Properties

Label 729.2.g.a.109.6
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(28,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([44])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [144,-9,0,9,-9,0,9,18,0,-18,-9,0,9,-9,0,9,18,0,-18,-45] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(20)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.6
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.a.622.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.464338 + 0.492169i) q^{2} +(0.0896686 - 1.53955i) q^{4} +(0.936797 - 0.109496i) q^{5} +(-1.30528 - 0.655538i) q^{7} +(1.83603 - 1.54061i) q^{8} +(0.488880 + 0.410219i) q^{10} +(-2.42430 - 5.62016i) q^{11} +(-5.10531 - 1.20998i) q^{13} +(-0.283457 - 0.946811i) q^{14} +(-1.45269 - 0.169795i) q^{16} +(0.00536485 - 0.0304256i) q^{17} +(0.634963 + 3.60105i) q^{19} +(-0.0845732 - 1.45207i) q^{20} +(1.64038 - 3.80282i) q^{22} +(-0.0934269 + 0.0469207i) q^{23} +(-3.99963 + 0.947929i) q^{25} +(-1.77507 - 3.07451i) q^{26} +(-1.12628 + 1.95077i) q^{28} +(0.147045 - 0.491165i) q^{29} +(6.82537 + 4.48912i) q^{31} +(-3.45346 - 4.63881i) q^{32} +(0.0174656 - 0.0114873i) q^{34} +(-1.29456 - 0.471183i) q^{35} +(5.42328 - 1.97391i) q^{37} +(-1.47749 + 1.98461i) q^{38} +(1.55129 - 1.64427i) q^{40} +(3.00983 - 3.19024i) q^{41} +(0.822094 - 1.10426i) q^{43} +(-8.86991 + 3.22838i) q^{44} +(-0.0664745 - 0.0241947i) q^{46} +(4.68685 - 3.08259i) q^{47} +(-2.90608 - 3.90354i) q^{49} +(-2.32372 - 1.52833i) q^{50} +(-2.32061 + 7.75138i) q^{52} +(4.89106 - 8.47157i) q^{53} +(-2.88646 - 4.99950i) q^{55} +(-3.40646 + 0.807346i) q^{56} +(0.310015 - 0.155695i) q^{58} +(2.23761 - 5.18737i) q^{59} +(-0.0998805 - 1.71488i) q^{61} +(0.959872 + 5.44370i) q^{62} +(0.171556 - 0.972942i) q^{64} +(-4.91512 - 0.574495i) q^{65} +(-0.785171 - 2.62265i) q^{67} +(-0.0463607 - 0.0109877i) q^{68} +(-0.369213 - 0.855932i) q^{70} +(-1.66448 - 1.39666i) q^{71} +(-6.38204 + 5.35517i) q^{73} +(3.48973 + 1.75261i) q^{74} +(5.60094 - 0.654656i) q^{76} +(-0.519830 + 8.92513i) q^{77} +(8.65544 + 9.17423i) q^{79} -1.37947 q^{80} +2.96771 q^{82} +(12.2319 + 12.9650i) q^{83} +(0.00169430 - 0.0290900i) q^{85} +(0.925214 - 0.108142i) q^{86} +(-13.1096 - 6.58387i) q^{88} +(10.6853 - 8.96604i) q^{89} +(5.87068 + 4.92609i) q^{91} +(0.0638594 + 0.148043i) q^{92} +(3.69344 + 0.875361i) q^{94} +(0.989131 + 3.30393i) q^{95} +(6.96396 + 0.813970i) q^{97} +(0.571800 - 3.24284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.464338 + 0.492169i 0.328336 + 0.348016i 0.870421 0.492308i \(-0.163846\pi\)
−0.542085 + 0.840324i \(0.682365\pi\)
\(3\) 0 0
\(4\) 0.0896686 1.53955i 0.0448343 0.769776i
\(5\) 0.936797 0.109496i 0.418948 0.0489680i 0.0959924 0.995382i \(-0.469398\pi\)
0.322956 + 0.946414i \(0.395323\pi\)
\(6\) 0 0
\(7\) −1.30528 0.655538i −0.493351 0.247770i 0.184687 0.982797i \(-0.440873\pi\)
−0.678037 + 0.735027i \(0.737169\pi\)
\(8\) 1.83603 1.54061i 0.649133 0.544688i
\(9\) 0 0
\(10\) 0.488880 + 0.410219i 0.154598 + 0.129723i
\(11\) −2.42430 5.62016i −0.730955 1.69454i −0.719387 0.694610i \(-0.755577\pi\)
−0.0115680 0.999933i \(-0.503682\pi\)
\(12\) 0 0
\(13\) −5.10531 1.20998i −1.41596 0.335588i −0.549773 0.835314i \(-0.685286\pi\)
−0.866184 + 0.499726i \(0.833434\pi\)
\(14\) −0.283457 0.946811i −0.0757570 0.253046i
\(15\) 0 0
\(16\) −1.45269 0.169795i −0.363172 0.0424488i
\(17\) 0.00536485 0.0304256i 0.00130117 0.00737929i −0.984150 0.177337i \(-0.943252\pi\)
0.985451 + 0.169957i \(0.0543630\pi\)
\(18\) 0 0
\(19\) 0.634963 + 3.60105i 0.145670 + 0.826138i 0.966826 + 0.255434i \(0.0822184\pi\)
−0.821156 + 0.570704i \(0.806670\pi\)
\(20\) −0.0845732 1.45207i −0.0189111 0.324692i
\(21\) 0 0
\(22\) 1.64038 3.80282i 0.349729 0.810764i
\(23\) −0.0934269 + 0.0469207i −0.0194808 + 0.00978365i −0.458513 0.888688i \(-0.651618\pi\)
0.439032 + 0.898471i \(0.355321\pi\)
\(24\) 0 0
\(25\) −3.99963 + 0.947929i −0.799925 + 0.189586i
\(26\) −1.77507 3.07451i −0.348120 0.602961i
\(27\) 0 0
\(28\) −1.12628 + 1.95077i −0.212846 + 0.368661i
\(29\) 0.147045 0.491165i 0.0273056 0.0912071i −0.943251 0.332082i \(-0.892249\pi\)
0.970556 + 0.240875i \(0.0774342\pi\)
\(30\) 0 0
\(31\) 6.82537 + 4.48912i 1.22587 + 0.806269i 0.986357 0.164623i \(-0.0526407\pi\)
0.239517 + 0.970892i \(0.423011\pi\)
\(32\) −3.45346 4.63881i −0.610492 0.820033i
\(33\) 0 0
\(34\) 0.0174656 0.0114873i 0.00299533 0.00197006i
\(35\) −1.29456 0.471183i −0.218821 0.0796444i
\(36\) 0 0
\(37\) 5.42328 1.97391i 0.891581 0.324509i 0.144707 0.989475i \(-0.453776\pi\)
0.746874 + 0.664965i \(0.231554\pi\)
\(38\) −1.47749 + 1.98461i −0.239680 + 0.321947i
\(39\) 0 0
\(40\) 1.55129 1.64427i 0.245281 0.259983i
\(41\) 3.00983 3.19024i 0.470057 0.498231i −0.448356 0.893855i \(-0.647990\pi\)
0.918413 + 0.395624i \(0.129472\pi\)
\(42\) 0 0
\(43\) 0.822094 1.10426i 0.125368 0.168399i −0.735008 0.678059i \(-0.762821\pi\)
0.860376 + 0.509660i \(0.170229\pi\)
\(44\) −8.86991 + 3.22838i −1.33719 + 0.486697i
\(45\) 0 0
\(46\) −0.0664745 0.0241947i −0.00980113 0.00356732i
\(47\) 4.68685 3.08259i 0.683648 0.449642i −0.159590 0.987183i \(-0.551017\pi\)
0.843237 + 0.537541i \(0.180647\pi\)
\(48\) 0 0
\(49\) −2.90608 3.90354i −0.415154 0.557648i
\(50\) −2.32372 1.52833i −0.328623 0.216139i
\(51\) 0 0
\(52\) −2.32061 + 7.75138i −0.321811 + 1.07492i
\(53\) 4.89106 8.47157i 0.671839 1.16366i −0.305543 0.952178i \(-0.598838\pi\)
0.977382 0.211481i \(-0.0678288\pi\)
\(54\) 0 0
\(55\) −2.88646 4.99950i −0.389211 0.674132i
\(56\) −3.40646 + 0.807346i −0.455208 + 0.107886i
\(57\) 0 0
\(58\) 0.310015 0.155695i 0.0407070 0.0204438i
\(59\) 2.23761 5.18737i 0.291313 0.675339i −0.708217 0.705994i \(-0.750500\pi\)
0.999530 + 0.0306559i \(0.00975961\pi\)
\(60\) 0 0
\(61\) −0.0998805 1.71488i −0.0127884 0.219568i −0.998648 0.0519919i \(-0.983443\pi\)
0.985859 0.167576i \(-0.0535940\pi\)
\(62\) 0.959872 + 5.44370i 0.121904 + 0.691351i
\(63\) 0 0
\(64\) 0.171556 0.972942i 0.0214445 0.121618i
\(65\) −4.91512 0.574495i −0.609646 0.0712574i
\(66\) 0 0
\(67\) −0.785171 2.62265i −0.0959239 0.320408i 0.896537 0.442969i \(-0.146075\pi\)
−0.992461 + 0.122560i \(0.960889\pi\)
\(68\) −0.0463607 0.0109877i −0.00562206 0.00133245i
\(69\) 0 0
\(70\) −0.369213 0.855932i −0.0441294 0.102303i
\(71\) −1.66448 1.39666i −0.197537 0.165753i 0.538654 0.842527i \(-0.318933\pi\)
−0.736191 + 0.676774i \(0.763377\pi\)
\(72\) 0 0
\(73\) −6.38204 + 5.35517i −0.746961 + 0.626775i −0.934697 0.355445i \(-0.884329\pi\)
0.187736 + 0.982219i \(0.439885\pi\)
\(74\) 3.48973 + 1.75261i 0.405673 + 0.203737i
\(75\) 0 0
\(76\) 5.60094 0.654656i 0.642472 0.0750942i
\(77\) −0.519830 + 8.92513i −0.0592401 + 1.01711i
\(78\) 0 0
\(79\) 8.65544 + 9.17423i 0.973813 + 1.03218i 0.999471 + 0.0325105i \(0.0103502\pi\)
−0.0256586 + 0.999671i \(0.508168\pi\)
\(80\) −1.37947 −0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) 12.2319 + 12.9650i 1.34262 + 1.42310i 0.822216 + 0.569176i \(0.192738\pi\)
0.520406 + 0.853919i \(0.325781\pi\)
\(84\) 0 0
\(85\) 0.00169430 0.0290900i 0.000183773 0.00315526i
\(86\) 0.925214 0.108142i 0.0997683 0.0116612i
\(87\) 0 0
\(88\) −13.1096 6.58387i −1.39748 0.701843i
\(89\) 10.6853 8.96604i 1.13264 0.950399i 0.133468 0.991053i \(-0.457389\pi\)
0.999173 + 0.0406545i \(0.0129443\pi\)
\(90\) 0 0
\(91\) 5.87068 + 4.92609i 0.615415 + 0.516394i
\(92\) 0.0638594 + 0.148043i 0.00665780 + 0.0154345i
\(93\) 0 0
\(94\) 3.69344 + 0.875361i 0.380949 + 0.0902865i
\(95\) 0.989131 + 3.30393i 0.101483 + 0.338976i
\(96\) 0 0
\(97\) 6.96396 + 0.813970i 0.707083 + 0.0826461i 0.462031 0.886864i \(-0.347121\pi\)
0.245052 + 0.969510i \(0.421195\pi\)
\(98\) 0.571800 3.24284i 0.0577605 0.327576i
\(99\) 0 0
\(100\) 1.10074 + 6.24263i 0.110074 + 0.624263i
\(101\) −0.505324 8.67608i −0.0502816 0.863302i −0.925306 0.379222i \(-0.876192\pi\)
0.875024 0.484080i \(-0.160846\pi\)
\(102\) 0 0
\(103\) −2.03098 + 4.70833i −0.200118 + 0.463926i −0.988492 0.151270i \(-0.951664\pi\)
0.788374 + 0.615196i \(0.210923\pi\)
\(104\) −11.2376 + 5.64373i −1.10194 + 0.553413i
\(105\) 0 0
\(106\) 6.44055 1.52644i 0.625561 0.148261i
\(107\) 4.97642 + 8.61941i 0.481089 + 0.833270i 0.999765 0.0217011i \(-0.00690820\pi\)
−0.518676 + 0.854971i \(0.673575\pi\)
\(108\) 0 0
\(109\) 6.36856 11.0307i 0.609997 1.05655i −0.381243 0.924475i \(-0.624504\pi\)
0.991240 0.132071i \(-0.0421627\pi\)
\(110\) 1.12031 3.74208i 0.106817 0.356794i
\(111\) 0 0
\(112\) 1.78486 + 1.17392i 0.168654 + 0.110925i
\(113\) −3.43180 4.60971i −0.322837 0.433645i 0.610844 0.791751i \(-0.290830\pi\)
−0.933681 + 0.358106i \(0.883423\pi\)
\(114\) 0 0
\(115\) −0.0823844 + 0.0541850i −0.00768238 + 0.00505278i
\(116\) −0.742989 0.270426i −0.0689848 0.0251084i
\(117\) 0 0
\(118\) 3.59207 1.30741i 0.330677 0.120357i
\(119\) −0.0269478 + 0.0361972i −0.00247030 + 0.00331819i
\(120\) 0 0
\(121\) −18.1603 + 19.2488i −1.65094 + 1.74989i
\(122\) 0.797633 0.845442i 0.0722143 0.0765427i
\(123\) 0 0
\(124\) 7.52325 10.1055i 0.675608 0.907499i
\(125\) −8.07451 + 2.93888i −0.722206 + 0.262862i
\(126\) 0 0
\(127\) −9.96192 3.62584i −0.883977 0.321741i −0.140163 0.990128i \(-0.544763\pi\)
−0.743814 + 0.668387i \(0.766985\pi\)
\(128\) −9.10501 + 5.98846i −0.804777 + 0.529310i
\(129\) 0 0
\(130\) −1.99953 2.68583i −0.175370 0.235563i
\(131\) 11.9172 + 7.83807i 1.04121 + 0.684815i 0.950393 0.311052i \(-0.100681\pi\)
0.0908184 + 0.995867i \(0.471052\pi\)
\(132\) 0 0
\(133\) 1.53182 5.11664i 0.132826 0.443669i
\(134\) 0.926205 1.60423i 0.0800119 0.138585i
\(135\) 0 0
\(136\) −0.0370239 0.0641273i −0.00317478 0.00549887i
\(137\) −5.19234 + 1.23061i −0.443612 + 0.105138i −0.446350 0.894858i \(-0.647276\pi\)
0.00273858 + 0.999996i \(0.499128\pi\)
\(138\) 0 0
\(139\) −3.65867 + 1.83745i −0.310324 + 0.155851i −0.597144 0.802134i \(-0.703698\pi\)
0.286820 + 0.957984i \(0.407402\pi\)
\(140\) −0.841492 + 1.95080i −0.0711190 + 0.164872i
\(141\) 0 0
\(142\) −0.0854853 1.46773i −0.00717376 0.123169i
\(143\) 5.57652 + 31.6260i 0.466332 + 2.64470i
\(144\) 0 0
\(145\) 0.0839709 0.476223i 0.00697341 0.0395482i
\(146\) −5.59907 0.654437i −0.463382 0.0541616i
\(147\) 0 0
\(148\) −2.55264 8.52641i −0.209826 0.700867i
\(149\) 18.3677 + 4.35323i 1.50474 + 0.356630i 0.898615 0.438738i \(-0.144574\pi\)
0.606127 + 0.795368i \(0.292722\pi\)
\(150\) 0 0
\(151\) −1.22010 2.82850i −0.0992901 0.230180i 0.861330 0.508046i \(-0.169632\pi\)
−0.960620 + 0.277866i \(0.910373\pi\)
\(152\) 6.71362 + 5.63340i 0.544547 + 0.456929i
\(153\) 0 0
\(154\) −4.63405 + 3.88843i −0.373422 + 0.313338i
\(155\) 6.88553 + 3.45804i 0.553059 + 0.277757i
\(156\) 0 0
\(157\) 3.40543 0.398037i 0.271783 0.0317668i 0.0208901 0.999782i \(-0.493350\pi\)
0.250893 + 0.968015i \(0.419276\pi\)
\(158\) −0.496226 + 8.51988i −0.0394776 + 0.677805i
\(159\) 0 0
\(160\) −3.74312 3.96748i −0.295920 0.313657i
\(161\) 0.152707 0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) −4.64165 4.91986i −0.362452 0.384176i
\(165\) 0 0
\(166\) −0.701267 + 12.0403i −0.0544289 + 0.934507i
\(167\) −19.2117 + 2.24553i −1.48665 + 0.173764i −0.820324 0.571898i \(-0.806207\pi\)
−0.666324 + 0.745663i \(0.732133\pi\)
\(168\) 0 0
\(169\) 12.9829 + 6.52024i 0.998682 + 0.501557i
\(170\) 0.0151039 0.0126737i 0.00115842 0.000972029i
\(171\) 0 0
\(172\) −1.62635 1.36467i −0.124008 0.104055i
\(173\) 2.44275 + 5.66294i 0.185719 + 0.430545i 0.985484 0.169768i \(-0.0543018\pi\)
−0.799765 + 0.600313i \(0.795043\pi\)
\(174\) 0 0
\(175\) 5.84205 + 1.38459i 0.441617 + 0.104665i
\(176\) 2.56748 + 8.57599i 0.193531 + 0.646439i
\(177\) 0 0
\(178\) 9.37440 + 1.09571i 0.702641 + 0.0821270i
\(179\) 0.601129 3.40917i 0.0449305 0.254814i −0.954066 0.299596i \(-0.903148\pi\)
0.998997 + 0.0447821i \(0.0142593\pi\)
\(180\) 0 0
\(181\) −3.31327 18.7905i −0.246273 1.39668i −0.817517 0.575904i \(-0.804650\pi\)
0.571244 0.820780i \(-0.306461\pi\)
\(182\) 0.301511 + 5.17674i 0.0223494 + 0.383725i
\(183\) 0 0
\(184\) −0.0992477 + 0.230082i −0.00731664 + 0.0169619i
\(185\) 4.86437 2.44298i 0.357636 0.179612i
\(186\) 0 0
\(187\) −0.184003 + 0.0436095i −0.0134556 + 0.00318904i
\(188\) −4.32554 7.49206i −0.315473 0.546415i
\(189\) 0 0
\(190\) −1.16680 + 2.02096i −0.0846486 + 0.146616i
\(191\) −5.71535 + 19.0906i −0.413548 + 1.38135i 0.457089 + 0.889421i \(0.348892\pi\)
−0.870637 + 0.491926i \(0.836293\pi\)
\(192\) 0 0
\(193\) 8.95424 + 5.88930i 0.644540 + 0.423921i 0.829254 0.558871i \(-0.188765\pi\)
−0.184714 + 0.982792i \(0.559136\pi\)
\(194\) 2.83302 + 3.80540i 0.203399 + 0.273212i
\(195\) 0 0
\(196\) −6.27028 + 4.12403i −0.447877 + 0.294573i
\(197\) −22.2725 8.10651i −1.58685 0.577565i −0.610169 0.792272i \(-0.708898\pi\)
−0.976679 + 0.214707i \(0.931120\pi\)
\(198\) 0 0
\(199\) −8.20833 + 2.98759i −0.581873 + 0.211785i −0.616151 0.787628i \(-0.711309\pi\)
0.0342781 + 0.999412i \(0.489087\pi\)
\(200\) −5.88303 + 7.90228i −0.415993 + 0.558776i
\(201\) 0 0
\(202\) 4.03546 4.27733i 0.283934 0.300952i
\(203\) −0.513913 + 0.544716i −0.0360696 + 0.0382316i
\(204\) 0 0
\(205\) 2.47028 3.31817i 0.172532 0.231751i
\(206\) −3.26035 + 1.18667i −0.227160 + 0.0826793i
\(207\) 0 0
\(208\) 7.21098 + 2.62458i 0.499991 + 0.181982i
\(209\) 18.6992 12.2986i 1.29345 0.850714i
\(210\) 0 0
\(211\) −4.34616 5.83790i −0.299202 0.401898i 0.626943 0.779065i \(-0.284306\pi\)
−0.926145 + 0.377167i \(0.876898\pi\)
\(212\) −12.6038 8.28968i −0.865635 0.569337i
\(213\) 0 0
\(214\) −1.93147 + 6.45155i −0.132032 + 0.441019i
\(215\) 0.649223 1.12449i 0.0442766 0.0766894i
\(216\) 0 0
\(217\) −5.96626 10.3339i −0.405016 0.701508i
\(218\) 8.38611 1.98754i 0.567979 0.134614i
\(219\) 0 0
\(220\) −7.95581 + 3.99556i −0.536381 + 0.269381i
\(221\) −0.0642036 + 0.148841i −0.00431880 + 0.0100121i
\(222\) 0 0
\(223\) −0.0435199 0.747208i −0.00291431 0.0500367i 0.996537 0.0831449i \(-0.0264964\pi\)
−0.999452 + 0.0331082i \(0.989459\pi\)
\(224\) 1.46684 + 8.31884i 0.0980071 + 0.555826i
\(225\) 0 0
\(226\) 0.675242 3.82949i 0.0449164 0.254734i
\(227\) 7.55453 + 0.882998i 0.501412 + 0.0586067i 0.363040 0.931774i \(-0.381739\pi\)
0.138372 + 0.990380i \(0.455813\pi\)
\(228\) 0 0
\(229\) 4.47466 + 14.9464i 0.295694 + 0.987686i 0.968739 + 0.248084i \(0.0798009\pi\)
−0.673045 + 0.739602i \(0.735014\pi\)
\(230\) −0.0649224 0.0153869i −0.00428085 0.00101458i
\(231\) 0 0
\(232\) −0.486715 1.12833i −0.0319544 0.0740786i
\(233\) 12.6227 + 10.5917i 0.826940 + 0.693885i 0.954586 0.297935i \(-0.0962979\pi\)
−0.127647 + 0.991820i \(0.540742\pi\)
\(234\) 0 0
\(235\) 4.05310 3.40095i 0.264395 0.221854i
\(236\) −7.78558 3.91007i −0.506798 0.254524i
\(237\) 0 0
\(238\) −0.0303280 + 0.00354483i −0.00196587 + 0.000229777i
\(239\) 1.12492 19.3142i 0.0727653 1.24933i −0.742342 0.670021i \(-0.766285\pi\)
0.815107 0.579310i \(-0.196678\pi\)
\(240\) 0 0
\(241\) −3.95611 4.19324i −0.254836 0.270110i 0.587308 0.809364i \(-0.300188\pi\)
−0.842143 + 0.539254i \(0.818706\pi\)
\(242\) −17.9062 −1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) −3.14982 3.33862i −0.201235 0.213296i
\(246\) 0 0
\(247\) 1.11552 19.1528i 0.0709789 1.21866i
\(248\) 19.4475 2.27309i 1.23492 0.144341i
\(249\) 0 0
\(250\) −5.19572 2.60939i −0.328607 0.165032i
\(251\) 14.4752 12.1462i 0.913668 0.766659i −0.0591449 0.998249i \(-0.518837\pi\)
0.972813 + 0.231591i \(0.0743930\pi\)
\(252\) 0 0
\(253\) 0.490197 + 0.411324i 0.0308184 + 0.0258597i
\(254\) −2.84116 6.58656i −0.178271 0.413278i
\(255\) 0 0
\(256\) −9.09777 2.15621i −0.568611 0.134763i
\(257\) −5.19708 17.3594i −0.324185 1.08285i −0.952410 0.304821i \(-0.901403\pi\)
0.628225 0.778032i \(-0.283782\pi\)
\(258\) 0 0
\(259\) −8.37289 0.978650i −0.520266 0.0608104i
\(260\) −1.32520 + 7.51557i −0.0821853 + 0.466096i
\(261\) 0 0
\(262\) 1.67595 + 9.50479i 0.103541 + 0.587208i
\(263\) 0.504066 + 8.65448i 0.0310821 + 0.533658i 0.977529 + 0.210800i \(0.0676068\pi\)
−0.946447 + 0.322859i \(0.895356\pi\)
\(264\) 0 0
\(265\) 3.65433 8.47169i 0.224484 0.520412i
\(266\) 3.22953 1.62193i 0.198015 0.0994470i
\(267\) 0 0
\(268\) −4.10812 + 0.973641i −0.250943 + 0.0594746i
\(269\) 5.59305 + 9.68745i 0.341014 + 0.590654i 0.984621 0.174702i \(-0.0558962\pi\)
−0.643607 + 0.765356i \(0.722563\pi\)
\(270\) 0 0
\(271\) 5.08705 8.81103i 0.309016 0.535232i −0.669131 0.743144i \(-0.733334\pi\)
0.978147 + 0.207912i \(0.0666669\pi\)
\(272\) −0.0129596 + 0.0432880i −0.000785790 + 0.00262472i
\(273\) 0 0
\(274\) −3.01667 1.98409i −0.182243 0.119863i
\(275\) 15.0238 + 20.1805i 0.905970 + 1.21693i
\(276\) 0 0
\(277\) 1.08784 0.715482i 0.0653618 0.0429892i −0.516408 0.856343i \(-0.672731\pi\)
0.581769 + 0.813354i \(0.302361\pi\)
\(278\) −2.60319 0.947485i −0.156129 0.0568264i
\(279\) 0 0
\(280\) −3.10276 + 1.12931i −0.185425 + 0.0674894i
\(281\) 3.82768 5.14146i 0.228340 0.306714i −0.673157 0.739500i \(-0.735062\pi\)
0.901497 + 0.432786i \(0.142469\pi\)
\(282\) 0 0
\(283\) 13.1190 13.9053i 0.779842 0.826584i −0.208629 0.977995i \(-0.566900\pi\)
0.988471 + 0.151411i \(0.0483816\pi\)
\(284\) −2.29948 + 2.43731i −0.136449 + 0.144628i
\(285\) 0 0
\(286\) −12.9760 + 17.4297i −0.767284 + 1.03064i
\(287\) −6.02001 + 2.19110i −0.355350 + 0.129337i
\(288\) 0 0
\(289\) 15.9739 + 5.81402i 0.939640 + 0.342001i
\(290\) 0.273373 0.179800i 0.0160530 0.0105582i
\(291\) 0 0
\(292\) 7.67228 + 10.3057i 0.448986 + 0.603093i
\(293\) −1.52565 1.00344i −0.0891296 0.0586214i 0.504162 0.863609i \(-0.331801\pi\)
−0.593291 + 0.804988i \(0.702172\pi\)
\(294\) 0 0
\(295\) 1.52819 5.10452i 0.0889749 0.297197i
\(296\) 6.91625 11.9793i 0.401999 0.696283i
\(297\) 0 0
\(298\) 6.38629 + 11.0614i 0.369948 + 0.640769i
\(299\) 0.533746 0.126500i 0.0308673 0.00731569i
\(300\) 0 0
\(301\) −1.79695 + 0.902464i −0.103575 + 0.0520171i
\(302\) 0.825565 1.91387i 0.0475059 0.110131i
\(303\) 0 0
\(304\) −0.310963 5.33903i −0.0178349 0.306214i
\(305\) −0.281340 1.59556i −0.0161095 0.0913614i
\(306\) 0 0
\(307\) −2.60207 + 14.7571i −0.148508 + 0.842232i 0.815975 + 0.578087i \(0.196201\pi\)
−0.964483 + 0.264145i \(0.914910\pi\)
\(308\) 13.6941 + 1.60061i 0.780293 + 0.0912031i
\(309\) 0 0
\(310\) 1.49527 + 4.99454i 0.0849255 + 0.283671i
\(311\) −20.1029 4.76447i −1.13993 0.270168i −0.383053 0.923726i \(-0.625127\pi\)
−0.756876 + 0.653558i \(0.773275\pi\)
\(312\) 0 0
\(313\) 8.84187 + 20.4977i 0.499772 + 1.15860i 0.962298 + 0.271996i \(0.0876837\pi\)
−0.462527 + 0.886605i \(0.653057\pi\)
\(314\) 1.77717 + 1.49122i 0.100291 + 0.0841545i
\(315\) 0 0
\(316\) 14.9003 12.5028i 0.838208 0.703340i
\(317\) −10.1518 5.09842i −0.570181 0.286356i 0.140257 0.990115i \(-0.455207\pi\)
−0.710438 + 0.703759i \(0.751503\pi\)
\(318\) 0 0
\(319\) −3.11691 + 0.364315i −0.174514 + 0.0203977i
\(320\) 0.0541799 0.930234i 0.00302875 0.0520016i
\(321\) 0 0
\(322\) 0.0709075 + 0.0751576i 0.00395152 + 0.00418837i
\(323\) 0.112971 0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) −9.15444 9.70314i −0.507017 0.537407i
\(327\) 0 0
\(328\) 0.611225 10.4943i 0.0337493 0.579453i
\(329\) −8.13843 + 0.951245i −0.448686 + 0.0524439i
\(330\) 0 0
\(331\) 12.8748 + 6.46596i 0.707662 + 0.355401i 0.765951 0.642899i \(-0.222268\pi\)
−0.0582896 + 0.998300i \(0.518565\pi\)
\(332\) 21.0571 17.6690i 1.15566 0.969714i
\(333\) 0 0
\(334\) −10.0259 8.41273i −0.548593 0.460324i
\(335\) −1.02272 2.37092i −0.0558769 0.129537i
\(336\) 0 0
\(337\) −9.64054 2.28485i −0.525154 0.124464i −0.0405164 0.999179i \(-0.512900\pi\)
−0.484637 + 0.874715i \(0.661048\pi\)
\(338\) 2.81937 + 9.41736i 0.153354 + 0.512237i
\(339\) 0 0
\(340\) −0.0446337 0.00521693i −0.00242060 0.000282928i
\(341\) 8.68281 49.2427i 0.470201 2.66664i
\(342\) 0 0
\(343\) 3.00981 + 17.0695i 0.162514 + 0.921665i
\(344\) −0.191853 3.29398i −0.0103440 0.177600i
\(345\) 0 0
\(346\) −1.65286 + 3.83176i −0.0888583 + 0.205997i
\(347\) 3.01890 1.51615i 0.162063 0.0813912i −0.365919 0.930647i \(-0.619245\pi\)
0.527982 + 0.849256i \(0.322949\pi\)
\(348\) 0 0
\(349\) −1.29409 + 0.306704i −0.0692708 + 0.0164175i −0.265105 0.964220i \(-0.585407\pi\)
0.195834 + 0.980637i \(0.437259\pi\)
\(350\) 2.03123 + 3.51819i 0.108574 + 0.188055i
\(351\) 0 0
\(352\) −17.6986 + 30.6549i −0.943340 + 1.63391i
\(353\) 3.38243 11.2981i 0.180029 0.601338i −0.819569 0.572981i \(-0.805787\pi\)
0.999598 0.0283577i \(-0.00902775\pi\)
\(354\) 0 0
\(355\) −1.71220 1.12613i −0.0908744 0.0597690i
\(356\) −12.8455 17.2546i −0.680812 0.914490i
\(357\) 0 0
\(358\) 1.95702 1.28715i 0.103432 0.0680280i
\(359\) −27.9195 10.1619i −1.47353 0.536323i −0.524477 0.851425i \(-0.675739\pi\)
−0.949058 + 0.315102i \(0.897961\pi\)
\(360\) 0 0
\(361\) 5.28976 1.92531i 0.278408 0.101332i
\(362\) 7.70961 10.3558i 0.405208 0.544289i
\(363\) 0 0
\(364\) 8.11038 8.59650i 0.425100 0.450579i
\(365\) −5.39230 + 5.71551i −0.282246 + 0.299163i
\(366\) 0 0
\(367\) −4.79340 + 6.43865i −0.250213 + 0.336095i −0.909429 0.415859i \(-0.863481\pi\)
0.659216 + 0.751954i \(0.270888\pi\)
\(368\) 0.143687 0.0522978i 0.00749021 0.00272621i
\(369\) 0 0
\(370\) 3.46107 + 1.25973i 0.179933 + 0.0654901i
\(371\) −11.9377 + 7.85152i −0.619772 + 0.407631i
\(372\) 0 0
\(373\) −1.78779 2.40142i −0.0925681 0.124341i 0.753426 0.657533i \(-0.228400\pi\)
−0.845994 + 0.533192i \(0.820992\pi\)
\(374\) −0.106903 0.0703110i −0.00552781 0.00363570i
\(375\) 0 0
\(376\) 3.85612 12.8803i 0.198864 0.664252i
\(377\) −1.34501 + 2.32963i −0.0692716 + 0.119982i
\(378\) 0 0
\(379\) 11.0537 + 19.1456i 0.567792 + 0.983444i 0.996784 + 0.0801362i \(0.0255355\pi\)
−0.428992 + 0.903308i \(0.641131\pi\)
\(380\) 5.17526 1.22656i 0.265485 0.0629212i
\(381\) 0 0
\(382\) −12.0497 + 6.05156i −0.616514 + 0.309625i
\(383\) −5.68677 + 13.1834i −0.290580 + 0.673641i −0.999499 0.0316494i \(-0.989924\pi\)
0.708919 + 0.705290i \(0.249183\pi\)
\(384\) 0 0
\(385\) 0.490290 + 8.41795i 0.0249875 + 0.429018i
\(386\) 1.25926 + 7.14162i 0.0640947 + 0.363499i
\(387\) 0 0
\(388\) 1.87760 10.6484i 0.0953206 0.540590i
\(389\) −18.1068 2.11638i −0.918049 0.107305i −0.356073 0.934458i \(-0.615885\pi\)
−0.561976 + 0.827154i \(0.689959\pi\)
\(390\) 0 0
\(391\) 0.000926370 0.00309429i 4.68485e−5 0.000156485i
\(392\) −11.3495 2.68987i −0.573234 0.135859i
\(393\) 0 0
\(394\) −6.35216 14.7260i −0.320017 0.741884i
\(395\) 9.11293 + 7.64665i 0.458521 + 0.384745i
\(396\) 0 0
\(397\) 1.06250 0.891545i 0.0533255 0.0447454i −0.615735 0.787953i \(-0.711141\pi\)
0.669061 + 0.743208i \(0.266697\pi\)
\(398\) −5.28184 2.65264i −0.264754 0.132965i
\(399\) 0 0
\(400\) 5.97117 0.697930i 0.298558 0.0348965i
\(401\) 1.28420 22.0489i 0.0641301 1.10107i −0.800719 0.599040i \(-0.795549\pi\)
0.864849 0.502031i \(-0.167414\pi\)
\(402\) 0 0
\(403\) −29.4139 31.1769i −1.46521 1.55303i
\(404\) −13.4026 −0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) −24.2414 25.6944i −1.20160 1.27362i
\(408\) 0 0
\(409\) −0.0335717 + 0.576405i −0.00166002 + 0.0285014i −0.999036 0.0438882i \(-0.986025\pi\)
0.997376 + 0.0723896i \(0.0230625\pi\)
\(410\) 2.78015 0.324952i 0.137302 0.0160483i
\(411\) 0 0
\(412\) 7.06660 + 3.54898i 0.348147 + 0.174846i
\(413\) −6.32124 + 5.30415i −0.311048 + 0.261000i
\(414\) 0 0
\(415\) 12.8784 + 10.8062i 0.632175 + 0.530458i
\(416\) 12.0181 + 27.8612i 0.589237 + 1.36601i
\(417\) 0 0
\(418\) 14.7357 + 3.49243i 0.720748 + 0.170820i
\(419\) −3.62277 12.1009i −0.176984 0.591167i −0.999741 0.0227734i \(-0.992750\pi\)
0.822757 0.568393i \(-0.192435\pi\)
\(420\) 0 0
\(421\) −21.2812 2.48741i −1.03718 0.121229i −0.419578 0.907719i \(-0.637822\pi\)
−0.617602 + 0.786490i \(0.711896\pi\)
\(422\) 0.855151 4.84980i 0.0416281 0.236085i
\(423\) 0 0
\(424\) −4.07126 23.0892i −0.197718 1.12131i
\(425\) 0.00738389 + 0.126777i 0.000358171 + 0.00614956i
\(426\) 0 0
\(427\) −0.993798 + 2.30388i −0.0480932 + 0.111493i
\(428\) 13.7163 6.88856i 0.663000 0.332971i
\(429\) 0 0
\(430\) 0.854896 0.202614i 0.0412267 0.00977092i
\(431\) 2.23566 + 3.87227i 0.107688 + 0.186521i 0.914833 0.403832i \(-0.132322\pi\)
−0.807145 + 0.590353i \(0.798989\pi\)
\(432\) 0 0
\(433\) −4.56671 + 7.90977i −0.219462 + 0.380119i −0.954644 0.297751i \(-0.903763\pi\)
0.735182 + 0.677870i \(0.237097\pi\)
\(434\) 2.31565 7.73481i 0.111155 0.371283i
\(435\) 0 0
\(436\) −16.4112 10.7938i −0.785955 0.516930i
\(437\) −0.228287 0.306642i −0.0109204 0.0146687i
\(438\) 0 0
\(439\) −2.38000 + 1.56535i −0.113591 + 0.0747101i −0.605033 0.796200i \(-0.706840\pi\)
0.491442 + 0.870910i \(0.336470\pi\)
\(440\) −13.0019 4.73230i −0.619841 0.225604i
\(441\) 0 0
\(442\) −0.103067 + 0.0375133i −0.00490239 + 0.00178432i
\(443\) 7.38778 9.92352i 0.351004 0.471480i −0.591197 0.806527i \(-0.701345\pi\)
0.942202 + 0.335046i \(0.108752\pi\)
\(444\) 0 0
\(445\) 9.02822 9.56936i 0.427979 0.453631i
\(446\) 0.347544 0.368376i 0.0164567 0.0174431i
\(447\) 0 0
\(448\) −0.861730 + 1.15750i −0.0407129 + 0.0546869i
\(449\) 16.1389 5.87407i 0.761640 0.277214i 0.0681449 0.997675i \(-0.478292\pi\)
0.693495 + 0.720461i \(0.256070\pi\)
\(450\) 0 0
\(451\) −25.2264 9.18166i −1.18786 0.432347i
\(452\) −7.40461 + 4.87009i −0.348284 + 0.229070i
\(453\) 0 0
\(454\) 3.07327 + 4.12812i 0.144236 + 0.193742i
\(455\) 6.03902 + 3.97193i 0.283114 + 0.186207i
\(456\) 0 0
\(457\) −0.253753 + 0.847594i −0.0118701 + 0.0396488i −0.963719 0.266917i \(-0.913995\pi\)
0.951849 + 0.306566i \(0.0991801\pi\)
\(458\) −5.27840 + 9.14246i −0.246644 + 0.427199i
\(459\) 0 0
\(460\) 0.0760334 + 0.131694i 0.00354507 + 0.00614025i
\(461\) 14.8212 3.51270i 0.690294 0.163603i 0.129526 0.991576i \(-0.458654\pi\)
0.560768 + 0.827973i \(0.310506\pi\)
\(462\) 0 0
\(463\) 30.0591 15.0962i 1.39696 0.701582i 0.418542 0.908197i \(-0.362541\pi\)
0.978422 + 0.206615i \(0.0662449\pi\)
\(464\) −0.297009 + 0.688543i −0.0137883 + 0.0319648i
\(465\) 0 0
\(466\) 0.648284 + 11.1306i 0.0300312 + 0.515616i
\(467\) −1.91520 10.8616i −0.0886249 0.502617i −0.996515 0.0834093i \(-0.973419\pi\)
0.907890 0.419207i \(-0.137692\pi\)
\(468\) 0 0
\(469\) −0.694378 + 3.93802i −0.0320634 + 0.181841i
\(470\) 3.55585 + 0.415619i 0.164019 + 0.0191711i
\(471\) 0 0
\(472\) −3.88340 12.9714i −0.178748 0.597059i
\(473\) −8.19915 1.94323i −0.376997 0.0893500i
\(474\) 0 0
\(475\) −5.95315 13.8010i −0.273149 0.633232i
\(476\) 0.0533110 + 0.0447333i 0.00244351 + 0.00205035i
\(477\) 0 0
\(478\) 10.0282 8.41465i 0.458679 0.384877i
\(479\) 10.6546 + 5.35095i 0.486822 + 0.244491i 0.675241 0.737598i \(-0.264040\pi\)
−0.188418 + 0.982089i \(0.560336\pi\)
\(480\) 0 0
\(481\) −30.0759 + 3.51537i −1.37134 + 0.160287i
\(482\) 0.226809 3.89415i 0.0103308 0.177374i
\(483\) 0 0
\(484\) 28.0062 + 29.6848i 1.27301 + 1.34931i
\(485\) 6.61294 0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) −2.82534 2.99469i −0.127897 0.135563i
\(489\) 0 0
\(490\) 0.180583 3.10049i 0.00815791 0.140066i
\(491\) 4.21090 0.492183i 0.190035 0.0222119i −0.0205429 0.999789i \(-0.506539\pi\)
0.210578 + 0.977577i \(0.432465\pi\)
\(492\) 0 0
\(493\) −0.0141551 0.00710897i −0.000637515 0.000320172i
\(494\) 9.94438 8.34432i 0.447419 0.375429i
\(495\) 0 0
\(496\) −9.15292 7.68021i −0.410978 0.344852i
\(497\) 1.25705 + 2.91417i 0.0563863 + 0.130718i
\(498\) 0 0
\(499\) 36.3957 + 8.62595i 1.62930 + 0.386151i 0.940766 0.339056i \(-0.110108\pi\)
0.688531 + 0.725207i \(0.258256\pi\)
\(500\) 3.80053 + 12.6946i 0.169965 + 0.567722i
\(501\) 0 0
\(502\) 12.6994 + 1.48434i 0.566800 + 0.0662494i
\(503\) −0.0594062 + 0.336909i −0.00264879 + 0.0150220i −0.986104 0.166132i \(-0.946872\pi\)
0.983455 + 0.181154i \(0.0579833\pi\)
\(504\) 0 0
\(505\) −1.42338 8.07239i −0.0633396 0.359217i
\(506\) 0.0251759 + 0.432253i 0.00111920 + 0.0192160i
\(507\) 0 0
\(508\) −6.47544 + 15.0118i −0.287301 + 0.666039i
\(509\) 5.58869 2.80675i 0.247714 0.124407i −0.320610 0.947211i \(-0.603888\pi\)
0.568325 + 0.822804i \(0.307592\pi\)
\(510\) 0 0
\(511\) 11.8409 2.80634i 0.523810 0.124145i
\(512\) 7.73462 + 13.3968i 0.341825 + 0.592059i
\(513\) 0 0
\(514\) 6.13058 10.6185i 0.270408 0.468361i
\(515\) −1.38707 + 4.63313i −0.0611216 + 0.204160i
\(516\) 0 0
\(517\) −28.6870 18.8677i −1.26165 0.829802i
\(518\) −3.40619 4.57530i −0.149659 0.201027i
\(519\) 0 0
\(520\) −9.90937 + 6.51749i −0.434554 + 0.285811i
\(521\) −29.5418 10.7523i −1.29425 0.471068i −0.399129 0.916895i \(-0.630687\pi\)
−0.895119 + 0.445827i \(0.852910\pi\)
\(522\) 0 0
\(523\) −20.1279 + 7.32597i −0.880134 + 0.320342i −0.742264 0.670108i \(-0.766248\pi\)
−0.137870 + 0.990450i \(0.544026\pi\)
\(524\) 13.1357 17.6443i 0.573836 0.770796i
\(525\) 0 0
\(526\) −4.02541 + 4.26669i −0.175516 + 0.186036i
\(527\) 0.173201 0.183583i 0.00754477 0.00799698i
\(528\) 0 0
\(529\) −13.7281 + 18.4401i −0.596875 + 0.801742i
\(530\) 5.86635 2.13518i 0.254818 0.0927461i
\(531\) 0 0
\(532\) −7.73997 2.81712i −0.335570 0.122138i
\(533\) −19.2262 + 12.6453i −0.832781 + 0.547729i
\(534\) 0 0
\(535\) 5.60568 + 7.52974i 0.242355 + 0.325539i
\(536\) −5.48208 3.60562i −0.236790 0.155739i
\(537\) 0 0
\(538\) −2.17080 + 7.25097i −0.0935898 + 0.312612i
\(539\) −14.8933 + 25.7960i −0.641500 + 1.11111i
\(540\) 0 0
\(541\) 0.188033 + 0.325682i 0.00808416 + 0.0140022i 0.870039 0.492983i \(-0.164093\pi\)
−0.861955 + 0.506985i \(0.830760\pi\)
\(542\) 6.69862 1.58760i 0.287731 0.0681934i
\(543\) 0 0
\(544\) −0.159666 + 0.0801872i −0.00684562 + 0.00343800i
\(545\) 4.75823 11.0308i 0.203820 0.472508i
\(546\) 0 0
\(547\) 0.388245 + 6.66590i 0.0166001 + 0.285013i 0.996385 + 0.0849573i \(0.0270754\pi\)
−0.979784 + 0.200056i \(0.935888\pi\)
\(548\) 1.42899 + 8.10422i 0.0610436 + 0.346195i
\(549\) 0 0
\(550\) −2.95609 + 16.7648i −0.126048 + 0.714854i
\(551\) 1.86208 + 0.217646i 0.0793273 + 0.00927203i
\(552\) 0 0
\(553\) −5.28374 17.6489i −0.224688 0.750509i
\(554\) 0.857262 + 0.203175i 0.0364216 + 0.00863207i
\(555\) 0 0
\(556\) 2.50078 + 5.79747i 0.106057 + 0.245867i
\(557\) −2.30382 1.93313i −0.0976160 0.0819095i 0.592674 0.805443i \(-0.298072\pi\)
−0.690290 + 0.723533i \(0.742517\pi\)
\(558\) 0 0
\(559\) −5.53318 + 4.64289i −0.234028 + 0.196373i
\(560\) 1.80060 + 0.904293i 0.0760890 + 0.0382134i
\(561\) 0 0
\(562\) 4.30780 0.503510i 0.181714 0.0212393i
\(563\) −1.90779 + 32.7554i −0.0804036 + 1.38048i 0.681040 + 0.732246i \(0.261528\pi\)
−0.761444 + 0.648231i \(0.775509\pi\)
\(564\) 0 0
\(565\) −3.71965 3.94260i −0.156487 0.165866i
\(566\) 12.9354 0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) 17.9432 + 19.0186i 0.752217 + 0.797303i 0.984507 0.175343i \(-0.0561035\pi\)
−0.232291 + 0.972646i \(0.574622\pi\)
\(570\) 0 0
\(571\) 0.0465596 0.799398i 0.00194846 0.0334538i −0.997194 0.0748636i \(-0.976148\pi\)
0.999142 + 0.0414098i \(0.0131849\pi\)
\(572\) 49.1899 5.74947i 2.05673 0.240398i
\(573\) 0 0
\(574\) −3.87371 1.94545i −0.161685 0.0812015i
\(575\) 0.329195 0.276227i 0.0137284 0.0115195i
\(576\) 0 0
\(577\) −32.3968 27.1841i −1.34869 1.13169i −0.979300 0.202416i \(-0.935121\pi\)
−0.369395 0.929273i \(-0.620435\pi\)
\(578\) 4.55579 + 10.5615i 0.189496 + 0.439301i
\(579\) 0 0
\(580\) −0.725640 0.171980i −0.0301306 0.00714107i
\(581\) −7.46699 24.9415i −0.309783 1.03475i
\(582\) 0 0
\(583\) −59.4690 6.95093i −2.46296 0.287878i
\(584\) −3.46737 + 19.6644i −0.143481 + 0.813721i
\(585\) 0 0
\(586\) −0.214557 1.21681i −0.00886326 0.0502661i
\(587\) 0.775932 + 13.3222i 0.0320261 + 0.549868i 0.975716 + 0.219037i \(0.0702917\pi\)
−0.943690 + 0.330830i \(0.892671\pi\)
\(588\) 0 0
\(589\) −11.8317 + 27.4289i −0.487516 + 1.13019i
\(590\) 3.22189 1.61809i 0.132643 0.0666158i
\(591\) 0 0
\(592\) −8.21350 + 1.94664i −0.337573 + 0.0800062i
\(593\) 17.2045 + 29.7990i 0.706503 + 1.22370i 0.966147 + 0.257994i \(0.0830615\pi\)
−0.259644 + 0.965704i \(0.583605\pi\)
\(594\) 0 0
\(595\) −0.0212812 + 0.0368601i −0.000872443 + 0.00151112i
\(596\) 8.34903 27.8877i 0.341989 1.14232i
\(597\) 0 0
\(598\) 0.310098 + 0.203954i 0.0126808 + 0.00834032i
\(599\) 23.9225 + 32.1334i 0.977445 + 1.31294i 0.949647 + 0.313323i \(0.101442\pi\)
0.0277982 + 0.999614i \(0.491150\pi\)
\(600\) 0 0
\(601\) 36.0814 23.7311i 1.47179 0.968013i 0.475708 0.879603i \(-0.342192\pi\)
0.996084 0.0884094i \(-0.0281784\pi\)
\(602\) −1.27856 0.465357i −0.0521101 0.0189665i
\(603\) 0 0
\(604\) −4.46403 + 1.62477i −0.181639 + 0.0661111i
\(605\) −14.9049 + 20.0207i −0.605970 + 0.813958i
\(606\) 0 0
\(607\) −12.0916 + 12.8163i −0.490782 + 0.520199i −0.924671 0.380768i \(-0.875660\pi\)
0.433889 + 0.900967i \(0.357141\pi\)
\(608\) 14.5118 15.3816i 0.588530 0.623805i
\(609\) 0 0
\(610\) 0.654648 0.879345i 0.0265059 0.0356036i
\(611\) −27.6577 + 10.0666i −1.11891 + 0.407250i
\(612\) 0 0
\(613\) 25.9691 + 9.45198i 1.04888 + 0.381762i 0.808241 0.588852i \(-0.200420\pi\)
0.240641 + 0.970614i \(0.422642\pi\)
\(614\) −8.47123 + 5.57161i −0.341871 + 0.224852i
\(615\) 0 0
\(616\) 12.7957 + 17.1876i 0.515554 + 0.692509i
\(617\) 3.68414 + 2.42310i 0.148318 + 0.0975503i 0.621499 0.783415i \(-0.286524\pi\)
−0.473181 + 0.880965i \(0.656894\pi\)
\(618\) 0 0
\(619\) 7.17467 23.9651i 0.288374 0.963237i −0.683936 0.729542i \(-0.739733\pi\)
0.972310 0.233695i \(-0.0750816\pi\)
\(620\) 5.94125 10.2905i 0.238606 0.413278i
\(621\) 0 0
\(622\) −6.98959 12.1063i −0.280257 0.485420i
\(623\) −19.8249 + 4.69860i −0.794270 + 0.188245i
\(624\) 0 0
\(625\) 11.1237 5.58651i 0.444946 0.223460i
\(626\) −5.98275 + 13.8696i −0.239119 + 0.554339i
\(627\) 0 0
\(628\) −0.307439 5.27852i −0.0122681 0.210636i
\(629\) −0.0309624 0.175596i −0.00123455 0.00700148i
\(630\) 0 0
\(631\) 2.45133 13.9022i 0.0975857 0.553436i −0.896339 0.443370i \(-0.853783\pi\)
0.993924 0.110066i \(-0.0351062\pi\)
\(632\) 30.0255 + 3.50948i 1.19435 + 0.139600i
\(633\) 0 0
\(634\) −2.20457 7.36378i −0.0875547 0.292453i
\(635\) −9.72931 2.30589i −0.386096 0.0915064i
\(636\) 0 0
\(637\) 10.1132 + 23.4450i 0.400700 + 0.928926i
\(638\) −1.62660 1.36488i −0.0643978 0.0540362i
\(639\) 0 0
\(640\) −7.87383 + 6.60693i −0.311241 + 0.261162i
\(641\) −30.5703 15.3530i −1.20746 0.606407i −0.272838 0.962060i \(-0.587962\pi\)
−0.934618 + 0.355653i \(0.884258\pi\)
\(642\) 0 0
\(643\) 13.3953 1.56569i 0.528260 0.0617447i 0.152217 0.988347i \(-0.451359\pi\)
0.376043 + 0.926602i \(0.377285\pi\)
\(644\) 0.0136930 0.235100i 0.000539581 0.00926424i
\(645\) 0 0
\(646\) 0.0524565 + 0.0556007i 0.00206387 + 0.00218758i
\(647\) −3.19249 −0.125510 −0.0627548 0.998029i \(-0.519989\pi\)
−0.0627548 + 0.998029i \(0.519989\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) 10.0140 + 10.6143i 0.392783 + 0.416325i
\(651\) 0 0
\(652\) −1.76782 + 30.3523i −0.0692333 + 1.18869i
\(653\) −31.9500 + 3.73442i −1.25030 + 0.146139i −0.715363 0.698753i \(-0.753739\pi\)
−0.534936 + 0.844892i \(0.679664\pi\)
\(654\) 0 0
\(655\) 12.0222 + 6.03779i 0.469748 + 0.235916i
\(656\) −4.91404 + 4.12337i −0.191861 + 0.160991i
\(657\) 0 0
\(658\) −4.24715 3.56378i −0.165571 0.138931i
\(659\) −5.78047 13.4006i −0.225175 0.522015i 0.767751 0.640748i \(-0.221376\pi\)
−0.992926 + 0.118734i \(0.962117\pi\)
\(660\) 0 0
\(661\) −7.58170 1.79690i −0.294894 0.0698912i 0.0805058 0.996754i \(-0.474346\pi\)
−0.375400 + 0.926863i \(0.622495\pi\)
\(662\) 2.79590 + 9.33895i 0.108666 + 0.362969i
\(663\) 0 0
\(664\) 42.4320 + 4.95959i 1.64668 + 0.192470i
\(665\) 0.874754 4.96098i 0.0339215 0.192378i
\(666\) 0 0
\(667\) 0.00930786 + 0.0527875i 0.000360402 + 0.00204394i
\(668\) 1.73442 + 29.7788i 0.0671066 + 1.15218i
\(669\) 0 0
\(670\) 0.692009 1.60426i 0.0267346 0.0619778i
\(671\) −9.39577 + 4.71873i −0.362720 + 0.182165i
\(672\) 0 0
\(673\) 7.80154 1.84900i 0.300727 0.0712737i −0.0774821 0.996994i \(-0.524688\pi\)
0.378209 + 0.925720i \(0.376540\pi\)
\(674\) −3.35193 5.80572i −0.129112 0.223628i
\(675\) 0 0
\(676\) 11.2024 19.4031i 0.430862 0.746274i
\(677\) 2.44329 8.16115i 0.0939031 0.313658i −0.898114 0.439763i \(-0.855062\pi\)
0.992017 + 0.126105i \(0.0402476\pi\)
\(678\) 0 0
\(679\) −8.55635 5.62760i −0.328363 0.215968i
\(680\) −0.0417056 0.0560203i −0.00159934 0.00214828i
\(681\) 0 0
\(682\) 28.2675 18.5918i 1.08242 0.711917i
\(683\) 13.5460 + 4.93034i 0.518323 + 0.188654i 0.587917 0.808921i \(-0.299948\pi\)
−0.0695940 + 0.997575i \(0.522170\pi\)
\(684\) 0 0
\(685\) −4.72942 + 1.72137i −0.180702 + 0.0657701i
\(686\) −7.00350 + 9.40733i −0.267395 + 0.359174i
\(687\) 0 0
\(688\) −1.38175 + 1.46457i −0.0526786 + 0.0558360i
\(689\) −35.2208 + 37.3319i −1.34181 + 1.42223i
\(690\) 0 0
\(691\) 21.7780 29.2530i 0.828475 1.11283i −0.163518 0.986540i \(-0.552284\pi\)
0.991993 0.126294i \(-0.0403084\pi\)
\(692\) 8.93742 3.25296i 0.339750 0.123659i
\(693\) 0 0
\(694\) 2.14799 + 0.781805i 0.0815366 + 0.0296769i
\(695\) −3.22623 + 2.12193i −0.122378 + 0.0804893i
\(696\) 0 0
\(697\) −0.0809176 0.108691i −0.00306497 0.00411697i
\(698\) −0.751843 0.494495i −0.0284577 0.0187169i
\(699\) 0 0
\(700\) 2.65550 8.86998i 0.100368 0.335254i
\(701\) 4.76010 8.24474i 0.179787 0.311399i −0.762021 0.647553i \(-0.775793\pi\)
0.941807 + 0.336153i \(0.109126\pi\)
\(702\) 0 0
\(703\) 10.5517 + 18.2761i 0.397966 + 0.689298i
\(704\) −5.88400 + 1.39453i −0.221761 + 0.0525584i
\(705\) 0 0
\(706\) 7.13118 3.58141i 0.268385 0.134788i
\(707\) −5.02791 + 11.6560i −0.189094 + 0.438369i
\(708\) 0 0
\(709\) −0.695397 11.9395i −0.0261162 0.448398i −0.985865 0.167539i \(-0.946418\pi\)
0.959749 0.280858i \(-0.0906191\pi\)
\(710\) −0.240792 1.36560i −0.00903677 0.0512501i
\(711\) 0 0
\(712\) 5.80535 32.9238i 0.217565 1.23387i
\(713\) −0.848306 0.0991527i −0.0317693 0.00371330i
\(714\) 0 0
\(715\) 8.68698 + 29.0165i 0.324875 + 1.08516i
\(716\) −5.19470 1.23117i −0.194135 0.0460108i
\(717\) 0 0
\(718\) −7.96272 18.4596i −0.297166 0.688908i
\(719\) 16.3766 + 13.7416i 0.610743 + 0.512474i 0.894879 0.446310i \(-0.147262\pi\)
−0.284135 + 0.958784i \(0.591706\pi\)
\(720\) 0 0
\(721\) 5.73749 4.81433i 0.213675 0.179295i
\(722\) 3.40381 + 1.70946i 0.126677 + 0.0636195i
\(723\) 0 0
\(724\) −29.2260 + 3.41603i −1.08617 + 0.126956i
\(725\) −0.122536 + 2.10387i −0.00455088 + 0.0781356i
\(726\) 0 0
\(727\) 5.40837 + 5.73254i 0.200585 + 0.212608i 0.819856 0.572569i \(-0.194053\pi\)
−0.619271 + 0.785177i \(0.712572\pi\)
\(728\) 18.3679 0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) −0.0291875 0.0309369i −0.00107954 0.00114424i
\(732\) 0 0
\(733\) −2.02479 + 34.7644i −0.0747875 + 1.28405i 0.727081 + 0.686551i \(0.240876\pi\)
−0.801869 + 0.597500i \(0.796161\pi\)
\(734\) −5.39466 + 0.630545i −0.199120 + 0.0232738i
\(735\) 0 0
\(736\) 0.540303 + 0.271350i 0.0199158 + 0.0100021i
\(737\) −12.8363 + 10.7709i −0.472829 + 0.396751i
\(738\) 0 0
\(739\) 33.5899 + 28.1853i 1.23563 + 1.03681i 0.997853 + 0.0654916i \(0.0208615\pi\)
0.237772 + 0.971321i \(0.423583\pi\)
\(740\) −3.32491 7.70801i −0.122226 0.283352i
\(741\) 0 0
\(742\) −9.40738 2.22959i −0.345356 0.0818508i
\(743\) 6.12394 + 20.4554i 0.224666 + 0.750435i 0.993784 + 0.111329i \(0.0355106\pi\)
−0.769118 + 0.639107i \(0.779304\pi\)
\(744\) 0 0
\(745\) 17.6835 + 2.06690i 0.647872 + 0.0757254i
\(746\) 0.351765 1.99496i 0.0128790 0.0730407i
\(747\) 0 0
\(748\) 0.0506397 + 0.287192i 0.00185157 + 0.0105008i
\(749\) −0.845286 14.5130i −0.0308861 0.530294i
\(750\) 0 0
\(751\) 1.79352 4.15784i 0.0654464 0.151722i −0.882354 0.470587i \(-0.844042\pi\)
0.947800 + 0.318865i \(0.103302\pi\)
\(752\) −7.33195 + 3.68224i −0.267369 + 0.134278i
\(753\) 0 0
\(754\) −1.77111 + 0.419761i −0.0645000 + 0.0152868i
\(755\) −1.45269 2.51614i −0.0528689 0.0915716i
\(756\) 0 0
\(757\) −15.3969 + 26.6682i −0.559610 + 0.969273i 0.437919 + 0.899014i \(0.355716\pi\)
−0.997529 + 0.0702583i \(0.977618\pi\)
\(758\) −4.29022 + 14.3303i −0.155828 + 0.520501i
\(759\) 0 0
\(760\) 6.90613 + 4.54224i 0.250512 + 0.164764i
\(761\) 2.13712 + 2.87064i 0.0774704 + 0.104061i 0.839169 0.543871i \(-0.183042\pi\)
−0.761699 + 0.647931i \(0.775634\pi\)
\(762\) 0 0
\(763\) −15.5438 + 10.2233i −0.562723 + 0.370109i
\(764\) 28.8785 + 10.5109i 1.04479 + 0.380271i
\(765\) 0 0
\(766\) −9.12904 + 3.32270i −0.329846 + 0.120054i
\(767\) −17.7003 + 23.7757i −0.639122 + 0.858489i
\(768\) 0 0
\(769\) 10.0226 10.6233i 0.361423 0.383085i −0.520989 0.853563i \(-0.674437\pi\)
0.882412 + 0.470478i \(0.155918\pi\)
\(770\) −3.91539 + 4.15008i −0.141101 + 0.149558i
\(771\) 0 0
\(772\) 9.86979 13.2574i 0.355221 0.477145i
\(773\) 18.7983 6.84203i 0.676129 0.246091i 0.0189442 0.999821i \(-0.493970\pi\)
0.657184 + 0.753730i \(0.271747\pi\)
\(774\) 0 0
\(775\) −31.5543 11.4848i −1.13346 0.412547i
\(776\) 14.0400 9.23427i 0.504007 0.331491i
\(777\) 0 0
\(778\) −7.36603 9.89429i −0.264085 0.354728i
\(779\) 13.3993 + 8.81289i 0.480081 + 0.315754i
\(780\) 0 0
\(781\) −3.81427 + 12.7406i −0.136485 + 0.455893i
\(782\) −0.00109277 + 0.00189273i −3.90772e−5 + 6.76838e-5i
\(783\) 0 0
\(784\) 3.55882 + 6.16407i 0.127101 + 0.220145i
\(785\) 3.14661 0.745760i 0.112307 0.0266173i
\(786\) 0 0
\(787\) −12.1043 + 6.07901i −0.431472 + 0.216693i −0.651261 0.758854i \(-0.725760\pi\)
0.219789 + 0.975548i \(0.429463\pi\)
\(788\) −14.4775 + 33.5627i −0.515741 + 1.19562i
\(789\) 0 0
\(790\) 0.468028 + 8.03573i 0.0166517 + 0.285898i
\(791\) 1.45763 + 8.26666i 0.0518275 + 0.293929i
\(792\) 0 0
\(793\) −1.56505 + 8.87585i −0.0555766 + 0.315191i
\(794\) 0.932151 + 0.108953i 0.0330808 + 0.00386659i
\(795\) 0 0
\(796\) 3.86352 + 12.9050i 0.136939 + 0.457407i
\(797\) 29.1913 + 6.91847i 1.03401 + 0.245065i 0.712375 0.701799i \(-0.247620\pi\)
0.321635 + 0.946864i \(0.395768\pi\)
\(798\) 0 0
\(799\) −0.0686454 0.159138i −0.00242850 0.00562990i
\(800\) 18.2098 + 15.2799i 0.643814 + 0.540225i
\(801\) 0 0
\(802\) 11.4481 9.60610i 0.404247 0.339203i
\(803\) 45.5689 + 22.8856i 1.60809 + 0.807614i
\(804\) 0 0
\(805\) 0.143055 0.0167208i 0.00504204 0.000589330i
\(806\) 1.68633 28.9532i 0.0593985 1.01983i
\(807\) 0 0
\(808\) −14.2942 15.1510i −0.502869 0.533010i
\(809\) −48.8577 −1.71774 −0.858872 0.512190i \(-0.828834\pi\)
−0.858872 + 0.512190i \(0.828834\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) 0.792537 + 0.840040i 0.0278126 + 0.0294796i
\(813\) 0 0
\(814\) 1.38979 23.8617i 0.0487120 0.836352i
\(815\) −18.4690 + 2.15872i −0.646941 + 0.0756165i
\(816\) 0 0
\(817\) 4.49851 + 2.25924i 0.157383 + 0.0790407i
\(818\) −0.299277 + 0.251123i −0.0104640 + 0.00878032i
\(819\) 0 0
\(820\) −4.88698 4.10067i −0.170661 0.143201i
\(821\) −12.7718 29.6084i −0.445740 1.03334i −0.981930 0.189244i \(-0.939396\pi\)
0.536190 0.844097i \(-0.319863\pi\)
\(822\) 0 0
\(823\) −32.1897 7.62910i −1.12206 0.265934i −0.372608 0.927989i \(-0.621536\pi\)
−0.749455 + 0.662055i \(0.769684\pi\)
\(824\) 3.52477 + 11.7736i 0.122791 + 0.410151i
\(825\) 0 0
\(826\) −5.54573 0.648203i −0.192961 0.0225539i
\(827\) −6.93056 + 39.3051i −0.240999 + 1.36677i 0.588605 + 0.808421i \(0.299677\pi\)
−0.829604 + 0.558352i \(0.811434\pi\)
\(828\) 0 0
\(829\) −3.03189 17.1947i −0.105302 0.597198i −0.991099 0.133125i \(-0.957499\pi\)
0.885797 0.464073i \(-0.153612\pi\)
\(830\) 0.661417 + 11.3561i 0.0229581 + 0.394176i
\(831\) 0 0
\(832\) −2.05309 + 4.75959i −0.0711779 + 0.165009i
\(833\) −0.134358 + 0.0674772i −0.00465523 + 0.00233795i
\(834\) 0 0
\(835\) −17.7516 + 4.20721i −0.614320 + 0.145596i
\(836\) −17.2576 29.8911i −0.596868 1.03381i
\(837\) 0 0
\(838\) 4.27349 7.40191i 0.147625 0.255695i
\(839\) −11.3246 + 37.8267i −0.390967 + 1.30592i 0.505506 + 0.862823i \(0.331306\pi\)
−0.896473 + 0.443099i \(0.853879\pi\)
\(840\) 0 0
\(841\) 24.0095 + 15.7913i 0.827915 + 0.544528i
\(842\) −8.65741 11.6289i −0.298354 0.400759i
\(843\) 0 0
\(844\) −9.37747 + 6.16766i −0.322786 + 0.212300i
\(845\) 12.8763 + 4.68657i 0.442957 + 0.161223i
\(846\) 0 0
\(847\) 36.3227 13.2204i 1.24806 0.454258i
\(848\) −8.54363 + 11.4761i −0.293389 + 0.394090i
\(849\) 0 0
\(850\) −0.0589669 + 0.0625012i −0.00202255 + 0.00214377i
\(851\) −0.414062 + 0.438881i −0.0141939 + 0.0150446i
\(852\) 0 0
\(853\) −18.7024 + 25.1217i −0.640359 + 0.860151i −0.997259 0.0739915i \(-0.976426\pi\)
0.356900 + 0.934143i \(0.383834\pi\)
\(854\) −1.59536 + 0.580662i −0.0545920 + 0.0198699i
\(855\) 0 0
\(856\) 22.4160 + 8.15875i 0.766162 + 0.278860i
\(857\) 29.5322 19.4236i 1.00880 0.663498i 0.0663325 0.997798i \(-0.478870\pi\)
0.942467 + 0.334300i \(0.108500\pi\)
\(858\) 0 0
\(859\) 16.8713 + 22.6621i 0.575642 + 0.773221i 0.990625 0.136608i \(-0.0436201\pi\)
−0.414984 + 0.909829i \(0.636213\pi\)
\(860\) −1.67299 1.10034i −0.0570485 0.0375214i
\(861\) 0 0
\(862\) −0.867712 + 2.89836i −0.0295544 + 0.0987186i
\(863\) 1.91089 3.30976i 0.0650475 0.112666i −0.831668 0.555274i \(-0.812613\pi\)
0.896715 + 0.442608i \(0.145947\pi\)
\(864\) 0 0
\(865\) 2.90843 + 5.03755i 0.0988896 + 0.171282i
\(866\) −6.01343 + 1.42521i −0.204345 + 0.0484306i
\(867\) 0 0
\(868\) −16.4445 + 8.25874i −0.558163 + 0.280320i
\(869\) 30.5773 70.8861i 1.03726 2.40465i
\(870\) 0 0
\(871\) 0.835180 + 14.3395i 0.0282990 + 0.485875i
\(872\) −5.30110 30.0640i −0.179518 1.01810i
\(873\) 0 0
\(874\) 0.0449177 0.254741i 0.00151936 0.00861674i
\(875\) 12.4661 + 1.45708i 0.421430 + 0.0492581i
\(876\) 0 0
\(877\) 9.83442 + 32.8493i 0.332085 + 1.10924i 0.947157 + 0.320770i \(0.103942\pi\)
−0.615072 + 0.788471i \(0.710873\pi\)
\(878\) −1.87554 0.444511i −0.0632964 0.0150015i
\(879\) 0 0
\(880\) 3.34424 + 7.75283i 0.112734 + 0.261348i
\(881\) −39.1151 32.8215i −1.31782 1.10578i −0.986762 0.162173i \(-0.948150\pi\)
−0.331059 0.943610i \(-0.607406\pi\)
\(882\) 0 0
\(883\) −30.6669 + 25.7326i −1.03202 + 0.865972i −0.991091 0.133190i \(-0.957478\pi\)
−0.0409344 + 0.999162i \(0.513033\pi\)
\(884\) 0.223391 + 0.112191i 0.00751344 + 0.00377339i
\(885\) 0 0
\(886\) 8.31447 0.971822i 0.279330 0.0326490i
\(887\) 1.33144 22.8599i 0.0447053 0.767560i −0.899240 0.437457i \(-0.855879\pi\)
0.943945 0.330103i \(-0.107084\pi\)
\(888\) 0 0
\(889\) 10.6262 + 11.2632i 0.356393 + 0.377754i
\(890\) 8.90188 0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) 14.0765 + 14.9203i 0.471054 + 0.499288i
\(894\) 0 0
\(895\) 0.189846 3.25952i 0.00634584 0.108954i
\(896\) 15.8103 1.84796i 0.528184 0.0617359i
\(897\) 0 0
\(898\) 10.3849 + 5.21550i 0.346549 + 0.174044i
\(899\) 3.20854 2.69228i 0.107011 0.0897927i
\(900\) 0 0
\(901\) −0.231513 0.194262i −0.00771281 0.00647182i
\(902\) −7.19463 16.6790i −0.239555 0.555351i
\(903\) 0 0
\(904\) −13.4026 3.17649i −0.445765 0.105648i
\(905\) −5.16133 17.2401i −0.171569 0.573079i
\(906\) 0 0
\(907\) 23.7812 + 2.77963i 0.789643 + 0.0922960i 0.501348 0.865246i \(-0.332838\pi\)
0.288295 + 0.957542i \(0.406912\pi\)
\(908\) 2.03683 11.5514i 0.0675944 0.383347i
\(909\) 0 0
\(910\) 0.849285 + 4.81654i 0.0281535 + 0.159667i
\(911\) −1.78989 30.7312i −0.0593016 1.01817i −0.888401 0.459068i \(-0.848183\pi\)
0.829099 0.559101i \(-0.188854\pi\)
\(912\) 0 0
\(913\) 43.2118 100.176i 1.43010 3.31535i
\(914\) −0.534987 + 0.268680i −0.0176958 + 0.00888716i
\(915\) 0 0
\(916\) 23.4120 5.54874i 0.773554 0.183336i
\(917\) −10.4172 18.0431i −0.344006 0.595835i
\(918\) 0 0
\(919\) 21.9894 38.0868i 0.725365 1.25637i −0.233459 0.972367i \(-0.575004\pi\)
0.958824 0.284002i \(-0.0916623\pi\)
\(920\) −0.0677819 + 0.226407i −0.00223470 + 0.00746443i
\(921\) 0 0
\(922\) 8.61090 + 5.66348i 0.283585 + 0.186517i
\(923\) 6.80773 + 9.14436i 0.224079 + 0.300990i
\(924\) 0 0
\(925\) −19.8200 + 13.0358i −0.651676 + 0.428614i
\(926\) 21.3875 + 7.78440i 0.702836 + 0.255811i
\(927\) 0 0
\(928\) −2.78624 + 1.01411i −0.0914627 + 0.0332897i
\(929\) 16.9211 22.7289i 0.555162 0.745712i −0.432616 0.901578i \(-0.642410\pi\)
0.987778 + 0.155866i \(0.0498169\pi\)
\(930\) 0 0
\(931\) 12.2116 12.9435i 0.400219 0.424207i
\(932\) 17.4383 18.4835i 0.571211 0.605448i
\(933\) 0 0
\(934\) 4.45646 5.98607i 0.145820 0.195870i
\(935\) −0.167598 + 0.0610008i −0.00548105 + 0.00199494i
\(936\) 0 0
\(937\) 12.4825 + 4.54327i 0.407787 + 0.148422i 0.537765 0.843095i \(-0.319269\pi\)
−0.129979 + 0.991517i \(0.541491\pi\)
\(938\) −2.26060 + 1.48682i −0.0738111 + 0.0485463i
\(939\) 0 0
\(940\) −4.87250 6.54491i −0.158924 0.213471i
\(941\) −11.7823 7.74934i −0.384092 0.252621i 0.342749 0.939427i \(-0.388642\pi\)
−0.726841 + 0.686806i \(0.759012\pi\)
\(942\) 0 0
\(943\) −0.131511 + 0.439277i −0.00428259 + 0.0143048i
\(944\) −4.13135 + 7.15571i −0.134464 + 0.232898i
\(945\) 0 0
\(946\) −2.85077 4.93768i −0.0926866 0.160538i
\(947\) −23.5484 + 5.58108i −0.765221 + 0.181361i −0.594650 0.803985i \(-0.702709\pi\)
−0.170571 + 0.985345i \(0.554561\pi\)
\(948\) 0 0
\(949\) 39.0619 19.6176i 1.26800 0.636815i
\(950\) 4.02813 9.33826i 0.130690 0.302973i
\(951\) 0 0
\(952\) 0.00628883 + 0.107975i 0.000203822 + 0.00349949i
\(953\) 0.315523 + 1.78942i 0.0102208 + 0.0579650i 0.989492 0.144590i \(-0.0461865\pi\)
−0.979271 + 0.202555i \(0.935075\pi\)
\(954\) 0 0
\(955\) −3.26378 + 18.5098i −0.105613 + 0.598964i
\(956\) −29.6343 3.46375i −0.958442 0.112026i
\(957\) 0 0
\(958\) 2.31377 + 7.72852i 0.0747544 + 0.249697i
\(959\) 7.58419 + 1.79749i 0.244906 + 0.0580438i
\(960\) 0 0
\(961\) 14.1551 + 32.8151i 0.456615 + 1.05855i
\(962\) −15.6955 13.1701i −0.506044 0.424621i
\(963\) 0 0
\(964\) −6.81044 + 5.71464i −0.219350 + 0.184056i
\(965\) 9.03316 + 4.53662i 0.290788 + 0.146039i
\(966\) 0 0
\(967\) 1.88393 0.220200i 0.0605830 0.00708114i −0.0857474 0.996317i \(-0.527328\pi\)
0.146330 + 0.989236i \(0.453254\pi\)
\(968\) −3.68793 + 63.3193i −0.118535 + 2.03516i
\(969\) 0 0
\(970\) 3.07064 + 3.25468i 0.0985922 + 0.104502i
\(971\) 27.1629 0.871698 0.435849 0.900020i \(-0.356448\pi\)
0.435849 + 0.900020i \(0.356448\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) 17.7579 + 18.8223i 0.569000 + 0.603104i
\(975\) 0 0
\(976\) −0.146083 + 2.50815i −0.00467601 + 0.0802839i
\(977\) −25.4358 + 2.97302i −0.813764 + 0.0951154i −0.512787 0.858516i \(-0.671387\pi\)
−0.300977 + 0.953631i \(0.597313\pi\)
\(978\) 0 0
\(979\) −76.2951 38.3168i −2.43840 1.22461i
\(980\) −5.42241 + 4.54994i −0.173213 + 0.145343i
\(981\) 0 0
\(982\) 2.19751 + 1.84393i 0.0701255 + 0.0588423i
\(983\) 11.5033 + 26.6677i 0.366898 + 0.850566i 0.997240 + 0.0742480i \(0.0236556\pi\)
−0.630341 + 0.776318i \(0.717085\pi\)
\(984\) 0 0
\(985\) −21.7524 5.15541i −0.693089 0.164265i
\(986\) −0.00307394 0.0102677i −9.78942e−5 0.000326989i
\(987\) 0 0
\(988\) −29.3866 3.43481i −0.934913 0.109276i
\(989\) −0.0249928 + 0.141741i −0.000794725 + 0.00450711i
\(990\) 0 0
\(991\) 6.28903 + 35.6669i 0.199778 + 1.13300i 0.905449 + 0.424456i \(0.139534\pi\)
−0.705671 + 0.708539i \(0.749354\pi\)
\(992\) −2.74703 47.1646i −0.0872181 1.49748i
\(993\) 0 0
\(994\) −0.850567 + 1.97184i −0.0269784 + 0.0625429i
\(995\) −7.36241 + 3.69754i −0.233404 + 0.117220i
\(996\) 0 0
\(997\) −14.7650 + 3.49936i −0.467611 + 0.110826i −0.457665 0.889125i \(-0.651314\pi\)
−0.00994618 + 0.999951i \(0.503166\pi\)
\(998\) 12.6545 + 21.9182i 0.400571 + 0.693809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.g.a.109.6 144
3.2 odd 2 729.2.g.d.109.3 144
9.2 odd 6 729.2.g.c.352.3 144
9.4 even 3 243.2.g.a.118.3 144
9.5 odd 6 81.2.g.a.76.6 yes 144
9.7 even 3 729.2.g.b.352.6 144
81.11 odd 54 729.2.g.d.622.3 144
81.16 even 27 729.2.g.b.379.6 144
81.31 even 27 6561.2.a.d.1.27 72
81.38 odd 54 81.2.g.a.16.6 144
81.43 even 27 243.2.g.a.208.3 144
81.50 odd 54 6561.2.a.c.1.46 72
81.65 odd 54 729.2.g.c.379.3 144
81.70 even 27 inner 729.2.g.a.622.6 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 81.38 odd 54
81.2.g.a.76.6 yes 144 9.5 odd 6
243.2.g.a.118.3 144 9.4 even 3
243.2.g.a.208.3 144 81.43 even 27
729.2.g.a.109.6 144 1.1 even 1 trivial
729.2.g.a.622.6 144 81.70 even 27 inner
729.2.g.b.352.6 144 9.7 even 3
729.2.g.b.379.6 144 81.16 even 27
729.2.g.c.352.3 144 9.2 odd 6
729.2.g.c.379.3 144 81.65 odd 54
729.2.g.d.109.3 144 3.2 odd 2
729.2.g.d.622.3 144 81.11 odd 54
6561.2.a.c.1.46 72 81.50 odd 54
6561.2.a.d.1.27 72 81.31 even 27