Properties

Label 729.2.g.a.217.5
Level $729$
Weight $2$
Character 729.217
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 217.5
Character \(\chi\) \(=\) 729.217
Dual form 729.2.g.a.514.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0330035 + 0.566648i) q^{2} +(1.66648 + 0.194783i) q^{4} +(-2.82546 + 0.669646i) q^{5} +(1.86900 + 2.51050i) q^{7} +(-0.362501 + 2.05585i) q^{8} +(-0.286203 - 1.62314i) q^{10} +(-2.35528 + 2.49645i) q^{11} +(-3.56363 - 1.78972i) q^{13} +(-1.48425 + 0.976208i) q^{14} +(2.11221 + 0.500604i) q^{16} +(-0.878443 - 0.319727i) q^{17} +(-4.55845 + 1.65914i) q^{19} +(-4.83899 + 0.565597i) q^{20} +(-1.33688 - 1.41701i) q^{22} +(3.67387 - 4.93486i) q^{23} +(3.06662 - 1.54011i) q^{25} +(1.13175 - 1.96026i) q^{26} +(2.62564 + 4.54773i) q^{28} +(1.50363 + 0.988954i) q^{29} +(0.267699 + 0.620597i) q^{31} +(-1.55082 + 5.18008i) q^{32} +(0.210164 - 0.487216i) q^{34} +(-6.96191 - 5.84174i) q^{35} +(-8.73079 + 7.32600i) q^{37} +(-0.789703 - 2.63779i) q^{38} +(-0.352457 - 6.05145i) q^{40} +(0.386817 + 6.64138i) q^{41} +(0.641410 + 2.14246i) q^{43} +(-4.41129 + 3.70151i) q^{44} +(2.67508 + 2.24466i) q^{46} +(1.25543 - 2.91042i) q^{47} +(-0.801829 + 2.67830i) q^{49} +(0.771493 + 1.78852i) q^{50} +(-5.59010 - 3.67666i) q^{52} +(4.18963 + 7.25666i) q^{53} +(4.98301 - 8.63082i) q^{55} +(-5.83871 + 2.93231i) q^{56} +(-0.610014 + 0.819391i) q^{58} +(-3.45239 - 3.65932i) q^{59} +(0.566780 - 0.0662470i) q^{61} +(-0.360495 + 0.131209i) q^{62} +(1.19553 + 0.435136i) q^{64} +(11.2674 + 2.67041i) q^{65} +(11.4202 - 7.51120i) q^{67} +(-1.40163 - 0.703923i) q^{68} +(3.53998 - 3.75216i) q^{70} +(2.31784 + 13.1452i) q^{71} +(-1.17142 + 6.64347i) q^{73} +(-3.86312 - 5.18907i) q^{74} +(-7.91971 + 1.87701i) q^{76} +(-10.6693 - 1.24707i) q^{77} +(-0.0433375 + 0.744075i) q^{79} -6.30319 q^{80} -3.77609 q^{82} +(-0.211615 + 3.63329i) q^{83} +(2.69611 + 0.315130i) q^{85} +(-1.23519 + 0.292745i) q^{86} +(-4.27853 - 5.74706i) q^{88} +(2.27781 - 12.9181i) q^{89} +(-2.16732 - 12.2915i) q^{91} +(7.08364 - 7.50822i) q^{92} +(1.60775 + 0.807443i) q^{94} +(11.7687 - 7.74037i) q^{95} +(12.1682 + 2.88392i) q^{97} +(-1.49119 - 0.542748i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{14}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0330035 + 0.566648i −0.0233370 + 0.400681i 0.966331 + 0.257302i \(0.0828336\pi\)
−0.989668 + 0.143378i \(0.954203\pi\)
\(3\) 0 0
\(4\) 1.66648 + 0.194783i 0.833238 + 0.0973916i
\(5\) −2.82546 + 0.669646i −1.26358 + 0.299475i −0.807184 0.590300i \(-0.799009\pi\)
−0.456399 + 0.889775i \(0.650861\pi\)
\(6\) 0 0
\(7\) 1.86900 + 2.51050i 0.706414 + 0.948879i 0.999975 0.00706140i \(-0.00224773\pi\)
−0.293561 + 0.955940i \(0.594840\pi\)
\(8\) −0.362501 + 2.05585i −0.128164 + 0.726852i
\(9\) 0 0
\(10\) −0.286203 1.62314i −0.0905055 0.513282i
\(11\) −2.35528 + 2.49645i −0.710144 + 0.752709i −0.977511 0.210886i \(-0.932365\pi\)
0.267367 + 0.963595i \(0.413847\pi\)
\(12\) 0 0
\(13\) −3.56363 1.78972i −0.988373 0.496380i −0.120258 0.992743i \(-0.538372\pi\)
−0.868115 + 0.496363i \(0.834669\pi\)
\(14\) −1.48425 + 0.976208i −0.396683 + 0.260902i
\(15\) 0 0
\(16\) 2.11221 + 0.500604i 0.528053 + 0.125151i
\(17\) −0.878443 0.319727i −0.213054 0.0775452i 0.233289 0.972408i \(-0.425051\pi\)
−0.446342 + 0.894862i \(0.647274\pi\)
\(18\) 0 0
\(19\) −4.55845 + 1.65914i −1.04578 + 0.380633i −0.807068 0.590458i \(-0.798947\pi\)
−0.238711 + 0.971091i \(0.576725\pi\)
\(20\) −4.83899 + 0.565597i −1.08203 + 0.126471i
\(21\) 0 0
\(22\) −1.33688 1.41701i −0.285023 0.302107i
\(23\) 3.67387 4.93486i 0.766055 1.02899i −0.232356 0.972631i \(-0.574643\pi\)
0.998411 0.0563591i \(-0.0179492\pi\)
\(24\) 0 0
\(25\) 3.06662 1.54011i 0.613324 0.308023i
\(26\) 1.13175 1.96026i 0.221955 0.384438i
\(27\) 0 0
\(28\) 2.62564 + 4.54773i 0.496198 + 0.859441i
\(29\) 1.50363 + 0.988954i 0.279217 + 0.183644i 0.681392 0.731919i \(-0.261375\pi\)
−0.402174 + 0.915563i \(0.631745\pi\)
\(30\) 0 0
\(31\) 0.267699 + 0.620597i 0.0480802 + 0.111462i 0.940563 0.339618i \(-0.110298\pi\)
−0.892483 + 0.451081i \(0.851039\pi\)
\(32\) −1.55082 + 5.18008i −0.274148 + 0.915718i
\(33\) 0 0
\(34\) 0.210164 0.487216i 0.0360429 0.0835568i
\(35\) −6.96191 5.84174i −1.17678 0.987434i
\(36\) 0 0
\(37\) −8.73079 + 7.32600i −1.43533 + 1.20439i −0.492858 + 0.870110i \(0.664048\pi\)
−0.942475 + 0.334277i \(0.891508\pi\)
\(38\) −0.789703 2.63779i −0.128107 0.427906i
\(39\) 0 0
\(40\) −0.352457 6.05145i −0.0557284 0.956819i
\(41\) 0.386817 + 6.64138i 0.0604106 + 1.03721i 0.883240 + 0.468921i \(0.155357\pi\)
−0.822829 + 0.568288i \(0.807606\pi\)
\(42\) 0 0
\(43\) 0.641410 + 2.14246i 0.0978141 + 0.326722i 0.992865 0.119242i \(-0.0380463\pi\)
−0.895051 + 0.445964i \(0.852861\pi\)
\(44\) −4.41129 + 3.70151i −0.665026 + 0.558023i
\(45\) 0 0
\(46\) 2.67508 + 2.24466i 0.394419 + 0.330957i
\(47\) 1.25543 2.91042i 0.183124 0.424529i −0.801783 0.597616i \(-0.796115\pi\)
0.984907 + 0.173087i \(0.0553742\pi\)
\(48\) 0 0
\(49\) −0.801829 + 2.67830i −0.114547 + 0.382614i
\(50\) 0.771493 + 1.78852i 0.109106 + 0.252935i
\(51\) 0 0
\(52\) −5.59010 3.67666i −0.775207 0.509862i
\(53\) 4.18963 + 7.25666i 0.575490 + 0.996779i 0.995988 + 0.0894851i \(0.0285221\pi\)
−0.420498 + 0.907294i \(0.638145\pi\)
\(54\) 0 0
\(55\) 4.98301 8.63082i 0.671909 1.16378i
\(56\) −5.83871 + 2.93231i −0.780231 + 0.391847i
\(57\) 0 0
\(58\) −0.610014 + 0.819391i −0.0800987 + 0.107591i
\(59\) −3.45239 3.65932i −0.449463 0.476403i 0.462533 0.886602i \(-0.346941\pi\)
−0.911996 + 0.410199i \(0.865459\pi\)
\(60\) 0 0
\(61\) 0.566780 0.0662470i 0.0725687 0.00848206i −0.0797311 0.996816i \(-0.525406\pi\)
0.152300 + 0.988334i \(0.451332\pi\)
\(62\) −0.360495 + 0.131209i −0.0457829 + 0.0166636i
\(63\) 0 0
\(64\) 1.19553 + 0.435136i 0.149441 + 0.0543920i
\(65\) 11.2674 + 2.67041i 1.39754 + 0.331224i
\(66\) 0 0
\(67\) 11.4202 7.51120i 1.39520 0.917639i 0.395203 0.918594i \(-0.370674\pi\)
1.00000 0.000954570i \(0.000303849\pi\)
\(68\) −1.40163 0.703923i −0.169972 0.0853632i
\(69\) 0 0
\(70\) 3.53998 3.75216i 0.423108 0.448468i
\(71\) 2.31784 + 13.1452i 0.275078 + 1.56004i 0.738715 + 0.674017i \(0.235433\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(72\) 0 0
\(73\) −1.17142 + 6.64347i −0.137105 + 0.777560i 0.836266 + 0.548324i \(0.184734\pi\)
−0.973371 + 0.229236i \(0.926377\pi\)
\(74\) −3.86312 5.18907i −0.449078 0.603217i
\(75\) 0 0
\(76\) −7.91971 + 1.87701i −0.908454 + 0.215307i
\(77\) −10.6693 1.24707i −1.21589 0.142117i
\(78\) 0 0
\(79\) −0.0433375 + 0.744075i −0.00487584 + 0.0837150i −0.999868 0.0162362i \(-0.994832\pi\)
0.994992 + 0.0999512i \(0.0318687\pi\)
\(80\) −6.30319 −0.704718
\(81\) 0 0
\(82\) −3.77609 −0.417000
\(83\) −0.211615 + 3.63329i −0.0232277 + 0.398805i 0.966577 + 0.256376i \(0.0825284\pi\)
−0.989805 + 0.142429i \(0.954509\pi\)
\(84\) 0 0
\(85\) 2.69611 + 0.315130i 0.292434 + 0.0341806i
\(86\) −1.23519 + 0.292745i −0.133194 + 0.0315675i
\(87\) 0 0
\(88\) −4.27853 5.74706i −0.456093 0.612639i
\(89\) 2.27781 12.9181i 0.241447 1.36931i −0.587154 0.809475i \(-0.699752\pi\)
0.828601 0.559839i \(-0.189137\pi\)
\(90\) 0 0
\(91\) −2.16732 12.2915i −0.227197 1.28850i
\(92\) 7.08364 7.50822i 0.738521 0.782786i
\(93\) 0 0
\(94\) 1.60775 + 0.807443i 0.165827 + 0.0832814i
\(95\) 11.7687 7.74037i 1.20744 0.794145i
\(96\) 0 0
\(97\) 12.1682 + 2.88392i 1.23549 + 0.292818i 0.795927 0.605392i \(-0.206984\pi\)
0.439567 + 0.898210i \(0.355132\pi\)
\(98\) −1.49119 0.542748i −0.150633 0.0548258i
\(99\) 0 0
\(100\) 5.41044 1.96924i 0.541044 0.196924i
\(101\) −5.94334 + 0.694676i −0.591384 + 0.0691229i −0.406521 0.913641i \(-0.633258\pi\)
−0.184863 + 0.982764i \(0.559184\pi\)
\(102\) 0 0
\(103\) −1.21369 1.28643i −0.119588 0.126756i 0.664813 0.747010i \(-0.268511\pi\)
−0.784401 + 0.620254i \(0.787030\pi\)
\(104\) 4.97122 6.67750i 0.487468 0.654783i
\(105\) 0 0
\(106\) −4.25024 + 2.13455i −0.412820 + 0.207326i
\(107\) 3.57628 6.19429i 0.345732 0.598825i −0.639755 0.768579i \(-0.720964\pi\)
0.985486 + 0.169754i \(0.0542974\pi\)
\(108\) 0 0
\(109\) −5.68613 9.84867i −0.544633 0.943332i −0.998630 0.0523287i \(-0.983336\pi\)
0.453997 0.891003i \(-0.349998\pi\)
\(110\) 4.72618 + 3.10846i 0.450624 + 0.296380i
\(111\) 0 0
\(112\) 2.69095 + 6.23833i 0.254271 + 0.589467i
\(113\) −1.67037 + 5.57942i −0.157135 + 0.524868i −0.999910 0.0133980i \(-0.995735\pi\)
0.842775 + 0.538266i \(0.180920\pi\)
\(114\) 0 0
\(115\) −7.07575 + 16.4034i −0.659817 + 1.52963i
\(116\) 2.31313 + 1.94095i 0.214769 + 0.180213i
\(117\) 0 0
\(118\) 2.18749 1.83552i 0.201375 0.168973i
\(119\) −0.839132 2.80290i −0.0769231 0.256941i
\(120\) 0 0
\(121\) −0.0453310 0.778304i −0.00412100 0.0707549i
\(122\) 0.0188330 + 0.323351i 0.00170506 + 0.0292748i
\(123\) 0 0
\(124\) 0.325233 + 1.08635i 0.0292068 + 0.0975574i
\(125\) 3.48865 2.92733i 0.312034 0.261828i
\(126\) 0 0
\(127\) 8.22802 + 6.90413i 0.730119 + 0.612643i 0.930164 0.367144i \(-0.119664\pi\)
−0.200045 + 0.979787i \(0.564109\pi\)
\(128\) −4.56943 + 10.5931i −0.403884 + 0.936308i
\(129\) 0 0
\(130\) −1.88505 + 6.29650i −0.165330 + 0.552239i
\(131\) 2.83697 + 6.57683i 0.247867 + 0.574621i 0.996042 0.0888807i \(-0.0283290\pi\)
−0.748175 + 0.663501i \(0.769070\pi\)
\(132\) 0 0
\(133\) −12.6850 8.34305i −1.09993 0.723434i
\(134\) 3.87930 + 6.71914i 0.335120 + 0.580446i
\(135\) 0 0
\(136\) 0.975746 1.69004i 0.0836695 0.144920i
\(137\) 7.71126 3.87274i 0.658817 0.330871i −0.0877866 0.996139i \(-0.527979\pi\)
0.746604 + 0.665269i \(0.231683\pi\)
\(138\) 0 0
\(139\) −3.52273 + 4.73184i −0.298794 + 0.401350i −0.926012 0.377494i \(-0.876786\pi\)
0.627218 + 0.778843i \(0.284193\pi\)
\(140\) −10.4640 11.0912i −0.884369 0.937376i
\(141\) 0 0
\(142\) −7.52517 + 0.879566i −0.631498 + 0.0738115i
\(143\) 12.8613 4.68113i 1.07552 0.391456i
\(144\) 0 0
\(145\) −4.91069 1.78735i −0.407811 0.148431i
\(146\) −3.72585 0.883043i −0.308354 0.0730811i
\(147\) 0 0
\(148\) −15.9766 + 10.5080i −1.31327 + 0.863752i
\(149\) 12.3273 + 6.19101i 1.00989 + 0.507187i 0.875232 0.483704i \(-0.160709\pi\)
0.134662 + 0.990892i \(0.457005\pi\)
\(150\) 0 0
\(151\) −4.30754 + 4.56573i −0.350543 + 0.371553i −0.878520 0.477705i \(-0.841469\pi\)
0.527978 + 0.849258i \(0.322950\pi\)
\(152\) −1.75849 9.97291i −0.142633 0.808910i
\(153\) 0 0
\(154\) 1.05877 6.00461i 0.0853185 0.483865i
\(155\) −1.17195 1.57421i −0.0941335 0.126443i
\(156\) 0 0
\(157\) −0.161617 + 0.0383039i −0.0128984 + 0.00305698i −0.237060 0.971495i \(-0.576184\pi\)
0.224162 + 0.974552i \(0.428036\pi\)
\(158\) −0.420199 0.0491142i −0.0334292 0.00390731i
\(159\) 0 0
\(160\) 0.912941 15.6746i 0.0721744 1.23919i
\(161\) 19.2554 1.51754
\(162\) 0 0
\(163\) 16.2014 1.26899 0.634495 0.772927i \(-0.281208\pi\)
0.634495 + 0.772927i \(0.281208\pi\)
\(164\) −0.649009 + 11.1431i −0.0506791 + 0.870126i
\(165\) 0 0
\(166\) −2.05181 0.239822i −0.159251 0.0186138i
\(167\) 17.7834 4.21475i 1.37612 0.326147i 0.524994 0.851106i \(-0.324067\pi\)
0.851128 + 0.524959i \(0.175919\pi\)
\(168\) 0 0
\(169\) 1.73329 + 2.32822i 0.133330 + 0.179094i
\(170\) −0.267548 + 1.51734i −0.0205200 + 0.116375i
\(171\) 0 0
\(172\) 0.651580 + 3.69529i 0.0496825 + 0.281763i
\(173\) 12.9383 13.7138i 0.983679 1.04264i −0.0154065 0.999881i \(-0.504904\pi\)
0.999085 0.0427575i \(-0.0136143\pi\)
\(174\) 0 0
\(175\) 9.59795 + 4.82027i 0.725537 + 0.364378i
\(176\) −6.22459 + 4.09398i −0.469196 + 0.308595i
\(177\) 0 0
\(178\) 7.24483 + 1.71706i 0.543023 + 0.128699i
\(179\) −9.67521 3.52149i −0.723159 0.263209i −0.0458930 0.998946i \(-0.514613\pi\)
−0.677266 + 0.735738i \(0.736836\pi\)
\(180\) 0 0
\(181\) 0.770198 0.280329i 0.0572484 0.0208367i −0.313237 0.949675i \(-0.601414\pi\)
0.370486 + 0.928838i \(0.379191\pi\)
\(182\) 7.03647 0.822445i 0.521578 0.0609637i
\(183\) 0 0
\(184\) 8.81354 + 9.34181i 0.649743 + 0.688687i
\(185\) 19.7626 26.5458i 1.45298 1.95169i
\(186\) 0 0
\(187\) 2.86716 1.43994i 0.209668 0.105299i
\(188\) 2.65905 4.60561i 0.193931 0.335899i
\(189\) 0 0
\(190\) 3.99766 + 6.92415i 0.290021 + 0.502330i
\(191\) −0.639191 0.420402i −0.0462502 0.0304193i 0.526173 0.850377i \(-0.323626\pi\)
−0.572424 + 0.819958i \(0.693997\pi\)
\(192\) 0 0
\(193\) 3.70520 + 8.58963i 0.266706 + 0.618295i 0.997962 0.0638084i \(-0.0203246\pi\)
−0.731256 + 0.682103i \(0.761065\pi\)
\(194\) −2.03576 + 6.79991i −0.146159 + 0.488205i
\(195\) 0 0
\(196\) −1.85792 + 4.30713i −0.132708 + 0.307652i
\(197\) −0.857832 0.719807i −0.0611180 0.0512841i 0.611717 0.791077i \(-0.290479\pi\)
−0.672835 + 0.739793i \(0.734924\pi\)
\(198\) 0 0
\(199\) 5.88368 4.93699i 0.417083 0.349974i −0.409969 0.912099i \(-0.634461\pi\)
0.827052 + 0.562125i \(0.190016\pi\)
\(200\) 2.05458 + 6.86279i 0.145281 + 0.485273i
\(201\) 0 0
\(202\) −0.197486 3.39071i −0.0138951 0.238569i
\(203\) 0.327515 + 5.62322i 0.0229870 + 0.394672i
\(204\) 0 0
\(205\) −5.54031 18.5059i −0.386952 1.29251i
\(206\) 0.769010 0.645276i 0.0535794 0.0449585i
\(207\) 0 0
\(208\) −6.63120 5.56424i −0.459791 0.385811i
\(209\) 6.59446 15.2877i 0.456149 1.05747i
\(210\) 0 0
\(211\) 2.93609 9.80721i 0.202129 0.675156i −0.795476 0.605985i \(-0.792779\pi\)
0.997605 0.0691715i \(-0.0220356\pi\)
\(212\) 5.56845 + 12.9091i 0.382443 + 0.886602i
\(213\) 0 0
\(214\) 3.39195 + 2.23092i 0.231869 + 0.152503i
\(215\) −3.24697 5.62391i −0.221441 0.383547i
\(216\) 0 0
\(217\) −1.05768 + 1.83195i −0.0717999 + 0.124361i
\(218\) 5.76839 2.89700i 0.390685 0.196209i
\(219\) 0 0
\(220\) 9.98520 13.4125i 0.673202 0.904267i
\(221\) 2.55822 + 2.71156i 0.172085 + 0.182399i
\(222\) 0 0
\(223\) 4.62022 0.540027i 0.309393 0.0361629i 0.0400203 0.999199i \(-0.487258\pi\)
0.269373 + 0.963036i \(0.413184\pi\)
\(224\) −15.9031 + 5.78824i −1.06257 + 0.386743i
\(225\) 0 0
\(226\) −3.10644 1.13065i −0.206637 0.0752098i
\(227\) −13.7390 3.25620i −0.911888 0.216121i −0.252212 0.967672i \(-0.581158\pi\)
−0.659676 + 0.751550i \(0.729306\pi\)
\(228\) 0 0
\(229\) 4.33228 2.84938i 0.286285 0.188292i −0.398242 0.917281i \(-0.630379\pi\)
0.684526 + 0.728988i \(0.260009\pi\)
\(230\) −9.06145 4.55083i −0.597494 0.300073i
\(231\) 0 0
\(232\) −2.57821 + 2.73274i −0.169268 + 0.179413i
\(233\) −0.773336 4.38581i −0.0506629 0.287324i 0.948941 0.315452i \(-0.102156\pi\)
−0.999604 + 0.0281287i \(0.991045\pi\)
\(234\) 0 0
\(235\) −1.59822 + 9.06397i −0.104257 + 0.591268i
\(236\) −5.04056 6.77064i −0.328112 0.440731i
\(237\) 0 0
\(238\) 1.61595 0.382987i 0.104746 0.0248254i
\(239\) −28.8649 3.37382i −1.86711 0.218234i −0.893921 0.448224i \(-0.852057\pi\)
−0.973193 + 0.229989i \(0.926131\pi\)
\(240\) 0 0
\(241\) −1.45269 + 24.9418i −0.0935762 + 1.60664i 0.545914 + 0.837841i \(0.316183\pi\)
−0.639490 + 0.768800i \(0.720854\pi\)
\(242\) 0.442520 0.0284463
\(243\) 0 0
\(244\) 0.957429 0.0612931
\(245\) 0.472025 8.10435i 0.0301566 0.517768i
\(246\) 0 0
\(247\) 19.2140 + 2.24580i 1.22256 + 0.142897i
\(248\) −1.37289 + 0.325382i −0.0871788 + 0.0206618i
\(249\) 0 0
\(250\) 1.54363 + 2.07345i 0.0976275 + 0.131136i
\(251\) −2.46091 + 13.9565i −0.155331 + 0.880926i 0.803152 + 0.595775i \(0.203155\pi\)
−0.958483 + 0.285151i \(0.907956\pi\)
\(252\) 0 0
\(253\) 3.66665 + 20.7946i 0.230521 + 1.30735i
\(254\) −4.18376 + 4.43453i −0.262513 + 0.278247i
\(255\) 0 0
\(256\) −3.57791 1.79689i −0.223619 0.112306i
\(257\) 12.2808 8.07720i 0.766055 0.503842i −0.105333 0.994437i \(-0.533591\pi\)
0.871388 + 0.490595i \(0.163220\pi\)
\(258\) 0 0
\(259\) −34.7097 8.22635i −2.15676 0.511161i
\(260\) 18.2566 + 6.64487i 1.13223 + 0.412098i
\(261\) 0 0
\(262\) −3.82038 + 1.39050i −0.236024 + 0.0859056i
\(263\) 16.2782 1.90265i 1.00376 0.117322i 0.401696 0.915773i \(-0.368421\pi\)
0.602060 + 0.798451i \(0.294347\pi\)
\(264\) 0 0
\(265\) −16.6970 17.6978i −1.02569 1.08717i
\(266\) 5.14622 6.91257i 0.315535 0.423837i
\(267\) 0 0
\(268\) 20.4946 10.2928i 1.25191 0.628731i
\(269\) −5.68131 + 9.84032i −0.346396 + 0.599975i −0.985606 0.169057i \(-0.945928\pi\)
0.639211 + 0.769032i \(0.279261\pi\)
\(270\) 0 0
\(271\) −1.38266 2.39483i −0.0839903 0.145476i 0.820970 0.570971i \(-0.193433\pi\)
−0.904961 + 0.425496i \(0.860100\pi\)
\(272\) −1.69540 1.11508i −0.102799 0.0676118i
\(273\) 0 0
\(274\) 1.93998 + 4.49738i 0.117199 + 0.271697i
\(275\) −3.37793 + 11.2831i −0.203697 + 0.680395i
\(276\) 0 0
\(277\) 7.28632 16.8916i 0.437792 1.01492i −0.546353 0.837555i \(-0.683984\pi\)
0.984146 0.177362i \(-0.0567564\pi\)
\(278\) −2.56503 2.15231i −0.153840 0.129087i
\(279\) 0 0
\(280\) 14.5334 12.1950i 0.868538 0.728790i
\(281\) 3.07831 + 10.2823i 0.183636 + 0.613388i 0.999388 + 0.0349857i \(0.0111386\pi\)
−0.815751 + 0.578403i \(0.803676\pi\)
\(282\) 0 0
\(283\) 0.831003 + 14.2678i 0.0493980 + 0.848131i 0.928462 + 0.371427i \(0.121131\pi\)
−0.879064 + 0.476704i \(0.841832\pi\)
\(284\) 1.30218 + 22.3576i 0.0772701 + 1.32668i
\(285\) 0 0
\(286\) 2.22809 + 7.44233i 0.131750 + 0.440074i
\(287\) −15.9502 + 13.3838i −0.941512 + 0.790022i
\(288\) 0 0
\(289\) −12.3533 10.3657i −0.726666 0.609745i
\(290\) 1.17487 2.72365i 0.0689905 0.159938i
\(291\) 0 0
\(292\) −3.24619 + 10.8430i −0.189969 + 0.634540i
\(293\) 8.65273 + 20.0593i 0.505498 + 1.17188i 0.959713 + 0.280983i \(0.0906605\pi\)
−0.454215 + 0.890892i \(0.650080\pi\)
\(294\) 0 0
\(295\) 12.2050 + 8.02738i 0.710605 + 0.467372i
\(296\) −11.8962 20.6048i −0.691453 1.19763i
\(297\) 0 0
\(298\) −3.91497 + 6.78092i −0.226788 + 0.392808i
\(299\) −21.9243 + 11.0108i −1.26792 + 0.636772i
\(300\) 0 0
\(301\) −4.17985 + 5.61451i −0.240922 + 0.323615i
\(302\) −2.44499 2.59154i −0.140694 0.149127i
\(303\) 0 0
\(304\) −10.4590 + 1.22248i −0.599864 + 0.0701140i
\(305\) −1.55705 + 0.566720i −0.0891564 + 0.0324503i
\(306\) 0 0
\(307\) −28.6368 10.4229i −1.63439 0.594869i −0.648344 0.761347i \(-0.724538\pi\)
−0.986045 + 0.166478i \(0.946760\pi\)
\(308\) −17.5373 4.15642i −0.999281 0.236834i
\(309\) 0 0
\(310\) 0.930699 0.612130i 0.0528602 0.0347667i
\(311\) −24.2284 12.1679i −1.37387 0.689981i −0.399875 0.916570i \(-0.630946\pi\)
−0.973990 + 0.226589i \(0.927243\pi\)
\(312\) 0 0
\(313\) 5.56294 5.89637i 0.314436 0.333282i −0.550810 0.834631i \(-0.685681\pi\)
0.865245 + 0.501348i \(0.167163\pi\)
\(314\) −0.0163709 0.0928440i −0.000923863 0.00523949i
\(315\) 0 0
\(316\) −0.217154 + 1.23154i −0.0122159 + 0.0692797i
\(317\) 11.5963 + 15.5765i 0.651312 + 0.874864i 0.998006 0.0631143i \(-0.0201033\pi\)
−0.346694 + 0.937978i \(0.612696\pi\)
\(318\) 0 0
\(319\) −6.01035 + 1.42448i −0.336515 + 0.0797555i
\(320\) −3.66930 0.428879i −0.205120 0.0239751i
\(321\) 0 0
\(322\) −0.635496 + 10.9110i −0.0354148 + 0.608048i
\(323\) 4.53480 0.252323
\(324\) 0 0
\(325\) −13.6847 −0.759089
\(326\) −0.534702 + 9.18047i −0.0296144 + 0.508459i
\(327\) 0 0
\(328\) −13.7939 1.61227i −0.761640 0.0890229i
\(329\) 9.65301 2.28780i 0.532188 0.126131i
\(330\) 0 0
\(331\) 1.18638 + 1.59359i 0.0652095 + 0.0875916i 0.833531 0.552472i \(-0.186315\pi\)
−0.768322 + 0.640064i \(0.778908\pi\)
\(332\) −1.06035 + 6.01357i −0.0581945 + 0.330037i
\(333\) 0 0
\(334\) 1.80136 + 10.2160i 0.0985662 + 0.558997i
\(335\) −27.2375 + 28.8701i −1.48814 + 1.57734i
\(336\) 0 0
\(337\) −16.4031 8.23796i −0.893535 0.448750i −0.0580820 0.998312i \(-0.518498\pi\)
−0.835453 + 0.549562i \(0.814795\pi\)
\(338\) −1.37648 + 0.905328i −0.0748709 + 0.0492433i
\(339\) 0 0
\(340\) 4.43161 + 1.05031i 0.240338 + 0.0569611i
\(341\) −2.17980 0.793381i −0.118043 0.0429640i
\(342\) 0 0
\(343\) 12.3650 4.50048i 0.667646 0.243003i
\(344\) −4.63708 + 0.541997i −0.250015 + 0.0292225i
\(345\) 0 0
\(346\) 7.34387 + 7.78405i 0.394809 + 0.418473i
\(347\) −15.9943 + 21.4841i −0.858618 + 1.15332i 0.128241 + 0.991743i \(0.459067\pi\)
−0.986859 + 0.161582i \(0.948340\pi\)
\(348\) 0 0
\(349\) −11.7150 + 5.88351i −0.627091 + 0.314937i −0.733813 0.679352i \(-0.762261\pi\)
0.106722 + 0.994289i \(0.465965\pi\)
\(350\) −3.04816 + 5.27957i −0.162931 + 0.282205i
\(351\) 0 0
\(352\) −9.27922 16.0721i −0.494584 0.856645i
\(353\) −16.2375 10.6796i −0.864237 0.568418i 0.0381850 0.999271i \(-0.487842\pi\)
−0.902422 + 0.430853i \(0.858213\pi\)
\(354\) 0 0
\(355\) −15.3516 35.5889i −0.814776 1.88886i
\(356\) 6.31214 21.0840i 0.334543 1.11745i
\(357\) 0 0
\(358\) 2.31476 5.36622i 0.122339 0.283613i
\(359\) 11.2428 + 9.43384i 0.593373 + 0.497899i 0.889308 0.457309i \(-0.151187\pi\)
−0.295935 + 0.955208i \(0.595631\pi\)
\(360\) 0 0
\(361\) 3.47185 2.91323i 0.182729 0.153328i
\(362\) 0.133429 + 0.445683i 0.00701286 + 0.0234246i
\(363\) 0 0
\(364\) −1.21761 20.9056i −0.0638202 1.09575i
\(365\) −1.13897 19.5553i −0.0596162 1.02357i
\(366\) 0 0
\(367\) 3.15312 + 10.5322i 0.164592 + 0.549775i 1.00000 0.000144782i \(4.60856e-5\pi\)
−0.835408 + 0.549630i \(0.814769\pi\)
\(368\) 10.2304 8.58433i 0.533297 0.447489i
\(369\) 0 0
\(370\) 14.3899 + 12.0746i 0.748096 + 0.627727i
\(371\) −10.3874 + 24.0807i −0.539288 + 1.25021i
\(372\) 0 0
\(373\) 5.85601 19.5604i 0.303213 1.01280i −0.661599 0.749858i \(-0.730122\pi\)
0.964812 0.262943i \(-0.0846930\pi\)
\(374\) 0.721314 + 1.67219i 0.0372983 + 0.0864671i
\(375\) 0 0
\(376\) 5.52828 + 3.63601i 0.285100 + 0.187513i
\(377\) −3.58843 6.21535i −0.184814 0.320107i
\(378\) 0 0
\(379\) −13.0154 + 22.5433i −0.668556 + 1.15797i 0.309753 + 0.950817i \(0.399754\pi\)
−0.978308 + 0.207155i \(0.933580\pi\)
\(380\) 21.1199 10.6068i 1.08343 0.544118i
\(381\) 0 0
\(382\) 0.259316 0.348321i 0.0132677 0.0178217i
\(383\) −16.1477 17.1156i −0.825109 0.874564i 0.168700 0.985667i \(-0.446043\pi\)
−0.993809 + 0.111103i \(0.964562\pi\)
\(384\) 0 0
\(385\) 30.9809 3.62115i 1.57893 0.184551i
\(386\) −4.98958 + 1.81606i −0.253963 + 0.0924349i
\(387\) 0 0
\(388\) 19.7163 + 7.17615i 1.00094 + 0.364314i
\(389\) 32.1789 + 7.62654i 1.63154 + 0.386681i 0.941478 0.337074i \(-0.109437\pi\)
0.690057 + 0.723755i \(0.257585\pi\)
\(390\) 0 0
\(391\) −4.80509 + 3.16036i −0.243004 + 0.159826i
\(392\) −5.21550 2.61932i −0.263423 0.132296i
\(393\) 0 0
\(394\) 0.436189 0.462333i 0.0219749 0.0232920i
\(395\) −0.375819 2.13137i −0.0189095 0.107241i
\(396\) 0 0
\(397\) −0.00960087 + 0.0544493i −0.000481854 + 0.00273273i −0.985048 0.172282i \(-0.944886\pi\)
0.984566 + 0.175014i \(0.0559972\pi\)
\(398\) 2.60336 + 3.49691i 0.130494 + 0.175284i
\(399\) 0 0
\(400\) 7.24834 1.71789i 0.362417 0.0858944i
\(401\) −28.4500 3.32533i −1.42072 0.166059i −0.629222 0.777225i \(-0.716626\pi\)
−0.791502 + 0.611167i \(0.790701\pi\)
\(402\) 0 0
\(403\) 0.156715 2.69069i 0.00780651 0.134033i
\(404\) −10.0397 −0.499496
\(405\) 0 0
\(406\) −3.19719 −0.158674
\(407\) 2.27445 39.0508i 0.112740 1.93568i
\(408\) 0 0
\(409\) −31.2243 3.64960i −1.54394 0.180461i −0.698924 0.715196i \(-0.746337\pi\)
−0.845020 + 0.534735i \(0.820411\pi\)
\(410\) 10.6692 2.52864i 0.526914 0.124881i
\(411\) 0 0
\(412\) −1.77200 2.38021i −0.0873003 0.117265i
\(413\) 2.73421 15.5065i 0.134542 0.763024i
\(414\) 0 0
\(415\) −1.83511 10.4074i −0.0900818 0.510879i
\(416\) 14.7974 15.6844i 0.725504 0.768990i
\(417\) 0 0
\(418\) 8.44509 + 4.24129i 0.413063 + 0.207448i
\(419\) −2.81915 + 1.85419i −0.137725 + 0.0905829i −0.616502 0.787354i \(-0.711451\pi\)
0.478777 + 0.877937i \(0.341080\pi\)
\(420\) 0 0
\(421\) 24.5826 + 5.82618i 1.19808 + 0.283951i 0.780774 0.624814i \(-0.214825\pi\)
0.417309 + 0.908765i \(0.362973\pi\)
\(422\) 5.46033 + 1.98740i 0.265805 + 0.0967451i
\(423\) 0 0
\(424\) −16.4373 + 5.98270i −0.798267 + 0.290545i
\(425\) −3.18626 + 0.372421i −0.154557 + 0.0180651i
\(426\) 0 0
\(427\) 1.22562 + 1.29908i 0.0593120 + 0.0628671i
\(428\) 7.16632 9.62604i 0.346397 0.465292i
\(429\) 0 0
\(430\) 3.29394 1.65428i 0.158848 0.0797764i
\(431\) −16.4068 + 28.4174i −0.790288 + 1.36882i 0.135501 + 0.990777i \(0.456736\pi\)
−0.925789 + 0.378041i \(0.876598\pi\)
\(432\) 0 0
\(433\) 6.46122 + 11.1912i 0.310507 + 0.537813i 0.978472 0.206379i \(-0.0661680\pi\)
−0.667966 + 0.744192i \(0.732835\pi\)
\(434\) −1.00316 0.659792i −0.0481534 0.0316710i
\(435\) 0 0
\(436\) −7.55745 17.5201i −0.361936 0.839063i
\(437\) −8.55951 + 28.5908i −0.409457 + 1.36768i
\(438\) 0 0
\(439\) 14.6064 33.8614i 0.697124 1.61612i −0.0875158 0.996163i \(-0.527893\pi\)
0.784640 0.619952i \(-0.212848\pi\)
\(440\) 15.9373 + 13.3730i 0.759781 + 0.637532i
\(441\) 0 0
\(442\) −1.62093 + 1.36012i −0.0770997 + 0.0646943i
\(443\) −9.85556 32.9199i −0.468252 1.56407i −0.787448 0.616382i \(-0.788598\pi\)
0.319196 0.947689i \(-0.396587\pi\)
\(444\) 0 0
\(445\) 2.21469 + 38.0248i 0.104987 + 1.80255i
\(446\) 0.153521 + 2.63586i 0.00726945 + 0.124812i
\(447\) 0 0
\(448\) 1.14203 + 3.81464i 0.0539557 + 0.180225i
\(449\) 13.4520 11.2876i 0.634838 0.532693i −0.267590 0.963533i \(-0.586227\pi\)
0.902428 + 0.430840i \(0.141783\pi\)
\(450\) 0 0
\(451\) −17.4910 14.6767i −0.823617 0.691097i
\(452\) −3.87041 + 8.97261i −0.182049 + 0.422036i
\(453\) 0 0
\(454\) 2.29855 7.67770i 0.107876 0.360332i
\(455\) 14.3546 + 33.2777i 0.672954 + 1.56008i
\(456\) 0 0
\(457\) 6.97539 + 4.58779i 0.326295 + 0.214608i 0.702078 0.712100i \(-0.252256\pi\)
−0.375783 + 0.926708i \(0.622626\pi\)
\(458\) 1.47162 + 2.54891i 0.0687641 + 0.119103i
\(459\) 0 0
\(460\) −14.9867 + 25.9577i −0.698758 + 1.21028i
\(461\) −18.1763 + 9.12850i −0.846556 + 0.425157i −0.818539 0.574451i \(-0.805216\pi\)
−0.0280173 + 0.999607i \(0.508919\pi\)
\(462\) 0 0
\(463\) −1.54625 + 2.07698i −0.0718604 + 0.0965253i −0.836600 0.547814i \(-0.815460\pi\)
0.764740 + 0.644339i \(0.222868\pi\)
\(464\) 2.68092 + 2.84160i 0.124458 + 0.131918i
\(465\) 0 0
\(466\) 2.51073 0.293462i 0.116307 0.0135944i
\(467\) −11.5019 + 4.18635i −0.532244 + 0.193721i −0.594140 0.804361i \(-0.702508\pi\)
0.0618958 + 0.998083i \(0.480285\pi\)
\(468\) 0 0
\(469\) 40.2012 + 14.6320i 1.85632 + 0.675645i
\(470\) −5.08333 1.20477i −0.234477 0.0555720i
\(471\) 0 0
\(472\) 8.77450 5.77108i 0.403879 0.265636i
\(473\) −6.85925 3.44484i −0.315389 0.158394i
\(474\) 0 0
\(475\) −11.4238 + 12.1085i −0.524158 + 0.555575i
\(476\) −0.852437 4.83441i −0.0390714 0.221585i
\(477\) 0 0
\(478\) 2.86441 16.2449i 0.131015 0.743024i
\(479\) 16.3783 + 21.9999i 0.748343 + 1.00520i 0.999308 + 0.0372031i \(0.0118448\pi\)
−0.250965 + 0.967996i \(0.580748\pi\)
\(480\) 0 0
\(481\) 44.2248 10.4815i 2.01648 0.477914i
\(482\) −14.0853 1.64633i −0.641566 0.0749883i
\(483\) 0 0
\(484\) 0.0760574 1.30585i 0.00345715 0.0593570i
\(485\) −36.3120 −1.64884
\(486\) 0 0
\(487\) −6.02417 −0.272981 −0.136491 0.990641i \(-0.543582\pi\)
−0.136491 + 0.990641i \(0.543582\pi\)
\(488\) −0.0692646 + 1.18923i −0.00313546 + 0.0538338i
\(489\) 0 0
\(490\) 4.57674 + 0.534944i 0.206756 + 0.0241663i
\(491\) 0.474156 0.112377i 0.0213983 0.00507150i −0.219903 0.975522i \(-0.570574\pi\)
0.241301 + 0.970450i \(0.422426\pi\)
\(492\) 0 0
\(493\) −1.00466 1.34949i −0.0452475 0.0607780i
\(494\) −1.90671 + 10.8135i −0.0857867 + 0.486521i
\(495\) 0 0
\(496\) 0.254765 + 1.44484i 0.0114393 + 0.0648754i
\(497\) −28.6688 + 30.3872i −1.28597 + 1.36305i
\(498\) 0 0
\(499\) 4.90133 + 2.46154i 0.219414 + 0.110194i 0.555111 0.831776i \(-0.312676\pi\)
−0.335698 + 0.941970i \(0.608972\pi\)
\(500\) 6.38395 4.19879i 0.285499 0.187776i
\(501\) 0 0
\(502\) −7.82720 1.85508i −0.349345 0.0827963i
\(503\) −9.93090 3.61455i −0.442797 0.161165i 0.110993 0.993821i \(-0.464597\pi\)
−0.553790 + 0.832656i \(0.686819\pi\)
\(504\) 0 0
\(505\) 16.3275 5.94271i 0.726562 0.264447i
\(506\) −11.9042 + 1.39141i −0.529208 + 0.0618556i
\(507\) 0 0
\(508\) 12.3670 + 13.1082i 0.548697 + 0.581584i
\(509\) 7.40873 9.95165i 0.328386 0.441099i −0.607013 0.794692i \(-0.707633\pi\)
0.935400 + 0.353592i \(0.115040\pi\)
\(510\) 0 0
\(511\) −18.8678 + 9.47577i −0.834663 + 0.419183i
\(512\) −10.4003 + 18.0139i −0.459634 + 0.796110i
\(513\) 0 0
\(514\) 4.17162 + 7.22546i 0.184002 + 0.318701i
\(515\) 4.29067 + 2.82202i 0.189069 + 0.124353i
\(516\) 0 0
\(517\) 4.30883 + 9.98899i 0.189502 + 0.439315i
\(518\) 5.80699 19.3967i 0.255144 0.852242i
\(519\) 0 0
\(520\) −9.57440 + 22.1959i −0.419865 + 0.973357i
\(521\) 13.6270 + 11.4344i 0.597011 + 0.500952i 0.890483 0.455016i \(-0.150366\pi\)
−0.293472 + 0.955968i \(0.594811\pi\)
\(522\) 0 0
\(523\) −10.4002 + 8.72680i −0.454769 + 0.381596i −0.841202 0.540721i \(-0.818151\pi\)
0.386433 + 0.922317i \(0.373707\pi\)
\(524\) 3.44668 + 11.5127i 0.150569 + 0.502936i
\(525\) 0 0
\(526\) 0.540894 + 9.28679i 0.0235841 + 0.404923i
\(527\) −0.0367370 0.630749i −0.00160029 0.0274759i
\(528\) 0 0
\(529\) −4.25908 14.2263i −0.185177 0.618536i
\(530\) 10.5795 8.87724i 0.459543 0.385603i
\(531\) 0 0
\(532\) −19.5141 16.3743i −0.846045 0.709916i
\(533\) 10.5078 24.3597i 0.455142 1.05514i
\(534\) 0 0
\(535\) −5.95664 + 19.8966i −0.257528 + 0.860203i
\(536\) 11.3020 + 26.2011i 0.488173 + 1.13171i
\(537\) 0 0
\(538\) −5.38849 3.54407i −0.232314 0.152796i
\(539\) −4.79771 8.30987i −0.206652 0.357931i
\(540\) 0 0
\(541\) 13.6538 23.6492i 0.587025 1.01676i −0.407595 0.913163i \(-0.633632\pi\)
0.994620 0.103594i \(-0.0330342\pi\)
\(542\) 1.40266 0.704441i 0.0602493 0.0302583i
\(543\) 0 0
\(544\) 3.01851 4.05457i 0.129418 0.173838i
\(545\) 22.6611 + 24.0193i 0.970693 + 1.02887i
\(546\) 0 0
\(547\) −12.6117 + 1.47410i −0.539239 + 0.0630281i −0.381353 0.924429i \(-0.624542\pi\)
−0.157886 + 0.987457i \(0.550468\pi\)
\(548\) 13.6050 4.95181i 0.581176 0.211531i
\(549\) 0 0
\(550\) −6.28204 2.28648i −0.267867 0.0974957i
\(551\) −8.49504 2.01336i −0.361901 0.0857720i
\(552\) 0 0
\(553\) −1.94900 + 1.28188i −0.0828798 + 0.0545109i
\(554\) 9.33111 + 4.68626i 0.396441 + 0.199100i
\(555\) 0 0
\(556\) −6.79222 + 7.19934i −0.288054 + 0.305320i
\(557\) −2.62356 14.8789i −0.111164 0.630441i −0.988578 0.150708i \(-0.951845\pi\)
0.877415 0.479733i \(-0.159266\pi\)
\(558\) 0 0
\(559\) 1.54866 8.78288i 0.0655013 0.371476i
\(560\) −11.7806 15.8242i −0.497823 0.668692i
\(561\) 0 0
\(562\) −5.92802 + 1.40497i −0.250058 + 0.0592649i
\(563\) 6.09083 + 0.711916i 0.256698 + 0.0300037i 0.243469 0.969909i \(-0.421715\pi\)
0.0132294 + 0.999912i \(0.495789\pi\)
\(564\) 0 0
\(565\) 0.983321 16.8830i 0.0413686 0.710272i
\(566\) −8.11223 −0.340982
\(567\) 0 0
\(568\) −27.8646 −1.16917
\(569\) 0.0860178 1.47687i 0.00360605 0.0619135i −0.996025 0.0890736i \(-0.971609\pi\)
0.999631 + 0.0271601i \(0.00864639\pi\)
\(570\) 0 0
\(571\) −8.75647 1.02348i −0.366447 0.0428315i −0.0691228 0.997608i \(-0.522020\pi\)
−0.297324 + 0.954777i \(0.596094\pi\)
\(572\) 22.3449 5.29583i 0.934286 0.221430i
\(573\) 0 0
\(574\) −7.05750 9.47987i −0.294574 0.395682i
\(575\) 3.66611 20.7915i 0.152887 0.867066i
\(576\) 0 0
\(577\) 2.48608 + 14.0993i 0.103497 + 0.586960i 0.991810 + 0.127722i \(0.0407665\pi\)
−0.888313 + 0.459238i \(0.848122\pi\)
\(578\) 6.28139 6.65788i 0.261271 0.276931i
\(579\) 0 0
\(580\) −7.83541 3.93509i −0.325348 0.163396i
\(581\) −9.51686 + 6.25934i −0.394826 + 0.259681i
\(582\) 0 0
\(583\) −27.9837 6.63225i −1.15897 0.274680i
\(584\) −13.2333 4.81654i −0.547599 0.199310i
\(585\) 0 0
\(586\) −11.6521 + 4.24102i −0.481344 + 0.175195i
\(587\) −8.48086 + 0.991271i −0.350043 + 0.0409141i −0.289298 0.957239i \(-0.593422\pi\)
−0.0607450 + 0.998153i \(0.519348\pi\)
\(588\) 0 0
\(589\) −2.24995 2.38481i −0.0927076 0.0982643i
\(590\) −4.95151 + 6.65103i −0.203850 + 0.273818i
\(591\) 0 0
\(592\) −22.1087 + 11.1034i −0.908662 + 0.456347i
\(593\) 19.8740 34.4227i 0.816125 1.41357i −0.0923915 0.995723i \(-0.529451\pi\)
0.908517 0.417848i \(-0.137216\pi\)
\(594\) 0 0
\(595\) 4.24788 + 7.35754i 0.174146 + 0.301630i
\(596\) 19.3373 + 12.7183i 0.792086 + 0.520963i
\(597\) 0 0
\(598\) −5.51568 12.7868i −0.225553 0.522890i
\(599\) −5.84437 + 19.5215i −0.238794 + 0.797629i 0.751631 + 0.659583i \(0.229267\pi\)
−0.990426 + 0.138046i \(0.955918\pi\)
\(600\) 0 0
\(601\) −5.42187 + 12.5693i −0.221163 + 0.512713i −0.992286 0.123974i \(-0.960436\pi\)
0.771123 + 0.636687i \(0.219695\pi\)
\(602\) −3.04350 2.55380i −0.124044 0.104085i
\(603\) 0 0
\(604\) −8.06774 + 6.76964i −0.328272 + 0.275453i
\(605\) 0.649269 + 2.16871i 0.0263965 + 0.0881705i
\(606\) 0 0
\(607\) 0.261657 + 4.49247i 0.0106203 + 0.182344i 0.999446 + 0.0332701i \(0.0105922\pi\)
−0.988826 + 0.149074i \(0.952371\pi\)
\(608\) −1.52517 26.1861i −0.0618538 1.06199i
\(609\) 0 0
\(610\) −0.269742 0.901003i −0.0109216 0.0364805i
\(611\) −9.68275 + 8.12479i −0.391722 + 0.328694i
\(612\) 0 0
\(613\) 27.4040 + 22.9947i 1.10684 + 0.928746i 0.997866 0.0652986i \(-0.0208000\pi\)
0.108971 + 0.994045i \(0.465244\pi\)
\(614\) 6.85126 15.8830i 0.276494 0.640986i
\(615\) 0 0
\(616\) 6.43143 21.4825i 0.259130 0.865554i
\(617\) −10.9250 25.3270i −0.439825 1.01963i −0.983594 0.180394i \(-0.942263\pi\)
0.543770 0.839234i \(-0.316996\pi\)
\(618\) 0 0
\(619\) 27.9288 + 18.3690i 1.12255 + 0.738314i 0.968318 0.249721i \(-0.0803389\pi\)
0.154233 + 0.988034i \(0.450709\pi\)
\(620\) −1.64640 2.85165i −0.0661211 0.114525i
\(621\) 0 0
\(622\) 7.69456 13.3274i 0.308524 0.534379i
\(623\) 36.6880 18.4254i 1.46988 0.738199i
\(624\) 0 0
\(625\) −18.1429 + 24.3702i −0.725716 + 0.974806i
\(626\) 3.15757 + 3.34683i 0.126202 + 0.133766i
\(627\) 0 0
\(628\) −0.276791 + 0.0323523i −0.0110452 + 0.00129100i
\(629\) 10.0118 3.64400i 0.399197 0.145296i
\(630\) 0 0
\(631\) 10.2732 + 3.73914i 0.408970 + 0.148853i 0.538309 0.842748i \(-0.319063\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(632\) −1.51400 0.358823i −0.0602235 0.0142732i
\(633\) 0 0
\(634\) −9.20911 + 6.05693i −0.365741 + 0.240551i
\(635\) −27.8712 13.9975i −1.10604 0.555472i
\(636\) 0 0
\(637\) 7.65083 8.10941i 0.303137 0.321306i
\(638\) −0.608816 3.45277i −0.0241032 0.136696i
\(639\) 0 0
\(640\) 5.81708 32.9903i 0.229940 1.30406i
\(641\) 5.56274 + 7.47205i 0.219715 + 0.295128i 0.898290 0.439402i \(-0.144810\pi\)
−0.678575 + 0.734531i \(0.737402\pi\)
\(642\) 0 0
\(643\) 1.25280 0.296918i 0.0494055 0.0117093i −0.205839 0.978586i \(-0.565992\pi\)
0.255244 + 0.966877i \(0.417844\pi\)
\(644\) 32.0887 + 3.75063i 1.26447 + 0.147795i
\(645\) 0 0
\(646\) −0.149664 + 2.56964i −0.00588847 + 0.101101i
\(647\) 25.7409 1.01198 0.505989 0.862540i \(-0.331128\pi\)
0.505989 + 0.862540i \(0.331128\pi\)
\(648\) 0 0
\(649\) 17.2667 0.677776
\(650\) 0.451642 7.75439i 0.0177149 0.304152i
\(651\) 0 0
\(652\) 26.9992 + 3.15575i 1.05737 + 0.123589i
\(653\) 37.9092 8.98465i 1.48350 0.351596i 0.592490 0.805578i \(-0.298145\pi\)
0.891011 + 0.453981i \(0.149997\pi\)
\(654\) 0 0
\(655\) −12.4199 16.6828i −0.485285 0.651851i
\(656\) −2.50766 + 14.2217i −0.0979077 + 0.555262i
\(657\) 0 0
\(658\) 0.977797 + 5.54536i 0.0381185 + 0.216181i
\(659\) −23.0459 + 24.4272i −0.897742 + 0.951550i −0.999062 0.0433034i \(-0.986212\pi\)
0.101320 + 0.994854i \(0.467693\pi\)
\(660\) 0 0
\(661\) 31.6648 + 15.9027i 1.23162 + 0.618542i 0.941036 0.338308i \(-0.109854\pi\)
0.290583 + 0.956850i \(0.406151\pi\)
\(662\) −0.942159 + 0.619668i −0.0366180 + 0.0240841i
\(663\) 0 0
\(664\) −7.39277 1.75212i −0.286895 0.0679954i
\(665\) 41.4278 + 15.0785i 1.60650 + 0.584718i
\(666\) 0 0
\(667\) 10.4045 3.78693i 0.402864 0.146630i
\(668\) 30.4566 3.55987i 1.17840 0.137735i
\(669\) 0 0
\(670\) −15.4602 16.3869i −0.597281 0.633081i
\(671\) −1.16954 + 1.57097i −0.0451497 + 0.0606466i
\(672\) 0 0
\(673\) 24.5503 12.3296i 0.946346 0.475273i 0.0924503 0.995717i \(-0.470530\pi\)
0.853895 + 0.520445i \(0.174234\pi\)
\(674\) 5.20938 9.02292i 0.200658 0.347550i
\(675\) 0 0
\(676\) 2.43499 + 4.21753i 0.0936536 + 0.162213i
\(677\) −7.98158 5.24957i −0.306757 0.201757i 0.386791 0.922167i \(-0.373583\pi\)
−0.693549 + 0.720410i \(0.743954\pi\)
\(678\) 0 0
\(679\) 15.5023 + 35.9383i 0.594923 + 1.37919i
\(680\) −1.62520 + 5.42854i −0.0623236 + 0.208175i
\(681\) 0 0
\(682\) 0.521509 1.20899i 0.0199696 0.0462948i
\(683\) −25.4573 21.3612i −0.974095 0.817363i 0.00909301 0.999959i \(-0.497106\pi\)
−0.983188 + 0.182596i \(0.941550\pi\)
\(684\) 0 0
\(685\) −19.1945 + 16.1061i −0.733383 + 0.615381i
\(686\) 2.14210 + 7.15512i 0.0817859 + 0.273184i
\(687\) 0 0
\(688\) 0.282272 + 4.84642i 0.0107615 + 0.184768i
\(689\) −1.94290 33.3583i −0.0740187 1.27085i
\(690\) 0 0
\(691\) 1.55724 + 5.20154i 0.0592402 + 0.197876i 0.982487 0.186332i \(-0.0596599\pi\)
−0.923247 + 0.384208i \(0.874475\pi\)
\(692\) 24.2325 20.3335i 0.921183 0.772964i
\(693\) 0 0
\(694\) −11.6460 9.77218i −0.442077 0.370947i
\(695\) 6.78466 15.7286i 0.257357 0.596620i
\(696\) 0 0
\(697\) 1.78363 5.95775i 0.0675599 0.225666i
\(698\) −2.94724 6.83247i −0.111555 0.258613i
\(699\) 0 0
\(700\) 15.0559 + 9.90239i 0.569058 + 0.374275i
\(701\) 16.8694 + 29.2187i 0.637150 + 1.10358i 0.986055 + 0.166418i \(0.0532200\pi\)
−0.348906 + 0.937158i \(0.613447\pi\)
\(702\) 0 0
\(703\) 27.6440 47.8808i 1.04261 1.80586i
\(704\) −3.90210 + 1.95971i −0.147066 + 0.0738593i
\(705\) 0 0
\(706\) 6.58747 8.84850i 0.247923 0.333018i
\(707\) −12.8521 13.6224i −0.483351 0.512323i
\(708\) 0 0
\(709\) 19.2544 2.25052i 0.723114 0.0845199i 0.253429 0.967354i \(-0.418442\pi\)
0.469685 + 0.882834i \(0.344367\pi\)
\(710\) 20.6730 7.52437i 0.775846 0.282385i
\(711\) 0 0
\(712\) 25.7319 + 9.36564i 0.964343 + 0.350992i
\(713\) 4.04605 + 0.958932i 0.151526 + 0.0359123i
\(714\) 0 0
\(715\) −33.2044 + 21.8389i −1.24177 + 0.816727i
\(716\) −15.4376 7.75305i −0.576930 0.289745i
\(717\) 0 0
\(718\) −5.71672 + 6.05937i −0.213346 + 0.226134i
\(719\) 0.831346 + 4.71480i 0.0310040 + 0.175832i 0.996378 0.0850387i \(-0.0271014\pi\)
−0.965374 + 0.260871i \(0.915990\pi\)
\(720\) 0 0
\(721\) 0.961210 5.45129i 0.0357973 0.203017i
\(722\) 1.53619 + 2.06346i 0.0571711 + 0.0767941i
\(723\) 0 0
\(724\) 1.33812 0.317140i 0.0497308 0.0117864i
\(725\) 6.13417 + 0.716981i 0.227817 + 0.0266280i
\(726\) 0 0
\(727\) 0.439589 7.54745i 0.0163035 0.279920i −0.980297 0.197530i \(-0.936708\pi\)
0.996600 0.0823892i \(-0.0262551\pi\)
\(728\) 26.0550 0.965664
\(729\) 0 0
\(730\) 11.1186 0.411516
\(731\) 0.121560 2.08710i 0.00449606 0.0771943i
\(732\) 0 0
\(733\) −38.3799 4.48597i −1.41760 0.165693i −0.627471 0.778640i \(-0.715910\pi\)
−0.790124 + 0.612947i \(0.789984\pi\)
\(734\) −6.07210 + 1.43911i −0.224125 + 0.0531186i
\(735\) 0 0
\(736\) 19.8655 + 26.6840i 0.732252 + 0.983586i
\(737\) −8.14649 + 46.2010i −0.300080 + 1.70184i
\(738\) 0 0
\(739\) −8.79173 49.8604i −0.323409 1.83414i −0.520627 0.853784i \(-0.674302\pi\)
0.197218 0.980360i \(-0.436809\pi\)
\(740\) 38.1046 40.3886i 1.40075 1.48471i
\(741\) 0 0
\(742\) −13.3025 6.68076i −0.488349 0.245258i
\(743\) 12.8280 8.43710i 0.470613 0.309527i −0.291958 0.956431i \(-0.594307\pi\)
0.762572 + 0.646904i \(0.223936\pi\)
\(744\) 0 0
\(745\) −38.9761 9.23750i −1.42797 0.338436i
\(746\) 10.8906 + 3.96386i 0.398733 + 0.145127i
\(747\) 0 0
\(748\) 5.05853 1.84116i 0.184958 0.0673193i
\(749\) 22.2348 2.59888i 0.812442 0.0949609i
\(750\) 0 0
\(751\) 32.0170 + 33.9361i 1.16832 + 1.23834i 0.965863 + 0.259053i \(0.0834106\pi\)
0.202455 + 0.979292i \(0.435108\pi\)
\(752\) 4.10871 5.51896i 0.149829 0.201256i
\(753\) 0 0
\(754\) 3.64035 1.82825i 0.132574 0.0665810i
\(755\) 9.11335 15.7848i 0.331669 0.574467i
\(756\) 0 0
\(757\) 5.85224 + 10.1364i 0.212703 + 0.368413i 0.952560 0.304352i \(-0.0984399\pi\)
−0.739856 + 0.672765i \(0.765107\pi\)
\(758\) −12.3446 8.11915i −0.448375 0.294901i
\(759\) 0 0
\(760\) 11.6469 + 27.0005i 0.422476 + 0.979409i
\(761\) 7.50818 25.0791i 0.272171 0.909116i −0.707194 0.707019i \(-0.750039\pi\)
0.979366 0.202097i \(-0.0647755\pi\)
\(762\) 0 0
\(763\) 14.0977 32.6822i 0.510371 1.18317i
\(764\) −0.983309 0.825094i −0.0355749 0.0298509i
\(765\) 0 0
\(766\) 10.2314 8.58519i 0.369676 0.310195i
\(767\) 5.75388 + 19.2193i 0.207761 + 0.693969i
\(768\) 0 0
\(769\) −2.64810 45.4662i −0.0954931 1.63955i −0.617471 0.786594i \(-0.711843\pi\)
0.521977 0.852959i \(-0.325195\pi\)
\(770\) 1.02944 + 17.6748i 0.0370984 + 0.636954i
\(771\) 0 0
\(772\) 4.50152 + 15.0361i 0.162013 + 0.541162i
\(773\) −10.7154 + 8.99131i −0.385407 + 0.323395i −0.814821 0.579713i \(-0.803165\pi\)
0.429414 + 0.903108i \(0.358720\pi\)
\(774\) 0 0
\(775\) 1.77672 + 1.49085i 0.0638217 + 0.0535528i
\(776\) −10.3399 + 23.9706i −0.371180 + 0.860493i
\(777\) 0 0
\(778\) −5.38358 + 17.9824i −0.193011 + 0.644701i
\(779\) −12.7823 29.6326i −0.457972 1.06170i
\(780\) 0 0
\(781\) −38.2754 25.1741i −1.36960 0.900801i
\(782\) −1.63223 2.82710i −0.0583683 0.101097i
\(783\) 0 0
\(784\) −3.03440 + 5.25573i −0.108371 + 0.187705i
\(785\) 0.430991 0.216452i 0.0153827 0.00772550i
\(786\) 0 0
\(787\) 8.48130 11.3924i 0.302326 0.406094i −0.624836 0.780756i \(-0.714834\pi\)
0.927161 + 0.374663i \(0.122241\pi\)
\(788\) −1.28935 1.36663i −0.0459312 0.0486843i
\(789\) 0 0
\(790\) 1.22014 0.142614i 0.0434107 0.00507398i
\(791\) −17.1290 + 6.23446i −0.609039 + 0.221672i
\(792\) 0 0
\(793\) −2.13836 0.778298i −0.0759353 0.0276382i
\(794\) −0.0305367 0.00723733i −0.00108371 0.000256843i
\(795\) 0 0
\(796\) 10.7667 7.08134i 0.381614 0.250991i
\(797\) 36.9090 + 18.5364i 1.30738 + 0.656593i 0.959702 0.281020i \(-0.0906728\pi\)
0.347681 + 0.937613i \(0.386969\pi\)
\(798\) 0 0
\(799\) −2.03337 + 2.15524i −0.0719353 + 0.0762470i
\(800\) 3.22216 + 18.2738i 0.113921 + 0.646075i
\(801\) 0 0
\(802\) 2.82324 16.0114i 0.0996920 0.565381i
\(803\) −13.8261 18.5717i −0.487912 0.655379i
\(804\) 0 0
\(805\) −54.4053 + 12.8943i −1.91754 + 0.454464i
\(806\) 1.51950 + 0.177604i 0.0535221 + 0.00625583i
\(807\) 0 0
\(808\) 0.726319 12.4704i 0.0255518 0.438708i
\(809\) −23.8379 −0.838097 −0.419048 0.907964i \(-0.637636\pi\)
−0.419048 + 0.907964i \(0.637636\pi\)
\(810\) 0 0
\(811\) −3.33188 −0.116998 −0.0584991 0.998287i \(-0.518631\pi\)
−0.0584991 + 0.998287i \(0.518631\pi\)
\(812\) −0.549511 + 9.43475i −0.0192841 + 0.331095i
\(813\) 0 0
\(814\) 22.0530 + 2.57762i 0.772957 + 0.0903457i
\(815\) −45.7763 + 10.8492i −1.60347 + 0.380030i
\(816\) 0 0
\(817\) −6.47847 8.70210i −0.226653 0.304448i
\(818\) 3.09855 17.5727i 0.108338 0.614417i
\(819\) 0 0
\(820\) −5.62815 31.9188i −0.196543 1.11465i
\(821\) 6.16015 6.52938i 0.214991 0.227877i −0.610899 0.791709i \(-0.709192\pi\)
0.825890 + 0.563832i \(0.190673\pi\)
\(822\) 0 0
\(823\) −1.16006 0.582603i −0.0404371 0.0203083i 0.428466 0.903558i \(-0.359054\pi\)
−0.468903 + 0.883250i \(0.655351\pi\)
\(824\) 3.08467 2.02882i 0.107460 0.0706772i
\(825\) 0 0
\(826\) 8.69648 + 2.06110i 0.302589 + 0.0717150i
\(827\) −29.6308 10.7847i −1.03036 0.375022i −0.229144 0.973392i \(-0.573593\pi\)
−0.801219 + 0.598371i \(0.795815\pi\)
\(828\) 0 0
\(829\) −25.1437 + 9.15156i −0.873277 + 0.317847i −0.739493 0.673164i \(-0.764935\pi\)
−0.133783 + 0.991011i \(0.542713\pi\)
\(830\) 5.95790 0.696378i 0.206802 0.0241716i
\(831\) 0 0
\(832\) −3.48164 3.69033i −0.120704 0.127939i
\(833\) 1.56068 2.09636i 0.0540745 0.0726347i
\(834\) 0 0
\(835\) −47.4239 + 23.8172i −1.64117 + 0.824227i
\(836\) 13.9673 24.1921i 0.483069 0.836700i
\(837\) 0 0
\(838\) −0.957629 1.65866i −0.0330807 0.0572975i
\(839\) 3.24118 + 2.13175i 0.111898 + 0.0735963i 0.604224 0.796814i \(-0.293483\pi\)
−0.492327 + 0.870411i \(0.663853\pi\)
\(840\) 0 0
\(841\) −10.2034 23.6542i −0.351843 0.815663i
\(842\) −4.11270 + 13.7374i −0.141733 + 0.473422i
\(843\) 0 0
\(844\) 6.80320 15.7716i 0.234176 0.542880i
\(845\) −6.45643 5.41758i −0.222108 0.186371i
\(846\) 0 0
\(847\) 1.86921 1.56845i 0.0642267 0.0538926i
\(848\) 5.21669 + 17.4250i 0.179142 + 0.598375i
\(849\) 0 0
\(850\) −0.105874 1.81778i −0.00363144 0.0623494i
\(851\) 4.07704 + 70.0000i 0.139759 + 2.39957i
\(852\) 0 0
\(853\) 0.986381 + 3.29474i 0.0337730 + 0.112810i 0.973214 0.229901i \(-0.0738402\pi\)
−0.939441 + 0.342711i \(0.888655\pi\)
\(854\) −0.776573 + 0.651622i −0.0265738 + 0.0222980i
\(855\) 0 0
\(856\) 11.4381 + 9.59772i 0.390947 + 0.328043i
\(857\) −5.80621 + 13.4603i −0.198336 + 0.459795i −0.988138 0.153567i \(-0.950924\pi\)
0.789802 + 0.613362i \(0.210183\pi\)
\(858\) 0 0
\(859\) −2.73469 + 9.13449i −0.0933063 + 0.311665i −0.991883 0.127151i \(-0.959417\pi\)
0.898577 + 0.438816i \(0.144602\pi\)
\(860\) −4.31555 10.0046i −0.147159 0.341153i
\(861\) 0 0
\(862\) −15.5612 10.2348i −0.530016 0.348597i
\(863\) 8.00876 + 13.8716i 0.272621 + 0.472194i 0.969532 0.244964i \(-0.0787760\pi\)
−0.696911 + 0.717158i \(0.745443\pi\)
\(864\) 0 0
\(865\) −27.3732 + 47.4117i −0.930716 + 1.61205i
\(866\) −6.55469 + 3.29189i −0.222738 + 0.111863i
\(867\) 0 0
\(868\) −2.11943 + 2.84689i −0.0719381 + 0.0966296i
\(869\) −1.75548 1.86070i −0.0595505 0.0631198i
\(870\) 0 0
\(871\) −54.1404 + 6.32811i −1.83448 + 0.214420i
\(872\) 22.3086 8.11966i 0.755464 0.274967i
\(873\) 0 0
\(874\) −15.9184 5.79383i −0.538448 0.195979i
\(875\) 13.8693 + 3.28709i 0.468869 + 0.111124i
\(876\) 0 0
\(877\) 27.6716 18.1999i 0.934403 0.614567i 0.0116393 0.999932i \(-0.496295\pi\)
0.922764 + 0.385366i \(0.125925\pi\)
\(878\) 18.7054 + 9.39421i 0.631277 + 0.317039i
\(879\) 0 0
\(880\) 14.8458 15.7356i 0.500452 0.530448i
\(881\) −2.00755 11.3854i −0.0676360 0.383583i −0.999770 0.0214681i \(-0.993166\pi\)
0.932134 0.362115i \(-0.117945\pi\)
\(882\) 0 0
\(883\) −7.24692 + 41.0993i −0.243878 + 1.38310i 0.579206 + 0.815182i \(0.303363\pi\)
−0.823084 + 0.567920i \(0.807748\pi\)
\(884\) 3.73505 + 5.01704i 0.125623 + 0.168741i
\(885\) 0 0
\(886\) 18.9792 4.49816i 0.637620 0.151119i
\(887\) 23.9390 + 2.79807i 0.803793 + 0.0939499i 0.508061 0.861321i \(-0.330362\pi\)
0.295732 + 0.955271i \(0.404436\pi\)
\(888\) 0 0
\(889\) −1.95466 + 33.5602i −0.0655572 + 1.12557i
\(890\) −21.6198 −0.724697
\(891\) 0 0
\(892\) 7.80468 0.261320
\(893\) −0.894032 + 15.3499i −0.0299176 + 0.513666i
\(894\) 0 0
\(895\) 29.6951 + 3.47085i 0.992596 + 0.116018i
\(896\) −35.1342 + 8.32697i −1.17375 + 0.278184i
\(897\) 0 0
\(898\) 5.95211 + 7.99507i 0.198624 + 0.266799i
\(899\) −0.211221 + 1.19789i −0.00704460 + 0.0399519i
\(900\) 0 0
\(901\) −1.36020 7.71410i −0.0453149 0.256994i
\(902\) 8.89376 9.42683i 0.296130 0.313879i
\(903\) 0 0
\(904\) −10.8649 5.45657i −0.361362 0.181483i
\(905\) −1.98844 + 1.30782i −0.0660980 + 0.0434733i
\(906\) 0 0
\(907\) 22.4691 + 5.32526i 0.746073 + 0.176822i 0.586032 0.810288i \(-0.300689\pi\)
0.160041 + 0.987110i \(0.448837\pi\)
\(908\) −22.2614 8.10250i −0.738771 0.268891i
\(909\) 0 0
\(910\) −19.3305 + 7.03572i −0.640799 + 0.233232i
\(911\) −22.7444 + 2.65844i −0.753555 + 0.0880779i −0.484193 0.874961i \(-0.660887\pi\)
−0.269362 + 0.963039i \(0.586813\pi\)
\(912\) 0 0
\(913\) −8.57191 9.08570i −0.283689 0.300693i
\(914\) −2.82987 + 3.80118i −0.0936039 + 0.125732i
\(915\) 0 0
\(916\) 7.77464 3.90457i 0.256881 0.129011i
\(917\) −11.2088 + 19.4143i −0.370148 + 0.641116i
\(918\) 0 0
\(919\) −9.84136 17.0457i −0.324636 0.562287i 0.656802 0.754063i \(-0.271909\pi\)
−0.981439 + 0.191776i \(0.938575\pi\)
\(920\) −31.1580 20.4929i −1.02725 0.675632i
\(921\) 0 0
\(922\) −4.57276 10.6009i −0.150596 0.349121i
\(923\) 15.2662 50.9928i 0.502494 1.67845i
\(924\) 0 0
\(925\) −15.4911 + 35.9125i −0.509345 + 1.18079i
\(926\) −1.12588 0.944728i −0.0369988 0.0310457i
\(927\) 0 0
\(928\) −7.45472 + 6.25525i −0.244713 + 0.205339i
\(929\) −8.29364 27.7027i −0.272105 0.908895i −0.979392 0.201968i \(-0.935266\pi\)
0.707287 0.706927i \(-0.249919\pi\)
\(930\) 0 0
\(931\) −0.788570 13.5392i −0.0258443 0.443730i
\(932\) −0.434465 7.45947i −0.0142314 0.244343i
\(933\) 0 0
\(934\) −1.99258 6.65569i −0.0651993 0.217781i
\(935\) −7.13679 + 5.98848i −0.233398 + 0.195844i
\(936\) 0 0
\(937\) 14.9990 + 12.5856i 0.489995 + 0.411155i 0.854025 0.520233i \(-0.174155\pi\)
−0.364029 + 0.931388i \(0.618599\pi\)
\(938\) −9.61800 + 22.2970i −0.314039 + 0.728024i
\(939\) 0 0
\(940\) −4.42891 + 14.7936i −0.144455 + 0.482513i
\(941\) 3.99887 + 9.27041i 0.130359 + 0.302207i 0.970877 0.239577i \(-0.0770086\pi\)
−0.840518 + 0.541783i \(0.817749\pi\)
\(942\) 0 0
\(943\) 34.1954 + 22.4907i 1.11356 + 0.732397i
\(944\) −5.46032 9.45755i −0.177718 0.307817i
\(945\) 0 0
\(946\) 2.17839 3.77309i 0.0708257 0.122674i
\(947\) −18.7726 + 9.42795i −0.610027 + 0.306367i −0.726861 0.686784i \(-0.759022\pi\)
0.116834 + 0.993151i \(0.462725\pi\)
\(948\) 0 0
\(949\) 16.0645 21.5784i 0.521476 0.700463i
\(950\) −6.48422 6.87287i −0.210376 0.222985i
\(951\) 0 0
\(952\) 6.06651 0.709074i 0.196617 0.0229812i
\(953\) −6.34571 + 2.30965i −0.205558 + 0.0748169i −0.442747 0.896647i \(-0.645996\pi\)
0.237189 + 0.971463i \(0.423774\pi\)
\(954\) 0 0
\(955\) 2.08753 + 0.759798i 0.0675508 + 0.0245865i
\(956\) −47.4455 11.2448i −1.53450 0.363682i
\(957\) 0 0
\(958\) −13.0067 + 8.55465i −0.420228 + 0.276388i
\(959\) 24.1348 + 12.1210i 0.779354 + 0.391406i
\(960\) 0 0
\(961\) 20.9600 22.2163i 0.676129 0.716655i
\(962\) 4.47973 + 25.4058i 0.144432 + 0.819117i
\(963\) 0 0
\(964\) −7.27912 + 41.2819i −0.234445 + 1.32960i
\(965\) −16.2209 21.7885i −0.522169 0.701395i
\(966\) 0 0
\(967\) 11.4754 2.71973i 0.369025 0.0874605i −0.0419193 0.999121i \(-0.513347\pi\)
0.410944 + 0.911660i \(0.365199\pi\)
\(968\) 1.61651 + 0.188942i 0.0519565 + 0.00607284i
\(969\) 0 0
\(970\) 1.19842 20.5761i 0.0384790 0.660659i
\(971\) −24.4687 −0.785239 −0.392620 0.919701i \(-0.628431\pi\)
−0.392620 + 0.919701i \(0.628431\pi\)
\(972\) 0 0
\(973\) −18.4632 −0.591905
\(974\) 0.198819 3.41358i 0.00637056 0.109378i
\(975\) 0 0
\(976\) 1.23032 + 0.143804i 0.0393817 + 0.00460306i
\(977\) −37.8679 + 8.97486i −1.21150 + 0.287131i −0.786230 0.617935i \(-0.787970\pi\)
−0.425272 + 0.905066i \(0.639821\pi\)
\(978\) 0 0
\(979\) 26.8845 + 36.1122i 0.859233 + 1.15415i
\(980\) 2.36521 13.4138i 0.0755538 0.428487i
\(981\) 0 0
\(982\) 0.0480294 + 0.272388i 0.00153268 + 0.00869226i
\(983\) 12.8443 13.6142i 0.409670 0.434225i −0.489380 0.872071i \(-0.662777\pi\)
0.899050 + 0.437846i \(0.144258\pi\)
\(984\) 0 0
\(985\) 2.90578 + 1.45934i 0.0925860 + 0.0464984i
\(986\) 0.797843 0.524750i 0.0254085 0.0167114i
\(987\) 0 0
\(988\) 31.5823 + 7.48513i 1.00477 + 0.238134i
\(989\) 12.9292 + 4.70584i 0.411125 + 0.149637i
\(990\) 0 0
\(991\) −2.15353 + 0.783819i −0.0684090 + 0.0248988i −0.375998 0.926620i \(-0.622700\pi\)
0.307589 + 0.951519i \(0.400478\pi\)
\(992\) −3.62990 + 0.424274i −0.115249 + 0.0134707i
\(993\) 0 0
\(994\) −16.2727 17.2480i −0.516138 0.547074i
\(995\) −13.3180 + 17.8892i −0.422211 + 0.567127i
\(996\) 0 0
\(997\) 27.9526 14.0383i 0.885267 0.444598i 0.0527567 0.998607i \(-0.483199\pi\)
0.832510 + 0.554010i \(0.186903\pi\)
\(998\) −1.55659 + 2.69609i −0.0492729 + 0.0853432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.217.5 144
3.2 odd 2 729.2.g.d.217.4 144
9.2 odd 6 81.2.g.a.25.5 yes 144
9.4 even 3 729.2.g.b.703.5 144
9.5 odd 6 729.2.g.c.703.4 144
9.7 even 3 243.2.g.a.73.4 144
81.11 odd 54 6561.2.a.c.1.32 72
81.13 even 27 729.2.g.b.28.5 144
81.14 odd 54 81.2.g.a.13.5 144
81.40 even 27 inner 729.2.g.a.514.5 144
81.41 odd 54 729.2.g.d.514.4 144
81.67 even 27 243.2.g.a.10.4 144
81.68 odd 54 729.2.g.c.28.4 144
81.70 even 27 6561.2.a.d.1.41 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.5 144 81.14 odd 54
81.2.g.a.25.5 yes 144 9.2 odd 6
243.2.g.a.10.4 144 81.67 even 27
243.2.g.a.73.4 144 9.7 even 3
729.2.g.a.217.5 144 1.1 even 1 trivial
729.2.g.a.514.5 144 81.40 even 27 inner
729.2.g.b.28.5 144 81.13 even 27
729.2.g.b.703.5 144 9.4 even 3
729.2.g.c.28.4 144 81.68 odd 54
729.2.g.c.703.4 144 9.5 odd 6
729.2.g.d.217.4 144 3.2 odd 2
729.2.g.d.514.4 144 81.41 odd 54
6561.2.a.c.1.32 72 81.11 odd 54
6561.2.a.d.1.41 72 81.70 even 27