i
\(329\) −17.5441 + 18.5957i −0.967238 + 1.02521i
\(330\) 0 0
\(331\) 4.12316 + 0.481928i 0.226629 + 0.0264892i 0.228650 0.973509i \(-0.426569\pi\)
−0.00202025 + 0.999998i \(0.500643\pi\)
\(332\) 1.23222 + 6.98829i 0.0676270 + 0.383532i
\(333\) 0 0
\(334\) 2.00122 11.3495i 0.109502 0.621016i
\(335\) 1.99951 6.67883i 0.109245 0.364903i
\(336\) 0 0
\(337\) −1.19137 + 20.4551i −0.0648982 + 1.11426i 0.795939 + 0.605377i \(0.206978\pi\)
−0.860837 + 0.508881i \(0.830059\pi\)
\(338\) 1.07818 0.541483i 0.0586453 0.0294528i
\(339\) 0 0
\(340\) 4.32617 + 4.58548i 0.234620 + 0.248682i
\(341\) −7.95924 + 2.89692i −0.431017 + 0.156877i
\(342\) 0 0
\(343\) 18.8834 + 6.87300i 1.01961 + 0.371107i
\(344\) 1.94410 + 4.50693i 0.104819 + 0.242997i
\(345\) 0 0
\(346\) −2.12772 7.10707i −0.114387 0.382079i
\(347\) 31.0030 3.62373i 1.66433 0.194532i 0.768785 0.639508i \(-0.220862\pi\)
0.895543 + 0.444976i \(0.146788\pi\)
\(348\) 0 0
\(349\) −0.686708 11.7903i −0.0367586 0.631122i −0.965502 0.260397i \(-0.916146\pi\)
0.928743 0.370724i \(-0.120891\pi\)
\(350\) 2.96547 + 5.13635i 0.158511 + 0.274549i
\(351\) 0 0
\(352\) 3.28068 5.68230i 0.174861 0.302867i
\(353\) 8.47948 + 4.25856i 0.451317 + 0.226660i 0.659913 0.751342i \(-0.270593\pi\)
−0.208596 + 0.978002i \(0.566889\pi\)
\(354\) 0 0
\(355\) 0.671028 + 0.901347i 0.0356145 + 0.0478385i
\(356\) 23.4134 + 5.54908i 1.24091 + 0.294101i
\(357\) 0 0
\(358\) 1.32900 1.78516i 0.0702399 0.0943486i
\(359\) 11.7812 9.88558i 0.621787 0.521741i −0.276578 0.960992i \(-0.589200\pi\)
0.898365 + 0.439250i \(0.144756\pi\)
\(360\) 0 0
\(361\) −13.0534 10.9531i −0.687021 0.576479i
\(362\) 7.07447 1.67668i 0.371826 0.0881244i
\(363\) 0 0
\(364\) −12.4567 8.19293i −0.652911 0.429426i
\(365\) 0.402414 + 0.264672i 0.0210633 + 0.0138536i
\(366\) 0 0
\(367\) −3.45240 + 0.818233i −0.180214 + 0.0427114i −0.319732 0.947508i \(-0.603593\pi\)
0.139518 + 0.990220i \(0.455445\pi\)
\(368\) −3.31874 2.78476i −0.173001 0.145165i
\(369\) 0 0
\(370\) −1.04388 + 0.875921i −0.0542688 + 0.0455369i
\(371\) 8.21818 11.0389i 0.426666 0.573113i
\(372\) 0 0
\(373\) −29.2434 6.93082i −1.51417 0.358865i −0.612213 0.790693i \(-0.709720\pi\)
−0.901956 + 0.431829i \(0.857869\pi\)
\(374\) 2.91971 + 3.92185i 0.150975 + 0.202794i
\(375\) 0 0
\(376\) −20.6855 10.3887i −1.06677 0.535754i
\(377\) 13.4880 23.3620i 0.694669 1.20320i
\(378\) 0 0
\(379\) 11.7966 + 20.4324i 0.605953 + 1.04954i 0.991900 + 0.127020i \(0.0405414\pi\)
−0.385947 + 0.922521i \(0.626125\pi\)
\(380\) 0.0714733 + 1.22715i 0.00366650 + 0.0629514i
\(381\) 0 0
\(382\) 0.0334827 0.00391357i 0.00171312 0.000200236i
\(383\) −0.0831461 0.277727i −0.00424857 0.0141912i 0.955839 0.293891i \(-0.0949503\pi\)
−0.960088 + 0.279700i \(0.909765\pi\)
\(384\) 0 0
\(385\) 0.570608 + 1.32282i 0.0290809 + 0.0674171i
\(386\) 1.72436 + 0.627616i 0.0877676 + 0.0319448i
\(387\) 0 0
\(388\) 24.7469 9.00713i 1.25633 0.457268i
\(389\) 19.2691 + 20.4240i 0.976982 + 1.03554i 0.999359 + 0.0357904i \(0.0113949\pi\)
−0.0223777 + 0.999750i \(0.507124\pi\)
\(390\) 0 0
\(391\) 12.3537 6.20427i 0.624755 0.313764i
\(392\) −0.224653 + 3.85715i −0.0113467 + 0.194815i
\(393\) 0 0
\(394\) −2.40531 + 8.03428i −0.121178 + 0.404761i
\(395\) 0.699438 3.96671i 0.0351925 0.199587i
\(396\) 0 0
\(397\) −0.686472 3.89317i −0.0344530 0.195393i 0.962723 0.270488i \(-0.0871850\pi\)
−0.997176 + 0.0750952i \(0.976074\pi\)
\(398\) 4.86007 + 0.568061i 0.243613 + 0.0284743i
\(399\) 0 0
\(400\) 7.30508 7.74293i 0.365254 0.387147i
\(401\) 0.790666 1.83297i 0.0394840 0.0915341i −0.897333 0.441355i \(-0.854498\pi\)
0.936817 + 0.349820i \(0.113757\pi\)
\(402\) 0 0
\(403\) −22.4455 + 14.7626i −1.11809 + 0.735379i
\(404\) 15.4320 0.767768
\(405\) 0 0
\(406\) 8.68116 0.430839
\(407\) 4.86200 3.19779i 0.241001 0.158509i
\(408\) 0 0
\(409\) −4.74536 + 11.0010i −0.234643 + 0.543963i −0.994332 0.106324i \(-0.966092\pi\)
0.759689 + 0.650287i \(0.225351\pi\)
\(410\) −0.298021 + 0.315884i −0.0147182 + 0.0156004i
\(411\) 0 0
\(412\) −17.7526 2.07498i −0.874605 0.102227i
\(413\) 5.06457 + 28.7226i 0.249211 + 1.41335i
\(414\) 0 0
\(415\) 0.377645 2.14173i 0.0185379 0.105133i
\(416\) 5.96871 19.9369i 0.292640 0.977486i
\(417\) 0 0
\(418\) −0.0554328 + 0.951745i −0.00271131 + 0.0465514i
\(419\) 16.5709 8.32220i 0.809540 0.406566i 0.00464887 0.999989i \(-0.498520\pi\)
0.804891 + 0.593423i \(0.202224\pi\)
\(420\) 0 0
\(421\) 26.5846 + 28.1780i 1.29565 + 1.37331i 0.887776 + 0.460276i \(0.152250\pi\)
0.407878 + 0.913036i \(0.366269\pi\)
\(422\) −8.60050 + 3.13033i −0.418666 + 0.152382i
\(423\) 0 0
\(424\) 11.7091 + 4.26178i 0.568646 + 0.206970i
\(425\) 13.4540 + 31.1898i 0.652613 + 1.51293i
\(426\) 0 0
\(427\) −3.70569 12.3779i −0.179331 0.599007i
\(428\) 17.9603 2.09926i 0.868146 0.101472i
\(429\) 0 0
\(430\) −0.0400925 0.688362i −0.00193343 0.0331958i
\(431\) −4.62147 8.00461i −0.222608 0.385569i 0.732991 0.680238i \(-0.238124\pi\)
−0.955599 + 0.294670i \(0.904790\pi\)
\(432\) 0 0
\(433\) 5.80798 10.0597i 0.279114 0.483439i −0.692051 0.721848i \(-0.743293\pi\)
0.971165 + 0.238410i \(0.0766261\pi\)
\(434\) −7.72586 3.88007i −0.370853 0.186249i
\(435\) 0 0
\(436\) 10.1100 + 13.5801i 0.484182 + 0.650369i
\(437\) 2.62287 + 0.621633i 0.125469 + 0.0297367i
\(438\) 0 0
\(439\) 9.55626 12.8363i 0.456095 0.612642i −0.513282 0.858220i \(-0.671570\pi\)
0.969377 + 0.245578i \(0.0789777\pi\)
\(440\) −0.999224 + 0.838449i −0.0476362 + 0.0399715i
\(441\) 0 0
\(442\) 11.8797 + 9.96829i 0.565062 + 0.474143i
\(443\) 3.87119 0.917488i 0.183926 0.0435912i −0.137621 0.990485i \(-0.543946\pi\)
0.321546 + 0.946894i \(0.395797\pi\)
\(444\) 0 0
\(445\) −6.16121 4.05229i −0.292070 0.192097i
\(446\) −2.44199 1.60612i −0.115631 0.0760520i
\(447\) 0 0
\(448\) −3.38467 + 0.802181i −0.159910 + 0.0378995i
\(449\) 21.2890 + 17.8636i 1.00469 + 0.843035i 0.987627 0.156819i \(-0.0501240\pi\)
0.0170628 + 0.999854i \(0.494568\pi\)
\(450\) 0 0
\(451\) 1.42070 1.19211i 0.0668980 0.0561341i
\(452\) −17.3205 + 23.2655i −0.814690 + 1.09432i
\(453\) 0 0
\(454\) 3.65564 + 0.866402i 0.171567 + 0.0406622i
\(455\) 2.72865 + 3.66522i 0.127921 + 0.171828i
\(456\) 0 0
\(457\) 1.41493 + 0.710606i 0.0661877 + 0.0332407i 0.481585 0.876399i \(-0.340061\pi\)
−0.415397 + 0.909640i \(0.636357\pi\)
\(458\) 2.37512 4.11383i 0.110982 0.192227i
\(459\) 0 0
\(460\) 0.845260 + 1.46403i 0.0394104 + 0.0682609i
\(461\) −1.67892 28.8259i −0.0781950 1.34256i −0.778019 0.628241i \(-0.783775\pi\)
0.699824 0.714315i \(-0.253262\pi\)
\(462\) 0 0
\(463\) 13.9507 1.63060i 0.648344 0.0757805i 0.214436 0.976738i \(-0.431209\pi\)
0.433907 + 0.900957i \(0.357135\pi\)
\(464\) −4.46875 14.9267i −0.207456 0.692953i
\(465\) 0 0
\(466\) −1.67116 3.87418i −0.0774150 0.179468i
\(467\) 8.66429 + 3.15354i 0.400935 + 0.145929i 0.534614 0.845096i \(-0.320457\pi\)
−0.133679 + 0.991025i \(0.542679\pi\)
\(468\) 0 0
\(469\) −28.5565 + 10.3937i −1.31862 + 0.479938i
\(470\) 2.23152 + 2.36528i 0.102932 + 0.109102i
\(471\) 0 0
\(472\) −23.5985 + 11.8516i −1.08621 + 0.545515i
\(473\) −0.171215 + 2.93965i −0.00787247 + 0.135165i
\(474\) 0 0
\(475\) −1.89958 + 6.34503i −0.0871586 + 0.291130i
\(476\) 4.77174 27.0619i 0.218713 1.24038i
\(477\) 0 0
\(478\) −1.11055 6.29825i −0.0507954 0.288075i
\(479\) −38.0552 4.44802i −1.73879 0.203235i −0.813256 0.581906i \(-0.802307\pi\)
−0.925532 + 0.378670i \(0.876381\pi\)
\(480\) 0 0
\(481\) 12.6665 13.4257i 0.577541 0.612158i
\(482\) −0.0787481 + 0.182559i −0.00358688 + 0.00831531i
\(483\) 0 0
\(484\) −13.4223 + 8.82802i −0.610107 + 0.401274i
\(485\) −8.07103 −0.366486
\(486\) 0 0
\(487\) −31.8391 −1.44277 −0.721384 0.692535i \(-0.756494\pi\)
−0.721384 + 0.692535i \(0.756494\pi\)
\(488\) 9.77415 6.42856i 0.442455 0.291007i
\(489\) 0 0
\(490\) 0.214981 0.498383i 0.00971187 0.0225146i
\(491\) −18.1984 + 19.2891i −0.821280 + 0.870506i −0.993416 0.114567i \(-0.963452\pi\)
0.172135 + 0.985073i \(0.444933\pi\)
\(492\) 0 0
\(493\) 49.3827 + 5.77201i 2.22408 + 0.259958i
\(494\) 0.525085 + 2.97790i 0.0236247 + 0.133982i
\(495\) 0 0
\(496\) −2.69452 + 15.2814i −0.120988 + 0.686155i
\(497\) 1.40480 4.69237i 0.0630140 0.210481i
\(498\) 0 0
\(499\) 0.394547 6.77412i 0.0176624 0.303251i −0.977895 0.209096i \(-0.932948\pi\)
0.995558 0.0941553i \(-0.0300150\pi\)
\(500\) −7.63513 + 3.83451i −0.341453 + 0.171484i
\(501\) 0 0
\(502\) −3.21418 3.40684i −0.143456 0.152055i
\(503\) −24.9170 + 9.06903i −1.11099 + 0.404368i −0.831357 0.555738i \(-0.812436\pi\)
−0.279635 + 0.960106i \(0.590213\pi\)
\(504\) 0 0
\(505\) −4.44427 1.61758i −0.197768 0.0719815i
\(506\) 0.519309 + 1.20389i 0.0230861 + 0.0535196i
\(507\) 0 0
\(508\) −5.82972 19.4726i −0.258652 0.863958i
\(509\) −6.91186 + 0.807881i −0.306363 + 0.0358087i −0.267885 0.963451i \(-0.586325\pi\)
−0.0384775 + 0.999259i \(0.512251\pi\)
\(510\) 0 0
\(511\) −0.122074 2.09594i −0.00540025 0.0927187i
\(512\) −10.6169 18.3890i −0.469204 0.812685i
\(513\) 0 0
\(514\) −8.68265 + 15.0388i −0.382975 + 0.663333i
\(515\) 4.89509 + 2.45841i 0.215703 + 0.108330i
\(516\) 0 0
\(517\) −8.29262 11.1389i −0.364709 0.489889i
\(518\) 5.77977 + 1.36983i 0.253948 + 0.0601869i
\(519\) 0 0
\(520\) −2.47060 + 3.31859i −0.108343 + 0.145530i
\(521\) −5.56140 + 4.66657i −0.243649 + 0.204446i −0.756432 0.654073i \(-0.773059\pi\)
0.512783 + 0.858518i \(0.328615\pi\)
\(522\) 0 0
\(523\) −18.0663 15.1594i −0.789983 0.662875i 0.155758 0.987795i \(-0.450218\pi\)
−0.945741 + 0.324920i \(0.894662\pi\)
\(524\) 26.1794 6.20463i 1.14365 0.271050i
\(525\) 0 0
\(526\) −0.924553 0.608088i −0.0403124 0.0265139i
\(527\) −41.3686 27.2086i −1.80205 1.18522i
\(528\) 0 0
\(529\) −18.7729 + 4.44925i −0.816212 + 0.193446i
\(530\) −1.34094 1.12518i −0.0582468 0.0488749i
\(531\) 0 0
\(532\) 4.10456 3.44414i 0.177955 0.149322i
\(533\) 3.51269 4.71837i 0.152152 0.204375i
\(534\) 0 0
\(535\) −5.39247 1.27804i −0.233137 0.0552545i
\(536\) −16.4310 22.0706i −0.709709 0.953305i
\(537\) 0 0
\(538\) 1.71588 + 0.861749i 0.0739770 + 0.0371527i
\(539\) −1.15895 + 2.00737i −0.0499197 + 0.0864634i
\(540\) 0 0
\(541\) −10.4179 18.0443i −0.447900 0.775785i 0.550349 0.834935i \(-0.314495\pi\)
−0.998249 + 0.0591491i \(0.981161\pi\)
\(542\) −0.950841 16.3253i −0.0408421 0.701232i
\(543\) 0 0
\(544\) 38.0971 4.45292i 1.63340 0.190917i
\(545\) −1.48813 4.97069i −0.0637444 0.212921i
\(546\) 0 0
\(547\) −8.27790 19.1903i −0.353937 0.820519i −0.998436 0.0559131i \(-0.982193\pi\)
0.644498 0.764606i \(-0.277066\pi\)
\(548\) −0.720305 0.262170i −0.0307699 0.0111993i
\(549\) 0 0
\(550\) −3.02732 + 1.10185i −0.129085 + 0.0469832i
\(551\) 6.65279 + 7.05155i 0.283418 + 0.300406i
\(552\) 0 0
\(553\) −15.6898 + 7.87972i −0.667199 + 0.335080i
\(554\) 0.200717 3.44617i 0.00852764 0.146414i
\(555\) 0 0
\(556\) 2.78993 9.31900i 0.118319 0.395214i
\(557\) −5.21184 + 29.5578i −0.220833 + 1.25240i 0.649661 + 0.760224i \(0.274911\pi\)
−0.870493 + 0.492180i \(0.836200\pi\)
\(558\) 0 0
\(559\) 1.62182 + 9.19782i 0.0685959 + 0.389026i
\(560\) 2.62141 + 0.306399i 0.110775 + 0.0129477i
\(561\) 0 0
\(562\) −1.41542 + 1.50025i −0.0597058 + 0.0632844i
\(563\) −1.65639 + 3.83994i −0.0698085 + 0.161834i −0.949548 0.313622i \(-0.898458\pi\)
0.879740 + 0.475456i \(0.157717\pi\)
\(564\) 0 0
\(565\) 7.42688 4.88473i 0.312451 0.205502i
\(566\) 7.57670 0.318472
\(567\) 0 0
\(568\) 4.43491 0.186085
\(569\) −23.6347 + 15.5448i −0.990818 + 0.651671i −0.937892 0.346927i \(-0.887225\pi\)
−0.0529260 + 0.998598i \(0.516855\pi\)
\(570\) 0 0
\(571\) −4.09054 + 9.48294i −0.171184 + 0.396849i −0.982112 0.188297i \(-0.939703\pi\)
0.810928 + 0.585146i \(0.198963\pi\)
\(572\) 5.55763 5.89074i 0.232376 0.246304i
\(573\) 0 0
\(574\) 1.88020 + 0.219763i 0.0784779 + 0.00917275i
\(575\) 1.58173 + 8.97041i 0.0659625 + 0.374092i
\(576\) 0 0
\(577\) 1.09162 6.19086i 0.0454446 0.257729i −0.953618 0.301020i \(-0.902673\pi\)
0.999063 + 0.0432907i \(0.0137842\pi\)
\(578\) −5.49424 + 18.3520i −0.228530 + 0.763344i
\(579\) 0 0
\(580\) −0.353520 + 6.06970i −0.0146791 + 0.252030i
\(581\) −8.47135 + 4.25447i −0.351451 + 0.176505i
\(582\) 0 0
\(583\) 5.12992 + 5.43740i 0.212460 + 0.225194i
\(584\) 1.78629 0.650157i 0.0739173 0.0269037i
\(585\) 0 0
\(586\) −8.86658 3.22717i −0.366275 0.133313i
\(587\) 1.75202 + 4.06163i 0.0723135 + 0.167642i 0.950539 0.310605i \(-0.100532\pi\)
−0.878225 + 0.478247i \(0.841272\pi\)
\(588\) 0 0
\(589\) −2.76899 9.24906i −0.114094 0.381101i
\(590\) 3.68464 0.430673i 0.151694 0.0177305i
\(591\) 0 0
\(592\) −0.619887 10.6430i −0.0254772 0.437427i
\(593\) 2.41323 + 4.17983i 0.0990993 + 0.171645i 0.911312 0.411716i \(-0.135071\pi\)
−0.812213 + 0.583361i \(0.801737\pi\)
\(594\) 0 0
\(595\) −4.21086 + 7.29343i −0.172629 + 0.299001i
\(596\) −20.0243 10.0566i −0.820227 0.411934i
\(597\) 0 0
\(598\) 2.48334 + 3.33571i 0.101551 + 0.136407i
\(599\) −25.1459 5.95970i −1.02744 0.243507i −0.317861 0.948137i \(-0.602965\pi\)
−0.709574 + 0.704631i \(0.751113\pi\)
\(600\) 0 0
\(601\) 20.2678 27.2243i 0.826739 1.11050i −0.165506 0.986209i \(-0.552926\pi\)
0.992245 0.124295i \(-0.0396668\pi\)
\(602\) −2.30243 + 1.93197i −0.0938401 + 0.0787412i
\(603\) 0 0
\(604\) −3.67803 3.08623i −0.149657 0.125577i
\(605\) 4.79088 1.13546i 0.194777 0.0461630i
\(606\) 0 0
\(607\) 34.8325 + 22.9097i 1.41381 + 0.929875i 0.999808 + 0.0195968i \(0.00623825\pi\)
0.413998 + 0.910278i \(0.364132\pi\)
\(608\) 6.24863 + 4.10979i 0.253415 + 0.166674i
\(609\) 0 0
\(610\) −1.59915 + 0.379005i −0.0647476 + 0.0153455i
\(611\) −33.7411 28.3121i −1.36502 1.14539i
\(612\) 0 0
\(613\) 1.53038 1.28414i 0.0618116 0.0518661i −0.611358 0.791354i \(-0.709377\pi\)
0.673170 + 0.739488i \(0.264932\pi\)
\(614\) −0.856862 + 1.15096i −0.0345801 + 0.0464492i
\(615\) 0 0
\(616\) 5.53251 + 1.31123i 0.222911 + 0.0528309i
\(617\) 18.7421 + 25.1750i 0.754527 + 1.01351i 0.999038 + 0.0438590i \(0.0139652\pi\)
−0.244511 + 0.969647i \(0.578627\pi\)
\(618\) 0 0
\(619\) −5.02506 2.52368i −0.201974 0.101435i 0.344937 0.938626i \(-0.387900\pi\)
−0.546911 + 0.837190i \(0.684197\pi\)
\(620\) 3.02749 5.24376i 0.121587 0.210595i
\(621\) 0 0
\(622\) 2.93595 + 5.08522i 0.117721 + 0.203899i
\(623\) 1.86903 + 32.0901i 0.0748813 + 1.28566i
\(624\) 0 0
\(625\) −20.8938 + 2.44214i −0.835753 + 0.0976855i
\(626\) −3.46636 11.5784i −0.138544 0.462768i
\(627\) 0 0
\(628\) −9.36836 21.7183i −0.373838 0.866655i
\(629\) 31.9673 + 11.6352i 1.27462 + 0.463924i
\(630\) 0 0
\(631\) −0.397697 + 0.144750i −0.0158321 + 0.00576240i −0.349924 0.936778i \(-0.613793\pi\)
0.334092 + 0.942540i \(0.391570\pi\)
\(632\) −10.9091 11.5630i −0.433941 0.459951i
\(633\) 0 0
\(634\) 1.77636 0.892121i 0.0705482 0.0354307i
\(635\) −0.362217 + 6.21902i −0.0143741 + 0.246794i
\(636\) 0 0
\(637\) −2.10855 + 7.04304i −0.0835437 + 0.279055i
\(638\) −0.818834 + 4.64384i −0.0324180 + 0.183851i
\(639\) 0 0
\(640\) 1.03925 + 5.89388i 0.0410800 + 0.232976i
\(641\) −11.5838 1.35395i −0.457532 0.0534778i −0.115794 0.993273i \(-0.536941\pi\)
−0.341738 + 0.939795i \(0.611015\pi\)
\(642\) 0 0
\(643\) −29.1862 + 30.9355i −1.15099 + 1.21998i −0.179281 + 0.983798i \(0.557377\pi\)
−0.971709 + 0.236181i \(0.924104\pi\)
\(644\) 2.91866 6.76621i 0.115011 0.266626i
\(645\) 0 0
\(646\) −4.65631 + 3.06250i −0.183200 + 0.120492i
\(647\) −14.1553 −0.556501 −0.278251 0.960508i \(-0.589755\pi\)
−0.278251 + 0.960508i \(0.589755\pi\)
\(648\) 0 0
\(649\) −15.8424 −0.621867
\(650\) −8.53720 + 5.61500i −0.334856 + 0.220239i
\(651\) 0 0
\(652\) −1.78797 + 4.14498i −0.0700224 + 0.162330i
\(653\) −7.94103 + 8.41700i −0.310756 + 0.329383i −0.863862 0.503729i \(-0.831961\pi\)
0.553106 + 0.833111i \(0.313443\pi\)
\(654\) 0 0
\(655\) −8.18981 0.957252i −0.320002 0.0374029i
\(656\) −0.589989 3.34599i −0.0230352 0.130639i
\(657\) 0 0
\(658\) 2.46136 13.9590i 0.0959536 0.544180i
\(659\) 1.23393 4.12161i 0.0480670 0.160555i −0.930587 0.366072i \(-0.880702\pi\)
0.978654 + 0.205517i \(0.0658876\pi\)
\(660\) 0 0
\(661\) −0.170582 + 2.92879i −0.00663489 + 0.113917i −0.999999 0.00109179i \(-0.999652\pi\)
0.993365 + 0.115008i \(0.0366895\pi\)
\(662\) −2.05677 + 1.03295i −0.0799387 + 0.0401467i
\(663\) 0 0
\(664\) −5.89012 6.24316i −0.228581 0.242282i
\(665\) −1.54309 + 0.561641i −0.0598387 + 0.0217795i
\(666\) 0 0
\(667\) 12.5285 + 4.56001i 0.485107 + 0.176564i
\(668\) −13.9352 32.3053i −0.539167 1.24993i
\(669\) 0 0
\(670\) 1.10860 + 3.70297i 0.0428289 + 0.143058i
\(671\) 6.97087 0.814778i 0.269107 0.0314541i
\(672\) 0 0
\(673\) −0.936690 16.0824i −0.0361068 0.619929i −0.967022 0.254693i \(-0.918025\pi\)
0.930915 0.365236i \(-0.119012\pi\)
\(674\) −5.68011 9.83823i −0.218790 0.378955i
\(675\) 0 0
\(676\) 1.84165 3.18983i 0.0708327 0.122686i
\(677\) 18.1338 + 9.10714i 0.696939 + 0.350016i 0.761740 0.647882i \(-0.224345\pi\)
−0.0648017 + 0.997898i \(0.520641\pi\)
\(678\) 0 0
\(679\) 21.0087 + 28.2195i 0.806239 + 1.08297i
\(680\) −7.41972 1.75851i −0.284533 0.0674356i
\(681\) 0 0
\(682\) 2.80431 3.76684i 0.107382 0.144240i
\(683\) −25.4821 + 21.3820i −0.975044 + 0.818159i −0.983334 0.181806i \(-0.941806\pi\)
0.00829016 + 0.999966i \(0.497361\pi\)
\(684\) 0 0
\(685\) 0.179961 + 0.151005i 0.00687596 + 0.00576962i
\(686\) −10.8412 + 2.56941i −0.413919 + 0.0981006i
\(687\) 0 0
\(688\) 4.50710 + 2.96436i 0.171831 + 0.113015i
\(689\) 19.8097 + 13.0290i 0.754688 + 0.496366i
\(690\) 0 0
\(691\) 5.78847 1.37189i 0.220204 0.0521893i −0.119033 0.992890i \(-0.537979\pi\)
0.339237 + 0.940701i \(0.389831\pi\)
\(692\) −17.3496 14.5580i −0.659532 0.553413i
\(693\) 0 0
\(694\) −13.2573 + 11.1242i −0.503239 + 0.422268i
\(695\) −1.78030 + 2.39135i −0.0675305 + 0.0907092i
\(696\) 0 0
\(697\) 10.5494 + 2.50024i 0.399585 + 0.0947035i
\(698\) 3.91022 + 5.25233i 0.148004 + 0.198804i
\(699\) 0 0
\(700\) 16.1803 + 8.12608i 0.611560 + 0.307137i
\(701\) −2.41414 + 4.18141i −0.0911806 + 0.157929i −0.908008 0.418952i \(-0.862397\pi\)
0.816828 + 0.576882i \(0.195731\pi\)
\(702\) 0 0
\(703\) 3.31663 + 5.74456i 0.125089 + 0.216660i
\(704\) −0.109861 1.88623i −0.00414053 0.0710901i
\(705\) 0 0
\(706\) −5.22533 + 0.610754i −0.196658 + 0.0229860i
\(707\) 5.91261 + 19.7495i 0.222367 + 0.742756i
\(708\) 0 0
\(709\) 12.5159 + 29.0152i 0.470046 + 1.08969i 0.974120 + 0.226029i \(0.0725745\pi\)
−0.504074 + 0.863660i \(0.668166\pi\)
\(710\) −0.585446 0.213085i −0.0219714 0.00799694i
\(711\) 0 0
\(712\) −27.3493 + 9.95432i −1.02496 + 0.373054i
\(713\) −9.11174 9.65788i −0.341238 0.361691i
\(714\) 0 0
\(715\) −2.21802 + 1.11393i −0.0829493 + 0.0416587i
\(716\) 0.395050 6.78274i 0.0147637 0.253483i
\(717\) 0 0
\(718\) −2.44551 + 8.16856i −0.0912655 + 0.304848i
\(719\) −0.209547 + 1.18840i −0.00781477 + 0.0443198i −0.988466 0.151444i \(-0.951608\pi\)
0.980651 + 0.195764i \(0.0627187\pi\)
\(720\) 0 0
\(721\) −4.14621 23.5144i −0.154413 0.875720i
\(722\) 9.38368 + 1.09679i 0.349224 + 0.0408185i
\(723\) 0 0
\(724\) 15.2315 16.1445i 0.566075 0.600004i
\(725\) −12.9755 + 30.0807i −0.481900 + 1.11717i
\(726\) 0 0
\(727\) 22.6307 14.8845i 0.839328 0.552034i −0.0554936 0.998459i \(-0.517673\pi\)
0.894821 + 0.446425i \(0.147303\pi\)
\(728\) 18.0340 0.668385
\(729\) 0 0
\(730\) −0.267044 −0.00988375
\(731\) −14.3819 + 9.45912i −0.531934 + 0.349858i
\(732\) 0 0
\(733\) 7.72184 17.9012i 0.285213 0.661198i −0.714030 0.700116i \(-0.753132\pi\)
0.999242 + 0.0389179i \(0.0123911\pi\)
\(734\) 1.34994 1.43085i 0.0498272 0.0528138i
\(735\) 0 0
\(736\) 10.2161 + 1.19409i 0.376571 + 0.0440148i
\(737\) −2.86641 16.2562i −0.105585 0.598805i
\(738\) 0 0
\(739\) 2.48150 14.0733i 0.0912834 0.517694i −0.904540 0.426390i \(-0.859785\pi\)
0.995823 0.0913044i \(-0.0291036\pi\)
\(740\) −1.19313 + 3.98532i −0.0438602 + 0.146503i
\(741\) 0 0
\(742\) −0.443657 + 7.61729i −0.0162872 + 0.279640i
\(743\) −11.7806 + 5.91644i −0.432189 + 0.217053i −0.651574 0.758585i \(-0.725891\pi\)
0.219386 + 0.975638i \(0.429595\pi\)
\(744\) 0 0
\(745\) 4.71270 + 4.99517i 0.172660 + 0.183009i
\(746\) 15.6578 5.69899i 0.573274 0.208655i
\(747\) 0 0
\(748\) 14.0262 + 5.10513i 0.512849 + 0.186662i
\(749\) 9.56793 + 22.1810i 0.349605 + 0.810474i
\(750\) 0 0
\(751\) 12.8223 + 42.8296i 0.467894 + 1.56287i 0.788113 + 0.615530i \(0.211058\pi\)
−0.320220 + 0.947343i \(0.603757\pi\)
\(752\) −25.2686 + 2.95348i −0.921452 + 0.107702i
\(753\) 0 0
\(754\) 0.869641 + 14.9312i 0.0316705 + 0.543761i
\(755\) 0.735741 + 1.27434i 0.0267764 + 0.0463780i
\(756\) 0 0
\(757\) 4.72638 8.18632i 0.171783 0.297537i −0.767260 0.641336i \(-0.778381\pi\)
0.939043 + 0.343799i \(0.111714\pi\)
\(758\) −11.6895 5.87071i −0.424583 0.213234i
\(759\) 0 0
\(760\) −0.887871 1.19262i −0.0322065 0.0432608i
\(761\) 1.90438 + 0.451347i 0.0690338 + 0.0163613i 0.264988 0.964252i \(-0.414632\pi\)
−0.195954 + 0.980613i \(0.562780\pi\)
\(762\) 0 0
\(763\) −13.5060 + 18.1417i −0.488949 + 0.656773i
\(764\) 0.0788362 0.0661515i 0.00285219 0.00239328i
\(765\) 0 0
\(766\) 0.123129 + 0.103318i 0.00444885 + 0.00373303i
\(767\) −48.8940 + 11.5881i −1.76546 + 0.418422i
\(768\) 0 0
\(769\) −18.2670 12.0144i −0.658725 0.433250i 0.175646 0.984453i \(-0.443799\pi\)
−0.834371 + 0.551203i \(0.814169\pi\)
\(770\) −0.667338 0.438915i −0.0240492 0.0158174i
\(771\) 0 0
\(772\) 5.45105 1.29192i 0.196187 0.0464973i
\(773\) 13.5712 + 11.3876i 0.488122 + 0.409583i 0.853353 0.521334i \(-0.174565\pi\)
−0.365231 + 0.930917i \(0.619010\pi\)
\(774\) 0 0
\(775\) 24.9923 20.9711i 0.897751 0.753303i
\(776\) −19.0218 + 25.5507i −0.682844 + 0.917218i
\(777\) 0 0
\(778\) −15.1484 3.59024i −0.543097 0.128716i
\(779\) 1.26238 + 1.69566i 0.0452293 + 0.0607535i
\(780\) 0 0
\(781\) 2.37760 + 1.19407i 0.0850771 + 0.0427273i
\(782\) −3.83230 + 6.63773i −0.137043 + 0.237365i
\(783\)