Properties

Label 729.2.e.u.325.2
Level $729$
Weight $2$
Character 729.325
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 325.2
Root \(1.37340i\) of defining polynomial
Character \(\chi\) \(=\) 729.325
Dual form 729.2.e.u.406.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07220 - 1.73878i) q^{2} +(0.923353 - 5.23659i) q^{4} +(1.57153 - 0.571989i) q^{5} +(0.0869267 + 0.492986i) q^{7} +(-4.48686 - 7.77147i) q^{8} +O(q^{10})\) \(q+(2.07220 - 1.73878i) q^{2} +(0.923353 - 5.23659i) q^{4} +(1.57153 - 0.571989i) q^{5} +(0.0869267 + 0.492986i) q^{7} +(-4.48686 - 7.77147i) q^{8} +(2.26195 - 3.91782i) q^{10} +(1.80207 + 0.655898i) q^{11} +(2.38426 + 2.00063i) q^{13} +(1.03732 + 0.870419i) q^{14} +(-12.8172 - 4.66506i) q^{16} +(-1.33234 + 2.30767i) q^{17} +(-2.89832 - 5.02003i) q^{19} +(-1.54420 - 8.75760i) q^{20} +(4.87470 - 1.77425i) q^{22} +(-0.806747 + 4.57529i) q^{23} +(-1.68769 + 1.41614i) q^{25} +8.41934 q^{26} +2.66183 q^{28} +(-2.00326 + 1.68093i) q^{29} +(-0.801317 + 4.54450i) q^{31} +(-17.8062 + 6.48092i) q^{32} +(1.25168 + 7.09860i) q^{34} +(0.418591 + 0.725020i) q^{35} +(2.42934 - 4.20773i) q^{37} +(-14.7346 - 5.36297i) q^{38} +(-11.4964 - 9.64664i) q^{40} +(-8.84640 - 7.42301i) q^{41} +(8.46131 + 3.07966i) q^{43} +(5.09861 - 8.83106i) q^{44} +(6.28369 + 10.8837i) q^{46} +(1.18641 + 6.72844i) q^{47} +(6.34237 - 2.30843i) q^{49} +(-1.03487 + 5.86907i) q^{50} +(12.6780 - 10.6381i) q^{52} -5.43322 q^{53} +3.20716 q^{55} +(3.44120 - 2.88751i) q^{56} +(-1.22838 + 6.96647i) q^{58} +(2.05916 - 0.749473i) q^{59} +(1.18781 + 6.73642i) q^{61} +(6.24140 + 10.8104i) q^{62} +(-11.9893 + 20.7661i) q^{64} +(4.89128 + 1.78028i) q^{65} +(9.56299 + 8.02430i) q^{67} +(10.8541 + 9.10770i) q^{68} +(2.12806 + 0.774549i) q^{70} +(1.41784 - 2.45578i) q^{71} +(-4.96749 - 8.60394i) q^{73} +(-2.28226 - 12.9434i) q^{74} +(-28.9640 + 10.5421i) q^{76} +(-0.166701 + 0.945408i) q^{77} +(4.06862 - 3.41398i) q^{79} -22.8109 q^{80} -31.2385 q^{82} +(-2.08988 + 1.75362i) q^{83} +(-0.773838 + 4.38865i) q^{85} +(22.8884 - 8.33069i) q^{86} +(-2.98832 - 16.9476i) q^{88} +(-5.60945 - 9.71585i) q^{89} +(-0.779029 + 1.34932i) q^{91} +(23.2140 + 8.44921i) q^{92} +(14.1578 + 11.8798i) q^{94} +(-7.42619 - 6.23132i) q^{95} +(6.47368 + 2.35623i) q^{97} +(9.12879 - 15.8115i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 6 q^{4} - 6 q^{5} - 3 q^{7} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{2} + 6 q^{4} - 6 q^{5} - 3 q^{7} - 6 q^{8} - 6 q^{10} - 12 q^{11} - 3 q^{13} - 15 q^{14} - 36 q^{16} + 9 q^{17} - 12 q^{19} - 42 q^{20} + 6 q^{22} - 6 q^{23} + 6 q^{25} + 48 q^{26} + 6 q^{28} - 12 q^{29} + 6 q^{31} - 54 q^{32} - 9 q^{34} - 30 q^{35} - 3 q^{37} - 42 q^{38} - 57 q^{40} - 24 q^{41} + 6 q^{43} + 33 q^{44} + 3 q^{46} - 21 q^{47} + 33 q^{49} - 21 q^{50} + 45 q^{52} - 18 q^{53} + 30 q^{55} - 3 q^{56} + 33 q^{58} - 15 q^{59} + 33 q^{61} + 30 q^{62} - 6 q^{64} + 6 q^{65} + 42 q^{67} + 18 q^{68} + 24 q^{70} - 12 q^{73} + 3 q^{74} - 87 q^{76} + 57 q^{77} - 48 q^{79} - 42 q^{80} - 42 q^{82} - 12 q^{83} - 36 q^{85} + 30 q^{86} + 30 q^{88} + 9 q^{89} - 18 q^{91} + 48 q^{92} + 33 q^{94} - 30 q^{95} - 3 q^{97} - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07220 1.73878i 1.46527 1.22950i 0.544869 0.838521i \(-0.316579\pi\)
0.920398 0.390983i \(-0.127865\pi\)
\(3\) 0 0
\(4\) 0.923353 5.23659i 0.461676 2.61830i
\(5\) 1.57153 0.571989i 0.702809 0.255801i 0.0341990 0.999415i \(-0.489112\pi\)
0.668610 + 0.743614i \(0.266890\pi\)
\(6\) 0 0
\(7\) 0.0869267 + 0.492986i 0.0328552 + 0.186331i 0.996819 0.0797038i \(-0.0253974\pi\)
−0.963963 + 0.266035i \(0.914286\pi\)
\(8\) −4.48686 7.77147i −1.58634 2.74763i
\(9\) 0 0
\(10\) 2.26195 3.91782i 0.715293 1.23892i
\(11\) 1.80207 + 0.655898i 0.543343 + 0.197761i 0.599086 0.800684i \(-0.295531\pi\)
−0.0557432 + 0.998445i \(0.517753\pi\)
\(12\) 0 0
\(13\) 2.38426 + 2.00063i 0.661276 + 0.554876i 0.910469 0.413578i \(-0.135721\pi\)
−0.249193 + 0.968454i \(0.580165\pi\)
\(14\) 1.03732 + 0.870419i 0.277237 + 0.232629i
\(15\) 0 0
\(16\) −12.8172 4.66506i −3.20429 1.16627i
\(17\) −1.33234 + 2.30767i −0.323139 + 0.559693i −0.981134 0.193329i \(-0.938071\pi\)
0.657995 + 0.753022i \(0.271405\pi\)
\(18\) 0 0
\(19\) −2.89832 5.02003i −0.664920 1.15167i −0.979307 0.202380i \(-0.935132\pi\)
0.314387 0.949295i \(-0.398201\pi\)
\(20\) −1.54420 8.75760i −0.345294 1.95826i
\(21\) 0 0
\(22\) 4.87470 1.77425i 1.03929 0.378271i
\(23\) −0.806747 + 4.57529i −0.168218 + 0.954013i 0.777466 + 0.628926i \(0.216505\pi\)
−0.945684 + 0.325088i \(0.894606\pi\)
\(24\) 0 0
\(25\) −1.68769 + 1.41614i −0.337539 + 0.283229i
\(26\) 8.41934 1.65117
\(27\) 0 0
\(28\) 2.66183 0.503039
\(29\) −2.00326 + 1.68093i −0.371996 + 0.312142i −0.809551 0.587050i \(-0.800289\pi\)
0.437555 + 0.899192i \(0.355845\pi\)
\(30\) 0 0
\(31\) −0.801317 + 4.54450i −0.143921 + 0.816216i 0.824306 + 0.566144i \(0.191565\pi\)
−0.968227 + 0.250072i \(0.919546\pi\)
\(32\) −17.8062 + 6.48092i −3.14772 + 1.14567i
\(33\) 0 0
\(34\) 1.25168 + 7.09860i 0.214661 + 1.21740i
\(35\) 0.418591 + 0.725020i 0.0707547 + 0.122551i
\(36\) 0 0
\(37\) 2.42934 4.20773i 0.399381 0.691747i −0.594269 0.804266i \(-0.702559\pi\)
0.993650 + 0.112519i \(0.0358919\pi\)
\(38\) −14.7346 5.36297i −2.39027 0.869989i
\(39\) 0 0
\(40\) −11.4964 9.64664i −1.81774 1.52527i
\(41\) −8.84640 7.42301i −1.38158 1.15928i −0.968625 0.248527i \(-0.920054\pi\)
−0.412951 0.910753i \(-0.635502\pi\)
\(42\) 0 0
\(43\) 8.46131 + 3.07966i 1.29034 + 0.469644i 0.893838 0.448390i \(-0.148003\pi\)
0.396500 + 0.918035i \(0.370225\pi\)
\(44\) 5.09861 8.83106i 0.768645 1.33133i
\(45\) 0 0
\(46\) 6.28369 + 10.8837i 0.926479 + 1.60471i
\(47\) 1.18641 + 6.72844i 0.173055 + 0.981444i 0.940365 + 0.340167i \(0.110484\pi\)
−0.767310 + 0.641277i \(0.778405\pi\)
\(48\) 0 0
\(49\) 6.34237 2.30843i 0.906053 0.329776i
\(50\) −1.03487 + 5.86907i −0.146353 + 0.830011i
\(51\) 0 0
\(52\) 12.6780 10.6381i 1.75813 1.47524i
\(53\) −5.43322 −0.746309 −0.373155 0.927769i \(-0.621724\pi\)
−0.373155 + 0.927769i \(0.621724\pi\)
\(54\) 0 0
\(55\) 3.20716 0.432454
\(56\) 3.44120 2.88751i 0.459849 0.385859i
\(57\) 0 0
\(58\) −1.22838 + 6.96647i −0.161294 + 0.914742i
\(59\) 2.05916 0.749473i 0.268080 0.0975731i −0.204483 0.978870i \(-0.565551\pi\)
0.472563 + 0.881297i \(0.343329\pi\)
\(60\) 0 0
\(61\) 1.18781 + 6.73642i 0.152084 + 0.862510i 0.961404 + 0.275142i \(0.0887248\pi\)
−0.809320 + 0.587368i \(0.800164\pi\)
\(62\) 6.24140 + 10.8104i 0.792659 + 1.37293i
\(63\) 0 0
\(64\) −11.9893 + 20.7661i −1.49866 + 2.59576i
\(65\) 4.89128 + 1.78028i 0.606688 + 0.220816i
\(66\) 0 0
\(67\) 9.56299 + 8.02430i 1.16831 + 0.980324i 0.999985 0.00540797i \(-0.00172142\pi\)
0.168320 + 0.985732i \(0.446166\pi\)
\(68\) 10.8541 + 9.10770i 1.31626 + 1.10447i
\(69\) 0 0
\(70\) 2.12806 + 0.774549i 0.254351 + 0.0925763i
\(71\) 1.41784 2.45578i 0.168267 0.291447i −0.769544 0.638594i \(-0.779516\pi\)
0.937811 + 0.347147i \(0.112850\pi\)
\(72\) 0 0
\(73\) −4.96749 8.60394i −0.581400 1.00701i −0.995314 0.0966986i \(-0.969172\pi\)
0.413913 0.910316i \(-0.364162\pi\)
\(74\) −2.28226 12.9434i −0.265308 1.50463i
\(75\) 0 0
\(76\) −28.9640 + 10.5421i −3.32240 + 1.20926i
\(77\) −0.166701 + 0.945408i −0.0189973 + 0.107739i
\(78\) 0 0
\(79\) 4.06862 3.41398i 0.457756 0.384103i −0.384549 0.923105i \(-0.625643\pi\)
0.842305 + 0.539002i \(0.181198\pi\)
\(80\) −22.8109 −2.55033
\(81\) 0 0
\(82\) −31.2385 −3.44972
\(83\) −2.08988 + 1.75362i −0.229395 + 0.192485i −0.750239 0.661167i \(-0.770062\pi\)
0.520844 + 0.853652i \(0.325617\pi\)
\(84\) 0 0
\(85\) −0.773838 + 4.38865i −0.0839345 + 0.476016i
\(86\) 22.8884 8.33069i 2.46812 0.898322i
\(87\) 0 0
\(88\) −2.98832 16.9476i −0.318556 1.80662i
\(89\) −5.60945 9.71585i −0.594600 1.02988i −0.993603 0.112928i \(-0.963977\pi\)
0.399003 0.916950i \(-0.369356\pi\)
\(90\) 0 0
\(91\) −0.779029 + 1.34932i −0.0816644 + 0.141447i
\(92\) 23.2140 + 8.44921i 2.42023 + 0.880891i
\(93\) 0 0
\(94\) 14.1578 + 11.8798i 1.46026 + 1.22531i
\(95\) −7.42619 6.23132i −0.761911 0.639320i
\(96\) 0 0
\(97\) 6.47368 + 2.35623i 0.657302 + 0.239238i 0.649071 0.760728i \(-0.275158\pi\)
0.00823103 + 0.999966i \(0.497380\pi\)
\(98\) 9.12879 15.8115i 0.922147 1.59721i
\(99\) 0 0
\(100\) 5.85743 + 10.1454i 0.585743 + 1.01454i
\(101\) 0.647646 + 3.67298i 0.0644432 + 0.365476i 0.999927 + 0.0121053i \(0.00385333\pi\)
−0.935484 + 0.353370i \(0.885036\pi\)
\(102\) 0 0
\(103\) −7.21759 + 2.62699i −0.711170 + 0.258845i −0.672173 0.740395i \(-0.734639\pi\)
−0.0389976 + 0.999239i \(0.512416\pi\)
\(104\) 4.85001 27.5058i 0.475583 2.69716i
\(105\) 0 0
\(106\) −11.2587 + 9.44718i −1.09354 + 0.917591i
\(107\) −10.7658 −1.04077 −0.520383 0.853933i \(-0.674211\pi\)
−0.520383 + 0.853933i \(0.674211\pi\)
\(108\) 0 0
\(109\) 12.2298 1.17141 0.585703 0.810526i \(-0.300819\pi\)
0.585703 + 0.810526i \(0.300819\pi\)
\(110\) 6.64588 5.57656i 0.633660 0.531704i
\(111\) 0 0
\(112\) 1.18566 6.72420i 0.112034 0.635377i
\(113\) 1.82671 0.664870i 0.171843 0.0625457i −0.254666 0.967029i \(-0.581966\pi\)
0.426509 + 0.904483i \(0.359743\pi\)
\(114\) 0 0
\(115\) 1.34919 + 7.65164i 0.125813 + 0.713519i
\(116\) 6.95266 + 12.0424i 0.645538 + 1.11810i
\(117\) 0 0
\(118\) 2.96382 5.13349i 0.272842 0.472576i
\(119\) −1.25347 0.456225i −0.114905 0.0418220i
\(120\) 0 0
\(121\) −5.60925 4.70672i −0.509932 0.427884i
\(122\) 14.1745 + 11.8939i 1.28330 + 1.07682i
\(123\) 0 0
\(124\) 23.0578 + 8.39235i 2.07065 + 0.753655i
\(125\) −6.02320 + 10.4325i −0.538732 + 0.933110i
\(126\) 0 0
\(127\) −1.17217 2.03025i −0.104013 0.180156i 0.809322 0.587366i \(-0.199835\pi\)
−0.913335 + 0.407210i \(0.866502\pi\)
\(128\) 4.68257 + 26.5562i 0.413885 + 2.34726i
\(129\) 0 0
\(130\) 13.2312 4.81577i 1.16046 0.422371i
\(131\) −2.96980 + 16.8426i −0.259472 + 1.47154i 0.524854 + 0.851193i \(0.324120\pi\)
−0.784326 + 0.620349i \(0.786991\pi\)
\(132\) 0 0
\(133\) 2.22287 1.86521i 0.192747 0.161734i
\(134\) 33.7689 2.91719
\(135\) 0 0
\(136\) 23.9120 2.05044
\(137\) 10.6688 8.95221i 0.911499 0.764839i −0.0609045 0.998144i \(-0.519399\pi\)
0.972404 + 0.233305i \(0.0749541\pi\)
\(138\) 0 0
\(139\) 1.37471 7.79636i 0.116601 0.661279i −0.869344 0.494208i \(-0.835458\pi\)
0.985945 0.167071i \(-0.0534308\pi\)
\(140\) 4.18314 1.52254i 0.353540 0.128678i
\(141\) 0 0
\(142\) −1.33200 7.55418i −0.111779 0.633932i
\(143\) 2.98439 + 5.16911i 0.249567 + 0.432263i
\(144\) 0 0
\(145\) −2.18670 + 3.78748i −0.181596 + 0.314533i
\(146\) −25.2540 9.19170i −2.09004 0.760711i
\(147\) 0 0
\(148\) −19.7911 16.6067i −1.62682 1.36506i
\(149\) 0.557783 + 0.468036i 0.0456954 + 0.0383430i 0.665349 0.746532i \(-0.268283\pi\)
−0.619654 + 0.784875i \(0.712727\pi\)
\(150\) 0 0
\(151\) −4.08023 1.48508i −0.332044 0.120854i 0.170618 0.985337i \(-0.445424\pi\)
−0.502662 + 0.864483i \(0.667646\pi\)
\(152\) −26.0087 + 45.0484i −2.10958 + 3.65390i
\(153\) 0 0
\(154\) 1.29842 + 2.24893i 0.104630 + 0.181224i
\(155\) 1.34011 + 7.60015i 0.107640 + 0.610459i
\(156\) 0 0
\(157\) 14.5871 5.30927i 1.16418 0.423726i 0.313589 0.949559i \(-0.398469\pi\)
0.850588 + 0.525833i \(0.176246\pi\)
\(158\) 2.49483 14.1489i 0.198478 1.12563i
\(159\) 0 0
\(160\) −24.2759 + 20.3699i −1.91918 + 1.61038i
\(161\) −2.32568 −0.183289
\(162\) 0 0
\(163\) 8.49738 0.665566 0.332783 0.943003i \(-0.392012\pi\)
0.332783 + 0.943003i \(0.392012\pi\)
\(164\) −47.0397 + 39.4710i −3.67318 + 3.08216i
\(165\) 0 0
\(166\) −1.28149 + 7.26771i −0.0994631 + 0.564083i
\(167\) −21.7463 + 7.91501i −1.68278 + 0.612482i −0.993687 0.112190i \(-0.964213\pi\)
−0.689094 + 0.724672i \(0.741991\pi\)
\(168\) 0 0
\(169\) −0.575253 3.26242i −0.0442502 0.250955i
\(170\) 6.02737 + 10.4397i 0.462278 + 0.800689i
\(171\) 0 0
\(172\) 23.9397 41.4648i 1.82539 3.16166i
\(173\) 2.42298 + 0.881892i 0.184216 + 0.0670490i 0.432481 0.901643i \(-0.357638\pi\)
−0.248265 + 0.968692i \(0.579861\pi\)
\(174\) 0 0
\(175\) −0.844845 0.708909i −0.0638643 0.0535885i
\(176\) −20.0375 16.8135i −1.51039 1.26737i
\(177\) 0 0
\(178\) −28.5176 10.3796i −2.13749 0.777982i
\(179\) 4.44806 7.70427i 0.332464 0.575844i −0.650530 0.759480i \(-0.725453\pi\)
0.982994 + 0.183636i \(0.0587867\pi\)
\(180\) 0 0
\(181\) −3.95592 6.85185i −0.294041 0.509294i 0.680720 0.732543i \(-0.261667\pi\)
−0.974761 + 0.223250i \(0.928334\pi\)
\(182\) 0.731866 + 4.15062i 0.0542495 + 0.307664i
\(183\) 0 0
\(184\) 39.1764 14.2591i 2.88813 1.05119i
\(185\) 1.41099 8.00213i 0.103738 0.588328i
\(186\) 0 0
\(187\) −3.91456 + 3.28470i −0.286261 + 0.240201i
\(188\) 36.3296 2.64961
\(189\) 0 0
\(190\) −26.2235 −1.90245
\(191\) −12.1781 + 10.2186i −0.881175 + 0.739393i −0.966420 0.256967i \(-0.917277\pi\)
0.0852456 + 0.996360i \(0.472833\pi\)
\(192\) 0 0
\(193\) −0.796139 + 4.51513i −0.0573073 + 0.325006i −0.999962 0.00876483i \(-0.997210\pi\)
0.942654 + 0.333771i \(0.108321\pi\)
\(194\) 17.5117 6.37374i 1.25727 0.457608i
\(195\) 0 0
\(196\) −6.23208 35.3439i −0.445149 2.52456i
\(197\) −1.49708 2.59303i −0.106663 0.184745i 0.807754 0.589520i \(-0.200683\pi\)
−0.914416 + 0.404775i \(0.867350\pi\)
\(198\) 0 0
\(199\) −7.44425 + 12.8938i −0.527709 + 0.914018i 0.471770 + 0.881722i \(0.343615\pi\)
−0.999478 + 0.0322965i \(0.989718\pi\)
\(200\) 18.5780 + 6.76183i 1.31366 + 0.478133i
\(201\) 0 0
\(202\) 7.72857 + 6.48504i 0.543781 + 0.456286i
\(203\) −1.00281 0.841461i −0.0703838 0.0590590i
\(204\) 0 0
\(205\) −18.1483 6.60542i −1.26753 0.461343i
\(206\) −10.3885 + 17.9935i −0.723803 + 1.25366i
\(207\) 0 0
\(208\) −21.2264 36.7652i −1.47179 2.54921i
\(209\) −1.93033 10.9474i −0.133524 0.757250i
\(210\) 0 0
\(211\) −13.0420 + 4.74688i −0.897845 + 0.326789i −0.749389 0.662130i \(-0.769653\pi\)
−0.148456 + 0.988919i \(0.547430\pi\)
\(212\) −5.01677 + 28.4515i −0.344553 + 1.95406i
\(213\) 0 0
\(214\) −22.3088 + 18.7193i −1.52500 + 1.27963i
\(215\) 15.0587 1.02700
\(216\) 0 0
\(217\) −2.31003 −0.156815
\(218\) 25.3427 21.2650i 1.71642 1.44025i
\(219\) 0 0
\(220\) 2.96134 16.7946i 0.199654 1.13229i
\(221\) −7.79345 + 2.83658i −0.524244 + 0.190809i
\(222\) 0 0
\(223\) −1.18289 6.70849i −0.0792120 0.449234i −0.998456 0.0555457i \(-0.982310\pi\)
0.919244 0.393688i \(-0.128801\pi\)
\(224\) −4.74283 8.21483i −0.316894 0.548876i
\(225\) 0 0
\(226\) 2.62925 4.55400i 0.174895 0.302928i
\(227\) 9.15340 + 3.33156i 0.607532 + 0.221124i 0.627423 0.778678i \(-0.284110\pi\)
−0.0198908 + 0.999802i \(0.506332\pi\)
\(228\) 0 0
\(229\) −10.7590 9.02785i −0.710973 0.596577i 0.213899 0.976856i \(-0.431384\pi\)
−0.924872 + 0.380279i \(0.875828\pi\)
\(230\) 16.1003 + 13.5098i 1.06162 + 0.890809i
\(231\) 0 0
\(232\) 22.0517 + 8.02615i 1.44776 + 0.526943i
\(233\) −2.66167 + 4.61014i −0.174372 + 0.302020i −0.939944 0.341330i \(-0.889123\pi\)
0.765572 + 0.643350i \(0.222456\pi\)
\(234\) 0 0
\(235\) 5.71307 + 9.89532i 0.372679 + 0.645499i
\(236\) −2.02335 11.4750i −0.131709 0.746960i
\(237\) 0 0
\(238\) −3.39071 + 1.23412i −0.219787 + 0.0799959i
\(239\) 3.08634 17.5035i 0.199639 1.13221i −0.706018 0.708194i \(-0.749510\pi\)
0.905656 0.424012i \(-0.139379\pi\)
\(240\) 0 0
\(241\) −1.53729 + 1.28994i −0.0990257 + 0.0830924i −0.690956 0.722896i \(-0.742810\pi\)
0.591931 + 0.805989i \(0.298366\pi\)
\(242\) −19.8075 −1.27327
\(243\) 0 0
\(244\) 36.3726 2.32852
\(245\) 8.64681 7.25553i 0.552424 0.463539i
\(246\) 0 0
\(247\) 3.13290 17.7676i 0.199342 1.13052i
\(248\) 38.9128 14.1631i 2.47097 0.899358i
\(249\) 0 0
\(250\) 5.65855 + 32.0912i 0.357878 + 2.02963i
\(251\) −11.7822 20.4073i −0.743683 1.28810i −0.950808 0.309782i \(-0.899744\pi\)
0.207125 0.978314i \(-0.433589\pi\)
\(252\) 0 0
\(253\) −4.45473 + 7.71582i −0.280067 + 0.485090i
\(254\) −5.95913 2.16895i −0.373909 0.136092i
\(255\) 0 0
\(256\) 19.1413 + 16.0614i 1.19633 + 1.00384i
\(257\) 4.50018 + 3.77610i 0.280713 + 0.235547i 0.772263 0.635303i \(-0.219125\pi\)
−0.491549 + 0.870850i \(0.663569\pi\)
\(258\) 0 0
\(259\) 2.28553 + 0.831864i 0.142016 + 0.0516895i
\(260\) 13.8390 23.9698i 0.858257 1.48654i
\(261\) 0 0
\(262\) 23.1315 + 40.0650i 1.42907 + 2.47522i
\(263\) 3.81646 + 21.6442i 0.235333 + 1.33464i 0.841911 + 0.539617i \(0.181431\pi\)
−0.606578 + 0.795024i \(0.707458\pi\)
\(264\) 0 0
\(265\) −8.53845 + 3.10774i −0.524513 + 0.190907i
\(266\) 1.36304 7.73016i 0.0835731 0.473966i
\(267\) 0 0
\(268\) 50.8500 42.6682i 3.10616 2.60638i
\(269\) −30.6026 −1.86587 −0.932937 0.360041i \(-0.882763\pi\)
−0.932937 + 0.360041i \(0.882763\pi\)
\(270\) 0 0
\(271\) −16.0823 −0.976928 −0.488464 0.872584i \(-0.662443\pi\)
−0.488464 + 0.872584i \(0.662443\pi\)
\(272\) 27.8422 23.3624i 1.68818 1.41655i
\(273\) 0 0
\(274\) 6.54200 37.1015i 0.395217 2.24138i
\(275\) −3.97018 + 1.44503i −0.239411 + 0.0871385i
\(276\) 0 0
\(277\) −3.61424 20.4974i −0.217159 1.23157i −0.877121 0.480269i \(-0.840539\pi\)
0.659963 0.751298i \(-0.270572\pi\)
\(278\) −10.7075 18.5459i −0.642194 1.11231i
\(279\) 0 0
\(280\) 3.75631 6.50612i 0.224483 0.388815i
\(281\) −11.5209 4.19326i −0.687279 0.250149i −0.0253092 0.999680i \(-0.508057\pi\)
−0.661970 + 0.749531i \(0.730279\pi\)
\(282\) 0 0
\(283\) 3.50280 + 2.93920i 0.208220 + 0.174717i 0.740934 0.671578i \(-0.234383\pi\)
−0.532714 + 0.846295i \(0.678828\pi\)
\(284\) −11.5507 9.69221i −0.685409 0.575127i
\(285\) 0 0
\(286\) 15.1722 + 5.52223i 0.897151 + 0.326536i
\(287\) 2.89045 5.00641i 0.170618 0.295519i
\(288\) 0 0
\(289\) 4.94976 + 8.57324i 0.291162 + 0.504308i
\(290\) 2.05432 + 11.6506i 0.120634 + 0.684147i
\(291\) 0 0
\(292\) −49.6421 + 18.0682i −2.90508 + 1.05736i
\(293\) 4.53628 25.7265i 0.265013 1.50296i −0.503987 0.863711i \(-0.668134\pi\)
0.769000 0.639249i \(-0.220755\pi\)
\(294\) 0 0
\(295\) 2.80734 2.35564i 0.163449 0.137150i
\(296\) −43.6004 −2.53422
\(297\) 0 0
\(298\) 1.96965 0.114099
\(299\) −11.0770 + 9.29469i −0.640598 + 0.537526i
\(300\) 0 0
\(301\) −0.782718 + 4.43901i −0.0451151 + 0.255860i
\(302\) −11.0373 + 4.01724i −0.635125 + 0.231166i
\(303\) 0 0
\(304\) 13.7294 + 77.8634i 0.787436 + 4.46577i
\(305\) 5.71984 + 9.90705i 0.327517 + 0.567276i
\(306\) 0 0
\(307\) −1.64638 + 2.85162i −0.0939641 + 0.162751i −0.909176 0.416412i \(-0.863287\pi\)
0.815212 + 0.579163i \(0.196621\pi\)
\(308\) 4.79679 + 1.74589i 0.273323 + 0.0994813i
\(309\) 0 0
\(310\) 15.9920 + 13.4189i 0.908283 + 0.762140i
\(311\) 26.6527 + 22.3643i 1.51134 + 1.26816i 0.861107 + 0.508424i \(0.169772\pi\)
0.650229 + 0.759738i \(0.274673\pi\)
\(312\) 0 0
\(313\) −9.98690 3.63493i −0.564493 0.205459i 0.0439812 0.999032i \(-0.485996\pi\)
−0.608474 + 0.793574i \(0.708218\pi\)
\(314\) 20.9957 36.3657i 1.18486 2.05223i
\(315\) 0 0
\(316\) −14.1209 24.4580i −0.794360 1.37587i
\(317\) −2.69159 15.2647i −0.151175 0.857353i −0.962200 0.272343i \(-0.912202\pi\)
0.811026 0.585010i \(-0.198910\pi\)
\(318\) 0 0
\(319\) −4.71253 + 1.71522i −0.263851 + 0.0960339i
\(320\) −6.96355 + 39.4922i −0.389274 + 2.20768i
\(321\) 0 0
\(322\) −4.81928 + 4.04385i −0.268568 + 0.225355i
\(323\) 15.4461 0.859446
\(324\) 0 0
\(325\) −6.85710 −0.380363
\(326\) 17.6083 14.7751i 0.975232 0.818317i
\(327\) 0 0
\(328\) −17.9951 + 102.056i −0.993616 + 5.63508i
\(329\) −3.21390 + 1.16976i −0.177188 + 0.0644911i
\(330\) 0 0
\(331\) −2.53010 14.3489i −0.139067 0.788688i −0.971941 0.235225i \(-0.924417\pi\)
0.832874 0.553463i \(-0.186694\pi\)
\(332\) 7.25330 + 12.5631i 0.398077 + 0.689489i
\(333\) 0 0
\(334\) −31.3002 + 54.2136i −1.71267 + 2.96644i
\(335\) 19.6183 + 7.14048i 1.07186 + 0.390126i
\(336\) 0 0
\(337\) −15.7918 13.2509i −0.860236 0.721824i 0.101783 0.994807i \(-0.467545\pi\)
−0.962019 + 0.272983i \(0.911990\pi\)
\(338\) −6.86468 5.76015i −0.373389 0.313311i
\(339\) 0 0
\(340\) 22.2671 + 8.10455i 1.20760 + 0.439531i
\(341\) −4.42475 + 7.66390i −0.239614 + 0.415023i
\(342\) 0 0
\(343\) 3.44142 + 5.96071i 0.185819 + 0.321848i
\(344\) −14.0312 79.5748i −0.756511 4.29039i
\(345\) 0 0
\(346\) 6.55431 2.38557i 0.352362 0.128249i
\(347\) −3.67848 + 20.8617i −0.197471 + 1.11992i 0.711384 + 0.702804i \(0.248069\pi\)
−0.908855 + 0.417112i \(0.863042\pi\)
\(348\) 0 0
\(349\) −3.54370 + 2.97352i −0.189690 + 0.159169i −0.732687 0.680566i \(-0.761734\pi\)
0.542997 + 0.839735i \(0.317290\pi\)
\(350\) −2.98333 −0.159466
\(351\) 0 0
\(352\) −36.3387 −1.93686
\(353\) −10.4515 + 8.76982i −0.556275 + 0.466770i −0.877059 0.480382i \(-0.840498\pi\)
0.320784 + 0.947152i \(0.396054\pi\)
\(354\) 0 0
\(355\) 0.823501 4.67031i 0.0437069 0.247874i
\(356\) −56.0574 + 20.4032i −2.97104 + 1.08137i
\(357\) 0 0
\(358\) −4.17877 23.6990i −0.220855 1.25253i
\(359\) 14.1223 + 24.4606i 0.745349 + 1.29098i 0.950032 + 0.312153i \(0.101050\pi\)
−0.204683 + 0.978828i \(0.565616\pi\)
\(360\) 0 0
\(361\) −7.30050 + 12.6448i −0.384237 + 0.665517i
\(362\) −20.1113 7.31992i −1.05703 0.384726i
\(363\) 0 0
\(364\) 6.34651 + 5.32535i 0.332647 + 0.279124i
\(365\) −12.7279 10.6800i −0.666209 0.559016i
\(366\) 0 0
\(367\) −32.7767 11.9297i −1.71093 0.622727i −0.713935 0.700212i \(-0.753089\pi\)
−0.996994 + 0.0774850i \(0.975311\pi\)
\(368\) 31.6842 54.8786i 1.65165 2.86075i
\(369\) 0 0
\(370\) −10.9901 19.0354i −0.571348 0.989604i
\(371\) −0.472292 2.67850i −0.0245202 0.139061i
\(372\) 0 0
\(373\) −2.87493 + 1.04639i −0.148858 + 0.0541800i −0.415375 0.909650i \(-0.636350\pi\)
0.266516 + 0.963830i \(0.414127\pi\)
\(374\) −2.40036 + 13.6131i −0.124120 + 0.703918i
\(375\) 0 0
\(376\) 46.9666 39.4097i 2.42212 2.03240i
\(377\) −8.13924 −0.419192
\(378\) 0 0
\(379\) −7.67705 −0.394344 −0.197172 0.980369i \(-0.563176\pi\)
−0.197172 + 0.980369i \(0.563176\pi\)
\(380\) −39.4879 + 33.1342i −2.02568 + 1.69975i
\(381\) 0 0
\(382\) −7.46746 + 42.3500i −0.382068 + 2.16682i
\(383\) −9.73704 + 3.54399i −0.497539 + 0.181090i −0.578587 0.815621i \(-0.696396\pi\)
0.0810475 + 0.996710i \(0.474173\pi\)
\(384\) 0 0
\(385\) 0.278788 + 1.58109i 0.0142084 + 0.0805796i
\(386\) 6.20106 + 10.7406i 0.315626 + 0.546680i
\(387\) 0 0
\(388\) 18.3161 31.7244i 0.929858 1.61056i
\(389\) 0.401203 + 0.146026i 0.0203418 + 0.00740381i 0.352171 0.935936i \(-0.385444\pi\)
−0.331829 + 0.943339i \(0.607666\pi\)
\(390\) 0 0
\(391\) −9.48341 7.95753i −0.479597 0.402429i
\(392\) −46.3972 38.9319i −2.34341 1.96636i
\(393\) 0 0
\(394\) −7.61097 2.77017i −0.383435 0.139559i
\(395\) 4.44119 7.69238i 0.223461 0.387045i
\(396\) 0 0
\(397\) 13.5445 + 23.4598i 0.679781 + 1.17741i 0.975047 + 0.221999i \(0.0712583\pi\)
−0.295266 + 0.955415i \(0.595408\pi\)
\(398\) 6.99357 + 39.6625i 0.350556 + 1.98810i
\(399\) 0 0
\(400\) 28.2379 10.2777i 1.41189 0.513887i
\(401\) 5.09839 28.9144i 0.254602 1.44392i −0.542492 0.840061i \(-0.682519\pi\)
0.797093 0.603856i \(-0.206370\pi\)
\(402\) 0 0
\(403\) −11.0024 + 9.23214i −0.548070 + 0.459885i
\(404\) 19.8319 0.986675
\(405\) 0 0
\(406\) −3.54115 −0.175744
\(407\) 7.13767 5.98922i 0.353801 0.296874i
\(408\) 0 0
\(409\) −3.50490 + 19.8773i −0.173306 + 0.982869i 0.766774 + 0.641917i \(0.221860\pi\)
−0.940081 + 0.340952i \(0.889251\pi\)
\(410\) −49.0922 + 17.8681i −2.42449 + 0.882443i
\(411\) 0 0
\(412\) 7.09208 + 40.2212i 0.349402 + 1.98156i
\(413\) 0.548476 + 0.949988i 0.0269887 + 0.0467459i
\(414\) 0 0
\(415\) −2.28126 + 3.95126i −0.111983 + 0.193960i
\(416\) −55.4205 20.1714i −2.71722 0.988986i
\(417\) 0 0
\(418\) −23.0352 19.3289i −1.12669 0.945405i
\(419\) 18.6688 + 15.6649i 0.912028 + 0.765282i 0.972504 0.232887i \(-0.0748173\pi\)
−0.0604756 + 0.998170i \(0.519262\pi\)
\(420\) 0 0
\(421\) 24.5960 + 8.95222i 1.19874 + 0.436305i 0.862783 0.505574i \(-0.168719\pi\)
0.335954 + 0.941879i \(0.390941\pi\)
\(422\) −18.7717 + 32.5136i −0.913794 + 1.58274i
\(423\) 0 0
\(424\) 24.3781 + 42.2240i 1.18390 + 2.05058i
\(425\) −1.01942 5.78143i −0.0494492 0.280440i
\(426\) 0 0
\(427\) −3.21771 + 1.17115i −0.155716 + 0.0566759i
\(428\) −9.94059 + 56.3759i −0.480497 + 2.72503i
\(429\) 0 0
\(430\) 31.2047 26.1838i 1.50482 1.26270i
\(431\) 31.9185 1.53746 0.768731 0.639572i \(-0.220889\pi\)
0.768731 + 0.639572i \(0.220889\pi\)
\(432\) 0 0
\(433\) 0.0123080 0.000591484 0.000295742 1.00000i \(-0.499906\pi\)
0.000295742 1.00000i \(0.499906\pi\)
\(434\) −4.78684 + 4.01664i −0.229776 + 0.192805i
\(435\) 0 0
\(436\) 11.2925 64.0427i 0.540810 3.06709i
\(437\) 25.3063 9.21074i 1.21056 0.440610i
\(438\) 0 0
\(439\) 0.921170 + 5.22421i 0.0439650 + 0.249338i 0.998867 0.0475821i \(-0.0151516\pi\)
−0.954902 + 0.296920i \(0.904040\pi\)
\(440\) −14.3901 24.9244i −0.686020 1.18822i
\(441\) 0 0
\(442\) −11.2174 + 19.4291i −0.533557 + 0.924147i
\(443\) −38.2420 13.9190i −1.81693 0.661310i −0.995903 0.0904272i \(-0.971177\pi\)
−0.821031 0.570883i \(-0.806601\pi\)
\(444\) 0 0
\(445\) −14.3728 12.0602i −0.681334 0.571707i
\(446\) −14.1158 11.8445i −0.668402 0.560856i
\(447\) 0 0
\(448\) −11.2796 4.10543i −0.532910 0.193963i
\(449\) −7.71401 + 13.3611i −0.364047 + 0.630547i −0.988623 0.150417i \(-0.951938\pi\)
0.624576 + 0.780964i \(0.285272\pi\)
\(450\) 0 0
\(451\) −11.0731 19.1791i −0.521410 0.903109i
\(452\) −1.79495 10.1797i −0.0844274 0.478811i
\(453\) 0 0
\(454\) 24.7605 9.01210i 1.16207 0.422959i
\(455\) −0.452470 + 2.56609i −0.0212121 + 0.120300i
\(456\) 0 0
\(457\) 1.82989 1.53546i 0.0855985 0.0718256i −0.598984 0.800761i \(-0.704429\pi\)
0.684583 + 0.728935i \(0.259984\pi\)
\(458\) −37.9922 −1.77526
\(459\) 0 0
\(460\) 41.3143 1.92629
\(461\) 24.8841 20.8802i 1.15897 0.972489i 0.159076 0.987266i \(-0.449148\pi\)
0.999891 + 0.0147772i \(0.00470391\pi\)
\(462\) 0 0
\(463\) 5.88295 33.3638i 0.273404 1.55055i −0.470584 0.882355i \(-0.655957\pi\)
0.743987 0.668194i \(-0.232932\pi\)
\(464\) 33.5178 12.1995i 1.55602 0.566346i
\(465\) 0 0
\(466\) 2.50053 + 14.1812i 0.115835 + 0.656931i
\(467\) 6.90133 + 11.9535i 0.319356 + 0.553140i 0.980354 0.197247i \(-0.0632002\pi\)
−0.660998 + 0.750388i \(0.729867\pi\)
\(468\) 0 0
\(469\) −3.12459 + 5.41195i −0.144280 + 0.249901i
\(470\) 29.0444 + 10.5713i 1.33972 + 0.487618i
\(471\) 0 0
\(472\) −15.0637 12.6399i −0.693361 0.581799i
\(473\) 13.2279 + 11.0995i 0.608219 + 0.510356i
\(474\) 0 0
\(475\) 12.0006 + 4.36785i 0.550624 + 0.200411i
\(476\) −3.54645 + 6.14264i −0.162551 + 0.281547i
\(477\) 0 0
\(478\) −24.0392 41.6372i −1.09953 1.90444i
\(479\) 1.02298 + 5.80162i 0.0467412 + 0.265083i 0.999219 0.0395270i \(-0.0125851\pi\)
−0.952477 + 0.304610i \(0.901474\pi\)
\(480\) 0 0
\(481\) 14.2103 5.17213i 0.647935 0.235829i
\(482\) −0.942650 + 5.34603i −0.0429365 + 0.243505i
\(483\) 0 0
\(484\) −29.8265 + 25.0274i −1.35575 + 1.13761i
\(485\) 11.5213 0.523155
\(486\) 0 0
\(487\) 29.0299 1.31547 0.657736 0.753249i \(-0.271514\pi\)
0.657736 + 0.753249i \(0.271514\pi\)
\(488\) 47.0223 39.4564i 2.12860 1.78611i
\(489\) 0 0
\(490\) 5.30212 30.0698i 0.239526 1.35842i
\(491\) −4.11915 + 1.49925i −0.185895 + 0.0676601i −0.433290 0.901254i \(-0.642647\pi\)
0.247396 + 0.968915i \(0.420425\pi\)
\(492\) 0 0
\(493\) −1.21003 6.86244i −0.0544972 0.309069i
\(494\) −24.4019 42.2654i −1.09789 1.90161i
\(495\) 0 0
\(496\) 31.4710 54.5093i 1.41309 2.44754i
\(497\) 1.33391 + 0.485504i 0.0598341 + 0.0217778i
\(498\) 0 0
\(499\) 27.0747 + 22.7184i 1.21203 + 1.01701i 0.999203 + 0.0399241i \(0.0127116\pi\)
0.212827 + 0.977090i \(0.431733\pi\)
\(500\) 49.0692 + 41.1739i 2.19444 + 1.84135i
\(501\) 0 0
\(502\) −59.8988 21.8014i −2.67341 0.973043i
\(503\) 4.18829 7.25434i 0.186747 0.323455i −0.757417 0.652932i \(-0.773539\pi\)
0.944164 + 0.329477i \(0.106872\pi\)
\(504\) 0 0
\(505\) 3.11870 + 5.40175i 0.138780 + 0.240375i
\(506\) 4.18504 + 23.7345i 0.186048 + 1.05513i
\(507\) 0 0
\(508\) −11.7139 + 4.26352i −0.519721 + 0.189163i
\(509\) −0.667325 + 3.78459i −0.0295786 + 0.167749i −0.996019 0.0891428i \(-0.971587\pi\)
0.966440 + 0.256892i \(0.0826983\pi\)
\(510\) 0 0
\(511\) 3.80981 3.19681i 0.168536 0.141419i
\(512\) 13.6601 0.603699
\(513\) 0 0
\(514\) 15.8911 0.700925
\(515\) −9.84003 + 8.25677i −0.433604 + 0.363837i
\(516\) 0 0
\(517\) −2.27519 + 12.9033i −0.100063 + 0.567484i
\(518\) 6.18250 2.25025i 0.271644 0.0988702i
\(519\) 0 0
\(520\) −8.11109 46.0003i −0.355695 2.01724i
\(521\) −9.82615 17.0194i −0.430491 0.745633i 0.566424 0.824114i \(-0.308326\pi\)
−0.996916 + 0.0784810i \(0.974993\pi\)
\(522\) 0 0
\(523\) 19.8051 34.3035i 0.866018 1.49999i −1.41543e−5 1.00000i \(-0.500005\pi\)
0.866032 0.499988i \(-0.166662\pi\)
\(524\) 85.4555 + 31.1032i 3.73314 + 1.35875i
\(525\) 0 0
\(526\) 45.5431 + 38.2152i 1.98577 + 1.66626i
\(527\) −9.41959 7.90398i −0.410324 0.344303i
\(528\) 0 0
\(529\) 1.33052 + 0.484268i 0.0578486 + 0.0210552i
\(530\) −12.2897 + 21.2864i −0.533830 + 0.924620i
\(531\) 0 0
\(532\) −7.71483 13.3625i −0.334480 0.579337i
\(533\) −6.24142 35.3968i −0.270346 1.53321i
\(534\) 0 0
\(535\) −16.9187 + 6.15790i −0.731459 + 0.266229i
\(536\) 19.4528 110.322i 0.840233 4.76520i
\(537\) 0 0
\(538\) −63.4147 + 53.2112i −2.73400 + 2.29410i
\(539\) 12.9435 0.557514
\(540\) 0 0
\(541\) −41.8257 −1.79823 −0.899115 0.437713i \(-0.855788\pi\)
−0.899115 + 0.437713i \(0.855788\pi\)
\(542\) −33.3257 + 27.9636i −1.43146 + 1.20114i
\(543\) 0 0
\(544\) 8.76796 49.7256i 0.375923 2.13197i
\(545\) 19.2195 6.99533i 0.823274 0.299647i
\(546\) 0 0
\(547\) −2.95798 16.7755i −0.126474 0.717270i −0.980421 0.196911i \(-0.936909\pi\)
0.853947 0.520359i \(-0.174202\pi\)
\(548\) −37.0280 64.1343i −1.58176 2.73968i
\(549\) 0 0
\(550\) −5.71442 + 9.89767i −0.243664 + 0.422038i
\(551\) 14.2444 + 5.18455i 0.606833 + 0.220869i
\(552\) 0 0
\(553\) 2.03672 + 1.70901i 0.0866100 + 0.0726744i
\(554\) −43.1299 36.1903i −1.83241 1.53758i
\(555\) 0 0
\(556\) −39.5570 14.3976i −1.67759 0.610594i
\(557\) 16.8840 29.2439i 0.715398 1.23911i −0.247408 0.968911i \(-0.579579\pi\)
0.962806 0.270194i \(-0.0870880\pi\)
\(558\) 0 0
\(559\) 14.0127 + 24.2707i 0.592674 + 1.02654i
\(560\) −1.98288 11.2454i −0.0837918 0.475207i
\(561\) 0 0
\(562\) −31.1648 + 11.3430i −1.31461 + 0.478477i
\(563\) −3.94377 + 22.3662i −0.166210 + 0.942624i 0.781598 + 0.623783i \(0.214405\pi\)
−0.947808 + 0.318842i \(0.896706\pi\)
\(564\) 0 0
\(565\) 2.49043 2.08972i 0.104773 0.0879153i
\(566\) 12.3691 0.519913
\(567\) 0 0
\(568\) −25.4466 −1.06772
\(569\) 8.32801 6.98803i 0.349128 0.292954i −0.451312 0.892366i \(-0.649044\pi\)
0.800440 + 0.599413i \(0.204599\pi\)
\(570\) 0 0
\(571\) 2.58453 14.6576i 0.108159 0.613401i −0.881752 0.471713i \(-0.843636\pi\)
0.989911 0.141688i \(-0.0452530\pi\)
\(572\) 29.8242 10.8551i 1.24701 0.453875i
\(573\) 0 0
\(574\) −2.71546 15.4002i −0.113341 0.642790i
\(575\) −5.11772 8.86416i −0.213424 0.369661i
\(576\) 0 0
\(577\) 18.5582 32.1437i 0.772586 1.33816i −0.163555 0.986534i \(-0.552296\pi\)
0.936141 0.351624i \(-0.114371\pi\)
\(578\) 25.1639 + 9.15891i 1.04668 + 0.380960i
\(579\) 0 0
\(580\) 17.8144 + 14.9480i 0.739702 + 0.620684i
\(581\) −1.04618 0.877847i −0.0434028 0.0364192i
\(582\) 0 0
\(583\) −9.79101 3.56364i −0.405502 0.147591i
\(584\) −44.5768 + 77.2093i −1.84460 + 3.19494i
\(585\) 0 0
\(586\) −35.3328 61.1981i −1.45958 2.52807i
\(587\) 2.54277 + 14.4208i 0.104951 + 0.595208i 0.991240 + 0.132075i \(0.0421639\pi\)
−0.886288 + 0.463134i \(0.846725\pi\)
\(588\) 0 0
\(589\) 25.1360 9.14876i 1.03571 0.376968i
\(590\) 1.72143 9.76269i 0.0708700 0.401924i
\(591\) 0 0
\(592\) −50.7665 + 42.5982i −2.08649 + 1.75077i
\(593\) −36.4392 −1.49638 −0.748189 0.663485i \(-0.769076\pi\)
−0.748189 + 0.663485i \(0.769076\pi\)
\(594\) 0 0
\(595\) −2.23081 −0.0914544
\(596\) 2.96594 2.48872i 0.121490 0.101942i
\(597\) 0 0
\(598\) −6.79227 + 38.5209i −0.277757 + 1.57524i
\(599\) 25.8368 9.40381i 1.05566 0.384229i 0.244864 0.969557i \(-0.421257\pi\)
0.810797 + 0.585328i \(0.199034\pi\)
\(600\) 0 0
\(601\) 7.84490 + 44.4907i 0.320000 + 1.81481i 0.542702 + 0.839925i \(0.317401\pi\)
−0.222702 + 0.974887i \(0.571488\pi\)
\(602\) 6.09653 + 10.5595i 0.248476 + 0.430373i
\(603\) 0 0
\(604\) −11.5443 + 19.9953i −0.469729 + 0.813595i
\(605\) −11.5073 4.18831i −0.467838 0.170279i
\(606\) 0 0
\(607\) 13.1278 + 11.0156i 0.532842 + 0.447108i 0.869082 0.494669i \(-0.164711\pi\)
−0.336239 + 0.941777i \(0.609155\pi\)
\(608\) 84.1424 + 70.6038i 3.41242 + 2.86336i
\(609\) 0 0
\(610\) 29.0788 + 10.5838i 1.17737 + 0.428527i
\(611\) −10.6324 + 18.4159i −0.430143 + 0.745029i
\(612\) 0 0
\(613\) 0.234380 + 0.405959i 0.00946653 + 0.0163965i 0.870720 0.491779i \(-0.163653\pi\)
−0.861253 + 0.508176i \(0.830320\pi\)
\(614\) 1.54671 + 8.77183i 0.0624202 + 0.354002i
\(615\) 0 0
\(616\) 8.09517 2.94640i 0.326164 0.118714i
\(617\) 0.370713 2.10242i 0.0149243 0.0846401i −0.976436 0.215808i \(-0.930762\pi\)
0.991360 + 0.131168i \(0.0418726\pi\)
\(618\) 0 0
\(619\) 6.54018 5.48786i 0.262872 0.220576i −0.501819 0.864972i \(-0.667336\pi\)
0.764692 + 0.644397i \(0.222891\pi\)
\(620\) 41.0363 1.64806
\(621\) 0 0
\(622\) 94.1163 3.77372
\(623\) 4.30217 3.60995i 0.172363 0.144629i
\(624\) 0 0
\(625\) −1.58551 + 8.99186i −0.0634203 + 0.359674i
\(626\) −27.0152 + 9.83273i −1.07974 + 0.392995i
\(627\) 0 0
\(628\) −14.3334 81.2890i −0.571967 3.24378i
\(629\) 6.47339 + 11.2122i 0.258111 + 0.447061i
\(630\) 0 0
\(631\) 5.93539 10.2804i 0.236284 0.409256i −0.723361 0.690470i \(-0.757404\pi\)
0.959645 + 0.281214i \(0.0907370\pi\)
\(632\) −44.7870 16.3011i −1.78153 0.648424i
\(633\) 0 0
\(634\) −32.1196 26.9515i −1.27563 1.07038i
\(635\) −3.00337 2.52013i −0.119185 0.100008i
\(636\) 0 0
\(637\) 19.7402 + 7.18485i 0.782136 + 0.284674i
\(638\) −6.78291 + 11.7483i −0.268538 + 0.465121i
\(639\) 0 0
\(640\) 22.5486 + 39.0554i 0.891313 + 1.54380i
\(641\) −0.920970 5.22308i −0.0363761 0.206299i 0.961203 0.275843i \(-0.0889569\pi\)
−0.997579 + 0.0695434i \(0.977846\pi\)
\(642\) 0 0
\(643\) 0.774183 0.281780i 0.0305308 0.0111123i −0.326710 0.945125i \(-0.605940\pi\)
0.357240 + 0.934012i \(0.383718\pi\)
\(644\) −2.14742 + 12.1786i −0.0846203 + 0.479906i
\(645\) 0 0
\(646\) 32.0075 26.8575i 1.25932 1.05669i
\(647\) 40.8373 1.60548 0.802740 0.596329i \(-0.203374\pi\)
0.802740 + 0.596329i \(0.203374\pi\)
\(648\) 0 0
\(649\) 4.20232 0.164955
\(650\) −14.2093 + 11.9230i −0.557334 + 0.467658i
\(651\) 0 0
\(652\) 7.84608 44.4973i 0.307276 1.74265i
\(653\) 1.00487 0.365742i 0.0393235 0.0143126i −0.322284 0.946643i \(-0.604450\pi\)
0.361607 + 0.932331i \(0.382228\pi\)
\(654\) 0 0
\(655\) 4.96665 + 28.1672i 0.194063 + 1.10059i
\(656\) 78.7569 + 136.411i 3.07494 + 5.32595i
\(657\) 0 0
\(658\) −4.62587 + 8.01225i −0.180335 + 0.312350i
\(659\) −26.9356 9.80376i −1.04926 0.381900i −0.240878 0.970555i \(-0.577435\pi\)
−0.808384 + 0.588655i \(0.799658\pi\)
\(660\) 0 0
\(661\) −3.44392 2.88979i −0.133953 0.112400i 0.573350 0.819311i \(-0.305644\pi\)
−0.707303 + 0.706911i \(0.750088\pi\)
\(662\) −30.1925 25.3345i −1.17347 0.984655i
\(663\) 0 0
\(664\) 23.0052 + 8.37322i 0.892776 + 0.324944i
\(665\) 2.42642 4.20268i 0.0940924 0.162973i
\(666\) 0 0
\(667\) −6.07464 10.5216i −0.235211 0.407397i
\(668\) 21.3682 + 121.185i 0.826759 + 4.68879i
\(669\) 0 0
\(670\) 53.0688 19.3155i 2.05023 0.746222i
\(671\) −2.27789 + 12.9185i −0.0879369 + 0.498715i
\(672\) 0 0
\(673\) 13.8337 11.6078i 0.533249 0.447449i −0.335973 0.941872i \(-0.609065\pi\)
0.869222 + 0.494423i \(0.164621\pi\)
\(674\) −55.7643 −2.14796
\(675\) 0 0
\(676\) −17.6151 −0.677505
\(677\) −12.0569 + 10.1169i −0.463385 + 0.388826i −0.844375 0.535753i \(-0.820028\pi\)
0.380990 + 0.924579i \(0.375583\pi\)
\(678\) 0 0
\(679\) −0.598851 + 3.39625i −0.0229818 + 0.130336i
\(680\) 37.5784 13.6774i 1.44107 0.524505i
\(681\) 0 0
\(682\) 4.15688 + 23.5748i 0.159175 + 0.902726i
\(683\) −1.38059 2.39125i −0.0528268 0.0914987i 0.838403 0.545051i \(-0.183490\pi\)
−0.891230 + 0.453552i \(0.850156\pi\)
\(684\) 0 0
\(685\) 11.6458 20.1711i 0.444963 0.770698i
\(686\) 17.4957 + 6.36790i 0.667988 + 0.243128i
\(687\) 0 0
\(688\) −94.0831 78.9451i −3.58688 3.00975i
\(689\) −12.9542 10.8699i −0.493516 0.414109i
\(690\) 0 0
\(691\) 32.4434 + 11.8084i 1.23421 + 0.449214i 0.875036 0.484058i \(-0.160838\pi\)
0.359169 + 0.933272i \(0.383060\pi\)
\(692\) 6.85537 11.8738i 0.260602 0.451376i
\(693\) 0 0
\(694\) 28.6514 + 49.6257i 1.08759 + 1.88377i
\(695\) −2.29904 13.0385i −0.0872077 0.494579i
\(696\) 0 0
\(697\) 28.9163 10.5247i 1.09528 0.398650i
\(698\) −2.17296 + 12.3234i −0.0822476 + 0.466449i
\(699\) 0 0
\(700\) −4.49236 + 3.76954i −0.169795 + 0.142475i
\(701\) 20.7410 0.783378 0.391689 0.920098i \(-0.371891\pi\)
0.391689 + 0.920098i \(0.371891\pi\)
\(702\) 0 0
\(703\) −28.1640 −1.06222
\(704\) −35.2260 + 29.5581i −1.32763 + 1.11401i
\(705\) 0 0
\(706\) −6.40871 + 36.3456i −0.241195 + 1.36789i
\(707\) −1.75443 + 0.638561i −0.0659822 + 0.0240156i
\(708\) 0 0
\(709\) 4.81129 + 27.2862i 0.180692 + 1.02475i 0.931367 + 0.364083i \(0.118617\pi\)
−0.750675 + 0.660672i \(0.770271\pi\)
\(710\) −6.41419 11.1097i −0.240720 0.416940i
\(711\) 0 0
\(712\) −50.3376 + 87.1873i −1.88648 + 3.26748i
\(713\) −20.1459 7.33252i −0.754471 0.274605i
\(714\) 0 0
\(715\) 7.64672 + 6.41636i 0.285971 + 0.239958i
\(716\) −36.2370 30.4065i −1.35424 1.13634i
\(717\) 0 0
\(718\) 71.7960 + 26.1316i 2.67940 + 0.975223i
\(719\) 16.5657 28.6927i 0.617797 1.07006i −0.372090 0.928197i \(-0.621359\pi\)
0.989887 0.141859i \(-0.0453081\pi\)
\(720\) 0 0
\(721\) −1.92247 3.32981i −0.0715965 0.124009i
\(722\) 6.85852 + 38.8966i 0.255248 + 1.44758i
\(723\) 0 0
\(724\) −39.5330 + 14.3888i −1.46923 + 0.534757i
\(725\) 1.00045 5.67381i 0.0371556 0.210720i
\(726\) 0 0
\(727\) −0.0632795 + 0.0530978i −0.00234691 + 0.00196929i −0.643960 0.765059i \(-0.722710\pi\)
0.641613 + 0.767028i \(0.278265\pi\)
\(728\) 13.9816 0.518191
\(729\) 0 0
\(730\) −44.9449 −1.66349
\(731\) −18.3802 + 15.4228i −0.679815 + 0.570433i
\(732\) 0 0
\(733\) −5.54241 + 31.4326i −0.204714 + 1.16099i 0.693176 + 0.720768i \(0.256211\pi\)
−0.897890 + 0.440221i \(0.854900\pi\)
\(734\) −88.6630 + 32.2707i −3.27261 + 1.19113i
\(735\) 0 0
\(736\) −15.2870 86.6968i −0.563486 3.19569i
\(737\) 11.9700 + 20.7327i 0.440921 + 0.763698i
\(738\) 0 0
\(739\) 17.8960 30.9967i 0.658314 1.14023i −0.322738 0.946488i \(-0.604603\pi\)
0.981052 0.193745i \(-0.0620634\pi\)
\(740\) −40.6010 14.7776i −1.49252 0.543234i
\(741\) 0 0
\(742\) −5.63601 4.72917i −0.206904 0.173613i
\(743\) −15.1515 12.7136i −0.555854 0.466417i 0.321063 0.947058i \(-0.395960\pi\)
−0.876918 + 0.480640i \(0.840404\pi\)
\(744\) 0 0
\(745\) 1.14428 + 0.416485i 0.0419233 + 0.0152588i
\(746\) −4.13799 + 7.16721i −0.151503 + 0.262410i
\(747\) 0 0
\(748\) 13.5861 + 23.5319i 0.496758 + 0.860411i
\(749\) −0.935832 5.30737i −0.0341946 0.193927i
\(750\) 0 0
\(751\) −28.7363 + 10.4592i −1.04860 + 0.381660i −0.808135 0.588997i \(-0.799523\pi\)
−0.240468 + 0.970657i \(0.577301\pi\)
\(752\) 16.1823 91.7741i 0.590106 3.34666i
\(753\) 0 0
\(754\) −16.8661 + 14.1524i −0.614228 + 0.515399i
\(755\) −7.26165 −0.264278
\(756\) 0 0
\(757\) 25.4129 0.923647 0.461824 0.886972i \(-0.347195\pi\)
0.461824 + 0.886972i \(0.347195\pi\)
\(758\) −15.9084 + 13.3487i −0.577819 + 0.484847i
\(759\) 0 0
\(760\) −15.1062 + 85.6714i −0.547959 + 3.10763i
\(761\) 43.9945 16.0127i 1.59480 0.580460i 0.616445 0.787398i \(-0.288572\pi\)
0.978354 + 0.206938i \(0.0663499\pi\)
\(762\) 0 0
\(763\) 1.06310 + 6.02914i 0.0384868 + 0.218269i
\(764\) 42.2661 + 73.2070i 1.52913 + 2.64854i
\(765\) 0 0
\(766\) −14.0149 + 24.2744i −0.506377 + 0.877071i
\(767\) 6.40900 + 2.33269i 0.231416 + 0.0842284i
\(768\) 0 0
\(769\) 11.1578 + 9.36247i 0.402359 + 0.337619i 0.821405 0.570346i \(-0.193191\pi\)
−0.419046 + 0.907965i \(0.637635\pi\)
\(770\) 3.32687 + 2.79158i 0.119892 + 0.100601i
\(771\) 0 0
\(772\) 22.9088 + 8.33811i 0.824504 + 0.300095i
\(773\) −12.1767 + 21.0906i −0.437964 + 0.758576i −0.997532 0.0702080i \(-0.977634\pi\)
0.559568 + 0.828784i \(0.310967\pi\)
\(774\) 0 0
\(775\) −5.08328 8.80451i −0.182597 0.316267i
\(776\) −10.7351 60.8820i −0.385369 2.18554i
\(777\) 0 0
\(778\) 1.08528 0.395009i 0.0389092 0.0141618i