Properties

Label 729.2.g.a.217.8
Level $729$
Weight $2$
Character 729.217
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 217.8
Character \(\chi\) \(=\) 729.217
Dual form 729.2.g.a.514.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.126512 - 2.17212i) q^{2} +(-2.71564 - 0.317413i) q^{4} +(-0.629067 + 0.149092i) q^{5} +(-1.09241 - 1.46736i) q^{7} +(-0.277373 + 1.57306i) q^{8} +(0.244261 + 1.38527i) q^{10} +(-0.830243 + 0.880006i) q^{11} +(-4.76615 - 2.39365i) q^{13} +(-3.32548 + 2.18720i) q^{14} +(-1.93907 - 0.459569i) q^{16} +(6.43434 + 2.34191i) q^{17} +(-5.97823 + 2.17590i) q^{19} +(1.75565 - 0.205206i) q^{20} +(1.80645 + 1.91472i) q^{22} +(1.86114 - 2.49994i) q^{23} +(-4.09467 + 2.05642i) q^{25} +(-5.80229 + 10.0499i) q^{26} +(2.50083 + 4.33156i) q^{28} +(-4.91797 - 3.23460i) q^{29} +(-1.09846 - 2.54651i) q^{31} +(-2.15979 + 7.21421i) q^{32} +(5.90094 - 13.6799i) q^{34} +(0.905967 + 0.760197i) q^{35} +(-1.09453 + 0.918418i) q^{37} +(3.97000 + 13.2607i) q^{38} +(-0.0600440 - 1.03092i) q^{40} +(0.0648547 + 1.11351i) q^{41} +(2.76319 + 9.22968i) q^{43} +(2.53397 - 2.12625i) q^{44} +(-5.19473 - 4.35890i) q^{46} +(-2.41701 + 5.60327i) q^{47} +(1.04784 - 3.50003i) q^{49} +(3.94877 + 9.15429i) q^{50} +(12.1834 + 8.01315i) q^{52} +(-4.26135 - 7.38088i) q^{53} +(0.391077 - 0.677365i) q^{55} +(2.61124 - 1.31142i) q^{56} +(-7.64814 + 10.2732i) q^{58} +(1.43295 + 1.51884i) q^{59} +(3.56577 - 0.416778i) q^{61} +(-5.67029 + 2.06382i) q^{62} +(11.6517 + 4.24088i) q^{64} +(3.35511 + 0.795175i) q^{65} +(-1.01911 + 0.670277i) q^{67} +(-16.7300 - 8.40213i) q^{68} +(1.76586 - 1.87170i) q^{70} +(-1.41528 - 8.02646i) q^{71} +(1.11524 - 6.32482i) q^{73} +(1.85645 + 2.49364i) q^{74} +(16.9254 - 4.01139i) q^{76} +(2.19824 + 0.256938i) q^{77} +(0.829051 - 14.2343i) q^{79} +1.28832 q^{80} +2.42689 q^{82} +(0.390702 - 6.70809i) q^{83} +(-4.39679 - 0.513911i) q^{85} +(20.3976 - 4.83432i) q^{86} +(-1.15402 - 1.55011i) q^{88} +(2.70557 - 15.3441i) q^{89} +(1.69423 + 9.60848i) q^{91} +(-5.84771 + 6.19821i) q^{92} +(11.8652 + 5.95894i) q^{94} +(3.43630 - 2.26009i) q^{95} +(-3.62877 - 0.860034i) q^{97} +(-7.46994 - 2.71884i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{14}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.126512 2.17212i 0.0894574 1.53592i −0.593122 0.805113i \(-0.702105\pi\)
0.682579 0.730812i \(-0.260858\pi\)
\(3\) 0 0
\(4\) −2.71564 0.317413i −1.35782 0.158707i
\(5\) −0.629067 + 0.149092i −0.281327 + 0.0666758i −0.368857 0.929486i \(-0.620251\pi\)
0.0875297 + 0.996162i \(0.472103\pi\)
\(6\) 0 0
\(7\) −1.09241 1.46736i −0.412891 0.554608i 0.546219 0.837642i \(-0.316066\pi\)
−0.959110 + 0.283034i \(0.908659\pi\)
\(8\) −0.277373 + 1.57306i −0.0980662 + 0.556161i
\(9\) 0 0
\(10\) 0.244261 + 1.38527i 0.0772422 + 0.438062i
\(11\) −0.830243 + 0.880006i −0.250328 + 0.265332i −0.840337 0.542065i \(-0.817643\pi\)
0.590009 + 0.807397i \(0.299124\pi\)
\(12\) 0 0
\(13\) −4.76615 2.39365i −1.32189 0.663880i −0.358893 0.933379i \(-0.616846\pi\)
−0.963001 + 0.269499i \(0.913142\pi\)
\(14\) −3.32548 + 2.18720i −0.888772 + 0.584555i
\(15\) 0 0
\(16\) −1.93907 0.459569i −0.484768 0.114892i
\(17\) 6.43434 + 2.34191i 1.56056 + 0.567996i 0.970864 0.239631i \(-0.0770266\pi\)
0.589693 + 0.807628i \(0.299249\pi\)
\(18\) 0 0
\(19\) −5.97823 + 2.17590i −1.37150 + 0.499185i −0.919590 0.392879i \(-0.871479\pi\)
−0.451909 + 0.892064i \(0.649257\pi\)
\(20\) 1.75565 0.205206i 0.392575 0.0458854i
\(21\) 0 0
\(22\) 1.80645 + 1.91472i 0.385136 + 0.408220i
\(23\) 1.86114 2.49994i 0.388074 0.521274i −0.564560 0.825392i \(-0.690954\pi\)
0.952634 + 0.304118i \(0.0983616\pi\)
\(24\) 0 0
\(25\) −4.09467 + 2.05642i −0.818933 + 0.411284i
\(26\) −5.80229 + 10.0499i −1.13792 + 1.97094i
\(27\) 0 0
\(28\) 2.50083 + 4.33156i 0.472612 + 0.818588i
\(29\) −4.91797 3.23460i −0.913244 0.600650i 0.00355721 0.999994i \(-0.498868\pi\)
−0.916801 + 0.399344i \(0.869238\pi\)
\(30\) 0 0
\(31\) −1.09846 2.54651i −0.197288 0.457366i 0.790639 0.612282i \(-0.209748\pi\)
−0.987928 + 0.154916i \(0.950489\pi\)
\(32\) −2.15979 + 7.21421i −0.381801 + 1.27530i
\(33\) 0 0
\(34\) 5.90094 13.6799i 1.01200 2.34609i
\(35\) 0.905967 + 0.760197i 0.153136 + 0.128497i
\(36\) 0 0
\(37\) −1.09453 + 0.918418i −0.179939 + 0.150987i −0.728309 0.685249i \(-0.759693\pi\)
0.548369 + 0.836236i \(0.315249\pi\)
\(38\) 3.97000 + 13.2607i 0.644019 + 2.15117i
\(39\) 0 0
\(40\) −0.0600440 1.03092i −0.00949379 0.163002i
\(41\) 0.0648547 + 1.11351i 0.0101286 + 0.173902i 0.999579 + 0.0290269i \(0.00924084\pi\)
−0.989450 + 0.144875i \(0.953722\pi\)
\(42\) 0 0
\(43\) 2.76319 + 9.22968i 0.421382 + 1.40751i 0.860668 + 0.509167i \(0.170046\pi\)
−0.439286 + 0.898347i \(0.644769\pi\)
\(44\) 2.53397 2.12625i 0.382010 0.320545i
\(45\) 0 0
\(46\) −5.19473 4.35890i −0.765922 0.642685i
\(47\) −2.41701 + 5.60327i −0.352558 + 0.817321i 0.645985 + 0.763350i \(0.276447\pi\)
−0.998543 + 0.0539704i \(0.982812\pi\)
\(48\) 0 0
\(49\) 1.04784 3.50003i 0.149692 0.500005i
\(50\) 3.94877 + 9.15429i 0.558441 + 1.29461i
\(51\) 0 0
\(52\) 12.1834 + 8.01315i 1.68953 + 1.11122i
\(53\) −4.26135 7.38088i −0.585342 1.01384i −0.994833 0.101528i \(-0.967627\pi\)
0.409491 0.912314i \(-0.365706\pi\)
\(54\) 0 0
\(55\) 0.391077 0.677365i 0.0527328 0.0913359i
\(56\) 2.61124 1.31142i 0.348942 0.175245i
\(57\) 0 0
\(58\) −7.64814 + 10.2732i −1.00425 + 1.34894i
\(59\) 1.43295 + 1.51884i 0.186554 + 0.197736i 0.813900 0.581005i \(-0.197340\pi\)
−0.627346 + 0.778741i \(0.715859\pi\)
\(60\) 0 0
\(61\) 3.56577 0.416778i 0.456550 0.0533630i 0.115290 0.993332i \(-0.463220\pi\)
0.341260 + 0.939969i \(0.389146\pi\)
\(62\) −5.67029 + 2.06382i −0.720128 + 0.262105i
\(63\) 0 0
\(64\) 11.6517 + 4.24088i 1.45646 + 0.530110i
\(65\) 3.35511 + 0.795175i 0.416150 + 0.0986293i
\(66\) 0 0
\(67\) −1.01911 + 0.670277i −0.124504 + 0.0818873i −0.610233 0.792222i \(-0.708924\pi\)
0.485730 + 0.874109i \(0.338554\pi\)
\(68\) −16.7300 8.40213i −2.02881 1.01891i
\(69\) 0 0
\(70\) 1.76586 1.87170i 0.211060 0.223711i
\(71\) −1.41528 8.02646i −0.167963 0.952565i −0.945957 0.324293i \(-0.894874\pi\)
0.777994 0.628272i \(-0.216237\pi\)
\(72\) 0 0
\(73\) 1.11524 6.32482i 0.130529 0.740264i −0.847341 0.531049i \(-0.821798\pi\)
0.977870 0.209215i \(-0.0670909\pi\)
\(74\) 1.85645 + 2.49364i 0.215808 + 0.289880i
\(75\) 0 0
\(76\) 16.9254 4.01139i 1.94148 0.460138i
\(77\) 2.19824 + 0.256938i 0.250513 + 0.0292808i
\(78\) 0 0
\(79\) 0.829051 14.2343i 0.0932755 1.60148i −0.549547 0.835463i \(-0.685200\pi\)
0.642822 0.766015i \(-0.277763\pi\)
\(80\) 1.28832 0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) 0.390702 6.70809i 0.0428851 0.736308i −0.906502 0.422201i \(-0.861258\pi\)
0.949387 0.314107i \(-0.101705\pi\)
\(84\) 0 0
\(85\) −4.39679 0.513911i −0.476899 0.0557415i
\(86\) 20.3976 4.83432i 2.19953 0.521298i
\(87\) 0 0
\(88\) −1.15402 1.55011i −0.123018 0.165243i
\(89\) 2.70557 15.3441i 0.286790 1.62647i −0.412030 0.911170i \(-0.635180\pi\)
0.698820 0.715297i \(-0.253709\pi\)
\(90\) 0 0
\(91\) 1.69423 + 9.60848i 0.177604 + 1.00724i
\(92\) −5.84771 + 6.19821i −0.609666 + 0.646208i
\(93\) 0 0
\(94\) 11.8652 + 5.95894i 1.22380 + 0.614617i
\(95\) 3.43630 2.26009i 0.352557 0.231880i
\(96\) 0 0
\(97\) −3.62877 0.860034i −0.368446 0.0873232i 0.0422221 0.999108i \(-0.486556\pi\)
−0.410668 + 0.911785i \(0.634704\pi\)
\(98\) −7.46994 2.71884i −0.754578 0.274644i
\(99\) 0 0
\(100\) 11.7724 4.28480i 1.17724 0.428480i
\(101\) −4.61913 + 0.539899i −0.459621 + 0.0537220i −0.342753 0.939426i \(-0.611359\pi\)
−0.116868 + 0.993147i \(0.537285\pi\)
\(102\) 0 0
\(103\) −3.54684 3.75944i −0.349481 0.370428i 0.528657 0.848835i \(-0.322696\pi\)
−0.878138 + 0.478407i \(0.841214\pi\)
\(104\) 5.08736 6.83351i 0.498857 0.670081i
\(105\) 0 0
\(106\) −16.5713 + 8.32243i −1.60955 + 0.808345i
\(107\) −6.49528 + 11.2502i −0.627922 + 1.08759i 0.360046 + 0.932935i \(0.382761\pi\)
−0.987968 + 0.154659i \(0.950572\pi\)
\(108\) 0 0
\(109\) −0.888686 1.53925i −0.0851207 0.147433i 0.820322 0.571902i \(-0.193794\pi\)
−0.905443 + 0.424469i \(0.860461\pi\)
\(110\) −1.42185 0.935163i −0.135568 0.0891643i
\(111\) 0 0
\(112\) 1.44390 + 3.34734i 0.136436 + 0.316294i
\(113\) 3.98316 13.3047i 0.374704 1.25160i −0.537989 0.842952i \(-0.680816\pi\)
0.912693 0.408646i \(-0.133999\pi\)
\(114\) 0 0
\(115\) −0.798061 + 1.85011i −0.0744196 + 0.172524i
\(116\) 12.3288 + 10.3451i 1.14470 + 0.960514i
\(117\) 0 0
\(118\) 3.48039 2.92040i 0.320396 0.268844i
\(119\) −3.59250 11.9998i −0.329324 1.10002i
\(120\) 0 0
\(121\) 0.554486 + 9.52015i 0.0504078 + 0.865468i
\(122\) −0.454183 7.79802i −0.0411198 0.705999i
\(123\) 0 0
\(124\) 2.17472 + 7.26407i 0.195296 + 0.652332i
\(125\) 4.74544 3.98190i 0.424445 0.356152i
\(126\) 0 0
\(127\) −8.72949 7.32491i −0.774617 0.649981i 0.167270 0.985911i \(-0.446505\pi\)
−0.941887 + 0.335930i \(0.890949\pi\)
\(128\) 4.72038 10.9431i 0.417226 0.967239i
\(129\) 0 0
\(130\) 2.15168 7.18711i 0.188715 0.630351i
\(131\) 5.77514 + 13.3883i 0.504576 + 1.16974i 0.960136 + 0.279534i \(0.0901799\pi\)
−0.455560 + 0.890205i \(0.650561\pi\)
\(132\) 0 0
\(133\) 9.72346 + 6.39522i 0.843131 + 0.554536i
\(134\) 1.32700 + 2.29842i 0.114635 + 0.198554i
\(135\) 0 0
\(136\) −5.46868 + 9.47202i −0.468935 + 0.812219i
\(137\) 0.331366 0.166418i 0.0283105 0.0142181i −0.434588 0.900630i \(-0.643106\pi\)
0.462898 + 0.886411i \(0.346810\pi\)
\(138\) 0 0
\(139\) 8.94395 12.0138i 0.758616 1.01900i −0.240218 0.970719i \(-0.577219\pi\)
0.998834 0.0482794i \(-0.0153738\pi\)
\(140\) −2.21899 2.35199i −0.187539 0.198779i
\(141\) 0 0
\(142\) −17.6135 + 2.05872i −1.47809 + 0.172764i
\(143\) 6.06349 2.20693i 0.507055 0.184553i
\(144\) 0 0
\(145\) 3.57599 + 1.30155i 0.296970 + 0.108088i
\(146\) −13.5972 3.22260i −1.12531 0.266704i
\(147\) 0 0
\(148\) 3.26387 2.14668i 0.268288 0.176456i
\(149\) 0.893861 + 0.448914i 0.0732279 + 0.0367764i 0.485036 0.874494i \(-0.338806\pi\)
−0.411808 + 0.911270i \(0.635103\pi\)
\(150\) 0 0
\(151\) −0.0134726 + 0.0142801i −0.00109638 + 0.00116210i −0.727922 0.685660i \(-0.759514\pi\)
0.726825 + 0.686822i \(0.240995\pi\)
\(152\) −1.76462 10.0076i −0.143129 0.811727i
\(153\) 0 0
\(154\) 0.836205 4.74235i 0.0673833 0.382150i
\(155\) 1.07067 + 1.43815i 0.0859979 + 0.115515i
\(156\) 0 0
\(157\) −7.59419 + 1.79986i −0.606083 + 0.143644i −0.522188 0.852830i \(-0.674884\pi\)
−0.0838947 + 0.996475i \(0.526736\pi\)
\(158\) −30.8137 3.60160i −2.45141 0.286528i
\(159\) 0 0
\(160\) 0.283076 4.86023i 0.0223791 0.384235i
\(161\) −5.70142 −0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) 0.177321 3.04449i 0.0138465 0.237735i
\(165\) 0 0
\(166\) −14.5214 1.69731i −1.12708 0.131736i
\(167\) −3.55630 + 0.842859i −0.275195 + 0.0652224i −0.365896 0.930656i \(-0.619237\pi\)
0.0907011 + 0.995878i \(0.471089\pi\)
\(168\) 0 0
\(169\) 9.22359 + 12.3894i 0.709507 + 0.953033i
\(170\) −1.67253 + 9.48537i −0.128277 + 0.727494i
\(171\) 0 0
\(172\) −4.57421 25.9416i −0.348780 1.97803i
\(173\) 9.11506 9.66140i 0.693005 0.734543i −0.281338 0.959609i \(-0.590778\pi\)
0.974344 + 0.225066i \(0.0722598\pi\)
\(174\) 0 0
\(175\) 7.49053 + 3.76189i 0.566231 + 0.284372i
\(176\) 2.01432 1.32484i 0.151835 0.0998637i
\(177\) 0 0
\(178\) −32.9869 7.81805i −2.47248 0.585987i
\(179\) 0.392738 + 0.142945i 0.0293546 + 0.0106842i 0.356656 0.934236i \(-0.383917\pi\)
−0.327301 + 0.944920i \(0.606139\pi\)
\(180\) 0 0
\(181\) −19.5881 + 7.12947i −1.45597 + 0.529929i −0.944252 0.329225i \(-0.893213\pi\)
−0.511717 + 0.859154i \(0.670990\pi\)
\(182\) 21.0852 2.46450i 1.56294 0.182681i
\(183\) 0 0
\(184\) 3.41633 + 3.62110i 0.251855 + 0.266951i
\(185\) 0.551604 0.740932i 0.0405547 0.0544744i
\(186\) 0 0
\(187\) −7.40296 + 3.71791i −0.541358 + 0.271880i
\(188\) 8.34230 14.4493i 0.608425 1.05382i
\(189\) 0 0
\(190\) −4.47446 7.75000i −0.324612 0.562244i
\(191\) 5.75588 + 3.78570i 0.416481 + 0.273924i 0.740407 0.672159i \(-0.234633\pi\)
−0.323927 + 0.946082i \(0.605003\pi\)
\(192\) 0 0
\(193\) −3.46427 8.03108i −0.249363 0.578089i 0.746854 0.664988i \(-0.231564\pi\)
−0.996217 + 0.0868989i \(0.972304\pi\)
\(194\) −2.32718 + 7.77334i −0.167082 + 0.558093i
\(195\) 0 0
\(196\) −3.95652 + 9.17224i −0.282609 + 0.655160i
\(197\) 6.47094 + 5.42976i 0.461035 + 0.386855i 0.843512 0.537111i \(-0.180484\pi\)
−0.382476 + 0.923965i \(0.624929\pi\)
\(198\) 0 0
\(199\) 9.66790 8.11233i 0.685339 0.575068i −0.232222 0.972663i \(-0.574599\pi\)
0.917561 + 0.397595i \(0.130155\pi\)
\(200\) −2.09912 7.01155i −0.148430 0.495792i
\(201\) 0 0
\(202\) 0.588353 + 10.1016i 0.0413964 + 0.710749i
\(203\) 0.626111 + 10.7499i 0.0439444 + 0.754495i
\(204\) 0 0
\(205\) −0.206814 0.690805i −0.0144445 0.0482479i
\(206\) −8.61468 + 7.22858i −0.600213 + 0.503639i
\(207\) 0 0
\(208\) 8.14187 + 6.83184i 0.564537 + 0.473703i
\(209\) 3.04858 7.06740i 0.210875 0.488862i
\(210\) 0 0
\(211\) 1.62787 5.43746i 0.112067 0.374330i −0.883495 0.468441i \(-0.844816\pi\)
0.995562 + 0.0941110i \(0.0300009\pi\)
\(212\) 9.22953 + 21.3965i 0.633887 + 1.46952i
\(213\) 0 0
\(214\) 23.6150 + 15.5318i 1.61429 + 1.06173i
\(215\) −3.11430 5.39413i −0.212393 0.367876i
\(216\) 0 0
\(217\) −2.53667 + 4.39364i −0.172200 + 0.298260i
\(218\) −3.45587 + 1.73560i −0.234061 + 0.117550i
\(219\) 0 0
\(220\) −1.27703 + 1.71535i −0.0860974 + 0.115649i
\(221\) −25.0613 26.5635i −1.68581 1.78685i
\(222\) 0 0
\(223\) −7.48192 + 0.874511i −0.501027 + 0.0585616i −0.362853 0.931846i \(-0.618197\pi\)
−0.138174 + 0.990408i \(0.544123\pi\)
\(224\) 12.9452 4.71166i 0.864936 0.314811i
\(225\) 0 0
\(226\) −28.3955 10.3351i −1.88884 0.687481i
\(227\) 13.2754 + 3.14632i 0.881118 + 0.208829i 0.646183 0.763182i \(-0.276364\pi\)
0.234935 + 0.972011i \(0.424512\pi\)
\(228\) 0 0
\(229\) −13.3632 + 8.78913i −0.883067 + 0.580802i −0.908039 0.418886i \(-0.862421\pi\)
0.0249721 + 0.999688i \(0.492050\pi\)
\(230\) 3.91771 + 1.96755i 0.258326 + 0.129736i
\(231\) 0 0
\(232\) 6.45233 6.83907i 0.423616 0.449007i
\(233\) 0.930605 + 5.27772i 0.0609660 + 0.345755i 0.999998 + 0.00192589i \(0.000613031\pi\)
−0.939032 + 0.343829i \(0.888276\pi\)
\(234\) 0 0
\(235\) 0.685064 3.88519i 0.0446886 0.253442i
\(236\) −3.40928 4.57946i −0.221925 0.298098i
\(237\) 0 0
\(238\) −26.5195 + 6.28524i −1.71900 + 0.407412i
\(239\) −16.0344 1.87416i −1.03718 0.121229i −0.419578 0.907719i \(-0.637822\pi\)
−0.617603 + 0.786490i \(0.711896\pi\)
\(240\) 0 0
\(241\) 1.35989 23.3484i 0.0875982 1.50400i −0.612793 0.790244i \(-0.709954\pi\)
0.700391 0.713759i \(-0.253009\pi\)
\(242\) 20.7491 1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) −0.137337 + 2.35798i −0.00877412 + 0.150646i
\(246\) 0 0
\(247\) 33.7015 + 3.93914i 2.14437 + 0.250641i
\(248\) 4.31049 1.02160i 0.273716 0.0648720i
\(249\) 0 0
\(250\) −8.04882 10.8114i −0.509052 0.683776i
\(251\) −4.21745 + 23.9183i −0.266203 + 1.50971i 0.499385 + 0.866380i \(0.333559\pi\)
−0.765588 + 0.643331i \(0.777552\pi\)
\(252\) 0 0
\(253\) 0.654768 + 3.71337i 0.0411649 + 0.233458i
\(254\) −17.0150 + 18.0349i −1.06762 + 1.13161i
\(255\) 0 0
\(256\) −1.01133 0.507909i −0.0632081 0.0317443i
\(257\) 8.04903 5.29393i 0.502085 0.330226i −0.273074 0.961993i \(-0.588040\pi\)
0.775158 + 0.631767i \(0.217670\pi\)
\(258\) 0 0
\(259\) 2.54332 + 0.602777i 0.158034 + 0.0374547i
\(260\) −8.85887 3.22437i −0.549404 0.199967i
\(261\) 0 0
\(262\) 29.8116 10.8505i 1.84177 0.670349i
\(263\) 6.59689 0.771066i 0.406782 0.0475460i 0.0897582 0.995964i \(-0.471391\pi\)
0.317024 + 0.948418i \(0.397317\pi\)
\(264\) 0 0
\(265\) 3.78111 + 4.00774i 0.232272 + 0.246194i
\(266\) 15.1214 20.3115i 0.927150 1.24538i
\(267\) 0 0
\(268\) 2.98028 1.49676i 0.182050 0.0914289i
\(269\) 14.6832 25.4321i 0.895251 1.55062i 0.0617568 0.998091i \(-0.480330\pi\)
0.833494 0.552529i \(-0.186337\pi\)
\(270\) 0 0
\(271\) 9.43957 + 16.3498i 0.573413 + 0.993180i 0.996212 + 0.0869568i \(0.0277142\pi\)
−0.422799 + 0.906223i \(0.638952\pi\)
\(272\) −11.4004 7.49815i −0.691250 0.454642i
\(273\) 0 0
\(274\) −0.319560 0.740823i −0.0193053 0.0447547i
\(275\) 1.58991 5.31066i 0.0958750 0.320245i
\(276\) 0 0
\(277\) 5.56045 12.8906i 0.334095 0.774519i −0.665509 0.746390i \(-0.731786\pi\)
0.999604 0.0281297i \(-0.00895515\pi\)
\(278\) −24.9640 20.9473i −1.49724 1.25633i
\(279\) 0 0
\(280\) −1.44713 + 1.21428i −0.0864824 + 0.0725673i
\(281\) −6.33274 21.1528i −0.377780 1.26187i −0.909767 0.415120i \(-0.863740\pi\)
0.531987 0.846753i \(-0.321446\pi\)
\(282\) 0 0
\(283\) −0.230048 3.94978i −0.0136750 0.234790i −0.998219 0.0596536i \(-0.981000\pi\)
0.984544 0.175136i \(-0.0560367\pi\)
\(284\) 1.29570 + 22.2462i 0.0768854 + 1.32007i
\(285\) 0 0
\(286\) −4.02663 13.4499i −0.238099 0.795307i
\(287\) 1.56307 1.31157i 0.0922652 0.0774197i
\(288\) 0 0
\(289\) 22.8934 + 19.2099i 1.34667 + 1.12999i
\(290\) 3.27954 7.60283i 0.192581 0.446453i
\(291\) 0 0
\(292\) −5.03617 + 16.8220i −0.294719 + 0.984431i
\(293\) −3.15963 7.32485i −0.184588 0.427922i 0.800646 0.599138i \(-0.204490\pi\)
−0.985234 + 0.171215i \(0.945231\pi\)
\(294\) 0 0
\(295\) −1.12787 0.741811i −0.0656671 0.0431899i
\(296\) −1.14114 1.97650i −0.0663271 0.114882i
\(297\) 0 0
\(298\) 1.08818 1.88478i 0.0630366 0.109183i
\(299\) −14.8545 + 7.46020i −0.859056 + 0.431434i
\(300\) 0 0
\(301\) 10.5247 14.1371i 0.606634 0.814851i
\(302\) 0.0293137 + 0.0310707i 0.00168681 + 0.00178792i
\(303\) 0 0
\(304\) 12.5922 1.47182i 0.722211 0.0844144i
\(305\) −2.18097 + 0.793808i −0.124882 + 0.0454533i
\(306\) 0 0
\(307\) 1.95823 + 0.712736i 0.111762 + 0.0406780i 0.397296 0.917691i \(-0.369949\pi\)
−0.285534 + 0.958369i \(0.592171\pi\)
\(308\) −5.88809 1.39550i −0.335505 0.0795162i
\(309\) 0 0
\(310\) 3.25930 2.14367i 0.185116 0.121753i
\(311\) 13.4174 + 6.73846i 0.760830 + 0.382103i 0.786518 0.617567i \(-0.211882\pi\)
−0.0256887 + 0.999670i \(0.508178\pi\)
\(312\) 0 0
\(313\) −3.49359 + 3.70299i −0.197469 + 0.209305i −0.818540 0.574449i \(-0.805216\pi\)
0.621071 + 0.783754i \(0.286698\pi\)
\(314\) 2.94876 + 16.7232i 0.166408 + 0.943747i
\(315\) 0 0
\(316\) −6.76955 + 38.3920i −0.380817 + 2.15972i
\(317\) 16.5461 + 22.2253i 0.929323 + 1.24830i 0.968487 + 0.249065i \(0.0801232\pi\)
−0.0391636 + 0.999233i \(0.512469\pi\)
\(318\) 0 0
\(319\) 6.92958 1.64234i 0.387982 0.0919534i
\(320\) −7.96199 0.930623i −0.445089 0.0520234i
\(321\) 0 0
\(322\) −0.721298 + 12.3842i −0.0401964 + 0.690145i
\(323\) −43.5617 −2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) −1.94762 + 33.4393i −0.107869 + 1.85203i
\(327\) 0 0
\(328\) −1.76961 0.206838i −0.0977105 0.0114207i
\(329\) 10.8623 2.57442i 0.598860 0.141933i
\(330\) 0 0
\(331\) 16.2840 + 21.8732i 0.895049 + 1.20226i 0.978603 + 0.205756i \(0.0659653\pi\)
−0.0835546 + 0.996503i \(0.526627\pi\)
\(332\) −3.19024 + 18.0928i −0.175087 + 0.992969i
\(333\) 0 0
\(334\) 1.38088 + 7.83136i 0.0755584 + 0.428513i
\(335\) 0.541154 0.573589i 0.0295664 0.0313385i
\(336\) 0 0
\(337\) −11.3657 5.70808i −0.619130 0.310939i 0.111445 0.993771i \(-0.464452\pi\)
−0.730576 + 0.682832i \(0.760748\pi\)
\(338\) 28.0783 18.4674i 1.52726 1.00449i
\(339\) 0 0
\(340\) 11.7770 + 2.79120i 0.638698 + 0.151374i
\(341\) 3.15292 + 1.14757i 0.170740 + 0.0621444i
\(342\) 0 0
\(343\) −18.3136 + 6.66560i −0.988840 + 0.359908i
\(344\) −15.2853 + 1.78659i −0.824127 + 0.0963267i
\(345\) 0 0
\(346\) −19.8326 21.0213i −1.06621 1.13011i
\(347\) −5.02397 + 6.74836i −0.269701 + 0.362271i −0.916254 0.400598i \(-0.868802\pi\)
0.646553 + 0.762869i \(0.276210\pi\)
\(348\) 0 0
\(349\) 26.9370 13.5282i 1.44190 0.724150i 0.455768 0.890099i \(-0.349365\pi\)
0.986134 + 0.165948i \(0.0530685\pi\)
\(350\) 9.11893 15.7944i 0.487427 0.844249i
\(351\) 0 0
\(352\) −4.55540 7.89018i −0.242803 0.420548i
\(353\) 19.4095 + 12.7659i 1.03307 + 0.679458i 0.948441 0.316955i \(-0.102660\pi\)
0.0846248 + 0.996413i \(0.473031\pi\)
\(354\) 0 0
\(355\) 2.08698 + 4.83817i 0.110766 + 0.256784i
\(356\) −12.2178 + 40.8102i −0.647541 + 2.16294i
\(357\) 0 0
\(358\) 0.360180 0.834992i 0.0190361 0.0441307i
\(359\) −3.19290 2.67916i −0.168515 0.141401i 0.554630 0.832097i \(-0.312860\pi\)
−0.723145 + 0.690696i \(0.757304\pi\)
\(360\) 0 0
\(361\) 16.4498 13.8030i 0.865780 0.726476i
\(362\) 13.0080 + 43.4497i 0.683684 + 2.28366i
\(363\) 0 0
\(364\) −1.55108 26.6310i −0.0812986 1.39584i
\(365\) 0.241419 + 4.14501i 0.0126365 + 0.216960i
\(366\) 0 0
\(367\) 3.36163 + 11.2286i 0.175476 + 0.586130i 0.999800 + 0.0200114i \(0.00637025\pi\)
−0.824324 + 0.566118i \(0.808445\pi\)
\(368\) −4.75778 + 3.99225i −0.248016 + 0.208110i
\(369\) 0 0
\(370\) −1.53961 1.29189i −0.0800407 0.0671621i
\(371\) −6.17525 + 14.3158i −0.320603 + 0.743241i
\(372\) 0 0
\(373\) −10.4315 + 34.8438i −0.540124 + 1.80414i 0.0524474 + 0.998624i \(0.483298\pi\)
−0.592572 + 0.805518i \(0.701887\pi\)
\(374\) 7.13919 + 16.5505i 0.369159 + 0.855806i
\(375\) 0 0
\(376\) −8.14387 5.35630i −0.419988 0.276230i
\(377\) 15.6973 + 27.1885i 0.808452 + 1.40028i
\(378\) 0 0
\(379\) 5.02516 8.70383i 0.258125 0.447086i −0.707615 0.706599i \(-0.750229\pi\)
0.965740 + 0.259513i \(0.0835620\pi\)
\(380\) −10.0491 + 5.04687i −0.515510 + 0.258899i
\(381\) 0 0
\(382\) 8.95120 12.0235i 0.457983 0.615178i
\(383\) −0.207663 0.220110i −0.0106111 0.0112471i 0.722046 0.691845i \(-0.243202\pi\)
−0.732657 + 0.680598i \(0.761720\pi\)
\(384\) 0 0
\(385\) −1.42115 + 0.166109i −0.0724285 + 0.00846568i
\(386\) −17.8828 + 6.50880i −0.910209 + 0.331289i
\(387\) 0 0
\(388\) 9.58146 + 3.48737i 0.486425 + 0.177044i
\(389\) −7.31685 1.73413i −0.370979 0.0879237i 0.0408974 0.999163i \(-0.486978\pi\)
−0.411876 + 0.911240i \(0.635126\pi\)
\(390\) 0 0
\(391\) 17.8298 11.7269i 0.901694 0.593053i
\(392\) 5.21512 + 2.61913i 0.263403 + 0.132286i
\(393\) 0 0
\(394\) 12.6128 13.3688i 0.635422 0.673508i
\(395\) 1.60068 + 9.07791i 0.0805390 + 0.456759i
\(396\) 0 0
\(397\) 2.95983 16.7860i 0.148549 0.842466i −0.815899 0.578195i \(-0.803757\pi\)
0.964448 0.264271i \(-0.0851314\pi\)
\(398\) −16.3979 22.0262i −0.821952 1.10407i
\(399\) 0 0
\(400\) 8.88492 2.10576i 0.444246 0.105288i
\(401\) 13.4856 + 1.57624i 0.673441 + 0.0787139i 0.445938 0.895064i \(-0.352870\pi\)
0.227502 + 0.973778i \(0.426944\pi\)
\(402\) 0 0
\(403\) −0.860042 + 14.7664i −0.0428418 + 0.735565i
\(404\) 12.7153 0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) 0.100511 1.72570i 0.00498213 0.0855399i
\(408\) 0 0
\(409\) 0.667804 + 0.0780551i 0.0330208 + 0.00385958i 0.132587 0.991171i \(-0.457672\pi\)
−0.0995665 + 0.995031i \(0.531746\pi\)
\(410\) −1.52668 + 0.361830i −0.0753973 + 0.0178695i
\(411\) 0 0
\(412\) 8.43867 + 11.3351i 0.415744 + 0.558441i
\(413\) 0.663313 3.76184i 0.0326395 0.185108i
\(414\) 0 0
\(415\) 0.754343 + 4.27809i 0.0370292 + 0.210003i
\(416\) 27.5622 29.2143i 1.35135 1.43235i
\(417\) 0 0
\(418\) −14.9656 7.51600i −0.731991 0.367620i
\(419\) −16.6146 + 10.9276i −0.811675 + 0.533847i −0.886162 0.463375i \(-0.846638\pi\)
0.0744874 + 0.997222i \(0.476268\pi\)
\(420\) 0 0
\(421\) 12.2171 + 2.89551i 0.595426 + 0.141119i 0.517270 0.855822i \(-0.326948\pi\)
0.0781566 + 0.996941i \(0.475097\pi\)
\(422\) −11.6049 4.22384i −0.564918 0.205613i
\(423\) 0 0
\(424\) 12.7926 4.65611i 0.621262 0.226121i
\(425\) −31.1624 + 3.64236i −1.51160 + 0.176681i
\(426\) 0 0
\(427\) −4.50682 4.77696i −0.218101 0.231173i
\(428\) 21.2098 28.4897i 1.02522 1.37710i
\(429\) 0 0
\(430\) −12.1107 + 6.08223i −0.584030 + 0.293311i
\(431\) −10.8013 + 18.7084i −0.520281 + 0.901153i 0.479441 + 0.877574i \(0.340839\pi\)
−0.999722 + 0.0235787i \(0.992494\pi\)
\(432\) 0 0
\(433\) −1.99970 3.46358i −0.0960993 0.166449i 0.813968 0.580910i \(-0.197303\pi\)
−0.910067 + 0.414461i \(0.863970\pi\)
\(434\) 9.22262 + 6.06581i 0.442700 + 0.291168i
\(435\) 0 0
\(436\) 1.92478 + 4.46213i 0.0921801 + 0.213697i
\(437\) −5.68669 + 18.9949i −0.272031 + 0.908648i
\(438\) 0 0
\(439\) −12.3621 + 28.6586i −0.590011 + 1.36780i 0.317695 + 0.948193i \(0.397091\pi\)
−0.907706 + 0.419607i \(0.862168\pi\)
\(440\) 0.957063 + 0.803071i 0.0456262 + 0.0382849i
\(441\) 0 0
\(442\) −60.8697 + 51.0758i −2.89528 + 2.42943i
\(443\) 0.459510 + 1.53487i 0.0218320 + 0.0729238i 0.968211 0.250134i \(-0.0804745\pi\)
−0.946379 + 0.323057i \(0.895289\pi\)
\(444\) 0 0
\(445\) 0.585685 + 10.0558i 0.0277641 + 0.476692i
\(446\) 0.952996 + 16.3623i 0.0451257 + 0.774778i
\(447\) 0 0
\(448\) −6.50552 21.7300i −0.307357 1.02664i
\(449\) −8.04720 + 6.75241i −0.379771 + 0.318666i −0.812613 0.582804i \(-0.801955\pi\)
0.432841 + 0.901470i \(0.357511\pi\)
\(450\) 0 0
\(451\) −1.03374 0.867414i −0.0486771 0.0408449i
\(452\) −15.0399 + 34.8664i −0.707418 + 1.63998i
\(453\) 0 0
\(454\) 8.51370 28.4378i 0.399568 1.33465i
\(455\) −2.49833 5.79179i −0.117124 0.271523i
\(456\) 0 0
\(457\) −34.3727 22.6073i −1.60789 1.05752i −0.953513 0.301353i \(-0.902562\pi\)
−0.654375 0.756171i \(-0.727068\pi\)
\(458\) 17.4005 + 30.1385i 0.813071 + 1.40828i
\(459\) 0 0
\(460\) 2.75450 4.77093i 0.128429 0.222446i
\(461\) 30.6506 15.3933i 1.42754 0.716939i 0.443734 0.896159i \(-0.353654\pi\)
0.983809 + 0.179219i \(0.0573572\pi\)
\(462\) 0 0
\(463\) −19.9050 + 26.7371i −0.925066 + 1.24258i 0.0448139 + 0.998995i \(0.485731\pi\)
−0.969880 + 0.243584i \(0.921677\pi\)
\(464\) 8.04978 + 8.53227i 0.373702 + 0.396101i
\(465\) 0 0
\(466\) 11.5816 1.35370i 0.536508 0.0627087i
\(467\) 9.76380 3.55373i 0.451815 0.164447i −0.106082 0.994357i \(-0.533831\pi\)
0.557897 + 0.829910i \(0.311608\pi\)
\(468\) 0 0
\(469\) 2.09681 + 0.763177i 0.0968218 + 0.0352402i
\(470\) −8.35245 1.97957i −0.385270 0.0913106i
\(471\) 0 0
\(472\) −2.78669 + 1.83283i −0.128268 + 0.0843630i
\(473\) −10.4163 5.23126i −0.478942 0.240534i
\(474\) 0 0
\(475\) 20.0043 21.2033i 0.917860 0.972874i
\(476\) 5.94706 + 33.7274i 0.272583 + 1.54589i
\(477\) 0 0
\(478\) −6.09945 + 34.5917i −0.278982 + 1.58219i
\(479\) −12.1202 16.2803i −0.553787 0.743865i 0.433788 0.901015i \(-0.357177\pi\)
−0.987575 + 0.157150i \(0.949769\pi\)
\(480\) 0 0
\(481\) 7.41507 1.75740i 0.338098 0.0801307i
\(482\) −50.5436 5.90770i −2.30220 0.269088i
\(483\) 0 0
\(484\) 1.51604 26.0293i 0.0689108 1.18315i
\(485\) 2.41096 0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) −0.333430 + 5.72477i −0.0150937 + 0.259148i
\(489\) 0 0
\(490\) 5.10445 + 0.596625i 0.230596 + 0.0269528i
\(491\) −9.94187 + 2.35627i −0.448670 + 0.106337i −0.448738 0.893663i \(-0.648126\pi\)
6.80725e−5 1.00000i \(0.499978\pi\)
\(492\) 0 0
\(493\) −24.0688 32.3300i −1.08400 1.45607i
\(494\) 12.8199 72.7055i 0.576796 3.27117i
\(495\) 0 0
\(496\) 0.959690 + 5.44267i 0.0430914 + 0.244383i
\(497\) −10.2316 + 10.8449i −0.458950 + 0.486459i
\(498\) 0 0
\(499\) −7.81359 3.92413i −0.349785 0.175668i 0.265228 0.964186i \(-0.414553\pi\)
−0.615013 + 0.788517i \(0.710849\pi\)
\(500\) −14.1508 + 9.30715i −0.632845 + 0.416228i
\(501\) 0 0
\(502\) 51.4200 + 12.1868i 2.29499 + 0.543922i
\(503\) 12.2947 + 4.47489i 0.548192 + 0.199526i 0.601243 0.799066i \(-0.294672\pi\)
−0.0530509 + 0.998592i \(0.516895\pi\)
\(504\) 0 0
\(505\) 2.82525 1.02831i 0.125722 0.0457591i
\(506\) 8.14875 0.952452i 0.362256 0.0423417i
\(507\) 0 0
\(508\) 21.3812 + 22.6627i 0.948636 + 1.00550i
\(509\) 18.1662 24.4014i 0.805202 1.08157i −0.189810 0.981821i \(-0.560787\pi\)
0.995012 0.0997537i \(-0.0318055\pi\)
\(510\) 0 0
\(511\) −10.4990 + 5.27282i −0.464451 + 0.233256i
\(512\) 10.6866 18.5097i 0.472284 0.818019i
\(513\) 0 0
\(514\) −10.4808 18.1532i −0.462287 0.800705i
\(515\) 2.79170 + 1.83613i 0.123017 + 0.0809097i
\(516\) 0 0
\(517\) −2.92420 6.77906i −0.128606 0.298143i
\(518\) 1.63107 5.44814i 0.0716649 0.239378i
\(519\) 0 0
\(520\) −2.18147 + 5.05722i −0.0956640 + 0.221774i
\(521\) −8.25925 6.93034i −0.361845 0.303624i 0.443681 0.896185i \(-0.353672\pi\)
−0.805525 + 0.592561i \(0.798117\pi\)
\(522\) 0 0
\(523\) 9.44644 7.92650i 0.413064 0.346602i −0.412453 0.910979i \(-0.635328\pi\)
0.825517 + 0.564377i \(0.190884\pi\)
\(524\) −11.4336 38.1909i −0.499479 1.66838i
\(525\) 0 0
\(526\) −0.840267 14.4268i −0.0366374 0.629040i
\(527\) −1.10415 18.9576i −0.0480976 0.825804i
\(528\) 0 0
\(529\) 3.81060 + 12.7283i 0.165678 + 0.553403i
\(530\) 9.18367 7.70601i 0.398913 0.334728i
\(531\) 0 0
\(532\) −24.3755 20.4535i −1.05681 0.886772i
\(533\) 2.35626 5.46241i 0.102061 0.236603i
\(534\) 0 0
\(535\) 2.40866 8.04550i 0.104136 0.347837i
\(536\) −0.771713 1.78903i −0.0333329 0.0772744i
\(537\) 0 0
\(538\) −53.3840 35.1112i −2.30155 1.51375i
\(539\) 2.21009 + 3.82798i 0.0951952 + 0.164883i
\(540\) 0 0
\(541\) 7.99279 13.8439i 0.343637 0.595196i −0.641468 0.767149i \(-0.721674\pi\)
0.985105 + 0.171953i \(0.0550078\pi\)
\(542\) 36.7080 18.4355i 1.57675 0.791871i
\(543\) 0 0
\(544\) −30.7919 + 41.3607i −1.32019 + 1.77332i
\(545\) 0.788533 + 0.835796i 0.0337770 + 0.0358016i
\(546\) 0 0
\(547\) −1.22825 + 0.143562i −0.0525161 + 0.00613825i −0.142310 0.989822i \(-0.545453\pi\)
0.0897943 + 0.995960i \(0.471379\pi\)
\(548\) −0.952696 + 0.346753i −0.0406972 + 0.0148126i
\(549\) 0 0
\(550\) −11.3343 4.12534i −0.483295 0.175905i
\(551\) 36.4389 + 8.63618i 1.55235 + 0.367914i
\(552\) 0 0
\(553\) −21.7924 + 14.3331i −0.926706 + 0.609504i
\(554\) −27.2965 13.7088i −1.15972 0.582431i
\(555\) 0 0
\(556\) −28.1019 + 29.7863i −1.19179 + 1.26322i
\(557\) −2.28246 12.9445i −0.0967109 0.548475i −0.994210 0.107458i \(-0.965729\pi\)
0.897499 0.441017i \(-0.145382\pi\)
\(558\) 0 0
\(559\) 8.92289 50.6042i 0.377398 2.14033i
\(560\) −1.40737 1.89043i −0.0594724 0.0798853i
\(561\) 0 0
\(562\) −46.7478 + 11.0794i −1.97194 + 0.467357i
\(563\) 6.04774 + 0.706879i 0.254882 + 0.0297914i 0.242574 0.970133i \(-0.422008\pi\)
0.0123076 + 0.999924i \(0.496082\pi\)
\(564\) 0 0
\(565\) −0.522058 + 8.96339i −0.0219631 + 0.377092i
\(566\) −8.60852 −0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) 0.963908 16.5497i 0.0404091 0.693798i −0.915894 0.401420i \(-0.868517\pi\)
0.956303 0.292377i \(-0.0944463\pi\)
\(570\) 0 0
\(571\) −34.6117 4.04552i −1.44845 0.169300i −0.644779 0.764369i \(-0.723050\pi\)
−0.803674 + 0.595069i \(0.797125\pi\)
\(572\) −17.1668 + 4.06861i −0.717780 + 0.170117i
\(573\) 0 0
\(574\) −2.65115 3.56112i −0.110657 0.148638i
\(575\) −2.47981 + 14.0637i −0.103415 + 0.586497i
\(576\) 0 0
\(577\) 5.38675 + 30.5498i 0.224254 + 1.27180i 0.864107 + 0.503308i \(0.167884\pi\)
−0.639854 + 0.768497i \(0.721005\pi\)
\(578\) 44.6225 47.2971i 1.85605 1.96730i
\(579\) 0 0
\(580\) −9.29798 4.66962i −0.386078 0.193895i
\(581\) −10.2700 + 6.75465i −0.426069 + 0.280230i
\(582\) 0 0
\(583\) 10.0332 + 2.37791i 0.415532 + 0.0984829i
\(584\) 9.63999 + 3.50867i 0.398906 + 0.145190i
\(585\) 0 0
\(586\) −16.3102 + 5.93644i −0.673769 + 0.245232i
\(587\) −44.2431 + 5.17128i −1.82611 + 0.213442i −0.958752 0.284243i \(-0.908258\pi\)
−0.867358 + 0.497685i \(0.834184\pi\)
\(588\) 0 0
\(589\) 12.1077 + 12.8335i 0.498891 + 0.528794i
\(590\) −1.75399 + 2.35602i −0.0722108 + 0.0969960i
\(591\) 0 0
\(592\) 2.54445 1.27787i 0.104576 0.0525201i
\(593\) −9.90549 + 17.1568i −0.406770 + 0.704546i −0.994526 0.104493i \(-0.966678\pi\)
0.587756 + 0.809038i \(0.300011\pi\)
\(594\) 0 0
\(595\) 4.04899 + 7.01306i 0.165992 + 0.287507i
\(596\) −2.28492 1.50281i −0.0935938 0.0615576i
\(597\) 0 0
\(598\) 14.3252 + 33.2096i 0.585801 + 1.35804i
\(599\) −8.00993 + 26.7550i −0.327277 + 1.09318i 0.623116 + 0.782129i \(0.285866\pi\)
−0.950393 + 0.311051i \(0.899319\pi\)
\(600\) 0 0
\(601\) −4.01814 + 9.31508i −0.163903 + 0.379970i −0.980298 0.197524i \(-0.936710\pi\)
0.816395 + 0.577494i \(0.195969\pi\)
\(602\) −29.3761 24.6495i −1.19728 1.00464i
\(603\) 0 0
\(604\) 0.0411194 0.0345033i 0.00167313 0.00140392i
\(605\) −1.76818 5.90615i −0.0718869 0.240119i
\(606\) 0 0
\(607\) −0.628918 10.7981i −0.0255270 0.438282i −0.986723 0.162414i \(-0.948072\pi\)
0.961196 0.275868i \(-0.0889651\pi\)
\(608\) −2.78565 47.8277i −0.112973 1.93967i
\(609\) 0 0
\(610\) 1.44833 + 4.83776i 0.0586412 + 0.195875i
\(611\) 24.9321 20.9205i 1.00865 0.846355i
\(612\) 0 0
\(613\) 4.13859 + 3.47269i 0.167156 + 0.140261i 0.722528 0.691341i \(-0.242980\pi\)
−0.555372 + 0.831602i \(0.687424\pi\)
\(614\) 1.79589 4.16334i 0.0724763 0.168019i
\(615\) 0 0
\(616\) −1.01391 + 3.38670i −0.0408517 + 0.136454i
\(617\) 9.91795 + 22.9924i 0.399282 + 0.925639i 0.992685 + 0.120734i \(0.0385247\pi\)
−0.593403 + 0.804905i \(0.702216\pi\)
\(618\) 0 0
\(619\) −21.2925 14.0043i −0.855817 0.562880i 0.0440575 0.999029i \(-0.485972\pi\)
−0.899874 + 0.436149i \(0.856342\pi\)
\(620\) −2.45106 4.24535i −0.0984368 0.170498i
\(621\) 0 0
\(622\) 16.3342 28.2917i 0.654943 1.13439i
\(623\) −25.4708 + 12.7919i −1.02047 + 0.512497i
\(624\) 0 0
\(625\) 11.2895 15.1644i 0.451580 0.606578i
\(626\) 7.60137 + 8.05698i 0.303812 + 0.322022i
\(627\) 0 0
\(628\) 21.1944 2.47727i 0.845750 0.0988540i
\(629\) −9.19342 + 3.34613i −0.366566 + 0.133419i
\(630\) 0 0
\(631\) −18.7709 6.83203i −0.747256 0.271979i −0.0598054 0.998210i \(-0.519048\pi\)
−0.687451 + 0.726231i \(0.741270\pi\)
\(632\) 22.1614 + 5.25234i 0.881533 + 0.208927i
\(633\) 0 0
\(634\) 50.3694 33.1285i 2.00043 1.31570i
\(635\) 6.58352 + 3.30637i 0.261259 + 0.131209i
\(636\) 0 0
\(637\) −13.3720 + 14.1735i −0.529819 + 0.561575i
\(638\) −2.69069 15.2597i −0.106526 0.604137i
\(639\) 0 0
\(640\) −1.33792 + 7.58769i −0.0528857 + 0.299930i
\(641\) 5.33236 + 7.16261i 0.210616 + 0.282906i 0.894860 0.446347i \(-0.147275\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(642\) 0 0
\(643\) 13.0387 3.09023i 0.514197 0.121867i 0.0346781 0.999399i \(-0.488959\pi\)
0.479519 + 0.877532i \(0.340811\pi\)
\(644\) 15.4830 + 1.80971i 0.610117 + 0.0713125i
\(645\) 0 0
\(646\) −5.51107 + 94.6214i −0.216830 + 3.72283i
\(647\) 48.7223 1.91547 0.957736 0.287649i \(-0.0928736\pi\)
0.957736 + 0.287649i \(0.0928736\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) 3.09172 53.0827i 0.121267 2.08208i
\(651\) 0 0
\(652\) 41.8066 + 4.88650i 1.63727 + 0.191370i
\(653\) −4.67541 + 1.10809i −0.182963 + 0.0433630i −0.321076 0.947053i \(-0.604044\pi\)
0.138113 + 0.990416i \(0.455896\pi\)
\(654\) 0 0
\(655\) −5.62903 7.56110i −0.219944 0.295437i
\(656\) 0.385978 2.18899i 0.0150699 0.0854656i
\(657\) 0 0
\(658\) −4.21775 23.9201i −0.164425 0.932501i
\(659\) −17.3570 + 18.3974i −0.676133 + 0.716659i −0.971053 0.238863i \(-0.923225\pi\)
0.294920 + 0.955522i \(0.404707\pi\)
\(660\) 0 0
\(661\) −12.6327 6.34438i −0.491355 0.246768i 0.185828 0.982582i \(-0.440503\pi\)
−0.677183 + 0.735814i \(0.736800\pi\)
\(662\) 49.5714 32.6036i 1.92665 1.26718i
\(663\) 0 0
\(664\) 10.4439 + 2.47524i 0.405300 + 0.0960579i
\(665\) −7.07019 2.57334i −0.274170 0.0997898i
\(666\) 0 0
\(667\) −17.2393 + 6.27461i −0.667510 + 0.242954i
\(668\) 9.92518 1.16009i 0.384017 0.0448851i
\(669\) 0 0
\(670\) −1.17745 1.24802i −0.0454887 0.0482152i
\(671\) −2.59368 + 3.48392i −0.100128 + 0.134495i
\(672\) 0 0
\(673\) 2.38363 1.19711i 0.0918823 0.0461450i −0.402265 0.915523i \(-0.631777\pi\)
0.494147 + 0.869378i \(0.335481\pi\)
\(674\) −13.8366 + 23.9656i −0.532965 + 0.923122i
\(675\) 0 0
\(676\) −21.1154 36.5730i −0.812131 1.40665i
\(677\) −12.3339 8.11215i −0.474031 0.311775i 0.289918 0.957051i \(-0.406372\pi\)
−0.763949 + 0.645276i \(0.776742\pi\)
\(678\) 0 0
\(679\) 2.70211 + 6.26420i 0.103698 + 0.240398i
\(680\) 2.02797 6.77388i 0.0777689 0.259766i
\(681\) 0 0
\(682\) 2.89155 6.70336i 0.110723 0.256685i
\(683\) 16.0712 + 13.4854i 0.614948 + 0.516003i 0.896211 0.443628i \(-0.146309\pi\)
−0.281263 + 0.959631i \(0.590753\pi\)
\(684\) 0 0
\(685\) −0.183640 + 0.154092i −0.00701653 + 0.00588756i
\(686\) 12.1616 + 40.6226i 0.464333 + 1.55098i
\(687\) 0 0
\(688\) −1.11634 19.1669i −0.0425602 0.730731i
\(689\) 2.64300 + 45.3786i 0.100690 + 1.72879i
\(690\) 0 0
\(691\) −9.99045 33.3704i −0.380055 1.26947i −0.907561 0.419920i \(-0.862058\pi\)
0.527507 0.849551i \(-0.323127\pi\)
\(692\) −27.8199 + 23.3437i −1.05755 + 0.887394i
\(693\) 0 0
\(694\) 14.0227 + 11.7664i 0.532294 + 0.446648i
\(695\) −3.83519 + 8.89097i −0.145477 + 0.337254i
\(696\) 0 0
\(697\) −2.19045 + 7.31660i −0.0829691 + 0.277136i
\(698\) −25.9772 60.2219i −0.983251 2.27943i
\(699\) 0 0
\(700\) −19.1475 12.5935i −0.723709 0.475991i
\(701\) −21.8053 37.7679i −0.823576 1.42647i −0.903003 0.429634i \(-0.858643\pi\)
0.0794276 0.996841i \(-0.474691\pi\)
\(702\) 0 0
\(703\) 4.54496 7.87209i 0.171416 0.296902i
\(704\) −13.4057 + 6.73262i −0.505248 + 0.253745i
\(705\) 0 0
\(706\) 30.1846 40.5449i 1.13601 1.52593i
\(707\) 5.83819 + 6.18812i 0.219568 + 0.232728i
\(708\) 0 0
\(709\) −18.1438 + 2.12071i −0.681406 + 0.0796449i −0.449752 0.893153i \(-0.648488\pi\)
−0.231654 + 0.972798i \(0.574414\pi\)
\(710\) 10.7731 3.92111i 0.404309 0.147156i
\(711\) 0 0
\(712\) 23.3867 + 8.51206i 0.876453 + 0.319003i
\(713\) −8.41050 1.99332i −0.314976 0.0746506i
\(714\) 0 0
\(715\) −3.48531 + 2.29233i −0.130343 + 0.0857281i
\(716\) −1.02116 0.512848i −0.0381627 0.0191660i
\(717\) 0 0
\(718\) −6.22342 + 6.59644i −0.232256 + 0.246177i
\(719\) 3.15002 + 17.8647i 0.117476 + 0.666240i 0.985494 + 0.169708i \(0.0542824\pi\)
−0.868018 + 0.496532i \(0.834607\pi\)
\(720\) 0 0
\(721\) −1.64184 + 9.31131i −0.0611451 + 0.346771i
\(722\) −27.9008 37.4773i −1.03836 1.39476i
\(723\) 0 0
\(724\) 55.4572 13.1436i 2.06105 0.488478i
\(725\) 26.7891 + 3.13120i 0.994924 + 0.116290i
\(726\) 0 0
\(727\) −1.17766 + 20.2197i −0.0436770 + 0.749906i 0.903380 + 0.428841i \(0.141078\pi\)
−0.947057 + 0.321065i \(0.895959\pi\)
\(728\) −15.5847 −0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) −3.83580 + 65.8581i −0.141872 + 2.43585i
\(732\) 0 0
\(733\) 1.75603 + 0.205251i 0.0648606 + 0.00758111i 0.148461 0.988918i \(-0.452568\pi\)
−0.0836007 + 0.996499i \(0.526642\pi\)
\(734\) 24.8153 5.88133i 0.915948 0.217084i
\(735\) 0 0
\(736\) 14.0154 + 18.8260i 0.516616 + 0.693936i
\(737\) 0.256258 1.45331i 0.00943939 0.0535334i
\(738\) 0 0
\(739\) −1.58340 8.97988i −0.0582461 0.330330i 0.941736 0.336354i \(-0.109194\pi\)
−0.999982 + 0.00602346i \(0.998083\pi\)
\(740\) −1.73314 + 1.83702i −0.0637115 + 0.0675303i
\(741\) 0 0
\(742\) 30.3145 + 15.2245i 1.11288 + 0.558910i
\(743\) −16.6442 + 10.9471i −0.610616 + 0.401608i −0.816813 0.576902i \(-0.804261\pi\)
0.206197 + 0.978510i \(0.433891\pi\)
\(744\) 0 0
\(745\) −0.629228 0.149130i −0.0230531 0.00546369i
\(746\) 74.3653 + 27.0667i 2.72271 + 0.990984i
\(747\) 0 0
\(748\) 21.2839 7.74671i 0.778217 0.283248i
\(749\) 23.6035 2.75885i 0.862451 0.100806i
\(750\) 0 0
\(751\) 26.4586 + 28.0445i 0.965487 + 1.02336i 0.999713 + 0.0239424i \(0.00762184\pi\)
−0.0342262 + 0.999414i \(0.510897\pi\)
\(752\) 7.26185 9.75436i 0.264812 0.355705i
\(753\) 0 0
\(754\) 61.0427 30.6568i 2.22305 1.11646i
\(755\) 0.00634611 0.0109918i 0.000230959 0.000400032i
\(756\) 0 0
\(757\) 25.4729 + 44.1204i 0.925829 + 1.60358i 0.790223 + 0.612820i \(0.209965\pi\)
0.135606 + 0.990763i \(0.456702\pi\)
\(758\) −18.2701 12.0164i −0.663599 0.436456i
\(759\) 0 0
\(760\) 2.60212 + 6.03239i 0.0943889 + 0.218818i
\(761\) 11.1682 37.3045i 0.404848 1.35229i −0.476233 0.879319i \(-0.657998\pi\)
0.881080 0.472967i \(-0.156817\pi\)
\(762\) 0 0
\(763\) −1.28782 + 2.98550i −0.0466222 + 0.108082i
\(764\) −14.4293 12.1076i −0.522033 0.438038i
\(765\) 0 0
\(766\) −0.504379 + 0.423224i −0.0182239 + 0.0152917i
\(767\) −3.19409 10.6690i −0.115332 0.385235i
\(768\) 0 0
\(769\) −1.98573 34.0937i −0.0716073 1.22945i −0.822399 0.568911i \(-0.807365\pi\)
0.750792 0.660539i \(-0.229672\pi\)
\(770\) 0.181016 + 3.10793i 0.00652338 + 0.112002i
\(771\) 0 0
\(772\) 6.85855 + 22.9091i 0.246845 + 0.824518i
\(773\) 2.31945 1.94625i 0.0834247 0.0700016i −0.600122 0.799909i \(-0.704881\pi\)
0.683546 + 0.729907i \(0.260437\pi\)
\(774\) 0 0
\(775\) 9.73449 + 8.16820i 0.349673 + 0.293411i
\(776\) 2.35941 5.46972i 0.0846978 0.196352i
\(777\) 0 0
\(778\) −4.69241 + 15.6737i −0.168231 + 0.561930i
\(779\) −2.81061 6.51572i −0.100700 0.233450i
\(780\) 0 0
\(781\) 8.23836 + 5.41845i 0.294792 + 0.193887i
\(782\) −23.2165 40.2122i −0.830222 1.43799i
\(783\) 0 0
\(784\) −3.64034 + 6.30526i −0.130012 + 0.225188i
\(785\) 4.50892 2.26446i 0.160930 0.0808221i
\(786\) 0 0
\(787\) 1.35626 1.82178i 0.0483456 0.0649394i −0.777293 0.629139i \(-0.783408\pi\)
0.825639 + 0.564199i \(0.190815\pi\)
\(788\) −15.8493 16.7993i −0.564608 0.598449i
\(789\) 0 0
\(790\) 19.9209 2.32841i 0.708752 0.0828413i
\(791\) −23.8739 + 8.68939i −0.848858 + 0.308959i
\(792\) 0 0
\(793\) −17.9926 6.54878i −0.638936 0.232554i
\(794\) −36.0869 8.55274i −1.28067 0.303525i
\(795\) 0 0
\(796\) −28.8295 + 18.9615i −1.02184 + 0.672072i
\(797\) −11.2447 5.64728i −0.398306 0.200037i 0.238359 0.971177i \(-0.423390\pi\)
−0.636665 + 0.771140i \(0.719687\pi\)
\(798\) 0 0
\(799\) −28.6742 + 30.3929i −1.01442 + 1.07522i
\(800\) −5.99181 33.9812i −0.211842 1.20142i
\(801\) 0 0
\(802\) 5.12989 29.0931i 0.181143 1.02731i
\(803\) 4.63996 + 6.23255i 0.163741 + 0.219942i
\(804\) 0 0
\(805\) 3.58658 0.850035i 0.126410 0.0299598i
\(806\) 31.9656 + 3.73624i 1.12594 + 0.131603i
\(807\) 0 0
\(808\) 0.431929 7.41593i 0.0151952 0.260891i
\(809\) 13.7132 0.482129 0.241065 0.970509i \(-0.422503\pi\)
0.241065 + 0.970509i \(0.422503\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) 1.71187 29.3917i 0.0600748 1.03144i
\(813\) 0 0
\(814\) −3.73572 0.436644i −0.130937 0.0153043i
\(815\) 9.68433 2.29523i 0.339227 0.0803983i
\(816\) 0 0
\(817\) −36.6018 49.1647i −1.28053 1.72006i
\(818\) 0.254031 1.44068i 0.00888198 0.0503722i
\(819\) 0 0
\(820\) 0.342361 + 1.94163i 0.0119558 + 0.0678046i
\(821\) −35.4816 + 37.6083i −1.23832 + 1.31254i −0.305496 + 0.952193i \(0.598822\pi\)
−0.932820 + 0.360344i \(0.882659\pi\)
\(822\) 0 0
\(823\) 18.2164 + 9.14864i 0.634985 + 0.318902i 0.737012 0.675880i \(-0.236236\pi\)
−0.102026 + 0.994782i \(0.532533\pi\)
\(824\) 6.89762 4.53664i 0.240290 0.158041i
\(825\) 0 0
\(826\) −8.08726 1.91672i −0.281392 0.0666911i
\(827\) −40.3124 14.6725i −1.40180 0.510213i −0.473087 0.881016i \(-0.656860\pi\)
−0.928712 + 0.370803i \(0.879083\pi\)
\(828\) 0 0
\(829\) −13.4165 + 4.88321i −0.465975 + 0.169601i −0.564328 0.825551i \(-0.690865\pi\)
0.0983534 + 0.995152i \(0.468642\pi\)
\(830\) 9.38798 1.09730i 0.325861 0.0380877i
\(831\) 0 0
\(832\) −45.3827 48.1028i −1.57336 1.66767i
\(833\) 14.9389 20.0664i 0.517603 0.695261i
\(834\) 0 0
\(835\) 2.11149 1.06043i 0.0730711 0.0366977i
\(836\) −10.5221 + 18.2249i −0.363916 + 0.630321i
\(837\) 0 0
\(838\) 21.6341 + 37.4714i 0.747338 + 1.29443i
\(839\) 25.1136 + 16.5175i 0.867018 + 0.570247i 0.903259 0.429096i \(-0.141168\pi\)
−0.0362407 + 0.999343i \(0.511538\pi\)
\(840\) 0 0
\(841\) 2.23748 + 5.18707i 0.0771545 + 0.178864i
\(842\) 7.83502 26.1708i 0.270013 0.901905i
\(843\) 0 0
\(844\) −6.14664 + 14.2495i −0.211576 + 0.490488i
\(845\) −7.64942 6.41863i −0.263148 0.220807i
\(846\) 0 0
\(847\) 13.3637 11.2135i 0.459183 0.385300i
\(848\) 4.87105 + 16.2704i 0.167273 + 0.558730i
\(849\) 0 0
\(850\) 3.96925 + 68.1495i 0.136144 + 2.33751i
\(851\) 0.258925 + 4.44556i 0.00887582 + 0.152392i
\(852\) 0 0
\(853\) −10.4796 35.0042i −0.358813 1.19852i −0.926823 0.375498i \(-0.877472\pi\)
0.568010 0.823022i \(-0.307713\pi\)
\(854\) −10.9463 + 9.18504i −0.374575 + 0.314306i
\(855\) 0 0
\(856\) −15.8956 13.3380i −0.543299 0.455882i
\(857\) 18.2829 42.3845i 0.624532 1.44783i −0.252596 0.967572i \(-0.581284\pi\)
0.877128 0.480256i \(-0.159456\pi\)
\(858\) 0 0
\(859\) 0.0885216 0.295683i 0.00302032 0.0100886i −0.956466 0.291844i \(-0.905731\pi\)
0.959486 + 0.281755i \(0.0909165\pi\)
\(860\) 6.74516 + 15.6370i 0.230008 + 0.533219i
\(861\) 0 0
\(862\) 39.2705 + 25.8286i 1.33756 + 0.879727i
\(863\) −16.3176 28.2630i −0.555459 0.962083i −0.997868 0.0652694i \(-0.979209\pi\)
0.442409 0.896813i \(-0.354124\pi\)
\(864\) 0 0
\(865\) −4.29355 + 7.43665i −0.145985 + 0.252854i
\(866\) −7.77630 + 3.90541i −0.264250 + 0.132711i
\(867\) 0 0
\(868\) 8.28329 11.1264i 0.281153 0.377654i
\(869\) 11.8379 + 12.5475i 0.401574 + 0.425643i
\(870\) 0 0
\(871\) 6.46163 0.755256i 0.218944 0.0255909i
\(872\) 2.66783 0.971011i 0.0903441 0.0328826i
\(873\) 0 0
\(874\) 40.5398 + 14.7553i 1.37128 + 0.499105i
\(875\) −11.0268 2.61340i −0.372774 0.0883491i
\(876\) 0 0
\(877\) −5.80901 + 3.82065i −0.196156 + 0.129014i −0.643788 0.765204i \(-0.722638\pi\)
0.447631 + 0.894218i \(0.352268\pi\)
\(878\) 60.6861 + 30.4777i 2.04806 + 1.02857i
\(879\) 0 0
\(880\) −1.06962 + 1.13373i −0.0360570 + 0.0382182i
\(881\) −6.47573 36.7257i −0.218173 1.23732i −0.875315 0.483553i \(-0.839346\pi\)
0.657142 0.753767i \(-0.271765\pi\)
\(882\) 0 0
\(883\) 1.07456 6.09412i 0.0361618 0.205084i −0.961374 0.275246i \(-0.911241\pi\)
0.997536 + 0.0701625i \(0.0223518\pi\)
\(884\) 59.6261 + 80.0917i 2.00544 + 2.69378i
\(885\) 0 0
\(886\) 3.39206 0.803933i 0.113958 0.0270087i
\(887\) −18.4976 2.16206i −0.621088 0.0725948i −0.200271 0.979740i \(-0.564182\pi\)
−0.420817 + 0.907146i \(0.638256\pi\)
\(888\) 0 0
\(889\) −1.21211 + 20.8110i −0.0406527 + 0.697980i
\(890\) 21.9166 0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) 2.25733 38.7568i 0.0755385 1.29695i
\(894\) 0 0
\(895\) −0.268371 0.0313680i −0.00897064 0.00104852i
\(896\) −21.2139 + 5.02779i −0.708708 + 0.167967i
\(897\) 0 0
\(898\) 13.6490 + 18.3338i 0.455473 + 0.611807i
\(899\) −2.83476 + 16.0767i −0.0945444 + 0.536188i
\(900\) 0 0
\(901\) −10.1337 57.4708i −0.337601 1.91463i
\(902\) −2.01491 + 2.13568i −0.0670892 + 0.0711104i
\(903\) 0 0
\(904\) 19.8242 + 9.95610i 0.659344 + 0.331135i
\(905\) 11.2593 7.40533i 0.374271 0.246162i
\(906\) 0 0
\(907\) 25.4769 + 6.03814i 0.845947 + 0.200493i 0.630661 0.776058i \(-0.282784\pi\)
0.215285 + 0.976551i \(0.430932\pi\)
\(908\) −35.0525 12.7581i −1.16326 0.423392i
\(909\) 0 0
\(910\) −12.8966 + 4.69396i −0.427516 + 0.155603i
\(911\) 7.90750 0.924254i 0.261987 0.0306219i 0.0159147 0.999873i \(-0.494934\pi\)
0.246072 + 0.969251i \(0.420860\pi\)
\(912\) 0 0
\(913\) 5.57878 + 5.91316i 0.184631 + 0.195697i
\(914\) −53.4544 + 71.8017i −1.76811 + 2.37499i
\(915\) 0 0
\(916\) 39.0795 19.6265i 1.29122 0.648477i
\(917\) 13.3366 23.0996i 0.440412 0.762816i
\(918\) 0 0
\(919\) −27.5324 47.6875i −0.908210 1.57307i −0.816549 0.577276i \(-0.804116\pi\)
−0.0916606 0.995790i \(-0.529217\pi\)
\(920\) −2.68898 1.76857i −0.0886530 0.0583080i
\(921\) 0 0
\(922\) −29.5586 68.5245i −0.973460 2.25673i
\(923\) −12.4671 + 41.6430i −0.410360 + 1.37070i
\(924\) 0 0
\(925\) 2.59308 6.01143i 0.0852598 0.197654i
\(926\) 55.5581 + 46.6188i 1.82575 + 1.53199i
\(927\) 0 0
\(928\) 33.9569 28.4932i 1.11469 0.935336i
\(929\) −12.5788 42.0162i −0.412697 1.37851i −0.871687 0.490063i \(-0.836974\pi\)
0.458989 0.888442i \(-0.348212\pi\)
\(930\) 0 0
\(931\) 1.35148 + 23.2040i 0.0442929 + 0.760480i
\(932\) −0.851973 14.6278i −0.0279073 0.479150i
\(933\) 0 0
\(934\) −6.48392 21.6578i −0.212160 0.708664i
\(935\) 4.10265 3.44253i 0.134171 0.112583i
\(936\) 0 0
\(937\) 25.4682 + 21.3704i 0.832010 + 0.698140i 0.955752 0.294175i \(-0.0950449\pi\)
−0.123741 + 0.992315i \(0.539489\pi\)
\(938\) 1.92299 4.45799i 0.0627878 0.145558i
\(939\) 0 0
\(940\) −3.09360 + 10.3333i −0.100902 + 0.337037i
\(941\) −4.43921 10.2912i −0.144714 0.335485i 0.830407 0.557157i \(-0.188108\pi\)
−0.975121 + 0.221672i \(0.928849\pi\)
\(942\) 0 0
\(943\) 2.90442 + 1.91027i 0.0945810 + 0.0622069i
\(944\) −2.08058 3.60368i −0.0677172 0.117290i
\(945\) 0 0
\(946\) −12.6807 + 21.9637i −0.412286 + 0.714101i
\(947\) −4.22787 + 2.12331i −0.137387 + 0.0689984i −0.516165 0.856489i \(-0.672641\pi\)
0.378778 + 0.925488i \(0.376345\pi\)
\(948\) 0 0
\(949\) −20.4548 + 27.4756i −0.663991 + 0.891895i
\(950\) −43.5254 46.1343i −1.41215 1.49679i
\(951\) 0 0
\(952\) 19.8728 2.32280i 0.644082 0.0752824i
\(953\) −1.77553 + 0.646238i −0.0575149 + 0.0209337i −0.370617 0.928786i \(-0.620854\pi\)
0.313102 + 0.949719i \(0.398632\pi\)
\(954\) 0 0
\(955\) −4.18525 1.52331i −0.135432 0.0492930i
\(956\) 42.9489 + 10.1791i 1.38907 + 0.329215i
\(957\) 0 0
\(958\) −36.8962 + 24.2670i −1.19206 + 0.784031i
\(959\) −0.606181 0.304436i −0.0195746 0.00983074i
\(960\) 0 0
\(961\) 15.9954 16.9541i 0.515981 0.546908i
\(962\) −2.87920 16.3288i −0.0928293 0.526461i
\(963\) 0 0
\(964\) −11.1041 + 62.9743i −0.357638 + 2.02827i
\(965\) 3.37662 + 4.53559i 0.108697 + 0.146006i
\(966\) 0 0
\(967\) −54.3404 + 12.8789i −1.74747 + 0.414158i −0.975234 0.221178i \(-0.929010\pi\)
−0.772236 + 0.635336i \(0.780862\pi\)
\(968\) −15.1296 1.76839i −0.486283 0.0568383i
\(969\) 0 0
\(970\) 0.305016 5.23692i 0.00979346 0.168147i
\(971\) 6.12547 0.196576 0.0982879 0.995158i \(-0.468663\pi\)
0.0982879 + 0.995158i \(0.468663\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) −3.48813 + 59.8889i −0.111767 + 1.91896i
\(975\) 0 0
\(976\) −7.10582 0.830551i −0.227452 0.0265853i
\(977\) −27.7777 + 6.58343i −0.888687 + 0.210623i −0.649510 0.760353i \(-0.725026\pi\)
−0.239177 + 0.970976i \(0.576878\pi\)
\(978\) 0 0
\(979\) 11.2566 + 15.1202i 0.359762 + 0.483244i
\(980\) 1.12141 6.35984i 0.0358222 0.203158i
\(981\) 0 0
\(982\) 3.86034 + 21.8931i 0.123188 + 0.698636i
\(983\) −15.1504 + 16.0585i −0.483224 + 0.512187i −0.922412 0.386208i \(-0.873785\pi\)
0.439188 + 0.898395i \(0.355266\pi\)
\(984\) 0 0
\(985\) −4.88019 2.45092i −0.155496 0.0780929i
\(986\) −73.2697 + 48.1902i −2.33338 + 1.53469i
\(987\) 0 0
\(988\) −90.2709 21.3946i −2.87190 0.680653i
\(989\) 28.2164 + 10.2699i 0.897228 + 0.326564i
\(990\) 0 0
\(991\) 33.4354 12.1695i 1.06211 0.386577i 0.248890 0.968532i \(-0.419934\pi\)
0.813221 + 0.581955i \(0.197712\pi\)
\(992\) 20.7435 2.42456i 0.658606 0.0769800i
\(993\) 0 0
\(994\) 22.2620 + 23.5963i 0.706107 + 0.748430i
\(995\) −4.87228 + 6.54461i −0.154462 + 0.207478i
\(996\) 0 0
\(997\) 32.9108 16.5284i 1.04230 0.523461i 0.156570 0.987667i \(-0.449956\pi\)
0.885727 + 0.464206i \(0.153660\pi\)
\(998\) −9.51222 + 16.4757i −0.301104 + 0.521528i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.217.8 144
3.2 odd 2 729.2.g.d.217.1 144
9.2 odd 6 81.2.g.a.25.8 yes 144
9.4 even 3 729.2.g.b.703.8 144
9.5 odd 6 729.2.g.c.703.1 144
9.7 even 3 243.2.g.a.73.1 144
81.11 odd 54 6561.2.a.c.1.65 72
81.13 even 27 729.2.g.b.28.8 144
81.14 odd 54 81.2.g.a.13.8 144
81.40 even 27 inner 729.2.g.a.514.8 144
81.41 odd 54 729.2.g.d.514.1 144
81.67 even 27 243.2.g.a.10.1 144
81.68 odd 54 729.2.g.c.28.1 144
81.70 even 27 6561.2.a.d.1.8 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 81.14 odd 54
81.2.g.a.25.8 yes 144 9.2 odd 6
243.2.g.a.10.1 144 81.67 even 27
243.2.g.a.73.1 144 9.7 even 3
729.2.g.a.217.8 144 1.1 even 1 trivial
729.2.g.a.514.8 144 81.40 even 27 inner
729.2.g.b.28.8 144 81.13 even 27
729.2.g.b.703.8 144 9.4 even 3
729.2.g.c.28.1 144 81.68 odd 54
729.2.g.c.703.1 144 9.5 odd 6
729.2.g.d.217.1 144 3.2 odd 2
729.2.g.d.514.1 144 81.41 odd 54
6561.2.a.c.1.65 72 81.11 odd 54
6561.2.a.d.1.8 72 81.70 even 27