Properties

Label 729.2.g.a.109.2
Level $729$
Weight $2$
Character 729.109
Analytic conductor $5.821$
Analytic rank $0$
Dimension $144$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(28,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([44]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 109.2
Character \(\chi\) \(=\) 729.109
Dual form 729.2.g.a.622.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38579 - 1.46885i) q^{2} +(-0.120822 + 2.07444i) q^{4} +(-2.74943 + 0.321362i) q^{5} +(-0.546257 - 0.274341i) q^{7} +(0.120591 - 0.101188i) q^{8} +O(q^{10})\) \(q+(-1.38579 - 1.46885i) q^{2} +(-0.120822 + 2.07444i) q^{4} +(-2.74943 + 0.321362i) q^{5} +(-0.546257 - 0.274341i) q^{7} +(0.120591 - 0.101188i) q^{8} +(4.28217 + 3.59317i) q^{10} +(1.48325 + 3.43857i) q^{11} +(3.32773 + 0.788687i) q^{13} +(0.354033 + 1.18255i) q^{14} +(3.81206 + 0.445566i) q^{16} +(1.31516 - 7.45862i) q^{17} +(0.132568 + 0.751830i) q^{19} +(-0.334454 - 5.74235i) q^{20} +(2.99528 - 6.94383i) q^{22} +(-1.94270 + 0.975661i) q^{23} +(2.59085 - 0.614044i) q^{25} +(-3.45308 - 5.98091i) q^{26} +(0.635103 - 1.10003i) q^{28} +(-1.30287 + 4.35188i) q^{29} +(-6.83895 - 4.49805i) q^{31} +(-4.81627 - 6.46937i) q^{32} +(-12.7782 + 8.40432i) q^{34} +(1.59006 + 0.578734i) q^{35} +(3.96908 - 1.44463i) q^{37} +(0.920617 - 1.23660i) q^{38} +(-0.299038 + 0.316962i) q^{40} +(6.20503 - 6.57695i) q^{41} +(1.04785 - 1.40751i) q^{43} +(-7.31231 + 2.66146i) q^{44} +(4.12528 + 1.50148i) q^{46} +(9.82847 - 6.46428i) q^{47} +(-3.95698 - 5.31514i) q^{49} +(-4.49233 - 2.95465i) q^{50} +(-2.03815 + 6.80788i) q^{52} +(2.80062 - 4.85082i) q^{53} +(-5.18313 - 8.97744i) q^{55} +(-0.0936337 + 0.0221916i) q^{56} +(8.19779 - 4.11708i) q^{58} +(-0.599347 + 1.38944i) q^{59} +(-0.175804 - 3.01844i) q^{61} +(2.87039 + 16.2788i) q^{62} +(-1.49529 + 8.48019i) q^{64} +(-9.40281 - 1.09903i) q^{65} +(2.19466 + 7.33068i) q^{67} +(15.3135 + 3.62938i) q^{68} +(-1.35341 - 3.13757i) q^{70} +(5.19850 + 4.36206i) q^{71} +(0.438511 - 0.367955i) q^{73} +(-7.62227 - 3.82805i) q^{74} +(-1.57564 + 0.184166i) q^{76} +(0.133101 - 2.28526i) q^{77} +(-6.32380 - 6.70284i) q^{79} -10.6242 q^{80} -18.2595 q^{82} +(-4.24676 - 4.50130i) q^{83} +(-1.21901 + 20.9296i) q^{85} +(-3.51954 + 0.411375i) q^{86} +(0.526809 + 0.264573i) q^{88} +(3.52742 - 2.95986i) q^{89} +(-1.60143 - 1.34376i) q^{91} +(-1.78923 - 4.14790i) q^{92} +(-23.1153 - 5.47843i) q^{94} +(-0.606095 - 2.02450i) q^{95} +(10.4458 + 1.22093i) q^{97} +(-2.32362 + 13.1779i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 9 q^{2} + 9 q^{4} - 9 q^{5} + 9 q^{7} + 18 q^{8} - 18 q^{10} - 9 q^{11} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 18 q^{17} - 18 q^{19} - 45 q^{20} + 9 q^{22} + 45 q^{23} + 9 q^{25} - 45 q^{26} - 9 q^{28} - 36 q^{29} + 9 q^{31} + 99 q^{32} + 9 q^{34} - 9 q^{35} - 18 q^{37} - 18 q^{38} + 9 q^{40} - 27 q^{41} + 9 q^{43} - 54 q^{44} - 18 q^{46} + 99 q^{47} + 9 q^{49} - 126 q^{50} - 27 q^{52} - 45 q^{53} - 9 q^{55} + 225 q^{56} + 9 q^{58} - 72 q^{59} + 9 q^{61} - 81 q^{62} - 18 q^{64} + 81 q^{65} - 45 q^{67} - 117 q^{68} - 99 q^{70} + 90 q^{71} - 18 q^{73} - 81 q^{74} - 153 q^{76} - 81 q^{77} - 99 q^{79} + 288 q^{80} - 36 q^{82} - 45 q^{83} - 99 q^{85} - 81 q^{86} - 153 q^{88} + 81 q^{89} - 18 q^{91} - 207 q^{92} - 99 q^{94} + 171 q^{95} - 45 q^{97} - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38579 1.46885i −0.979903 1.03864i −0.999246 0.0388240i \(-0.987639\pi\)
0.0193427 0.999813i \(-0.493843\pi\)
\(3\) 0 0
\(4\) −0.120822 + 2.07444i −0.0604111 + 1.03722i
\(5\) −2.74943 + 0.321362i −1.22958 + 0.143717i −0.705971 0.708241i \(-0.749489\pi\)
−0.523610 + 0.851958i \(0.675415\pi\)
\(6\) 0 0
\(7\) −0.546257 0.274341i −0.206466 0.103691i 0.342562 0.939495i \(-0.388705\pi\)
−0.549027 + 0.835804i \(0.685002\pi\)
\(8\) 0.120591 0.101188i 0.0426353 0.0357753i
\(9\) 0 0
\(10\) 4.28217 + 3.59317i 1.35414 + 1.13626i
\(11\) 1.48325 + 3.43857i 0.447218 + 1.03677i 0.981500 + 0.191462i \(0.0613228\pi\)
−0.534282 + 0.845306i \(0.679418\pi\)
\(12\) 0 0
\(13\) 3.32773 + 0.788687i 0.922947 + 0.218742i 0.664504 0.747284i \(-0.268643\pi\)
0.258442 + 0.966027i \(0.416791\pi\)
\(14\) 0.354033 + 1.18255i 0.0946193 + 0.316050i
\(15\) 0 0
\(16\) 3.81206 + 0.445566i 0.953016 + 0.111392i
\(17\) 1.31516 7.45862i 0.318972 1.80898i −0.230058 0.973177i \(-0.573891\pi\)
0.549030 0.835803i \(-0.314997\pi\)
\(18\) 0 0
\(19\) 0.132568 + 0.751830i 0.0304132 + 0.172482i 0.996231 0.0867403i \(-0.0276450\pi\)
−0.965818 + 0.259222i \(0.916534\pi\)
\(20\) −0.334454 5.74235i −0.0747861 1.28403i
\(21\) 0 0
\(22\) 2.99528 6.94383i 0.638595 1.48043i
\(23\) −1.94270 + 0.975661i −0.405081 + 0.203439i −0.639660 0.768658i \(-0.720925\pi\)
0.234579 + 0.972097i \(0.424629\pi\)
\(24\) 0 0
\(25\) 2.59085 0.614044i 0.518171 0.122809i
\(26\) −3.45308 5.98091i −0.677205 1.17295i
\(27\) 0 0
\(28\) 0.635103 1.10003i 0.120023 0.207886i
\(29\) −1.30287 + 4.35188i −0.241937 + 0.808124i 0.747639 + 0.664106i \(0.231188\pi\)
−0.989575 + 0.144018i \(0.953998\pi\)
\(30\) 0 0
\(31\) −6.83895 4.49805i −1.22831 0.807873i −0.241603 0.970375i \(-0.577673\pi\)
−0.986708 + 0.162502i \(0.948044\pi\)
\(32\) −4.81627 6.46937i −0.851404 1.14363i
\(33\) 0 0
\(34\) −12.7782 + 8.40432i −2.19143 + 1.44133i
\(35\) 1.59006 + 0.578734i 0.268769 + 0.0978239i
\(36\) 0 0
\(37\) 3.96908 1.44463i 0.652513 0.237495i 0.00551256 0.999985i \(-0.498245\pi\)
0.647001 + 0.762489i \(0.276023\pi\)
\(38\) 0.920617 1.23660i 0.149344 0.200604i
\(39\) 0 0
\(40\) −0.299038 + 0.316962i −0.0472821 + 0.0501161i
\(41\) 6.20503 6.57695i 0.969063 1.02715i −0.0305559 0.999533i \(-0.509728\pi\)
0.999619 0.0276134i \(-0.00879075\pi\)
\(42\) 0 0
\(43\) 1.04785 1.40751i 0.159796 0.214644i −0.715013 0.699111i \(-0.753579\pi\)
0.874809 + 0.484468i \(0.160987\pi\)
\(44\) −7.31231 + 2.66146i −1.10237 + 0.401231i
\(45\) 0 0
\(46\) 4.12528 + 1.50148i 0.608240 + 0.221381i
\(47\) 9.82847 6.46428i 1.43363 0.942913i 0.434522 0.900661i \(-0.356917\pi\)
0.999107 0.0422515i \(-0.0134531\pi\)
\(48\) 0 0
\(49\) −3.95698 5.31514i −0.565282 0.759306i
\(50\) −4.49233 2.95465i −0.635311 0.417851i
\(51\) 0 0
\(52\) −2.03815 + 6.80788i −0.282640 + 0.944084i
\(53\) 2.80062 4.85082i 0.384695 0.666312i −0.607032 0.794678i \(-0.707640\pi\)
0.991727 + 0.128366i \(0.0409732\pi\)
\(54\) 0 0
\(55\) −5.18313 8.97744i −0.698893 1.21052i
\(56\) −0.0936337 + 0.0221916i −0.0125123 + 0.00296548i
\(57\) 0 0
\(58\) 8.19779 4.11708i 1.07642 0.540599i
\(59\) −0.599347 + 1.38944i −0.0780283 + 0.180890i −0.952765 0.303709i \(-0.901775\pi\)
0.874737 + 0.484599i \(0.161034\pi\)
\(60\) 0 0
\(61\) −0.175804 3.01844i −0.0225094 0.386471i −0.990683 0.136190i \(-0.956514\pi\)
0.968173 0.250281i \(-0.0805229\pi\)
\(62\) 2.87039 + 16.2788i 0.364540 + 2.06741i
\(63\) 0 0
\(64\) −1.49529 + 8.48019i −0.186911 + 1.06002i
\(65\) −9.40281 1.09903i −1.16628 0.136318i
\(66\) 0 0
\(67\) 2.19466 + 7.33068i 0.268121 + 0.895585i 0.980952 + 0.194250i \(0.0622272\pi\)
−0.712831 + 0.701335i \(0.752588\pi\)
\(68\) 15.3135 + 3.62938i 1.85704 + 0.440126i
\(69\) 0 0
\(70\) −1.35341 3.13757i −0.161764 0.375011i
\(71\) 5.19850 + 4.36206i 0.616948 + 0.517681i 0.896843 0.442350i \(-0.145855\pi\)
−0.279895 + 0.960031i \(0.590299\pi\)
\(72\) 0 0
\(73\) 0.438511 0.367955i 0.0513238 0.0430658i −0.616765 0.787147i \(-0.711557\pi\)
0.668089 + 0.744082i \(0.267113\pi\)
\(74\) −7.62227 3.82805i −0.886071 0.445002i
\(75\) 0 0
\(76\) −1.57564 + 0.184166i −0.180739 + 0.0211253i
\(77\) 0.133101 2.28526i 0.0151683 0.260430i
\(78\) 0 0
\(79\) −6.32380 6.70284i −0.711483 0.754128i 0.266267 0.963899i \(-0.414210\pi\)
−0.977751 + 0.209771i \(0.932728\pi\)
\(80\) −10.6242 −1.18782
\(81\) 0 0
\(82\) −18.2595 −2.01642
\(83\) −4.24676 4.50130i −0.466143 0.494082i 0.451065 0.892491i \(-0.351044\pi\)
−0.917208 + 0.398409i \(0.869563\pi\)
\(84\) 0 0
\(85\) −1.21901 + 20.9296i −0.132220 + 2.27013i
\(86\) −3.51954 + 0.411375i −0.379522 + 0.0443597i
\(87\) 0 0
\(88\) 0.526809 + 0.264573i 0.0561580 + 0.0282036i
\(89\) 3.52742 2.95986i 0.373906 0.313744i −0.436399 0.899753i \(-0.643746\pi\)
0.810304 + 0.586009i \(0.199302\pi\)
\(90\) 0 0
\(91\) −1.60143 1.34376i −0.167875 0.140864i
\(92\) −1.78923 4.14790i −0.186540 0.432448i
\(93\) 0 0
\(94\) −23.1153 5.47843i −2.38416 0.565057i
\(95\) −0.606095 2.02450i −0.0621841 0.207709i
\(96\) 0 0
\(97\) 10.4458 + 1.22093i 1.06061 + 0.123967i 0.628464 0.777839i \(-0.283684\pi\)
0.432142 + 0.901806i \(0.357758\pi\)
\(98\) −2.32362 + 13.1779i −0.234721 + 1.33117i
\(99\) 0 0
\(100\) 0.960763 + 5.44876i 0.0960763 + 0.544876i
\(101\) 0.142370 + 2.44440i 0.0141663 + 0.243227i 0.997956 + 0.0639015i \(0.0203544\pi\)
−0.983790 + 0.179325i \(0.942609\pi\)
\(102\) 0 0
\(103\) 6.75628 15.6628i 0.665716 1.54330i −0.164811 0.986325i \(-0.552701\pi\)
0.830527 0.556978i \(-0.188039\pi\)
\(104\) 0.481100 0.241617i 0.0471757 0.0236925i
\(105\) 0 0
\(106\) −11.0062 + 2.60853i −1.06902 + 0.253362i
\(107\) −0.402056 0.696381i −0.0388682 0.0673217i 0.845937 0.533283i \(-0.179042\pi\)
−0.884805 + 0.465961i \(0.845709\pi\)
\(108\) 0 0
\(109\) 2.11135 3.65696i 0.202230 0.350273i −0.747016 0.664806i \(-0.768514\pi\)
0.949247 + 0.314532i \(0.101848\pi\)
\(110\) −6.00381 + 20.0541i −0.572441 + 1.91209i
\(111\) 0 0
\(112\) −1.96013 1.28920i −0.185215 0.121818i
\(113\) 7.37084 + 9.90076i 0.693390 + 0.931385i 0.999789 0.0205182i \(-0.00653160\pi\)
−0.306399 + 0.951903i \(0.599124\pi\)
\(114\) 0 0
\(115\) 5.02778 3.30682i 0.468842 0.308363i
\(116\) −8.87030 3.22852i −0.823586 0.299761i
\(117\) 0 0
\(118\) 2.87146 1.04513i 0.264339 0.0962116i
\(119\) −2.76462 + 3.71352i −0.253432 + 0.340418i
\(120\) 0 0
\(121\) −2.07506 + 2.19944i −0.188642 + 0.199949i
\(122\) −4.19002 + 4.44116i −0.379346 + 0.402083i
\(123\) 0 0
\(124\) 10.1572 13.6435i 0.912145 1.22522i
\(125\) 6.07999 2.21294i 0.543811 0.197931i
\(126\) 0 0
\(127\) −9.37360 3.41171i −0.831772 0.302740i −0.109186 0.994021i \(-0.534824\pi\)
−0.722586 + 0.691281i \(0.757047\pi\)
\(128\) 1.05138 0.691505i 0.0929300 0.0611210i
\(129\) 0 0
\(130\) 11.4160 + 15.3344i 1.00125 + 1.34491i
\(131\) 4.58946 + 3.01853i 0.400983 + 0.263731i 0.733944 0.679210i \(-0.237677\pi\)
−0.332961 + 0.942941i \(0.608048\pi\)
\(132\) 0 0
\(133\) 0.133841 0.447061i 0.0116055 0.0387651i
\(134\) 7.72636 13.3824i 0.667456 1.15607i
\(135\) 0 0
\(136\) −0.596125 1.03252i −0.0511173 0.0885378i
\(137\) 14.8200 3.51241i 1.26616 0.300086i 0.457949 0.888978i \(-0.348584\pi\)
0.808211 + 0.588893i \(0.200436\pi\)
\(138\) 0 0
\(139\) 14.3127 7.18809i 1.21398 0.609686i 0.277612 0.960693i \(-0.410457\pi\)
0.936373 + 0.351008i \(0.114161\pi\)
\(140\) −1.39266 + 3.22855i −0.117701 + 0.272863i
\(141\) 0 0
\(142\) −0.796812 13.6807i −0.0668670 1.14806i
\(143\) 2.22392 + 12.6125i 0.185973 + 1.05471i
\(144\) 0 0
\(145\) 2.18361 12.3839i 0.181339 1.02842i
\(146\) −1.14816 0.134200i −0.0950222 0.0111065i
\(147\) 0 0
\(148\) 2.51724 + 8.40816i 0.206916 + 0.691147i
\(149\) −8.60207 2.03873i −0.704709 0.167019i −0.137390 0.990517i \(-0.543871\pi\)
−0.567319 + 0.823498i \(0.692019\pi\)
\(150\) 0 0
\(151\) 0.391266 + 0.907056i 0.0318408 + 0.0738152i 0.933394 0.358852i \(-0.116832\pi\)
−0.901554 + 0.432667i \(0.857572\pi\)
\(152\) 0.0920625 + 0.0772496i 0.00746726 + 0.00626577i
\(153\) 0 0
\(154\) −3.54117 + 2.97139i −0.285355 + 0.239442i
\(155\) 20.2487 + 10.1693i 1.62641 + 0.816816i
\(156\) 0 0
\(157\) −18.0755 + 2.11272i −1.44258 + 0.168613i −0.801102 0.598528i \(-0.795753\pi\)
−0.641478 + 0.767141i \(0.721679\pi\)
\(158\) −1.08202 + 18.5775i −0.0860805 + 1.47795i
\(159\) 0 0
\(160\) 15.3210 + 16.2393i 1.21123 + 1.28383i
\(161\) 1.32888 0.104730
\(162\) 0 0
\(163\) 17.1469 1.34305 0.671524 0.740983i \(-0.265640\pi\)
0.671524 + 0.740983i \(0.265640\pi\)
\(164\) 12.8938 + 13.6666i 1.00683 + 1.06718i
\(165\) 0 0
\(166\) −0.726629 + 12.4757i −0.0563974 + 0.968306i
\(167\) 5.86126 0.685083i 0.453558 0.0530133i 0.113753 0.993509i \(-0.463713\pi\)
0.339805 + 0.940496i \(0.389639\pi\)
\(168\) 0 0
\(169\) −1.16546 0.585314i −0.0896505 0.0450242i
\(170\) 32.4318 27.2135i 2.48740 2.08718i
\(171\) 0 0
\(172\) 2.79319 + 2.34377i 0.212979 + 0.178711i
\(173\) −3.56184 8.25726i −0.270801 0.627788i 0.727496 0.686111i \(-0.240684\pi\)
−0.998298 + 0.0583234i \(0.981425\pi\)
\(174\) 0 0
\(175\) −1.58373 0.375351i −0.119719 0.0283739i
\(176\) 4.12215 + 13.7689i 0.310719 + 1.03787i
\(177\) 0 0
\(178\) −9.23587 1.07952i −0.692258 0.0809134i
\(179\) −0.223820 + 1.26935i −0.0167291 + 0.0948754i −0.992029 0.126009i \(-0.959783\pi\)
0.975300 + 0.220884i \(0.0708943\pi\)
\(180\) 0 0
\(181\) 0.645386 + 3.66017i 0.0479712 + 0.272058i 0.999353 0.0359546i \(-0.0114472\pi\)
−0.951382 + 0.308013i \(0.900336\pi\)
\(182\) 0.245463 + 4.21444i 0.0181949 + 0.312395i
\(183\) 0 0
\(184\) −0.135547 + 0.314234i −0.00999267 + 0.0231656i
\(185\) −10.4485 + 5.24741i −0.768186 + 0.385797i
\(186\) 0 0
\(187\) 27.5977 6.54077i 2.01814 0.478309i
\(188\) 12.2223 + 21.1696i 0.891400 + 1.54395i
\(189\) 0 0
\(190\) −2.13377 + 3.69580i −0.154800 + 0.268122i
\(191\) 2.09081 6.98378i 0.151285 0.505328i −0.848427 0.529313i \(-0.822450\pi\)
0.999712 + 0.0239841i \(0.00763509\pi\)
\(192\) 0 0
\(193\) 8.04337 + 5.29021i 0.578974 + 0.380797i 0.804956 0.593334i \(-0.202189\pi\)
−0.225982 + 0.974131i \(0.572559\pi\)
\(194\) −12.6823 17.0352i −0.910534 1.22306i
\(195\) 0 0
\(196\) 11.5040 7.56632i 0.821716 0.540451i
\(197\) −4.63898 1.68845i −0.330513 0.120297i 0.171433 0.985196i \(-0.445160\pi\)
−0.501946 + 0.864899i \(0.667383\pi\)
\(198\) 0 0
\(199\) −2.36550 + 0.860973i −0.167686 + 0.0610327i −0.424499 0.905428i \(-0.639550\pi\)
0.256813 + 0.966461i \(0.417328\pi\)
\(200\) 0.250300 0.336211i 0.0176989 0.0237737i
\(201\) 0 0
\(202\) 3.39317 3.59655i 0.238743 0.253052i
\(203\) 1.90560 2.01982i 0.133747 0.141763i
\(204\) 0 0
\(205\) −14.9467 + 20.0769i −1.04392 + 1.40223i
\(206\) −32.3692 + 11.7814i −2.25527 + 0.820851i
\(207\) 0 0
\(208\) 12.3341 + 4.48925i 0.855217 + 0.311273i
\(209\) −2.38859 + 1.57100i −0.165222 + 0.108668i
\(210\) 0 0
\(211\) 4.17283 + 5.60508i 0.287269 + 0.385870i 0.922209 0.386692i \(-0.126382\pi\)
−0.634939 + 0.772562i \(0.718975\pi\)
\(212\) 9.72436 + 6.39581i 0.667872 + 0.439266i
\(213\) 0 0
\(214\) −0.465716 + 1.55560i −0.0318357 + 0.106339i
\(215\) −2.42868 + 4.20659i −0.165634 + 0.286887i
\(216\) 0 0
\(217\) 2.50183 + 4.33330i 0.169835 + 0.294163i
\(218\) −8.29743 + 1.96653i −0.561973 + 0.133190i
\(219\) 0 0
\(220\) 19.2494 9.66740i 1.29779 0.651776i
\(221\) 10.2590 23.7830i 0.690095 1.59982i
\(222\) 0 0
\(223\) 1.04650 + 17.9678i 0.0700790 + 1.20321i 0.831714 + 0.555204i \(0.187360\pi\)
−0.761635 + 0.648006i \(0.775603\pi\)
\(224\) 0.856110 + 4.85524i 0.0572012 + 0.324404i
\(225\) 0 0
\(226\) 4.32831 24.5471i 0.287915 1.63285i
\(227\) −0.609362 0.0712243i −0.0404448 0.00472732i 0.0958464 0.995396i \(-0.469444\pi\)
−0.136291 + 0.990669i \(0.543518\pi\)
\(228\) 0 0
\(229\) 1.43265 + 4.78538i 0.0946720 + 0.316227i 0.992187 0.124757i \(-0.0398150\pi\)
−0.897515 + 0.440983i \(0.854630\pi\)
\(230\) −11.8247 2.80250i −0.779697 0.184792i
\(231\) 0 0
\(232\) 0.283243 + 0.656632i 0.0185958 + 0.0431100i
\(233\) −10.0792 8.45747i −0.660311 0.554067i 0.249869 0.968280i \(-0.419613\pi\)
−0.910180 + 0.414213i \(0.864057\pi\)
\(234\) 0 0
\(235\) −24.9453 + 20.9316i −1.62725 + 1.36543i
\(236\) −2.80990 1.41118i −0.182909 0.0918603i
\(237\) 0 0
\(238\) 9.28581 1.08536i 0.601910 0.0703531i
\(239\) −0.529012 + 9.08278i −0.0342189 + 0.587517i 0.937000 + 0.349329i \(0.113590\pi\)
−0.971219 + 0.238188i \(0.923447\pi\)
\(240\) 0 0
\(241\) 9.77902 + 10.3652i 0.629922 + 0.667679i 0.961199 0.275855i \(-0.0889609\pi\)
−0.331277 + 0.943534i \(0.607479\pi\)
\(242\) 6.10626 0.392526
\(243\) 0 0
\(244\) 6.28280 0.402215
\(245\) 12.5875 + 13.3420i 0.804186 + 0.852387i
\(246\) 0 0
\(247\) −0.151808 + 2.60644i −0.00965931 + 0.165844i
\(248\) −1.27986 + 0.149595i −0.0812714 + 0.00949926i
\(249\) 0 0
\(250\) −11.6761 5.86395i −0.738461 0.370869i
\(251\) −6.58379 + 5.52445i −0.415565 + 0.348700i −0.826473 0.562976i \(-0.809656\pi\)
0.410908 + 0.911677i \(0.365212\pi\)
\(252\) 0 0
\(253\) −6.23640 5.23296i −0.392079 0.328993i
\(254\) 7.97856 + 18.4964i 0.500619 + 1.16057i
\(255\) 0 0
\(256\) 14.2851 + 3.38562i 0.892817 + 0.211602i
\(257\) −6.36608 21.2642i −0.397105 1.32642i −0.889851 0.456251i \(-0.849192\pi\)
0.492746 0.870173i \(-0.335993\pi\)
\(258\) 0 0
\(259\) −2.56446 0.299743i −0.159348 0.0186251i
\(260\) 3.41594 19.3728i 0.211848 1.20145i
\(261\) 0 0
\(262\) −1.92625 10.9243i −0.119004 0.674906i
\(263\) 0.305988 + 5.25362i 0.0188681 + 0.323952i 0.994514 + 0.104602i \(0.0333568\pi\)
−0.975646 + 0.219350i \(0.929606\pi\)
\(264\) 0 0
\(265\) −6.14124 + 14.2370i −0.377254 + 0.874572i
\(266\) −0.842145 + 0.422941i −0.0516352 + 0.0259322i
\(267\) 0 0
\(268\) −15.4722 + 3.66698i −0.945116 + 0.223997i
\(269\) 3.11423 + 5.39401i 0.189878 + 0.328878i 0.945209 0.326465i \(-0.105857\pi\)
−0.755331 + 0.655343i \(0.772524\pi\)
\(270\) 0 0
\(271\) −3.65935 + 6.33818i −0.222290 + 0.385017i −0.955503 0.294982i \(-0.904686\pi\)
0.733213 + 0.679999i \(0.238020\pi\)
\(272\) 8.33676 27.8467i 0.505490 1.68846i
\(273\) 0 0
\(274\) −25.6967 16.9010i −1.55239 1.02103i
\(275\) 5.95433 + 7.99805i 0.359060 + 0.482301i
\(276\) 0 0
\(277\) 15.5663 10.2381i 0.935287 0.615148i 0.0122776 0.999925i \(-0.496092\pi\)
0.923010 + 0.384776i \(0.125721\pi\)
\(278\) −30.3926 11.0620i −1.82283 0.663456i
\(279\) 0 0
\(280\) 0.250307 0.0911045i 0.0149587 0.00544453i
\(281\) 0.610261 0.819722i 0.0364051 0.0489005i −0.783548 0.621331i \(-0.786592\pi\)
0.819953 + 0.572431i \(0.193999\pi\)
\(282\) 0 0
\(283\) 7.52347 7.97442i 0.447224 0.474030i −0.464063 0.885802i \(-0.653609\pi\)
0.911287 + 0.411773i \(0.135090\pi\)
\(284\) −9.67691 + 10.2569i −0.574219 + 0.608637i
\(285\) 0 0
\(286\) 15.4440 20.7449i 0.913222 1.22667i
\(287\) −5.19387 + 1.89041i −0.306584 + 0.111588i
\(288\) 0 0
\(289\) −37.9265 13.8041i −2.23097 0.812008i
\(290\) −21.2161 + 13.9541i −1.24585 + 0.819412i
\(291\) 0 0
\(292\) 0.710317 + 0.954122i 0.0415682 + 0.0558357i
\(293\) 20.2853 + 13.3418i 1.18508 + 0.779438i 0.979939 0.199295i \(-0.0638654\pi\)
0.205138 + 0.978733i \(0.434236\pi\)
\(294\) 0 0
\(295\) 1.20135 4.01278i 0.0699451 0.233633i
\(296\) 0.332457 0.575832i 0.0193237 0.0334696i
\(297\) 0 0
\(298\) 8.92609 + 15.4604i 0.517075 + 0.895599i
\(299\) −7.23428 + 1.71456i −0.418369 + 0.0991553i
\(300\) 0 0
\(301\) −0.958536 + 0.481395i −0.0552491 + 0.0277471i
\(302\) 0.790120 1.83170i 0.0454663 0.105403i
\(303\) 0 0
\(304\) 0.170367 + 2.92509i 0.00977123 + 0.167765i
\(305\) 1.45337 + 8.24247i 0.0832198 + 0.471963i
\(306\) 0 0
\(307\) −4.31169 + 24.4528i −0.246081 + 1.39560i 0.571887 + 0.820333i \(0.306212\pi\)
−0.817968 + 0.575264i \(0.804899\pi\)
\(308\) 4.72455 + 0.552221i 0.269206 + 0.0314657i
\(309\) 0 0
\(310\) −13.1233 43.8349i −0.745354 2.48966i
\(311\) −1.80082 0.426803i −0.102115 0.0242018i 0.179241 0.983805i \(-0.442636\pi\)
−0.281356 + 0.959604i \(0.590784\pi\)
\(312\) 0 0
\(313\) −2.75336 6.38301i −0.155629 0.360789i 0.822507 0.568755i \(-0.192575\pi\)
−0.978136 + 0.207966i \(0.933316\pi\)
\(314\) 28.1521 + 23.6225i 1.58872 + 1.33309i
\(315\) 0 0
\(316\) 14.6687 12.3085i 0.825178 0.692406i
\(317\) −23.2678 11.6855i −1.30685 0.656324i −0.347270 0.937765i \(-0.612891\pi\)
−0.959578 + 0.281441i \(0.909188\pi\)
\(318\) 0 0
\(319\) −16.8967 + 1.97495i −0.946036 + 0.110576i
\(320\) 1.38597 23.7962i 0.0774781 1.33025i
\(321\) 0 0
\(322\) −1.84155 1.95193i −0.102626 0.108777i
\(323\) 5.78196 0.321717
\(324\) 0 0
\(325\) 9.10595 0.505107
\(326\) −23.7620 25.1863i −1.31606 1.39494i
\(327\) 0 0
\(328\) 0.0827635 1.42099i 0.00456985 0.0784613i
\(329\) −7.14229 + 0.834814i −0.393767 + 0.0460248i
\(330\) 0 0
\(331\) −23.2661 11.6847i −1.27882 0.642249i −0.325884 0.945410i \(-0.605662\pi\)
−0.952939 + 0.303161i \(0.901958\pi\)
\(332\) 9.85078 8.26579i 0.540632 0.453644i
\(333\) 0 0
\(334\) −9.12878 7.65996i −0.499505 0.419134i
\(335\) −8.38987 19.4499i −0.458387 1.06266i
\(336\) 0 0
\(337\) −14.6259 3.46641i −0.796726 0.188828i −0.187959 0.982177i \(-0.560187\pi\)
−0.608767 + 0.793349i \(0.708335\pi\)
\(338\) 0.755339 + 2.52301i 0.0410850 + 0.137234i
\(339\) 0 0
\(340\) −43.2698 5.05752i −2.34663 0.274282i
\(341\) 5.32295 30.1880i 0.288254 1.63477i
\(342\) 0 0
\(343\) 1.44640 + 8.20293i 0.0780981 + 0.442917i
\(344\) −0.0160614 0.275763i −0.000865972 0.0148682i
\(345\) 0 0
\(346\) −7.19275 + 16.6747i −0.386685 + 0.896436i
\(347\) 22.7180 11.4094i 1.21957 0.612490i 0.281706 0.959501i \(-0.409100\pi\)
0.937861 + 0.347011i \(0.112803\pi\)
\(348\) 0 0
\(349\) −28.4767 + 6.74910i −1.52432 + 0.361271i −0.905530 0.424283i \(-0.860526\pi\)
−0.618793 + 0.785554i \(0.712378\pi\)
\(350\) 1.64339 + 2.84643i 0.0878427 + 0.152148i
\(351\) 0 0
\(352\) 15.1016 26.1568i 0.804920 1.39416i
\(353\) 8.22886 27.4863i 0.437978 1.46295i −0.399629 0.916677i \(-0.630861\pi\)
0.837608 0.546272i \(-0.183954\pi\)
\(354\) 0 0
\(355\) −15.6947 10.3226i −0.832988 0.547865i
\(356\) 5.71385 + 7.67504i 0.302834 + 0.406776i
\(357\) 0 0
\(358\) 2.17465 1.43029i 0.114934 0.0755932i
\(359\) −19.5984 7.13322i −1.03436 0.376477i −0.231622 0.972806i \(-0.574403\pi\)
−0.802740 + 0.596329i \(0.796625\pi\)
\(360\) 0 0
\(361\) 17.3065 6.29905i 0.910868 0.331529i
\(362\) 4.48188 6.02021i 0.235563 0.316415i
\(363\) 0 0
\(364\) 2.98103 3.15971i 0.156249 0.165614i
\(365\) −1.08741 + 1.15259i −0.0569175 + 0.0603291i
\(366\) 0 0
\(367\) −20.6418 + 27.7268i −1.07750 + 1.44733i −0.192753 + 0.981247i \(0.561742\pi\)
−0.884742 + 0.466080i \(0.845666\pi\)
\(368\) −7.84042 + 2.85368i −0.408710 + 0.148758i
\(369\) 0 0
\(370\) 22.1871 + 8.07544i 1.15345 + 0.419822i
\(371\) −2.86064 + 1.88147i −0.148517 + 0.0976812i
\(372\) 0 0
\(373\) −5.59504 7.51544i −0.289700 0.389135i 0.633318 0.773892i \(-0.281693\pi\)
−0.923018 + 0.384757i \(0.874285\pi\)
\(374\) −47.8521 31.4728i −2.47437 1.62742i
\(375\) 0 0
\(376\) 0.531117 1.77406i 0.0273903 0.0914899i
\(377\) −7.76787 + 13.4543i −0.400065 + 0.692934i
\(378\) 0 0
\(379\) 0.963771 + 1.66930i 0.0495056 + 0.0857462i 0.889716 0.456514i \(-0.150902\pi\)
−0.840211 + 0.542260i \(0.817569\pi\)
\(380\) 4.27293 1.01270i 0.219197 0.0519506i
\(381\) 0 0
\(382\) −13.1556 + 6.60698i −0.673098 + 0.338042i
\(383\) −7.72041 + 17.8979i −0.394494 + 0.914541i 0.599010 + 0.800742i \(0.295561\pi\)
−0.993504 + 0.113799i \(0.963698\pi\)
\(384\) 0 0
\(385\) 0.368444 + 6.32594i 0.0187776 + 0.322400i
\(386\) −3.37590 19.1457i −0.171829 0.974489i
\(387\) 0 0
\(388\) −3.79483 + 21.5216i −0.192653 + 1.09259i
\(389\) −9.07811 1.06108i −0.460279 0.0537989i −0.117206 0.993108i \(-0.537394\pi\)
−0.343073 + 0.939309i \(0.611468\pi\)
\(390\) 0 0
\(391\) 4.72213 + 15.7730i 0.238808 + 0.797675i
\(392\) −1.01500 0.240560i −0.0512654 0.0121501i
\(393\) 0 0
\(394\) 3.94857 + 9.15382i 0.198926 + 0.461163i
\(395\) 19.5409 + 16.3967i 0.983208 + 0.825009i
\(396\) 0 0
\(397\) 25.5466 21.4361i 1.28215 1.07585i 0.289202 0.957268i \(-0.406610\pi\)
0.992944 0.118581i \(-0.0378344\pi\)
\(398\) 4.54274 + 2.28145i 0.227707 + 0.114359i
\(399\) 0 0
\(400\) 10.1501 1.18638i 0.507505 0.0593188i
\(401\) −0.206340 + 3.54271i −0.0103041 + 0.176915i 0.989229 + 0.146373i \(0.0467601\pi\)
−0.999534 + 0.0305412i \(0.990277\pi\)
\(402\) 0 0
\(403\) −19.2106 20.3621i −0.956950 1.01431i
\(404\) −5.08795 −0.253135
\(405\) 0 0
\(406\) −5.60758 −0.278300
\(407\) 10.8546 + 11.5052i 0.538043 + 0.570293i
\(408\) 0 0
\(409\) 1.86266 31.9807i 0.0921027 1.58134i −0.563422 0.826169i \(-0.690516\pi\)
0.655525 0.755173i \(-0.272447\pi\)
\(410\) 50.2031 5.86790i 2.47935 0.289795i
\(411\) 0 0
\(412\) 31.6752 + 15.9079i 1.56053 + 0.783726i
\(413\) 0.708579 0.594568i 0.0348669 0.0292568i
\(414\) 0 0
\(415\) 13.1227 + 11.0113i 0.644168 + 0.540522i
\(416\) −10.9249 25.3268i −0.535639 1.24175i
\(417\) 0 0
\(418\) 5.61766 + 1.33141i 0.274769 + 0.0651213i
\(419\) −4.25467 14.2116i −0.207854 0.694281i −0.996809 0.0798292i \(-0.974563\pi\)
0.788955 0.614452i \(-0.210623\pi\)
\(420\) 0 0
\(421\) 15.4744 + 1.80870i 0.754176 + 0.0881505i 0.484489 0.874798i \(-0.339006\pi\)
0.269687 + 0.962948i \(0.413080\pi\)
\(422\) 2.45037 13.8968i 0.119282 0.676484i
\(423\) 0 0
\(424\) −0.153114 0.868355i −0.00743589 0.0421710i
\(425\) −1.17254 20.1317i −0.0568766 0.976533i
\(426\) 0 0
\(427\) −0.732046 + 1.69707i −0.0354262 + 0.0821271i
\(428\) 1.49318 0.749902i 0.0721754 0.0362479i
\(429\) 0 0
\(430\) 9.54451 2.26209i 0.460277 0.109088i
\(431\) 0.648713 + 1.12360i 0.0312474 + 0.0541221i 0.881226 0.472695i \(-0.156719\pi\)
−0.849979 + 0.526817i \(0.823385\pi\)
\(432\) 0 0
\(433\) −8.76506 + 15.1815i −0.421222 + 0.729577i −0.996059 0.0886901i \(-0.971732\pi\)
0.574838 + 0.818268i \(0.305065\pi\)
\(434\) 2.89796 9.67987i 0.139107 0.464649i
\(435\) 0 0
\(436\) 7.33105 + 4.82170i 0.351093 + 0.230918i
\(437\) −0.991071 1.33124i −0.0474094 0.0636818i
\(438\) 0 0
\(439\) −18.1453 + 11.9344i −0.866028 + 0.569596i −0.902961 0.429722i \(-0.858612\pi\)
0.0369331 + 0.999318i \(0.488241\pi\)
\(440\) −1.53345 0.558129i −0.0731042 0.0266077i
\(441\) 0 0
\(442\) −49.1506 + 17.8894i −2.33786 + 0.850910i
\(443\) −5.46021 + 7.33434i −0.259422 + 0.348465i −0.912683 0.408668i \(-0.865993\pi\)
0.653260 + 0.757133i \(0.273401\pi\)
\(444\) 0 0
\(445\) −8.74720 + 9.27149i −0.414657 + 0.439511i
\(446\) 24.9418 26.4367i 1.18103 1.25182i
\(447\) 0 0
\(448\) 3.14327 4.22215i 0.148506 0.199478i
\(449\) 11.6732 4.24870i 0.550893 0.200509i −0.0515501 0.998670i \(-0.516416\pi\)
0.602443 + 0.798162i \(0.294194\pi\)
\(450\) 0 0
\(451\) 31.8189 + 11.5811i 1.49829 + 0.545335i
\(452\) −21.4291 + 14.0941i −1.00794 + 0.662932i
\(453\) 0 0
\(454\) 0.739832 + 0.993767i 0.0347220 + 0.0466398i
\(455\) 4.83485 + 3.17993i 0.226661 + 0.149077i
\(456\) 0 0
\(457\) 5.36176 17.9095i 0.250812 0.837772i −0.736150 0.676819i \(-0.763358\pi\)
0.986962 0.160953i \(-0.0514567\pi\)
\(458\) 5.04367 8.73589i 0.235675 0.408201i
\(459\) 0 0
\(460\) 6.25233 + 10.8293i 0.291516 + 0.504921i
\(461\) −39.9745 + 9.47414i −1.86180 + 0.441255i −0.998036 0.0626425i \(-0.980047\pi\)
−0.863764 + 0.503897i \(0.831899\pi\)
\(462\) 0 0
\(463\) −3.69053 + 1.85346i −0.171514 + 0.0861374i −0.532485 0.846440i \(-0.678742\pi\)
0.360971 + 0.932577i \(0.382445\pi\)
\(464\) −6.90567 + 16.0091i −0.320588 + 0.743205i
\(465\) 0 0
\(466\) 1.54492 + 26.5252i 0.0715669 + 1.22876i
\(467\) 4.38922 + 24.8925i 0.203109 + 1.15189i 0.900388 + 0.435087i \(0.143283\pi\)
−0.697279 + 0.716799i \(0.745606\pi\)
\(468\) 0 0
\(469\) 0.812254 4.60652i 0.0375064 0.212710i
\(470\) 65.3144 + 7.63416i 3.01273 + 0.352138i
\(471\) 0 0
\(472\) 0.0683188 + 0.228201i 0.00314463 + 0.0105038i
\(473\) 6.39406 + 1.51542i 0.293999 + 0.0696791i
\(474\) 0 0
\(475\) 0.805121 + 1.86648i 0.0369415 + 0.0856399i
\(476\) −7.36945 6.18370i −0.337778 0.283430i
\(477\) 0 0
\(478\) 14.0744 11.8098i 0.643748 0.540168i
\(479\) 18.5894 + 9.33596i 0.849372 + 0.426571i 0.819566 0.572985i \(-0.194215\pi\)
0.0298064 + 0.999556i \(0.490511\pi\)
\(480\) 0 0
\(481\) 14.3474 1.67697i 0.654185 0.0764633i
\(482\) 1.67321 28.7279i 0.0762127 1.30852i
\(483\) 0 0
\(484\) −4.31189 4.57033i −0.195995 0.207742i
\(485\) −29.1122 −1.32192
\(486\) 0 0
\(487\) −6.60060 −0.299102 −0.149551 0.988754i \(-0.547783\pi\)
−0.149551 + 0.988754i \(0.547783\pi\)
\(488\) −0.326629 0.346207i −0.0147858 0.0156721i
\(489\) 0 0
\(490\) 2.15375 36.9784i 0.0972964 1.67051i
\(491\) −36.2982 + 4.24265i −1.63811 + 0.191468i −0.884727 0.466109i \(-0.845655\pi\)
−0.753387 + 0.657577i \(0.771581\pi\)
\(492\) 0 0
\(493\) 30.7455 + 15.4410i 1.38471 + 0.695427i
\(494\) 4.03886 3.38900i 0.181717 0.152479i
\(495\) 0 0
\(496\) −24.0663 20.1941i −1.08061 0.906740i
\(497\) −1.64303 3.80897i −0.0736998 0.170855i
\(498\) 0 0
\(499\) 35.4129 + 8.39301i 1.58530 + 0.375723i 0.926410 0.376517i \(-0.122878\pi\)
0.658890 + 0.752239i \(0.271026\pi\)
\(500\) 3.85600 + 12.8799i 0.172446 + 0.576008i
\(501\) 0 0
\(502\) 17.2384 + 2.01488i 0.769387 + 0.0899284i
\(503\) −1.38230 + 7.83939i −0.0616335 + 0.349541i 0.938359 + 0.345662i \(0.112346\pi\)
−0.999992 + 0.00387871i \(0.998765\pi\)
\(504\) 0 0
\(505\) −1.17697 6.67494i −0.0523746 0.297031i
\(506\) 0.955899 + 16.4122i 0.0424949 + 0.729610i
\(507\) 0 0
\(508\) 8.20992 19.0327i 0.364256 0.844441i
\(509\) 1.49130 0.748960i 0.0661008 0.0331971i −0.415442 0.909620i \(-0.636373\pi\)
0.481543 + 0.876423i \(0.340077\pi\)
\(510\) 0 0
\(511\) −0.340485 + 0.0806964i −0.0150622 + 0.00356980i
\(512\) −16.0816 27.8541i −0.710711 1.23099i
\(513\) 0 0
\(514\) −22.4119 + 38.8186i −0.988548 + 1.71221i
\(515\) −13.5425 + 45.2350i −0.596753 + 1.99329i
\(516\) 0 0
\(517\) 36.8060 + 24.2077i 1.61873 + 1.06465i
\(518\) 3.11353 + 4.18220i 0.136801 + 0.183755i
\(519\) 0 0
\(520\) −1.24510 + 0.818917i −0.0546014 + 0.0359119i
\(521\) −32.9725 12.0010i −1.44455 0.525773i −0.503486 0.864003i \(-0.667950\pi\)
−0.941063 + 0.338230i \(0.890172\pi\)
\(522\) 0 0
\(523\) 11.3086 4.11600i 0.494491 0.179980i −0.0827236 0.996573i \(-0.526362\pi\)
0.577214 + 0.816593i \(0.304140\pi\)
\(524\) −6.81627 + 9.15584i −0.297770 + 0.399975i
\(525\) 0 0
\(526\) 7.29276 7.72988i 0.317980 0.337039i
\(527\) −42.5435 + 45.0935i −1.85322 + 1.96430i
\(528\) 0 0
\(529\) −10.9125 + 14.6580i −0.474455 + 0.637304i
\(530\) 29.4226 10.7089i 1.27803 0.465167i
\(531\) 0 0
\(532\) 0.911231 + 0.331661i 0.0395069 + 0.0143793i
\(533\) 25.8358 16.9925i 1.11907 0.736026i
\(534\) 0 0
\(535\) 1.32921 + 1.78544i 0.0574669 + 0.0771915i
\(536\) 1.00643 + 0.661941i 0.0434712 + 0.0285915i
\(537\) 0 0
\(538\) 3.60733 12.0493i 0.155523 0.519483i
\(539\) 12.4073 21.4900i 0.534420 0.925642i
\(540\) 0 0
\(541\) −9.81306 16.9967i −0.421896 0.730746i 0.574229 0.818695i \(-0.305302\pi\)
−0.996125 + 0.0879490i \(0.971969\pi\)
\(542\) 14.3810 3.40835i 0.617715 0.146401i
\(543\) 0 0
\(544\) −54.5867 + 27.4145i −2.34038 + 1.17539i
\(545\) −4.62979 + 10.7331i −0.198318 + 0.459754i
\(546\) 0 0
\(547\) −0.507250 8.70914i −0.0216884 0.372376i −0.991636 0.129063i \(-0.958803\pi\)
0.969948 0.243313i \(-0.0782341\pi\)
\(548\) 5.49569 + 31.1676i 0.234764 + 1.33141i
\(549\) 0 0
\(550\) 3.49651 19.8297i 0.149092 0.845540i
\(551\) −3.44459 0.402615i −0.146745 0.0171520i
\(552\) 0 0
\(553\) 1.61556 + 5.39635i 0.0687007 + 0.229476i
\(554\) −36.6099 8.67671i −1.55541 0.368638i
\(555\) 0 0
\(556\) 13.1820 + 30.5592i 0.559040 + 1.29600i
\(557\) −15.1698 12.7290i −0.642765 0.539344i 0.262101 0.965041i \(-0.415585\pi\)
−0.904866 + 0.425696i \(0.860029\pi\)
\(558\) 0 0
\(559\) 4.59706 3.85739i 0.194435 0.163150i
\(560\) 5.80354 + 2.91465i 0.245244 + 0.123166i
\(561\) 0 0
\(562\) −2.04975 + 0.239581i −0.0864634 + 0.0101061i
\(563\) 1.97439 33.8990i 0.0832108 1.42867i −0.655777 0.754955i \(-0.727659\pi\)
0.738987 0.673719i \(-0.235304\pi\)
\(564\) 0 0
\(565\) −23.4473 24.8527i −0.986436 1.04556i
\(566\) −22.1392 −0.930581
\(567\) 0 0
\(568\) 1.06828 0.0448240
\(569\) −13.2027 13.9941i −0.553486 0.586661i 0.388861 0.921296i \(-0.372868\pi\)
−0.942348 + 0.334635i \(0.891387\pi\)
\(570\) 0 0
\(571\) 0.144601 2.48271i 0.00605138 0.103898i −0.993930 0.110015i \(-0.964910\pi\)
0.999981 + 0.00611695i \(0.00194710\pi\)
\(572\) −26.4325 + 3.08951i −1.10520 + 0.129179i
\(573\) 0 0
\(574\) 9.97437 + 5.00931i 0.416322 + 0.209085i
\(575\) −4.43416 + 3.72070i −0.184917 + 0.155164i
\(576\) 0 0
\(577\) 19.5278 + 16.3857i 0.812951 + 0.682147i 0.951310 0.308235i \(-0.0997383\pi\)
−0.138359 + 0.990382i \(0.544183\pi\)
\(578\) 32.2821 + 74.8382i 1.34276 + 3.11286i
\(579\) 0 0
\(580\) 25.4258 + 6.02602i 1.05575 + 0.250217i
\(581\) 1.08493 + 3.62393i 0.0450106 + 0.150346i
\(582\) 0 0
\(583\) 20.8339 + 2.43514i 0.862854 + 0.100853i
\(584\) 0.0156480 0.0887440i 0.000647517 0.00367225i
\(585\) 0 0
\(586\) −8.51396 48.2851i −0.351709 1.99464i
\(587\) 0.0520618 + 0.893866i 0.00214882 + 0.0368938i 0.999212 0.0396880i \(-0.0126364\pi\)
−0.997063 + 0.0765818i \(0.975599\pi\)
\(588\) 0 0
\(589\) 2.47514 5.73802i 0.101986 0.236431i
\(590\) −7.55901 + 3.79628i −0.311199 + 0.156290i
\(591\) 0 0
\(592\) 15.7741 3.73852i 0.648310 0.153652i
\(593\) 16.2145 + 28.0843i 0.665848 + 1.15328i 0.979055 + 0.203597i \(0.0652634\pi\)
−0.313207 + 0.949685i \(0.601403\pi\)
\(594\) 0 0
\(595\) 6.40773 11.0985i 0.262691 0.454994i
\(596\) 5.26854 17.5981i 0.215808 0.720848i
\(597\) 0 0
\(598\) 12.5436 + 8.25008i 0.512948 + 0.337371i
\(599\) 25.1367 + 33.7644i 1.02706 + 1.37958i 0.922910 + 0.385016i \(0.125804\pi\)
0.104148 + 0.994562i \(0.466788\pi\)
\(600\) 0 0
\(601\) 25.8496 17.0016i 1.05443 0.693509i 0.100926 0.994894i \(-0.467819\pi\)
0.953502 + 0.301385i \(0.0974490\pi\)
\(602\) 2.03543 + 0.740836i 0.0829580 + 0.0301942i
\(603\) 0 0
\(604\) −1.92891 + 0.702064i −0.0784861 + 0.0285666i
\(605\) 4.99842 6.71405i 0.203215 0.272965i
\(606\) 0 0
\(607\) 10.2760 10.8919i 0.417090 0.442090i −0.484428 0.874831i \(-0.660972\pi\)
0.901518 + 0.432742i \(0.142454\pi\)
\(608\) 4.22538 4.47864i 0.171362 0.181633i
\(609\) 0 0
\(610\) 10.0929 13.5572i 0.408651 0.548913i
\(611\) 37.8048 13.7598i 1.52942 0.556663i
\(612\) 0 0
\(613\) 17.2467 + 6.27730i 0.696589 + 0.253538i 0.665954 0.745993i \(-0.268025\pi\)
0.0306353 + 0.999531i \(0.490247\pi\)
\(614\) 41.8928 27.5533i 1.69065 1.11196i
\(615\) 0 0
\(616\) −0.215190 0.289050i −0.00867025 0.0116462i
\(617\) −27.3834 18.0103i −1.10241 0.725069i −0.138255 0.990397i \(-0.544149\pi\)
−0.964158 + 0.265328i \(0.914520\pi\)
\(618\) 0 0
\(619\) 1.72149 5.75017i 0.0691925 0.231119i −0.916398 0.400268i \(-0.868917\pi\)
0.985590 + 0.169150i \(0.0541021\pi\)
\(620\) −23.5420 + 40.7760i −0.945471 + 1.63760i
\(621\) 0 0
\(622\) 1.86865 + 3.23661i 0.0749262 + 0.129776i
\(623\) −2.73889 + 0.649129i −0.109731 + 0.0260068i
\(624\) 0 0
\(625\) −27.9024 + 14.0131i −1.11610 + 0.560524i
\(626\) −5.56013 + 12.8898i −0.222227 + 0.515181i
\(627\) 0 0
\(628\) −2.19879 37.7517i −0.0877412 1.50646i
\(629\) −5.55497 31.5038i −0.221491 1.25614i
\(630\) 0 0
\(631\) −4.24361 + 24.0667i −0.168935 + 0.958080i 0.775978 + 0.630760i \(0.217257\pi\)
−0.944914 + 0.327320i \(0.893854\pi\)
\(632\) −1.44084 0.168410i −0.0573135 0.00669899i
\(633\) 0 0
\(634\) 15.0800 + 50.3707i 0.598903 + 2.00048i
\(635\) 26.8684 + 6.36793i 1.06624 + 0.252704i
\(636\) 0 0
\(637\) −8.97577 20.8082i −0.355633 0.824450i
\(638\) 26.3163 + 22.0820i 1.04187 + 0.874234i
\(639\) 0 0
\(640\) −2.66848 + 2.23912i −0.105481 + 0.0885089i
\(641\) −9.21794 4.62942i −0.364087 0.182851i 0.257345 0.966320i \(-0.417152\pi\)
−0.621432 + 0.783468i \(0.713449\pi\)
\(642\) 0 0
\(643\) 43.0139 5.02761i 1.69630 0.198270i 0.787738 0.616010i \(-0.211252\pi\)
0.908566 + 0.417741i \(0.137178\pi\)
\(644\) −0.160558 + 2.75668i −0.00632688 + 0.108628i
\(645\) 0 0
\(646\) −8.01259 8.49285i −0.315251 0.334147i
\(647\) −6.50021 −0.255550 −0.127775 0.991803i \(-0.540783\pi\)
−0.127775 + 0.991803i \(0.540783\pi\)
\(648\) 0 0
\(649\) −5.66668 −0.222437
\(650\) −12.6190 13.3753i −0.494956 0.524623i
\(651\) 0 0
\(652\) −2.07173 + 35.5702i −0.0811350 + 1.39303i
\(653\) 2.95697 0.345620i 0.115715 0.0135251i −0.0580383 0.998314i \(-0.518485\pi\)
0.173753 + 0.984789i \(0.444410\pi\)
\(654\) 0 0
\(655\) −13.5884 6.82436i −0.530944 0.266650i
\(656\) 26.5844 22.3070i 1.03795 0.870941i
\(657\) 0 0
\(658\) 11.1240 + 9.33410i 0.433657 + 0.363881i
\(659\) 11.1338 + 25.8110i 0.433710 + 1.00545i 0.985221 + 0.171285i \(0.0547920\pi\)
−0.551512 + 0.834167i \(0.685949\pi\)
\(660\) 0 0
\(661\) −3.16302 0.749650i −0.123027 0.0291580i 0.168641 0.985678i \(-0.446062\pi\)
−0.291668 + 0.956520i \(0.594210\pi\)
\(662\) 15.0789 + 50.3671i 0.586059 + 1.95757i
\(663\) 0 0
\(664\) −0.967598 0.113096i −0.0375501 0.00438898i
\(665\) −0.224319 + 1.27217i −0.00869871 + 0.0493328i
\(666\) 0 0
\(667\) −1.71488 9.72556i −0.0664004 0.376575i
\(668\) 0.712992 + 12.2416i 0.0275865 + 0.473642i
\(669\) 0 0
\(670\) −16.9424 + 39.2770i −0.654544 + 1.51740i
\(671\) 10.1183 5.08162i 0.390614 0.196174i
\(672\) 0 0
\(673\) 13.5198 3.20426i 0.521152 0.123515i 0.0383830 0.999263i \(-0.487779\pi\)
0.482769 + 0.875748i \(0.339631\pi\)
\(674\) 15.1769 + 26.2871i 0.584591 + 1.01254i
\(675\) 0 0
\(676\) 1.35501 2.34695i 0.0521158 0.0902672i
\(677\) −3.11373 + 10.4006i −0.119670 + 0.399727i −0.996744 0.0806287i \(-0.974307\pi\)
0.877074 + 0.480356i \(0.159492\pi\)
\(678\) 0 0
\(679\) −5.37112 3.53264i −0.206125 0.135570i
\(680\) 1.97082 + 2.64726i 0.0755773 + 0.101518i
\(681\) 0 0
\(682\) −51.7182 + 34.0156i −1.98039 + 1.30253i
\(683\) 31.5858 + 11.4963i 1.20860 + 0.439893i 0.866217 0.499668i \(-0.166545\pi\)
0.342380 + 0.939562i \(0.388767\pi\)
\(684\) 0 0
\(685\) −39.6178 + 14.4197i −1.51372 + 0.550949i
\(686\) 10.0445 13.4921i 0.383501 0.515131i
\(687\) 0 0
\(688\) 4.62162 4.89864i 0.176198 0.186759i
\(689\) 13.1455 13.9334i 0.500804 0.530821i
\(690\) 0 0
\(691\) −0.267326 + 0.359082i −0.0101696 + 0.0136601i −0.807179 0.590307i \(-0.799007\pi\)
0.797009 + 0.603967i \(0.206414\pi\)
\(692\) 17.5595 6.39115i 0.667513 0.242955i
\(693\) 0 0
\(694\) −48.2412 17.5584i −1.83121 0.666507i
\(695\) −37.0417 + 24.3627i −1.40507 + 0.924129i
\(696\) 0 0
\(697\) −40.8943 54.9306i −1.54898 2.08065i
\(698\) 49.3762 + 32.4753i 1.86892 + 1.22921i
\(699\) 0 0
\(700\) 0.969993 3.24000i 0.0366623 0.122461i
\(701\) −1.94332 + 3.36593i −0.0733982 + 0.127129i −0.900389 0.435087i \(-0.856718\pi\)
0.826990 + 0.562216i \(0.190051\pi\)
\(702\) 0 0
\(703\) 1.61229 + 2.79256i 0.0608086 + 0.105324i
\(704\) −31.3776 + 7.43663i −1.18259 + 0.280278i
\(705\) 0 0
\(706\) −51.7769 + 26.0033i −1.94865 + 0.978648i
\(707\) 0.592827 1.37433i 0.0222956 0.0516869i
\(708\) 0 0
\(709\) 0.857054 + 14.7150i 0.0321873 + 0.552635i 0.975400 + 0.220444i \(0.0707507\pi\)
−0.943212 + 0.332191i \(0.892212\pi\)
\(710\) 6.58725 + 37.3581i 0.247215 + 1.40203i
\(711\) 0 0
\(712\) 0.125874 0.713864i 0.00471731 0.0267532i
\(713\) 17.6746 + 2.06587i 0.661919 + 0.0773673i
\(714\) 0 0
\(715\) −10.1677 33.9624i −0.380249 1.27012i
\(716\) −2.60614 0.617666i −0.0973959 0.0230833i
\(717\) 0 0
\(718\) 16.6816 + 38.6723i 0.622552 + 1.44324i
\(719\) −24.7821 20.7947i −0.924218 0.775511i 0.0505523 0.998721i \(-0.483902\pi\)
−0.974770 + 0.223210i \(0.928346\pi\)
\(720\) 0 0
\(721\) −7.98762 + 6.70241i −0.297474 + 0.249611i
\(722\) −33.2356 16.6915i −1.23690 0.621195i
\(723\) 0 0
\(724\) −7.67077 + 0.896585i −0.285082 + 0.0333213i
\(725\) −0.703295 + 12.0751i −0.0261197 + 0.448458i
\(726\) 0 0
\(727\) 6.33415 + 6.71380i 0.234921 + 0.249001i 0.834100 0.551614i \(-0.185988\pi\)
−0.599179 + 0.800615i \(0.704506\pi\)
\(728\) −0.329090 −0.0121969
\(729\) 0 0
\(730\) 3.19990 0.118434
\(731\) −9.12000 9.66663i −0.337315 0.357533i
\(732\) 0 0
\(733\) 3.08131 52.9040i 0.113811 1.95405i −0.148126 0.988969i \(-0.547324\pi\)
0.261936 0.965085i \(-0.415639\pi\)
\(734\) 69.3320 8.10374i 2.55909 0.299115i
\(735\) 0 0
\(736\) 15.6685 + 7.86901i 0.577548 + 0.290055i
\(737\) −21.9518 + 18.4198i −0.808606 + 0.678501i
\(738\) 0 0
\(739\) 2.18316 + 1.83188i 0.0803087 + 0.0673870i 0.682058 0.731298i \(-0.261085\pi\)
−0.601750 + 0.798685i \(0.705529\pi\)
\(740\) −9.62303 22.3087i −0.353750 0.820084i
\(741\) 0 0
\(742\) 6.72786 + 1.59453i 0.246988 + 0.0585372i
\(743\) −8.43563 28.1770i −0.309473 1.03371i −0.961336 0.275376i \(-0.911198\pi\)
0.651863 0.758337i \(-0.273988\pi\)
\(744\) 0 0
\(745\) 24.3059 + 2.84096i 0.890501 + 0.104085i
\(746\) −3.28553 + 18.6331i −0.120292 + 0.682208i
\(747\) 0 0
\(748\) 10.2340 + 58.0400i 0.374193 + 2.12215i
\(749\) 0.0285802 + 0.490704i 0.00104430 + 0.0179299i
\(750\) 0 0
\(751\) −10.8644 + 25.1865i −0.396447 + 0.919067i 0.596729 + 0.802443i \(0.296467\pi\)
−0.993176 + 0.116624i \(0.962793\pi\)
\(752\) 40.3470 20.2630i 1.47130 0.738917i
\(753\) 0 0
\(754\) 30.5271 7.23506i 1.11173 0.263485i
\(755\) −1.36725 2.36815i −0.0497593 0.0861857i
\(756\) 0 0
\(757\) 14.2323 24.6511i 0.517282 0.895959i −0.482516 0.875887i \(-0.660277\pi\)
0.999799 0.0200719i \(-0.00638952\pi\)
\(758\) 1.11637 3.72894i 0.0405485 0.135441i
\(759\) 0 0
\(760\) −0.277944 0.182807i −0.0100821 0.00663110i
\(761\) −16.7039 22.4372i −0.605514 0.813347i 0.388631 0.921393i \(-0.372948\pi\)
−0.994146 + 0.108046i \(0.965541\pi\)
\(762\) 0 0
\(763\) −2.15659 + 1.41841i −0.0780739 + 0.0513500i
\(764\) 14.2348 + 5.18104i 0.514997 + 0.187444i
\(765\) 0 0
\(766\) 36.9883 13.4626i 1.33644 0.486425i
\(767\) −3.09030 + 4.15099i −0.111584 + 0.149884i
\(768\) 0 0
\(769\) −32.2285 + 34.1602i −1.16219 + 1.23185i −0.194169 + 0.980968i \(0.562201\pi\)
−0.968018 + 0.250879i \(0.919280\pi\)
\(770\) 8.78129 9.30762i 0.316456 0.335424i
\(771\) 0 0
\(772\) −11.9460 + 16.0463i −0.429947 + 0.577519i
\(773\) −41.5507 + 15.1232i −1.49447 + 0.543944i −0.954623 0.297816i \(-0.903742\pi\)
−0.539851 + 0.841761i \(0.681519\pi\)
\(774\) 0 0
\(775\) −20.4807 7.45437i −0.735689 0.267769i
\(776\) 1.38321 0.909749i 0.0496542 0.0326581i
\(777\) 0 0
\(778\) 11.0218 + 14.8049i 0.395151 + 0.530780i
\(779\) 5.76733 + 3.79323i 0.206636 + 0.135907i
\(780\) 0 0
\(781\) −7.28855 + 24.3454i −0.260805 + 0.871148i
\(782\) 16.6244 28.7942i 0.594486 1.02968i
\(783\) 0 0