Properties

Label 729.2.g.a.109.4
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.4
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.a.622.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453861 - 0.481064i) q^{2} +(0.0908564 - 1.55994i) q^{4} +(-2.49650 + 0.291799i) q^{5} +(3.67465 + 1.84548i) q^{7} +(-1.80495 + 1.51453i) q^{8} +O(q^{10})\) \(q+(-0.453861 - 0.481064i) q^{2} +(0.0908564 - 1.55994i) q^{4} +(-2.49650 + 0.291799i) q^{5} +(3.67465 + 1.84548i) q^{7} +(-1.80495 + 1.51453i) q^{8} +(1.27344 + 1.06854i) q^{10} +(-1.17263 - 2.71847i) q^{11} +(-3.15575 - 0.747925i) q^{13} +(-0.779986 - 2.60534i) q^{14} +(-1.55626 - 0.181901i) q^{16} +(0.572741 - 3.24818i) q^{17} +(-0.571121 - 3.23899i) q^{19} +(0.228367 + 3.92091i) q^{20} +(-0.775546 + 1.79792i) q^{22} +(-2.23062 + 1.12026i) q^{23} +(1.28214 - 0.303873i) q^{25} +(1.07247 + 1.85757i) q^{26} +(3.21271 - 5.56458i) q^{28} +(1.59664 - 5.33313i) q^{29} +(-5.36607 - 3.52932i) q^{31} +(3.43286 + 4.61114i) q^{32} +(-1.82253 + 1.19870i) q^{34} +(-9.71228 - 3.53498i) q^{35} +(-2.56937 + 0.935175i) q^{37} +(-1.29895 + 1.74480i) q^{38} +(4.06412 - 4.30771i) q^{40} +(-6.20948 + 6.58166i) q^{41} +(-4.66833 + 6.27065i) q^{43} +(-4.34719 + 1.58225i) q^{44} +(1.55131 + 0.564629i) q^{46} +(-8.45508 + 5.56099i) q^{47} +(5.91716 + 7.94813i) q^{49} +(-0.728095 - 0.478876i) q^{50} +(-1.45344 + 4.85483i) q^{52} +(-0.00494432 + 0.00856381i) q^{53} +(3.72072 + 6.44448i) q^{55} +(-9.42760 + 2.23438i) q^{56} +(-3.29023 + 1.65242i) q^{58} +(4.50463 - 10.4429i) q^{59} +(-0.523995 - 8.99665i) q^{61} +(0.737619 + 4.18325i) q^{62} +(0.116049 - 0.658144i) q^{64} +(8.09656 + 0.946352i) q^{65} +(-1.67644 - 5.59970i) q^{67} +(-5.01494 - 1.18856i) q^{68} +(2.70747 + 6.27662i) q^{70} +(1.81817 + 1.52563i) q^{71} +(3.61987 - 3.03743i) q^{73} +(1.61602 + 0.811594i) q^{74} +(-5.10453 + 0.596634i) q^{76} +(0.707860 - 12.1535i) q^{77} +(-6.17756 - 6.54783i) q^{79} +3.93828 q^{80} +5.98444 q^{82} +(-2.54001 - 2.69226i) q^{83} +(-0.482034 + 8.27620i) q^{85} +(5.13536 - 0.600238i) q^{86} +(6.23375 + 3.13071i) q^{88} +(9.57258 - 8.03235i) q^{89} +(-10.2160 - 8.57223i) q^{91} +(1.54487 + 3.58142i) q^{92} +(6.51263 + 1.54352i) q^{94} +(2.37094 + 7.91949i) q^{95} +(7.10357 + 0.830288i) q^{97} +(1.13799 - 6.45388i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453861 0.481064i −0.320928 0.340164i 0.546745 0.837299i \(-0.315867\pi\)
−0.867673 + 0.497135i \(0.834385\pi\)
\(3\) 0 0
\(4\) 0.0908564 1.55994i 0.0454282 0.779972i
\(5\) −2.49650 + 0.291799i −1.11647 + 0.130496i −0.654256 0.756273i \(-0.727018\pi\)
−0.462212 + 0.886769i \(0.652944\pi\)
\(6\) 0 0
\(7\) 3.67465 + 1.84548i 1.38889 + 0.697526i 0.976907 0.213667i \(-0.0685407\pi\)
0.411981 + 0.911192i \(0.364837\pi\)
\(8\) −1.80495 + 1.51453i −0.638146 + 0.535468i
\(9\) 0 0
\(10\) 1.27344 + 1.06854i 0.402696 + 0.337902i
\(11\) −1.17263 2.71847i −0.353562 0.819648i −0.998465 0.0553842i \(-0.982362\pi\)
0.644903 0.764264i \(-0.276898\pi\)
\(12\) 0 0
\(13\) −3.15575 0.747925i −0.875246 0.207437i −0.231647 0.972800i \(-0.574411\pi\)
−0.643599 + 0.765363i \(0.722560\pi\)
\(14\) −0.779986 2.60534i −0.208460 0.696305i
\(15\) 0 0
\(16\) −1.55626 0.181901i −0.389065 0.0454751i
\(17\) 0.572741 3.24818i 0.138910 0.787799i −0.833146 0.553052i \(-0.813463\pi\)
0.972057 0.234746i \(-0.0754260\pi\)
\(18\) 0 0
\(19\) −0.571121 3.23899i −0.131024 0.743075i −0.977546 0.210722i \(-0.932419\pi\)
0.846522 0.532354i \(-0.178692\pi\)
\(20\) 0.228367 + 3.92091i 0.0510644 + 0.876742i
\(21\) 0 0
\(22\) −0.775546 + 1.79792i −0.165347 + 0.383317i
\(23\) −2.23062 + 1.12026i −0.465116 + 0.233590i −0.665893 0.746047i \(-0.731949\pi\)
0.200778 + 0.979637i \(0.435653\pi\)
\(24\) 0 0
\(25\) 1.28214 0.303873i 0.256428 0.0607745i
\(26\) 1.07247 + 1.85757i 0.210329 + 0.364300i
\(27\) 0 0
\(28\) 3.21271 5.56458i 0.607145 1.05161i
\(29\) 1.59664 5.33313i 0.296488 0.990338i −0.671848 0.740689i \(-0.734499\pi\)
0.968336 0.249650i \(-0.0803154\pi\)
\(30\) 0 0
\(31\) −5.36607 3.52932i −0.963775 0.633885i −0.0329913 0.999456i \(-0.510503\pi\)
−0.930783 + 0.365571i \(0.880874\pi\)
\(32\) 3.43286 + 4.61114i 0.606850 + 0.815141i
\(33\) 0 0
\(34\) −1.82253 + 1.19870i −0.312561 + 0.205575i
\(35\) −9.71228 3.53498i −1.64167 0.597521i
\(36\) 0 0
\(37\) −2.56937 + 0.935175i −0.422402 + 0.153742i −0.544471 0.838780i \(-0.683269\pi\)
0.122069 + 0.992522i \(0.461047\pi\)
\(38\) −1.29895 + 1.74480i −0.210718 + 0.283044i
\(39\) 0 0
\(40\) 4.06412 4.30771i 0.642593 0.681109i
\(41\) −6.20948 + 6.58166i −0.969757 + 1.02788i 0.0298414 + 0.999555i \(0.490500\pi\)
−0.999599 + 0.0283280i \(0.990982\pi\)
\(42\) 0 0
\(43\) −4.66833 + 6.27065i −0.711914 + 0.956266i −0.999999 0.00133878i \(-0.999574\pi\)
0.288086 + 0.957605i \(0.406981\pi\)
\(44\) −4.34719 + 1.58225i −0.655364 + 0.238533i
\(45\) 0 0
\(46\) 1.55131 + 0.564629i 0.228728 + 0.0832500i
\(47\) −8.45508 + 5.56099i −1.23330 + 0.811154i −0.987416 0.158145i \(-0.949449\pi\)
−0.245884 + 0.969299i \(0.579078\pi\)
\(48\) 0 0
\(49\) 5.91716 + 7.94813i 0.845309 + 1.13545i
\(50\) −0.728095 0.478876i −0.102968 0.0677233i
\(51\) 0 0
\(52\) −1.45344 + 4.85483i −0.201556 + 0.673244i
\(53\) −0.00494432 + 0.00856381i −0.000679154 + 0.00117633i −0.866365 0.499412i \(-0.833550\pi\)
0.865686 + 0.500588i \(0.166883\pi\)
\(54\) 0 0
\(55\) 3.72072 + 6.44448i 0.501702 + 0.868973i
\(56\) −9.42760 + 2.23438i −1.25982 + 0.298582i
\(57\) 0 0
\(58\) −3.29023 + 1.65242i −0.432029 + 0.216973i
\(59\) 4.50463 10.4429i 0.586453 1.35955i −0.324048 0.946041i \(-0.605044\pi\)
0.910500 0.413509i \(-0.135697\pi\)
\(60\) 0 0
\(61\) −0.523995 8.99665i −0.0670907 1.15190i −0.848959 0.528459i \(-0.822770\pi\)
0.781868 0.623444i \(-0.214267\pi\)
\(62\) 0.737619 + 4.18325i 0.0936777 + 0.531273i
\(63\) 0 0
\(64\) 0.116049 0.658144i 0.0145061 0.0822680i
\(65\) 8.09656 + 0.946352i 1.00425 + 0.117381i
\(66\) 0 0
\(67\) −1.67644 5.59970i −0.204810 0.684113i −0.997246 0.0741583i \(-0.976373\pi\)
0.792437 0.609954i \(-0.208812\pi\)
\(68\) −5.01494 1.18856i −0.608150 0.144134i
\(69\) 0 0
\(70\) 2.70747 + 6.27662i 0.323604 + 0.750199i
\(71\) 1.81817 + 1.52563i 0.215777 + 0.181058i 0.744269 0.667880i \(-0.232798\pi\)
−0.528492 + 0.848938i \(0.677242\pi\)
\(72\) 0 0
\(73\) 3.61987 3.03743i 0.423674 0.355505i −0.405885 0.913924i \(-0.633037\pi\)
0.829559 + 0.558420i \(0.188592\pi\)
\(74\) 1.61602 + 0.811594i 0.187858 + 0.0943459i
\(75\) 0 0
\(76\) −5.10453 + 0.596634i −0.585530 + 0.0684386i
\(77\) 0.707860 12.1535i 0.0806681 1.38502i
\(78\) 0 0
\(79\) −6.17756 6.54783i −0.695029 0.736688i 0.279698 0.960088i \(-0.409766\pi\)
−0.974727 + 0.223400i \(0.928284\pi\)
\(80\) 3.93828 0.440313
\(81\) 0 0
\(82\) 5.98444 0.660871
\(83\) −2.54001 2.69226i −0.278803 0.295514i 0.572807 0.819691i \(-0.305855\pi\)
−0.851609 + 0.524177i \(0.824373\pi\)
\(84\) 0 0
\(85\) −0.482034 + 8.27620i −0.0522839 + 0.897680i
\(86\) 5.13536 0.600238i 0.553760 0.0647253i
\(87\) 0 0
\(88\) 6.23375 + 3.13071i 0.664520 + 0.333734i
\(89\) 9.57258 8.03235i 1.01469 0.851427i 0.0257399 0.999669i \(-0.491806\pi\)
0.988951 + 0.148242i \(0.0473614\pi\)
\(90\) 0 0
\(91\) −10.2160 8.57223i −1.07093 0.898614i
\(92\) 1.54487 + 3.58142i 0.161064 + 0.373389i
\(93\) 0 0
\(94\) 6.51263 + 1.54352i 0.671726 + 0.159202i
\(95\) 2.37094 + 7.91949i 0.243253 + 0.812522i
\(96\) 0 0
\(97\) 7.10357 + 0.830288i 0.721258 + 0.0843030i 0.468799 0.883305i \(-0.344687\pi\)
0.252459 + 0.967608i \(0.418761\pi\)
\(98\) 1.13799 6.45388i 0.114955 0.651940i
\(99\) 0 0
\(100\) −0.357534 2.02767i −0.0357534 0.202767i
\(101\) −0.122459 2.10254i −0.0121851 0.209211i −0.998905 0.0467805i \(-0.985104\pi\)
0.986720 0.162430i \(-0.0519332\pi\)
\(102\) 0 0
\(103\) −0.818039 + 1.89643i −0.0806038 + 0.186861i −0.953752 0.300594i \(-0.902815\pi\)
0.873148 + 0.487454i \(0.162074\pi\)
\(104\) 6.82872 3.42951i 0.669611 0.336291i
\(105\) 0 0
\(106\) 0.00636378 0.00150824i 0.000618105 0.000146493i
\(107\) 7.13179 + 12.3526i 0.689456 + 1.19417i 0.972014 + 0.234923i \(0.0754838\pi\)
−0.282558 + 0.959250i \(0.591183\pi\)
\(108\) 0 0
\(109\) −6.70237 + 11.6088i −0.641970 + 1.11193i 0.343022 + 0.939327i \(0.388549\pi\)
−0.984992 + 0.172598i \(0.944784\pi\)
\(110\) 1.41152 4.71480i 0.134583 0.449539i
\(111\) 0 0
\(112\) −5.38302 3.54047i −0.508647 0.334543i
\(113\) 1.76779 + 2.37455i 0.166300 + 0.223379i 0.877459 0.479652i \(-0.159237\pi\)
−0.711159 + 0.703031i \(0.751830\pi\)
\(114\) 0 0
\(115\) 5.24184 3.44761i 0.488804 0.321492i
\(116\) −8.17432 2.97521i −0.758967 0.276241i
\(117\) 0 0
\(118\) −7.06818 + 2.57261i −0.650679 + 0.236828i
\(119\) 8.09907 10.8789i 0.742440 0.997271i
\(120\) 0 0
\(121\) 1.53367 1.62559i 0.139424 0.147781i
\(122\) −4.09015 + 4.33530i −0.370305 + 0.392500i
\(123\) 0 0
\(124\) −5.99308 + 8.05011i −0.538195 + 0.722921i
\(125\) 8.69737 3.16558i 0.777917 0.283139i
\(126\) 0 0
\(127\) −11.3063 4.11514i −1.00327 0.365160i −0.212425 0.977177i \(-0.568136\pi\)
−0.790844 + 0.612017i \(0.790358\pi\)
\(128\) 9.23660 6.07500i 0.816407 0.536960i
\(129\) 0 0
\(130\) −3.21946 4.32448i −0.282365 0.379282i
\(131\) −4.29128 2.82242i −0.374931 0.246596i 0.348032 0.937483i \(-0.386850\pi\)
−0.722963 + 0.690887i \(0.757220\pi\)
\(132\) 0 0
\(133\) 3.87882 12.9562i 0.336336 1.12344i
\(134\) −1.93295 + 3.34796i −0.166981 + 0.289220i
\(135\) 0 0
\(136\) 3.88570 + 6.73023i 0.333196 + 0.577113i
\(137\) −1.84980 + 0.438412i −0.158039 + 0.0374560i −0.308874 0.951103i \(-0.599952\pi\)
0.150834 + 0.988559i \(0.451804\pi\)
\(138\) 0 0
\(139\) 8.36246 4.19978i 0.709294 0.356221i −0.0572963 0.998357i \(-0.518248\pi\)
0.766591 + 0.642136i \(0.221952\pi\)
\(140\) −6.39679 + 14.8294i −0.540627 + 1.25332i
\(141\) 0 0
\(142\) −0.0912720 1.56708i −0.00765937 0.131506i
\(143\) 1.66732 + 9.45583i 0.139428 + 0.790736i
\(144\) 0 0
\(145\) −2.42980 + 13.7801i −0.201784 + 1.14437i
\(146\) −3.10412 0.362820i −0.256899 0.0300272i
\(147\) 0 0
\(148\) 1.22538 + 4.09304i 0.100725 + 0.336446i
\(149\) 0.864689 + 0.204935i 0.0708381 + 0.0167889i 0.265882 0.964006i \(-0.414337\pi\)
−0.195044 + 0.980794i \(0.562485\pi\)
\(150\) 0 0
\(151\) −3.19183 7.39949i −0.259747 0.602162i 0.737577 0.675263i \(-0.235970\pi\)
−0.997325 + 0.0731007i \(0.976711\pi\)
\(152\) 5.93640 + 4.98123i 0.481506 + 0.404031i
\(153\) 0 0
\(154\) −6.16788 + 5.17546i −0.497022 + 0.417051i
\(155\) 14.4262 + 7.24513i 1.15874 + 0.581943i
\(156\) 0 0
\(157\) 14.3727 1.67993i 1.14707 0.134073i 0.478751 0.877951i \(-0.341090\pi\)
0.668315 + 0.743878i \(0.267016\pi\)
\(158\) −0.346176 + 5.94360i −0.0275402 + 0.472848i
\(159\) 0 0
\(160\) −9.91567 10.5100i −0.783902 0.830888i
\(161\) −10.2641 −0.808928
\(162\) 0 0
\(163\) 8.05495 0.630912 0.315456 0.948940i \(-0.397843\pi\)
0.315456 + 0.948940i \(0.397843\pi\)
\(164\) 9.70285 + 10.2844i 0.757665 + 0.803078i
\(165\) 0 0
\(166\) −0.142336 + 2.44382i −0.0110474 + 0.189677i
\(167\) 16.7682 1.95992i 1.29756 0.151663i 0.560877 0.827899i \(-0.310464\pi\)
0.736685 + 0.676236i \(0.236390\pi\)
\(168\) 0 0
\(169\) −2.21789 1.11386i −0.170607 0.0856819i
\(170\) 4.20016 3.52435i 0.322138 0.270306i
\(171\) 0 0
\(172\) 9.35772 + 7.85206i 0.713520 + 0.598714i
\(173\) −2.66291 6.17332i −0.202457 0.469349i 0.786492 0.617600i \(-0.211895\pi\)
−0.988950 + 0.148251i \(0.952636\pi\)
\(174\) 0 0
\(175\) 5.27221 + 1.24954i 0.398541 + 0.0944560i
\(176\) 1.33043 + 4.44394i 0.100285 + 0.334975i
\(177\) 0 0
\(178\) −8.20869 0.959459i −0.615268 0.0719145i
\(179\) 2.64043 14.9746i 0.197355 1.11926i −0.711669 0.702515i \(-0.752060\pi\)
0.909024 0.416743i \(-0.136828\pi\)
\(180\) 0 0
\(181\) −0.973297 5.51984i −0.0723446 0.410287i −0.999377 0.0353044i \(-0.988760\pi\)
0.927032 0.374982i \(-0.122351\pi\)
\(182\) 0.512841 + 8.80515i 0.0380143 + 0.652681i
\(183\) 0 0
\(184\) 2.32948 5.40035i 0.171732 0.398119i
\(185\) 6.14155 3.08440i 0.451536 0.226770i
\(186\) 0 0
\(187\) −9.50168 + 2.25194i −0.694831 + 0.164678i
\(188\) 7.90664 + 13.6947i 0.576651 + 0.998788i
\(189\) 0 0
\(190\) 2.73371 4.73492i 0.198324 0.343507i
\(191\) −1.23201 + 4.11521i −0.0891453 + 0.297766i −0.990922 0.134435i \(-0.957078\pi\)
0.901777 + 0.432202i \(0.142263\pi\)
\(192\) 0 0
\(193\) −2.36750 1.55713i −0.170417 0.112085i 0.461435 0.887174i \(-0.347335\pi\)
−0.631852 + 0.775089i \(0.717705\pi\)
\(194\) −2.82461 3.79411i −0.202795 0.272401i
\(195\) 0 0
\(196\) 12.9362 8.50830i 0.924017 0.607736i
\(197\) −19.9667 7.26729i −1.42257 0.517773i −0.487777 0.872968i \(-0.662192\pi\)
−0.934792 + 0.355195i \(0.884414\pi\)
\(198\) 0 0
\(199\) −9.14529 + 3.32862i −0.648293 + 0.235959i −0.645174 0.764036i \(-0.723215\pi\)
−0.00311899 + 0.999995i \(0.500993\pi\)
\(200\) −1.85397 + 2.49032i −0.131096 + 0.176092i
\(201\) 0 0
\(202\) −0.955878 + 1.01317i −0.0672553 + 0.0712865i
\(203\) 15.7093 16.6509i 1.10257 1.16866i
\(204\) 0 0
\(205\) 13.5814 18.2430i 0.948568 1.27415i
\(206\) 1.28358 0.467185i 0.0894313 0.0325503i
\(207\) 0 0
\(208\) 4.77511 + 1.73800i 0.331094 + 0.120508i
\(209\) −8.13537 + 5.35072i −0.562735 + 0.370117i
\(210\) 0 0
\(211\) 11.6913 + 15.7041i 0.804861 + 1.08112i 0.995051 + 0.0993683i \(0.0316822\pi\)
−0.190190 + 0.981747i \(0.560910\pi\)
\(212\) 0.0129098 + 0.00849093i 0.000886651 + 0.000583160i
\(213\) 0 0
\(214\) 2.70557 9.03722i 0.184949 0.617772i
\(215\) 9.82471 17.0169i 0.670040 1.16054i
\(216\) 0 0
\(217\) −13.2052 22.8720i −0.896424 1.55265i
\(218\) 8.62654 2.04453i 0.584263 0.138473i
\(219\) 0 0
\(220\) 10.3911 5.21859i 0.700566 0.351837i
\(221\) −4.23682 + 9.82205i −0.284999 + 0.660703i
\(222\) 0 0
\(223\) 0.939986 + 16.1389i 0.0629461 + 1.08074i 0.870888 + 0.491481i \(0.163544\pi\)
−0.807942 + 0.589262i \(0.799419\pi\)
\(224\) 4.10482 + 23.2796i 0.274265 + 1.55543i
\(225\) 0 0
\(226\) 0.339982 1.92814i 0.0226153 0.128258i
\(227\) 21.0869 + 2.46470i 1.39958 + 0.163588i 0.782177 0.623056i \(-0.214109\pi\)
0.617407 + 0.786644i \(0.288183\pi\)
\(228\) 0 0
\(229\) 2.47496 + 8.26696i 0.163550 + 0.546296i 0.999998 0.00175006i \(-0.000557061\pi\)
−0.836448 + 0.548046i \(0.815372\pi\)
\(230\) −4.03759 0.956927i −0.266231 0.0630979i
\(231\) 0 0
\(232\) 5.19536 + 12.0442i 0.341092 + 0.790740i
\(233\) 11.4634 + 9.61890i 0.750989 + 0.630155i 0.935764 0.352626i \(-0.114711\pi\)
−0.184775 + 0.982781i \(0.559156\pi\)
\(234\) 0 0
\(235\) 19.4854 16.3502i 1.27109 1.06657i
\(236\) −15.8811 7.97577i −1.03377 0.519178i
\(237\) 0 0
\(238\) −8.90932 + 1.04135i −0.577506 + 0.0675007i
\(239\) −0.209933 + 3.60440i −0.0135794 + 0.233150i 0.984689 + 0.174322i \(0.0557733\pi\)
−0.998268 + 0.0588277i \(0.981264\pi\)
\(240\) 0 0
\(241\) 15.7090 + 16.6506i 1.01191 + 1.07256i 0.997356 + 0.0726662i \(0.0231508\pi\)
0.0145522 + 0.999894i \(0.495368\pi\)
\(242\) −1.47808 −0.0950149
\(243\) 0 0
\(244\) −14.0819 −0.901500
\(245\) −17.0914 18.1159i −1.09193 1.15738i
\(246\) 0 0
\(247\) −0.620210 + 10.6486i −0.0394630 + 0.677553i
\(248\) 15.0308 1.75684i 0.954454 0.111560i
\(249\) 0 0
\(250\) −5.47025 2.74726i −0.345969 0.173752i
\(251\) 16.2193 13.6096i 1.02375 0.859031i 0.0336587 0.999433i \(-0.489284\pi\)
0.990095 + 0.140402i \(0.0448396\pi\)
\(252\) 0 0
\(253\) 5.66107 + 4.75020i 0.355909 + 0.298643i
\(254\) 3.15182 + 7.30675i 0.197763 + 0.458466i
\(255\) 0 0
\(256\) −8.41516 1.99443i −0.525948 0.124652i
\(257\) −2.23335 7.45990i −0.139312 0.465336i 0.859650 0.510884i \(-0.170682\pi\)
−0.998962 + 0.0455481i \(0.985497\pi\)
\(258\) 0 0
\(259\) −11.1674 1.30528i −0.693908 0.0811062i
\(260\) 2.21188 12.5442i 0.137175 0.777958i
\(261\) 0 0
\(262\) 0.589879 + 3.34537i 0.0364428 + 0.206678i
\(263\) 0.0887569 + 1.52390i 0.00547299 + 0.0939675i 0.999938 0.0110966i \(-0.00353224\pi\)
−0.994465 + 0.105064i \(0.966495\pi\)
\(264\) 0 0
\(265\) 0.00984458 0.0228223i 0.000604747 0.00140196i
\(266\) −7.99319 + 4.01433i −0.490094 + 0.246134i
\(267\) 0 0
\(268\) −8.88754 + 2.10638i −0.542893 + 0.128668i
\(269\) −14.7193 25.4946i −0.897454 1.55444i −0.830738 0.556663i \(-0.812081\pi\)
−0.0667154 0.997772i \(-0.521252\pi\)
\(270\) 0 0
\(271\) −7.28643 + 12.6205i −0.442619 + 0.766639i −0.997883 0.0650354i \(-0.979284\pi\)
0.555264 + 0.831674i \(0.312617\pi\)
\(272\) −1.48218 + 4.95082i −0.0898703 + 0.300188i
\(273\) 0 0
\(274\) 1.05046 + 0.690897i 0.0634605 + 0.0417386i
\(275\) −2.32954 3.12912i −0.140477 0.188693i
\(276\) 0 0
\(277\) −8.54418 + 5.61960i −0.513370 + 0.337649i −0.779618 0.626256i \(-0.784587\pi\)
0.266247 + 0.963905i \(0.414216\pi\)
\(278\) −5.81576 2.11676i −0.348806 0.126955i
\(279\) 0 0
\(280\) 22.8840 8.32910i 1.36758 0.497759i
\(281\) −4.19424 + 5.63385i −0.250208 + 0.336087i −0.909427 0.415863i \(-0.863479\pi\)
0.659219 + 0.751951i \(0.270887\pi\)
\(282\) 0 0
\(283\) 14.8381 15.7275i 0.882036 0.934904i −0.116262 0.993219i \(-0.537091\pi\)
0.998298 + 0.0583150i \(0.0185728\pi\)
\(284\) 2.54508 2.69763i 0.151023 0.160075i
\(285\) 0 0
\(286\) 3.79213 5.09372i 0.224234 0.301198i
\(287\) −34.9640 + 12.7258i −2.06386 + 0.751183i
\(288\) 0 0
\(289\) 5.75215 + 2.09361i 0.338362 + 0.123154i
\(290\) 7.73189 5.08534i 0.454032 0.298622i
\(291\) 0 0
\(292\) −4.40934 5.92277i −0.258037 0.346604i
\(293\) −9.12929 6.00443i −0.533339 0.350782i 0.254097 0.967179i \(-0.418222\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(294\) 0 0
\(295\) −8.19857 + 27.3851i −0.477339 + 1.59442i
\(296\) 3.22124 5.57934i 0.187230 0.324293i
\(297\) 0 0
\(298\) −0.293862 0.508983i −0.0170229 0.0294846i
\(299\) 7.87713 1.86691i 0.455546 0.107966i
\(300\) 0 0
\(301\) −28.7268 + 14.4272i −1.65579 + 0.831568i
\(302\) −2.11099 + 4.89382i −0.121474 + 0.281608i
\(303\) 0 0
\(304\) 0.299639 + 5.14460i 0.0171855 + 0.295063i
\(305\) 3.93337 + 22.3072i 0.225224 + 1.27731i
\(306\) 0 0
\(307\) 0.798574 4.52894i 0.0455770 0.258480i −0.953502 0.301386i \(-0.902551\pi\)
0.999079 + 0.0429063i \(0.0136617\pi\)
\(308\) −18.8944 2.20844i −1.07661 0.125838i
\(309\) 0 0
\(310\) −3.06213 10.2282i −0.173917 0.580925i
\(311\) 16.9690 + 4.02173i 0.962224 + 0.228051i 0.681566 0.731756i \(-0.261299\pi\)
0.280658 + 0.959808i \(0.409447\pi\)
\(312\) 0 0
\(313\) −6.26878 14.5327i −0.354333 0.821435i −0.998404 0.0564701i \(-0.982015\pi\)
0.644072 0.764965i \(-0.277244\pi\)
\(314\) −7.33136 6.15174i −0.413732 0.347163i
\(315\) 0 0
\(316\) −10.7755 + 9.04173i −0.606170 + 0.508637i
\(317\) −17.5175 8.79762i −0.983881 0.494124i −0.117266 0.993101i \(-0.537413\pi\)
−0.866615 + 0.498977i \(0.833709\pi\)
\(318\) 0 0
\(319\) −16.3702 + 1.91340i −0.916556 + 0.107130i
\(320\) −0.0976694 + 1.67692i −0.00545988 + 0.0937426i
\(321\) 0 0
\(322\) 4.65850 + 4.93772i 0.259608 + 0.275168i
\(323\) −10.8479 −0.603594
\(324\) 0 0
\(325\) −4.27338 −0.237044
\(326\) −3.65583 3.87495i −0.202477 0.214614i
\(327\) 0 0
\(328\) 1.23965 21.2840i 0.0684484 1.17521i
\(329\) −41.3322 + 4.83104i −2.27872 + 0.266344i
\(330\) 0 0
\(331\) −19.5513 9.81905i −1.07464 0.539704i −0.178710 0.983902i \(-0.557192\pi\)
−0.895929 + 0.444198i \(0.853489\pi\)
\(332\) −4.43055 + 3.71767i −0.243158 + 0.204034i
\(333\) 0 0
\(334\) −8.55328 7.17706i −0.468015 0.392711i
\(335\) 5.81922 + 13.4905i 0.317938 + 0.737063i
\(336\) 0 0
\(337\) −8.72133 2.06699i −0.475081 0.112596i −0.0139020 0.999903i \(-0.504425\pi\)
−0.461179 + 0.887307i \(0.652573\pi\)
\(338\) 0.470771 + 1.57249i 0.0256066 + 0.0855320i
\(339\) 0 0
\(340\) 12.8666 + 1.50389i 0.697790 + 0.0815599i
\(341\) −3.30191 + 18.7261i −0.178809 + 1.01407i
\(342\) 0 0
\(343\) 2.07706 + 11.7796i 0.112151 + 0.636040i
\(344\) −1.07101 18.3886i −0.0577451 0.991445i
\(345\) 0 0
\(346\) −1.76117 + 4.08286i −0.0946813 + 0.219496i
\(347\) −17.1862 + 8.63124i −0.922604 + 0.463349i −0.845682 0.533688i \(-0.820806\pi\)
−0.0769226 + 0.997037i \(0.524509\pi\)
\(348\) 0 0
\(349\) 20.7785 4.92459i 1.11225 0.263607i 0.366884 0.930267i \(-0.380424\pi\)
0.745363 + 0.666659i \(0.232276\pi\)
\(350\) −1.79174 3.10339i −0.0957726 0.165883i
\(351\) 0 0
\(352\) 8.50973 14.7393i 0.453570 0.785607i
\(353\) −4.21952 + 14.0942i −0.224582 + 0.750157i 0.769219 + 0.638985i \(0.220645\pi\)
−0.993801 + 0.111172i \(0.964540\pi\)
\(354\) 0 0
\(355\) −4.98424 3.27818i −0.264536 0.173988i
\(356\) −11.6603 15.6625i −0.617993 0.830109i
\(357\) 0 0
\(358\) −8.40216 + 5.52619i −0.444068 + 0.292068i
\(359\) 10.0637 + 3.66289i 0.531142 + 0.193320i 0.593648 0.804725i \(-0.297687\pi\)
−0.0625063 + 0.998045i \(0.519909\pi\)
\(360\) 0 0
\(361\) 7.68928 2.79867i 0.404699 0.147298i
\(362\) −2.21366 + 2.97346i −0.116347 + 0.156282i
\(363\) 0 0
\(364\) −14.3004 + 15.1575i −0.749544 + 0.794470i
\(365\) −8.15069 + 8.63923i −0.426627 + 0.452198i
\(366\) 0 0
\(367\) −2.36813 + 3.18095i −0.123615 + 0.166044i −0.859623 0.510929i \(-0.829301\pi\)
0.736007 + 0.676974i \(0.236709\pi\)
\(368\) 3.67519 1.33766i 0.191583 0.0697304i
\(369\) 0 0
\(370\) −4.27121 1.55459i −0.222050 0.0808194i
\(371\) −0.0339730 + 0.0223444i −0.00176379 + 0.00116006i
\(372\) 0 0
\(373\) −14.1663 19.0287i −0.733505 0.985268i −0.999772 0.0213686i \(-0.993198\pi\)
0.266267 0.963899i \(-0.414210\pi\)
\(374\) 5.39577 + 3.54885i 0.279008 + 0.183507i
\(375\) 0 0
\(376\) 6.83869 22.8428i 0.352678 1.17803i
\(377\) −9.02736 + 15.6359i −0.464933 + 0.805287i
\(378\) 0 0
\(379\) 13.0094 + 22.5330i 0.668249 + 1.15744i 0.978393 + 0.206752i \(0.0662892\pi\)
−0.310145 + 0.950689i \(0.600377\pi\)
\(380\) 12.5694 2.97899i 0.644795 0.152819i
\(381\) 0 0
\(382\) 2.53884 1.27506i 0.129899 0.0652375i
\(383\) 11.6548 27.0188i 0.595530 1.38059i −0.307719 0.951477i \(-0.599566\pi\)
0.903249 0.429117i \(-0.141175\pi\)
\(384\) 0 0
\(385\) 1.77920 + 30.5477i 0.0906765 + 1.55686i
\(386\) 0.325437 + 1.84564i 0.0165643 + 0.0939407i
\(387\) 0 0
\(388\) 1.94061 11.0057i 0.0985194 0.558731i
\(389\) −26.3247 3.07691i −1.33471 0.156006i −0.581373 0.813637i \(-0.697484\pi\)
−0.753340 + 0.657631i \(0.771559\pi\)
\(390\) 0 0
\(391\) 2.36123 + 7.88705i 0.119412 + 0.398865i
\(392\) −22.7179 5.38424i −1.14743 0.271945i
\(393\) 0 0
\(394\) 5.56608 + 12.9036i 0.280415 + 0.650075i
\(395\) 17.3329 + 14.5440i 0.872114 + 0.731790i
\(396\) 0 0
\(397\) −21.8020 + 18.2941i −1.09421 + 0.918154i −0.997022 0.0771123i \(-0.975430\pi\)
−0.0971903 + 0.995266i \(0.530986\pi\)
\(398\) 5.75197 + 2.88875i 0.288320 + 0.144800i
\(399\) 0 0
\(400\) −2.05062 + 0.239683i −0.102531 + 0.0119841i
\(401\) −0.826969 + 14.1985i −0.0412969 + 0.709040i 0.912590 + 0.408875i \(0.134079\pi\)
−0.953887 + 0.300165i \(0.902958\pi\)
\(402\) 0 0
\(403\) 14.2943 + 15.1511i 0.712049 + 0.754728i
\(404\) −3.29097 −0.163732
\(405\) 0 0
\(406\) −15.1400 −0.751383
\(407\) 5.55517 + 5.88814i 0.275360 + 0.291864i
\(408\) 0 0
\(409\) −0.181062 + 3.10871i −0.00895293 + 0.153716i 0.990869 + 0.134830i \(0.0430489\pi\)
−0.999822 + 0.0188857i \(0.993988\pi\)
\(410\) −14.9402 + 1.74625i −0.737842 + 0.0862413i
\(411\) 0 0
\(412\) 2.88400 + 1.44840i 0.142084 + 0.0713574i
\(413\) 35.8251 30.0608i 1.76284 1.47920i
\(414\) 0 0
\(415\) 7.12674 + 5.98005i 0.349838 + 0.293549i
\(416\) −7.38446 17.1191i −0.362053 0.839333i
\(417\) 0 0
\(418\) 6.26637 + 1.48516i 0.306498 + 0.0726414i
\(419\) −1.96491 6.56326i −0.0959921 0.320636i 0.896484 0.443077i \(-0.146113\pi\)
−0.992476 + 0.122441i \(0.960928\pi\)
\(420\) 0 0
\(421\) 14.8315 + 1.73356i 0.722844 + 0.0844883i 0.469556 0.882903i \(-0.344414\pi\)
0.253288 + 0.967391i \(0.418488\pi\)
\(422\) 2.24848 12.7517i 0.109454 0.620745i
\(423\) 0 0
\(424\) −0.00404592 0.0229456i −0.000196487 0.00111434i
\(425\) −0.252698 4.33866i −0.0122577 0.210456i
\(426\) 0 0
\(427\) 14.6776 34.0266i 0.710300 1.64666i
\(428\) 19.9174 10.0029i 0.962742 0.483507i
\(429\) 0 0
\(430\) −12.6453 + 2.99699i −0.609810 + 0.144528i
\(431\) 15.4334 + 26.7314i 0.743399 + 1.28760i 0.950939 + 0.309378i \(0.100121\pi\)
−0.207540 + 0.978227i \(0.566546\pi\)
\(432\) 0 0
\(433\) 14.3849 24.9154i 0.691295 1.19736i −0.280119 0.959965i \(-0.590374\pi\)
0.971414 0.237393i \(-0.0762928\pi\)
\(434\) −5.00960 + 16.7332i −0.240469 + 0.803221i
\(435\) 0 0
\(436\) 17.5002 + 11.5101i 0.838107 + 0.551231i
\(437\) 4.90246 + 6.58514i 0.234516 + 0.315010i
\(438\) 0 0
\(439\) 3.69605 2.43093i 0.176403 0.116022i −0.458237 0.888830i \(-0.651519\pi\)
0.634640 + 0.772808i \(0.281149\pi\)
\(440\) −16.4761 5.99681i −0.785467 0.285886i
\(441\) 0 0
\(442\) 6.64797 2.41966i 0.316212 0.115092i
\(443\) 1.59297 2.13973i 0.0756843 0.101662i −0.762669 0.646789i \(-0.776111\pi\)
0.838353 + 0.545128i \(0.183519\pi\)
\(444\) 0 0
\(445\) −21.5541 + 22.8460i −1.02176 + 1.08300i
\(446\) 7.33725 7.77703i 0.347429 0.368253i
\(447\) 0 0
\(448\) 1.64103 2.20428i 0.0775313 0.104143i
\(449\) −39.1256 + 14.2405i −1.84645 + 0.672053i −0.859474 + 0.511179i \(0.829209\pi\)
−0.986975 + 0.160874i \(0.948569\pi\)
\(450\) 0 0
\(451\) 25.1735 + 9.16239i 1.18537 + 0.431440i
\(452\) 3.86478 2.54191i 0.181784 0.119561i
\(453\) 0 0
\(454\) −8.38482 11.2628i −0.393519 0.528588i
\(455\) 28.0056 + 18.4196i 1.31292 + 0.863522i
\(456\) 0 0
\(457\) −2.19831 + 7.34286i −0.102833 + 0.343485i −0.993886 0.110414i \(-0.964782\pi\)
0.891053 + 0.453899i \(0.149967\pi\)
\(458\) 2.85365 4.94267i 0.133342 0.230956i
\(459\) 0 0
\(460\) −4.90183 8.49022i −0.228549 0.395858i
\(461\) −21.4489 + 5.08348i −0.998974 + 0.236761i −0.697400 0.716682i \(-0.745660\pi\)
−0.301573 + 0.953443i \(0.597512\pi\)
\(462\) 0 0
\(463\) 33.2070 16.6772i 1.54326 0.775054i 0.545260 0.838267i \(-0.316431\pi\)
0.998000 + 0.0632131i \(0.0201348\pi\)
\(464\) −3.45488 + 8.00931i −0.160389 + 0.371823i
\(465\) 0 0
\(466\) −0.575459 9.88026i −0.0266576 0.457694i
\(467\) −1.44385 8.18848i −0.0668134 0.378918i −0.999818 0.0190543i \(-0.993934\pi\)
0.933005 0.359863i \(-0.117177\pi\)
\(468\) 0 0
\(469\) 4.17380 23.6708i 0.192728 1.09302i
\(470\) −16.7092 1.95302i −0.770736 0.0900862i
\(471\) 0 0
\(472\) 7.68549 + 25.6713i 0.353753 + 1.18162i
\(473\) 22.5208 + 5.33753i 1.03551 + 0.245420i
\(474\) 0 0
\(475\) −1.71650 3.97929i −0.0787583 0.182582i
\(476\) −16.2347 13.6225i −0.744115 0.624387i
\(477\) 0 0
\(478\) 1.82923 1.53491i 0.0836671 0.0702050i
\(479\) −2.28141 1.14577i −0.104240 0.0523515i 0.395915 0.918287i \(-0.370427\pi\)
−0.500155 + 0.865936i \(0.666724\pi\)
\(480\) 0 0
\(481\) 8.80773 1.02948i 0.401598 0.0469400i
\(482\) 0.880298 15.1141i 0.0400965 0.688430i
\(483\) 0 0
\(484\) −2.39649 2.54013i −0.108931 0.115460i
\(485\) −17.9763 −0.816263
\(486\) 0 0
\(487\) 16.3628 0.741468 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(488\) 14.5715 + 15.4449i 0.659621 + 0.699158i
\(489\) 0 0
\(490\) −0.957764 + 16.4442i −0.0432674 + 0.742872i
\(491\) −36.2381 + 4.23562i −1.63540 + 0.191151i −0.883601 0.468240i \(-0.844888\pi\)
−0.751800 + 0.659391i \(0.770814\pi\)
\(492\) 0 0
\(493\) −16.4085 8.24066i −0.739002 0.371141i
\(494\) 5.40415 4.53462i 0.243144 0.204022i
\(495\) 0 0
\(496\) 7.70901 + 6.46863i 0.346145 + 0.290450i
\(497\) 3.86563 + 8.96154i 0.173397 + 0.401980i
\(498\) 0 0
\(499\) −30.8822 7.31920i −1.38248 0.327653i −0.528927 0.848667i \(-0.677406\pi\)
−0.853548 + 0.521015i \(0.825554\pi\)
\(500\) −4.14792 13.8550i −0.185501 0.619616i
\(501\) 0 0
\(502\) −13.9084 1.62566i −0.620763 0.0725567i
\(503\) −1.04817 + 5.94449i −0.0467358 + 0.265052i −0.999218 0.0395428i \(-0.987410\pi\)
0.952482 + 0.304595i \(0.0985210\pi\)
\(504\) 0 0
\(505\) 0.919238 + 5.21326i 0.0409055 + 0.231987i
\(506\) −0.284185 4.87927i −0.0126336 0.216910i
\(507\) 0 0
\(508\) −7.44664 + 17.2633i −0.330391 + 0.765933i
\(509\) −23.5056 + 11.8050i −1.04187 + 0.523246i −0.885590 0.464467i \(-0.846246\pi\)
−0.156278 + 0.987713i \(0.549950\pi\)
\(510\) 0 0
\(511\) 18.9073 4.48111i 0.836409 0.198233i
\(512\) −8.19547 14.1950i −0.362192 0.627335i
\(513\) 0 0
\(514\) −2.57506 + 4.46014i −0.113581 + 0.196728i
\(515\) 1.48886 4.97314i 0.0656070 0.219143i
\(516\) 0 0
\(517\) 25.0321 + 16.4638i 1.10091 + 0.724079i
\(518\) 4.44052 + 5.96465i 0.195105 + 0.262072i
\(519\) 0 0
\(520\) −16.0472 + 10.5544i −0.703715 + 0.462841i
\(521\) −23.7819 8.65589i −1.04190 0.379221i −0.236301 0.971680i \(-0.575935\pi\)
−0.805601 + 0.592459i \(0.798157\pi\)
\(522\) 0 0
\(523\) 2.76727 1.00720i 0.121004 0.0440420i −0.280808 0.959764i \(-0.590603\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(524\) −4.79271 + 6.43772i −0.209370 + 0.281233i
\(525\) 0 0
\(526\) 0.692810 0.734335i 0.0302079 0.0320185i
\(527\) −14.5372 + 15.4086i −0.633252 + 0.671207i
\(528\) 0 0
\(529\) −10.0140 + 13.4511i −0.435390 + 0.584831i
\(530\) −0.0154471 + 0.00562227i −0.000670977 + 0.000244216i
\(531\) 0 0
\(532\) −19.8585 7.22789i −0.860973 0.313369i
\(533\) 24.5181 16.1258i 1.06200 0.698487i
\(534\) 0 0
\(535\) −21.4090 28.7573i −0.925592 1.24329i
\(536\) 11.5068 + 7.56816i 0.497019 + 0.326895i
\(537\) 0 0
\(538\) −5.58403 + 18.6520i −0.240745 + 0.804143i
\(539\) 14.6681 25.4058i 0.631798 1.09431i
\(540\) 0 0
\(541\) −8.84669 15.3229i −0.380349 0.658784i 0.610763 0.791813i \(-0.290863\pi\)
−0.991112 + 0.133030i \(0.957529\pi\)
\(542\) 9.37828 2.22269i 0.402832 0.0954729i
\(543\) 0 0
\(544\) 16.9439 8.50956i 0.726465 0.364844i
\(545\) 13.3450 30.9372i 0.571637 1.32520i
\(546\) 0 0
\(547\) −2.36944 40.6817i −0.101310 1.73942i −0.540777 0.841166i \(-0.681870\pi\)
0.439467 0.898259i \(-0.355167\pi\)
\(548\) 0.515831 + 2.92542i 0.0220352 + 0.124968i
\(549\) 0 0
\(550\) −0.448020 + 2.54085i −0.0191036 + 0.108342i
\(551\) −18.1858 2.12562i −0.774743 0.0905545i
\(552\) 0 0
\(553\) −10.6165 35.4615i −0.451459 1.50798i
\(554\) 6.58126 + 1.55979i 0.279611 + 0.0662690i
\(555\) 0 0
\(556\) −5.79164 13.4265i −0.245620 0.569412i
\(557\) 23.1644 + 19.4372i 0.981505 + 0.823581i 0.984316 0.176415i \(-0.0564501\pi\)
−0.00281036 + 0.999996i \(0.500895\pi\)
\(558\) 0 0
\(559\) 19.4220 16.2970i 0.821465 0.689291i
\(560\) 14.4718 + 7.26801i 0.611545 + 0.307130i
\(561\) 0 0
\(562\) 4.61385 0.539281i 0.194623 0.0227482i
\(563\) −1.07446 + 18.4478i −0.0452831 + 0.777480i 0.896869 + 0.442296i \(0.145836\pi\)
−0.942152 + 0.335185i \(0.891201\pi\)
\(564\) 0 0
\(565\) −5.10617 5.41223i −0.214818 0.227694i
\(566\) −14.3004 −0.601091
\(567\) 0 0
\(568\) −5.59232 −0.234648
\(569\) 6.17461 + 6.54471i 0.258853 + 0.274368i 0.843746 0.536742i \(-0.180345\pi\)
−0.584893 + 0.811110i \(0.698864\pi\)
\(570\) 0 0
\(571\) 0.981371 16.8495i 0.0410691 0.705129i −0.913445 0.406963i \(-0.866588\pi\)
0.954514 0.298167i \(-0.0963751\pi\)
\(572\) 14.9020 1.74180i 0.623086 0.0728283i
\(573\) 0 0
\(574\) 21.9907 + 11.0442i 0.917876 + 0.460974i
\(575\) −2.51954 + 2.11415i −0.105072 + 0.0881661i
\(576\) 0 0
\(577\) −24.0567 20.1860i −1.00149 0.840352i −0.0143022 0.999898i \(-0.504553\pi\)
−0.987191 + 0.159545i \(0.948997\pi\)
\(578\) −1.60351 3.71736i −0.0666974 0.154622i
\(579\) 0 0
\(580\) 21.2754 + 5.04235i 0.883411 + 0.209372i
\(581\) −4.36516 14.5807i −0.181097 0.604908i
\(582\) 0 0
\(583\) 0.0290783 + 0.00339876i 0.00120430 + 0.000140762i
\(584\) −1.93340 + 10.9648i −0.0800045 + 0.453728i
\(585\) 0 0
\(586\) 1.25491 + 7.11695i 0.0518399 + 0.293999i
\(587\) −0.0800524 1.37445i −0.00330412 0.0567295i 0.996253 0.0864861i \(-0.0275638\pi\)
−0.999557 + 0.0297566i \(0.990527\pi\)
\(588\) 0 0
\(589\) −8.36676 + 19.3963i −0.344746 + 0.799212i
\(590\) 16.8950 8.48500i 0.695557 0.349322i
\(591\) 0 0
\(592\) 4.16872 0.988004i 0.171333 0.0406067i
\(593\) −15.4929 26.8346i −0.636219 1.10196i −0.986256 0.165227i \(-0.947164\pi\)
0.350037 0.936736i \(-0.386169\pi\)
\(594\) 0 0
\(595\) −17.0449 + 29.5226i −0.698771 + 1.21031i
\(596\) 0.398250 1.33025i 0.0163129 0.0544890i
\(597\) 0 0
\(598\) −4.47322 2.94209i −0.182924 0.120311i
\(599\) 14.4819 + 19.4526i 0.591715 + 0.794812i 0.992615 0.121310i \(-0.0387097\pi\)
−0.400899 + 0.916122i \(0.631302\pi\)
\(600\) 0 0
\(601\) −6.33832 + 4.16878i −0.258545 + 0.170048i −0.672164 0.740402i \(-0.734635\pi\)
0.413619 + 0.910450i \(0.364265\pi\)
\(602\) 19.9784 + 7.27154i 0.814258 + 0.296366i
\(603\) 0 0
\(604\) −11.8328 + 4.30678i −0.481469 + 0.175241i
\(605\) −3.35445 + 4.50581i −0.136378 + 0.183187i
\(606\) 0 0
\(607\) −20.5630 + 21.7955i −0.834627 + 0.884653i −0.994739 0.102446i \(-0.967333\pi\)
0.160111 + 0.987099i \(0.448815\pi\)
\(608\) 12.9748 13.7525i 0.526199 0.557739i
\(609\) 0 0
\(610\) 8.94601 12.0166i 0.362214 0.486537i
\(611\) 30.8413 11.2253i 1.24770 0.454127i
\(612\) 0 0
\(613\) 11.4606 + 4.17132i 0.462890 + 0.168478i 0.562929 0.826505i \(-0.309675\pi\)
−0.100039 + 0.994984i \(0.531897\pi\)
\(614\) −2.54115 + 1.67134i −0.102553 + 0.0674499i
\(615\) 0 0
\(616\) 17.1292 + 23.0085i 0.690155 + 0.927039i
\(617\) −13.2760 8.73179i −0.534474 0.351529i 0.253404 0.967361i \(-0.418450\pi\)
−0.787878 + 0.615832i \(0.788820\pi\)
\(618\) 0 0
\(619\) −6.67055 + 22.2812i −0.268112 + 0.895556i 0.712844 + 0.701323i \(0.247407\pi\)
−0.980955 + 0.194233i \(0.937778\pi\)
\(620\) 12.6127 21.8459i 0.506539 0.877351i
\(621\) 0 0
\(622\) −5.76686 9.98849i −0.231230 0.400502i
\(623\) 49.9994 11.8501i 2.00318 0.474763i
\(624\) 0 0
\(625\) −26.6768 + 13.3976i −1.06707 + 0.535903i
\(626\) −4.14600 + 9.61150i −0.165707 + 0.384153i
\(627\) 0 0
\(628\) −1.31474 22.5732i −0.0524639 0.900770i
\(629\) 1.56603 + 8.88139i 0.0624417 + 0.354124i
\(630\) 0 0
\(631\) 2.13182 12.0902i 0.0848665 0.481302i −0.912519 0.409035i \(-0.865866\pi\)
0.997385 0.0722670i \(-0.0230234\pi\)
\(632\) 21.0671 + 2.46239i 0.838003 + 0.0979485i
\(633\) 0 0
\(634\) 3.71829 + 12.4199i 0.147672 + 0.493259i
\(635\) 29.4269 + 6.97430i 1.16777 + 0.276767i
\(636\) 0 0
\(637\) −12.7284 29.5079i −0.504319 1.16914i
\(638\) 8.35027 + 7.00671i 0.330590 + 0.277398i
\(639\) 0 0
\(640\) −21.2865 + 17.8615i −0.841422 + 0.706037i
\(641\) 8.36840 + 4.20277i 0.330532 + 0.165999i 0.606324 0.795218i \(-0.292644\pi\)
−0.275791 + 0.961217i \(0.588940\pi\)
\(642\) 0 0
\(643\) 19.5316 2.28292i 0.770252 0.0900295i 0.278115 0.960548i \(-0.410290\pi\)
0.492136 + 0.870518i \(0.336216\pi\)
\(644\) −0.932563 + 16.0115i −0.0367481 + 0.630941i
\(645\) 0 0
\(646\) 4.92345 + 5.21855i 0.193710 + 0.205321i
\(647\) 14.2593 0.560591 0.280295 0.959914i \(-0.409568\pi\)
0.280295 + 0.959914i \(0.409568\pi\)
\(648\) 0 0
\(649\) −33.6709 −1.32170
\(650\) 1.93952 + 2.05577i 0.0760742 + 0.0806340i
\(651\) 0 0
\(652\) 0.731843 12.5653i 0.0286612 0.492094i
\(653\) 40.5133 4.73532i 1.58541 0.185308i 0.722755 0.691105i \(-0.242876\pi\)
0.862653 + 0.505797i \(0.168802\pi\)
\(654\) 0 0
\(655\) 11.5368 + 5.79398i 0.450779 + 0.226390i
\(656\) 10.8608 9.11326i 0.424042 0.355813i
\(657\) 0 0
\(658\) 21.0831 + 17.6908i 0.821905 + 0.689660i
\(659\) −1.02550 2.37737i −0.0399477 0.0926093i 0.897074 0.441880i \(-0.145688\pi\)
−0.937022 + 0.349271i \(0.886429\pi\)
\(660\) 0 0
\(661\) 29.2233 + 6.92605i 1.13665 + 0.269392i 0.755519 0.655127i \(-0.227385\pi\)
0.381136 + 0.924519i \(0.375533\pi\)
\(662\) 4.14999 + 13.8619i 0.161294 + 0.538760i
\(663\) 0 0
\(664\) 8.66211 + 1.01246i 0.336155 + 0.0392909i
\(665\) −5.90288 + 33.4769i −0.228904 + 1.29818i
\(666\) 0 0
\(667\) 2.41300 + 13.6848i 0.0934318 + 0.529878i
\(668\) −1.53387 26.3355i −0.0593472 1.01895i
\(669\) 0 0
\(670\) 3.84867 8.92222i 0.148687 0.344695i
\(671\) −23.8426 + 11.9742i −0.920435 + 0.462260i
\(672\) 0 0
\(673\) 13.4942 3.19818i 0.520163 0.123281i 0.0378561 0.999283i \(-0.487947\pi\)
0.482307 + 0.876002i \(0.339799\pi\)
\(674\) 2.96391 + 5.13365i 0.114166 + 0.197741i
\(675\) 0 0
\(676\) −1.93907 + 3.35858i −0.0745798 + 0.129176i
\(677\) 5.74687 19.1959i 0.220870 0.737757i −0.773687 0.633568i \(-0.781590\pi\)
0.994557 0.104190i \(-0.0332249\pi\)
\(678\) 0 0
\(679\) 24.5709 + 16.1605i 0.942943 + 0.620184i
\(680\) −11.6645 15.6682i −0.447314 0.600847i
\(681\) 0 0
\(682\) 10.5071 6.91060i 0.402336 0.264621i
\(683\) 29.9877 + 10.9146i 1.14745 + 0.417636i 0.844597 0.535402i \(-0.179840\pi\)
0.302849 + 0.953039i \(0.402062\pi\)
\(684\) 0 0
\(685\) 4.49011 1.63426i 0.171558 0.0624421i
\(686\) 4.72406 6.34551i 0.180365 0.242273i
\(687\) 0 0
\(688\) 8.40577 8.90959i 0.320467 0.339675i
\(689\) 0.0220081 0.0233272i 0.000838442 0.000888696i
\(690\) 0 0
\(691\) 22.3598 30.0344i 0.850605 1.14256i −0.137760 0.990466i \(-0.543990\pi\)
0.988366 0.152096i \(-0.0486022\pi\)
\(692\) −9.87198 + 3.59311i −0.375276 + 0.136589i
\(693\) 0 0
\(694\) 11.9523 + 4.35029i 0.453704 + 0.165135i
\(695\) −19.6514 + 12.9249i −0.745419 + 0.490270i
\(696\) 0 0
\(697\) 17.8220 + 23.9391i 0.675056 + 0.906757i
\(698\) −11.7996 7.76071i −0.446621 0.293747i
\(699\) 0 0
\(700\) 2.42822 8.11081i 0.0917780 0.306560i
\(701\) −11.5923 + 20.0785i −0.437836 + 0.758355i −0.997522 0.0703498i \(-0.977588\pi\)
0.559686 + 0.828705i \(0.310922\pi\)
\(702\) 0 0
\(703\) 4.49645 + 7.78807i 0.169587 + 0.293733i
\(704\) −1.92522 + 0.456286i −0.0725596 + 0.0171969i
\(705\) 0 0
\(706\) 8.69527 4.36693i 0.327251 0.164352i
\(707\) 3.43020 7.95210i 0.129006 0.299069i
\(708\) 0 0
\(709\) −0.289566 4.97166i −0.0108749 0.186715i −0.999371 0.0354672i \(-0.988708\pi\)
0.988496 0.151247i \(-0.0483290\pi\)
\(710\) 0.685132 + 3.88558i 0.0257126 + 0.145823i
\(711\) 0 0
\(712\) −5.11277 + 28.9960i −0.191609 + 1.08667i
\(713\) 15.9234 + 1.86118i 0.596336 + 0.0697016i
\(714\) 0 0
\(715\) −6.92166 23.1200i −0.258855 0.864637i
\(716\) −23.1197 5.47947i −0.864024 0.204777i
\(717\) 0 0
\(718\) −2.80544 6.50373i −0.104698 0.242717i
\(719\) −13.4111 11.2533i −0.500151 0.419677i 0.357497 0.933914i \(-0.383630\pi\)
−0.857648 + 0.514238i \(0.828075\pi\)
\(720\) 0 0
\(721\) −6.50583 + 5.45904i −0.242290 + 0.203305i
\(722\) −4.83620 2.42883i −0.179985 0.0903918i
\(723\) 0 0
\(724\) −8.69907 + 1.01678i −0.323299 + 0.0377882i
\(725\) 0.426516 7.32299i 0.0158404 0.271969i
\(726\) 0 0
\(727\) −5.51070 5.84100i −0.204381 0.216631i 0.617073 0.786906i \(-0.288318\pi\)
−0.821454 + 0.570275i \(0.806837\pi\)
\(728\) 31.4223 1.16459
\(729\) 0 0
\(730\) 7.85530 0.290738
\(731\) 17.6945 + 18.7550i 0.654453 + 0.693680i
\(732\) 0 0
\(733\) 1.74889 30.0273i 0.0645968 1.10908i −0.797823 0.602891i \(-0.794015\pi\)
0.862420 0.506193i \(-0.168948\pi\)
\(734\) 2.60505 0.304486i 0.0961540 0.0112388i
\(735\) 0 0
\(736\) −12.8231 6.43998i −0.472664 0.237381i
\(737\) −13.2568 + 11.1237i −0.488319 + 0.409748i
\(738\) 0 0
\(739\) 1.84741 + 1.55016i 0.0679580 + 0.0570236i 0.676134 0.736779i \(-0.263654\pi\)
−0.608176 + 0.793802i \(0.708098\pi\)
\(740\) −4.25350 9.86072i −0.156362 0.362487i
\(741\) 0 0
\(742\) 0.0261681 + 0.00620195i 0.000960661 + 0.000227681i
\(743\) 5.63906 + 18.8358i 0.206877 + 0.691018i 0.996953 + 0.0780084i \(0.0248561\pi\)
−0.790076 + 0.613009i \(0.789959\pi\)
\(744\) 0 0
\(745\) −2.21850 0.259305i −0.0812794 0.00950020i
\(746\) −2.72448 + 15.4513i −0.0997503 + 0.565712i
\(747\) 0 0
\(748\) 2.64961 + 15.0267i 0.0968793 + 0.549430i
\(749\) 3.41033 + 58.5532i 0.124611 + 2.13949i
\(750\) 0 0
\(751\) −2.72090 + 6.30775i −0.0992869 + 0.230173i −0.960619 0.277870i \(-0.910372\pi\)
0.861332 + 0.508043i \(0.169631\pi\)
\(752\) 14.1698 7.11636i 0.516721 0.259507i
\(753\) 0 0
\(754\) 11.6190 2.75376i 0.423140 0.100286i
\(755\) 10.1276 + 17.5415i 0.368580 + 0.638399i
\(756\) 0 0
\(757\) −6.50209 + 11.2620i −0.236323 + 0.409323i −0.959656 0.281176i \(-0.909276\pi\)
0.723334 + 0.690499i \(0.242609\pi\)
\(758\) 4.93535 16.4852i 0.179260 0.598770i
\(759\) 0 0
\(760\) −16.2737 10.7034i −0.590311 0.388254i
\(761\) −10.3938 13.9613i −0.376775 0.506096i 0.572775 0.819713i \(-0.305867\pi\)
−0.949550 + 0.313616i \(0.898459\pi\)
\(762\) 0 0
\(763\) −46.0527 + 30.2894i −1.66722 + 1.09655i
\(764\) 6.30756 + 2.29576i 0.228200 + 0.0830578i
\(765\) 0 0
\(766\) −18.2874 + 6.65607i −0.660751 + 0.240494i
\(767\) −22.0260 + 29.5860i −0.795312 + 1.06829i
\(768\) 0 0
\(769\) 12.7844 13.5507i 0.461018 0.488651i −0.454602 0.890695i \(-0.650219\pi\)
0.915620 + 0.402044i \(0.131700\pi\)
\(770\) 13.8879 14.7203i 0.500486 0.530484i
\(771\) 0 0
\(772\) −2.64414 + 3.55170i −0.0951647 + 0.127828i
\(773\) 27.2264 9.90961i 0.979267 0.356424i 0.197712 0.980260i \(-0.436649\pi\)
0.781555 + 0.623836i \(0.214427\pi\)
\(774\) 0 0
\(775\) −7.95251 2.89448i −0.285663 0.103973i
\(776\) −14.0791 + 9.25996i −0.505410 + 0.332413i
\(777\) 0 0
\(778\) 10.4675 + 14.0604i 0.375280 + 0.504088i
\(779\) 24.8643 + 16.3535i 0.890856 + 0.585925i
\(780\) 0 0
\(781\) 2.01532 6.73163i 0.0721138 0.240877i
\(782\) 2.72251 4.71553i 0.0973568 0.168627i
\(783\) 0