Properties

Label 729.2.e.s.163.1
Level $729$
Weight $2$
Character 729.163
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 163.1
Root \(1.13697i\) of defining polynomial
Character \(\chi\) \(=\) 729.163
Dual form 729.2.e.s.568.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.730829 + 0.266000i) q^{2} +(-1.06873 + 0.896774i) q^{4} +(0.412648 + 2.34025i) q^{5} +(-1.91617 - 1.60785i) q^{7} +(1.32025 - 2.28674i) q^{8} +O(q^{10})\) \(q+(-0.730829 + 0.266000i) q^{2} +(-1.06873 + 0.896774i) q^{4} +(0.412648 + 2.34025i) q^{5} +(-1.91617 - 1.60785i) q^{7} +(1.32025 - 2.28674i) q^{8} +(-0.924081 - 1.60056i) q^{10} +(0.545493 - 3.09365i) q^{11} +(-1.25602 - 0.457154i) q^{13} +(1.82808 + 0.665366i) q^{14} +(0.127919 - 0.725467i) q^{16} +(-3.13726 - 5.43389i) q^{17} +(-4.03234 + 6.98422i) q^{19} +(-2.53968 - 2.13105i) q^{20} +(0.424248 + 2.40603i) q^{22} +(3.10600 - 2.60625i) q^{23} +(-0.608008 + 0.221297i) q^{25} +1.03954 q^{26} +3.48975 q^{28} +(8.72714 - 3.17642i) q^{29} +(2.16930 - 1.82026i) q^{31} +(1.01652 + 5.76500i) q^{32} +(3.73822 + 3.13674i) q^{34} +(2.97207 - 5.14778i) q^{35} +(-2.76596 - 4.79078i) q^{37} +(1.08915 - 6.17688i) q^{38} +(5.89634 + 2.14609i) q^{40} +(6.67723 + 2.43031i) q^{41} +(0.405799 - 2.30140i) q^{43} +(2.19131 + 3.79547i) q^{44} +(-1.57670 + 2.73092i) q^{46} +(-3.53469 - 2.96595i) q^{47} +(-0.129041 - 0.731827i) q^{49} +(0.385485 - 0.323460i) q^{50} +(1.75232 - 0.637791i) q^{52} +0.135496 q^{53} +7.46499 q^{55} +(-6.20657 + 2.25901i) q^{56} +(-5.53312 + 4.64284i) q^{58} +(-0.694374 - 3.93799i) q^{59} +(0.261833 + 0.219704i) q^{61} +(-1.10120 + 1.90733i) q^{62} +(-1.53974 - 2.66690i) q^{64} +(0.551558 - 3.12804i) q^{65} +(-9.51243 - 3.46224i) q^{67} +(8.22586 + 2.99397i) q^{68} +(-0.802767 + 4.55272i) q^{70} +(-4.09540 - 7.09344i) q^{71} +(6.15722 - 10.6646i) q^{73} +(3.29579 + 2.76550i) q^{74} +(-1.95377 - 11.0804i) q^{76} +(-6.01939 + 5.05086i) q^{77} +(-3.83460 + 1.39568i) q^{79} +1.75056 q^{80} -5.52638 q^{82} +(-0.858154 + 0.312342i) q^{83} +(11.4221 - 9.58424i) q^{85} +(0.315603 + 1.78987i) q^{86} +(-6.35419 - 5.33180i) q^{88} +(1.86437 - 3.22919i) q^{89} +(1.67171 + 2.89548i) q^{91} +(-0.982276 + 5.57076i) q^{92} +(3.37220 + 1.22738i) q^{94} +(-18.0087 - 6.55465i) q^{95} +(-1.04125 + 5.90520i) q^{97} +(0.288973 + 0.500515i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{4} - 12 q^{5} - 3 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 3 q^{2} - 3 q^{4} - 12 q^{5} - 3 q^{7} + 6 q^{8} - 6 q^{10} + 3 q^{11} + 6 q^{13} + 6 q^{14} + 27 q^{16} - 9 q^{17} - 12 q^{19} - 39 q^{20} - 39 q^{22} - 21 q^{23} + 6 q^{25} - 48 q^{26} + 6 q^{28} - 6 q^{29} + 6 q^{31} - 27 q^{32} - 18 q^{34} + 30 q^{35} - 3 q^{37} - 3 q^{38} + 33 q^{40} + 15 q^{41} - 30 q^{43} - 33 q^{44} + 3 q^{46} + 21 q^{47} - 3 q^{49} - 6 q^{50} + 18 q^{53} + 30 q^{55} - 15 q^{56} - 3 q^{58} - 30 q^{59} - 30 q^{61} - 30 q^{62} - 6 q^{64} + 12 q^{65} - 39 q^{67} - 18 q^{68} + 51 q^{70} - 12 q^{73} - 57 q^{74} + 57 q^{76} + 24 q^{77} + 15 q^{79} + 42 q^{80} - 42 q^{82} + 21 q^{83} + 54 q^{85} + 60 q^{86} + 12 q^{88} - 9 q^{89} - 18 q^{91} + 15 q^{92} + 33 q^{94} - 42 q^{95} - 12 q^{97} + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730829 + 0.266000i −0.516774 + 0.188091i −0.587223 0.809425i \(-0.699779\pi\)
0.0704490 + 0.997515i \(0.477557\pi\)
\(3\) 0 0
\(4\) −1.06873 + 0.896774i −0.534367 + 0.448387i
\(5\) 0.412648 + 2.34025i 0.184542 + 1.04659i 0.926542 + 0.376190i \(0.122766\pi\)
−0.742000 + 0.670399i \(0.766123\pi\)
\(6\) 0 0
\(7\) −1.91617 1.60785i −0.724242 0.607712i 0.204313 0.978906i \(-0.434504\pi\)
−0.928555 + 0.371194i \(0.878948\pi\)
\(8\) 1.32025 2.28674i 0.466780 0.808486i
\(9\) 0 0
\(10\) −0.924081 1.60056i −0.292220 0.506140i
\(11\) 0.545493 3.09365i 0.164472 0.932769i −0.785134 0.619326i \(-0.787406\pi\)
0.949607 0.313444i \(-0.101483\pi\)
\(12\) 0 0
\(13\) −1.25602 0.457154i −0.348358 0.126792i 0.161915 0.986805i \(-0.448233\pi\)
−0.510272 + 0.860013i \(0.670455\pi\)
\(14\) 1.82808 + 0.665366i 0.488575 + 0.177827i
\(15\) 0 0
\(16\) 0.127919 0.725467i 0.0319799 0.181367i
\(17\) −3.13726 5.43389i −0.760897 1.31791i −0.942389 0.334520i \(-0.891426\pi\)
0.181492 0.983392i \(-0.441907\pi\)
\(18\) 0 0
\(19\) −4.03234 + 6.98422i −0.925083 + 1.60229i −0.133656 + 0.991028i \(0.542672\pi\)
−0.791427 + 0.611263i \(0.790662\pi\)
\(20\) −2.53968 2.13105i −0.567890 0.476516i
\(21\) 0 0
\(22\) 0.424248 + 2.40603i 0.0904499 + 0.512967i
\(23\) 3.10600 2.60625i 0.647646 0.543440i −0.258709 0.965955i \(-0.583297\pi\)
0.906356 + 0.422515i \(0.138853\pi\)
\(24\) 0 0
\(25\) −0.608008 + 0.221297i −0.121602 + 0.0442593i
\(26\) 1.03954 0.203871
\(27\) 0 0
\(28\) 3.48975 0.659501
\(29\) 8.72714 3.17642i 1.62059 0.589846i 0.637095 0.770786i \(-0.280136\pi\)
0.983494 + 0.180939i \(0.0579138\pi\)
\(30\) 0 0
\(31\) 2.16930 1.82026i 0.389618 0.326928i −0.426846 0.904324i \(-0.640376\pi\)
0.816464 + 0.577396i \(0.195931\pi\)
\(32\) 1.01652 + 5.76500i 0.179698 + 1.01912i
\(33\) 0 0
\(34\) 3.73822 + 3.13674i 0.641099 + 0.537946i
\(35\) 2.97207 5.14778i 0.502372 0.870133i
\(36\) 0 0
\(37\) −2.76596 4.79078i −0.454720 0.787599i 0.543952 0.839117i \(-0.316927\pi\)
−0.998672 + 0.0515178i \(0.983594\pi\)
\(38\) 1.08915 6.17688i 0.176684 1.00202i
\(39\) 0 0
\(40\) 5.89634 + 2.14609i 0.932294 + 0.339327i
\(41\) 6.67723 + 2.43031i 1.04281 + 0.379551i 0.805944 0.591992i \(-0.201658\pi\)
0.236864 + 0.971543i \(0.423880\pi\)
\(42\) 0 0
\(43\) 0.405799 2.30140i 0.0618837 0.350960i −0.938106 0.346349i \(-0.887421\pi\)
0.999989 0.00461079i \(-0.00146766\pi\)
\(44\) 2.19131 + 3.79547i 0.330353 + 0.572188i
\(45\) 0 0
\(46\) −1.57670 + 2.73092i −0.232471 + 0.402652i
\(47\) −3.53469 2.96595i −0.515587 0.432629i 0.347503 0.937679i \(-0.387030\pi\)
−0.863090 + 0.505050i \(0.831474\pi\)
\(48\) 0 0
\(49\) −0.129041 0.731827i −0.0184344 0.104547i
\(50\) 0.385485 0.323460i 0.0545158 0.0457442i
\(51\) 0 0
\(52\) 1.75232 0.637791i 0.243003 0.0884457i
\(53\) 0.135496 0.0186118 0.00930588 0.999957i \(-0.497038\pi\)
0.00930588 + 0.999957i \(0.497038\pi\)
\(54\) 0 0
\(55\) 7.46499 1.00658
\(56\) −6.20657 + 2.25901i −0.829388 + 0.301873i
\(57\) 0 0
\(58\) −5.53312 + 4.64284i −0.726534 + 0.609635i
\(59\) −0.694374 3.93799i −0.0903998 0.512682i −0.996060 0.0886789i \(-0.971736\pi\)
0.905661 0.424004i \(-0.139376\pi\)
\(60\) 0 0
\(61\) 0.261833 + 0.219704i 0.0335242 + 0.0281302i 0.659396 0.751796i \(-0.270812\pi\)
−0.625872 + 0.779926i \(0.715257\pi\)
\(62\) −1.10120 + 1.90733i −0.139852 + 0.242232i
\(63\) 0 0
\(64\) −1.53974 2.66690i −0.192467 0.333363i
\(65\) 0.551558 3.12804i 0.0684124 0.387986i
\(66\) 0 0
\(67\) −9.51243 3.46224i −1.16213 0.422980i −0.312271 0.949993i \(-0.601090\pi\)
−0.849857 + 0.527013i \(0.823312\pi\)
\(68\) 8.22586 + 2.99397i 0.997533 + 0.363072i
\(69\) 0 0
\(70\) −0.802767 + 4.55272i −0.0959490 + 0.544154i
\(71\) −4.09540 7.09344i −0.486035 0.841837i 0.513837 0.857888i \(-0.328224\pi\)
−0.999871 + 0.0160515i \(0.994890\pi\)
\(72\) 0 0
\(73\) 6.15722 10.6646i 0.720648 1.24820i −0.240092 0.970750i \(-0.577178\pi\)
0.960740 0.277449i \(-0.0894890\pi\)
\(74\) 3.29579 + 2.76550i 0.383128 + 0.321482i
\(75\) 0 0
\(76\) −1.95377 11.0804i −0.224113 1.27101i
\(77\) −6.01939 + 5.05086i −0.685973 + 0.575599i
\(78\) 0 0
\(79\) −3.83460 + 1.39568i −0.431426 + 0.157026i −0.548600 0.836085i \(-0.684839\pi\)
0.117173 + 0.993111i \(0.462617\pi\)
\(80\) 1.75056 0.195718
\(81\) 0 0
\(82\) −5.52638 −0.610287
\(83\) −0.858154 + 0.312342i −0.0941946 + 0.0342840i −0.388688 0.921370i \(-0.627071\pi\)
0.294493 + 0.955654i \(0.404849\pi\)
\(84\) 0 0
\(85\) 11.4221 9.58424i 1.23890 1.03956i
\(86\) 0.315603 + 1.78987i 0.0340323 + 0.193007i
\(87\) 0 0
\(88\) −6.35419 5.33180i −0.677359 0.568371i
\(89\) 1.86437 3.22919i 0.197623 0.342293i −0.750134 0.661286i \(-0.770011\pi\)
0.947757 + 0.318992i \(0.103344\pi\)
\(90\) 0 0
\(91\) 1.67171 + 2.89548i 0.175243 + 0.303529i
\(92\) −0.982276 + 5.57076i −0.102409 + 0.580792i
\(93\) 0 0
\(94\) 3.37220 + 1.22738i 0.347816 + 0.126595i
\(95\) −18.0087 6.55465i −1.84766 0.672492i
\(96\) 0 0
\(97\) −1.04125 + 5.90520i −0.105722 + 0.599582i 0.885207 + 0.465198i \(0.154017\pi\)
−0.990929 + 0.134384i \(0.957094\pi\)
\(98\) 0.288973 + 0.500515i 0.0291907 + 0.0505597i
\(99\) 0 0
\(100\) 0.451345 0.781752i 0.0451345 0.0781752i
\(101\) 7.83029 + 6.57039i 0.779143 + 0.653778i 0.943033 0.332700i \(-0.107960\pi\)
−0.163890 + 0.986479i \(0.552404\pi\)
\(102\) 0 0
\(103\) 1.48192 + 8.40441i 0.146018 + 0.828111i 0.966544 + 0.256501i \(0.0825698\pi\)
−0.820526 + 0.571610i \(0.806319\pi\)
\(104\) −2.70366 + 2.26864i −0.265116 + 0.222458i
\(105\) 0 0
\(106\) −0.0990242 + 0.0360419i −0.00961808 + 0.00350070i
\(107\) −7.74500 −0.748738 −0.374369 0.927280i \(-0.622141\pi\)
−0.374369 + 0.927280i \(0.622141\pi\)
\(108\) 0 0
\(109\) 1.25438 0.120148 0.0600738 0.998194i \(-0.480866\pi\)
0.0600738 + 0.998194i \(0.480866\pi\)
\(110\) −5.45563 + 1.98569i −0.520174 + 0.189328i
\(111\) 0 0
\(112\) −1.41156 + 1.18444i −0.133380 + 0.111919i
\(113\) −3.08413 17.4909i −0.290130 1.64541i −0.686363 0.727259i \(-0.740794\pi\)
0.396233 0.918150i \(-0.370317\pi\)
\(114\) 0 0
\(115\) 7.38094 + 6.19335i 0.688276 + 0.577532i
\(116\) −6.47846 + 11.2210i −0.601509 + 1.04185i
\(117\) 0 0
\(118\) 1.55497 + 2.69329i 0.143147 + 0.247938i
\(119\) −2.72540 + 15.4565i −0.249837 + 1.41689i
\(120\) 0 0
\(121\) 1.06354 + 0.387095i 0.0966851 + 0.0351905i
\(122\) −0.249796 0.0909183i −0.0226155 0.00823136i
\(123\) 0 0
\(124\) −0.686043 + 3.89074i −0.0616085 + 0.349399i
\(125\) 5.17209 + 8.95832i 0.462606 + 0.801256i
\(126\) 0 0
\(127\) 1.98279 3.43429i 0.175944 0.304744i −0.764543 0.644572i \(-0.777036\pi\)
0.940488 + 0.339828i \(0.110369\pi\)
\(128\) −7.13406 5.98619i −0.630568 0.529109i
\(129\) 0 0
\(130\) 0.428965 + 2.43278i 0.0376227 + 0.213369i
\(131\) −0.0785183 + 0.0658847i −0.00686018 + 0.00575637i −0.646211 0.763159i \(-0.723648\pi\)
0.639351 + 0.768915i \(0.279203\pi\)
\(132\) 0 0
\(133\) 18.9563 6.89951i 1.64372 0.598263i
\(134\) 7.87292 0.680117
\(135\) 0 0
\(136\) −16.5679 −1.42068
\(137\) 7.16003 2.60604i 0.611723 0.222649i −0.0175340 0.999846i \(-0.505582\pi\)
0.629257 + 0.777197i \(0.283359\pi\)
\(138\) 0 0
\(139\) −7.99806 + 6.71117i −0.678387 + 0.569234i −0.915535 0.402239i \(-0.868232\pi\)
0.237148 + 0.971474i \(0.423787\pi\)
\(140\) 1.44004 + 8.16687i 0.121706 + 0.690227i
\(141\) 0 0
\(142\) 4.87990 + 4.09472i 0.409512 + 0.343621i
\(143\) −2.09943 + 3.63631i −0.175563 + 0.304084i
\(144\) 0 0
\(145\) 11.0348 + 19.1129i 0.916394 + 1.58724i
\(146\) −1.66309 + 9.43184i −0.137638 + 0.780584i
\(147\) 0 0
\(148\) 7.25231 + 2.63963i 0.596136 + 0.216976i
\(149\) −8.48785 3.08932i −0.695352 0.253087i −0.0299267 0.999552i \(-0.509527\pi\)
−0.665425 + 0.746465i \(0.731750\pi\)
\(150\) 0 0
\(151\) 4.14852 23.5274i 0.337602 1.91464i −0.0622588 0.998060i \(-0.519830\pi\)
0.399861 0.916576i \(-0.369058\pi\)
\(152\) 10.6474 + 18.4419i 0.863620 + 1.49583i
\(153\) 0 0
\(154\) 3.05561 5.29248i 0.246228 0.426480i
\(155\) 5.15501 + 4.32557i 0.414061 + 0.347438i
\(156\) 0 0
\(157\) 0.470932 + 2.67079i 0.0375844 + 0.213152i 0.997816 0.0660524i \(-0.0210404\pi\)
−0.960232 + 0.279204i \(0.909929\pi\)
\(158\) 2.43119 2.04001i 0.193415 0.162294i
\(159\) 0 0
\(160\) −13.0720 + 4.75783i −1.03344 + 0.376140i
\(161\) −10.1421 −0.799308
\(162\) 0 0
\(163\) −22.0489 −1.72701 −0.863504 0.504343i \(-0.831735\pi\)
−0.863504 + 0.504343i \(0.831735\pi\)
\(164\) −9.31562 + 3.39061i −0.727428 + 0.264762i
\(165\) 0 0
\(166\) 0.544081 0.456538i 0.0422289 0.0354342i
\(167\) −1.55429 8.81482i −0.120275 0.682111i −0.984003 0.178153i \(-0.942988\pi\)
0.863728 0.503958i \(-0.168123\pi\)
\(168\) 0 0
\(169\) −8.58998 7.20785i −0.660768 0.554450i
\(170\) −5.79816 + 10.0427i −0.444699 + 0.770241i
\(171\) 0 0
\(172\) 1.63014 + 2.82349i 0.124297 + 0.215289i
\(173\) −0.457433 + 2.59423i −0.0347780 + 0.197236i −0.997247 0.0741575i \(-0.976373\pi\)
0.962469 + 0.271393i \(0.0874843\pi\)
\(174\) 0 0
\(175\) 1.52086 + 0.553546i 0.114966 + 0.0418442i
\(176\) −2.17456 0.791475i −0.163914 0.0596597i
\(177\) 0 0
\(178\) −0.503574 + 2.85591i −0.0377445 + 0.214059i
\(179\) 1.84227 + 3.19090i 0.137697 + 0.238499i 0.926625 0.375988i \(-0.122697\pi\)
−0.788927 + 0.614487i \(0.789363\pi\)
\(180\) 0 0
\(181\) 0.134255 0.232536i 0.00997906 0.0172842i −0.860993 0.508617i \(-0.830157\pi\)
0.870972 + 0.491333i \(0.163490\pi\)
\(182\) −1.99193 1.67143i −0.147652 0.123895i
\(183\) 0 0
\(184\) −1.85911 10.5435i −0.137055 0.777280i
\(185\) 10.0702 8.44992i 0.740378 0.621251i
\(186\) 0 0
\(187\) −18.5219 + 6.74142i −1.35445 + 0.492981i
\(188\) 6.43743 0.469498
\(189\) 0 0
\(190\) 14.9049 1.08131
\(191\) −2.25337 + 0.820159i −0.163048 + 0.0593447i −0.422255 0.906477i \(-0.638761\pi\)
0.259207 + 0.965822i \(0.416539\pi\)
\(192\) 0 0
\(193\) 0.380113 0.318953i 0.0273612 0.0229587i −0.629005 0.777402i \(-0.716537\pi\)
0.656366 + 0.754443i \(0.272093\pi\)
\(194\) −0.809811 4.59266i −0.0581410 0.329734i
\(195\) 0 0
\(196\) 0.794193 + 0.666407i 0.0567281 + 0.0476005i
\(197\) −11.0734 + 19.1797i −0.788946 + 1.36649i 0.137667 + 0.990479i \(0.456040\pi\)
−0.926613 + 0.376016i \(0.877294\pi\)
\(198\) 0 0
\(199\) −1.06624 1.84677i −0.0755834 0.130914i 0.825756 0.564027i \(-0.190749\pi\)
−0.901340 + 0.433113i \(0.857415\pi\)
\(200\) −0.296675 + 1.68253i −0.0209781 + 0.118972i
\(201\) 0 0
\(202\) −7.47033 2.71898i −0.525610 0.191307i
\(203\) −21.8299 7.94542i −1.53216 0.557659i
\(204\) 0 0
\(205\) −2.93218 + 16.6292i −0.204792 + 1.16144i
\(206\) −3.31861 5.74800i −0.231218 0.400482i
\(207\) 0 0
\(208\) −0.492320 + 0.852724i −0.0341363 + 0.0591257i
\(209\) 19.4071 + 16.2845i 1.34242 + 1.12642i
\(210\) 0 0
\(211\) 3.47445 + 19.7046i 0.239191 + 1.35652i 0.833605 + 0.552362i \(0.186273\pi\)
−0.594413 + 0.804160i \(0.702616\pi\)
\(212\) −0.144809 + 0.121509i −0.00994551 + 0.00834527i
\(213\) 0 0
\(214\) 5.66028 2.06017i 0.386929 0.140830i
\(215\) 5.55329 0.378731
\(216\) 0 0
\(217\) −7.08345 −0.480856
\(218\) −0.916736 + 0.333664i −0.0620892 + 0.0225986i
\(219\) 0 0
\(220\) −7.97808 + 6.69441i −0.537882 + 0.451337i
\(221\) 1.45634 + 8.25930i 0.0979638 + 0.555580i
\(222\) 0 0
\(223\) −10.1719 8.53523i −0.681160 0.571561i 0.235185 0.971951i \(-0.424430\pi\)
−0.916345 + 0.400389i \(0.868875\pi\)
\(224\) 7.32144 12.6811i 0.489185 0.847292i
\(225\) 0 0
\(226\) 6.90656 + 11.9625i 0.459418 + 0.795735i
\(227\) 2.16555 12.2815i 0.143733 0.815150i −0.824643 0.565654i \(-0.808624\pi\)
0.968376 0.249496i \(-0.0802650\pi\)
\(228\) 0 0
\(229\) −24.1140 8.77677i −1.59350 0.579985i −0.615414 0.788204i \(-0.711011\pi\)
−0.978082 + 0.208219i \(0.933233\pi\)
\(230\) −7.04164 2.56295i −0.464312 0.168996i
\(231\) 0 0
\(232\) 4.25837 24.1504i 0.279576 1.58555i
\(233\) −2.69821 4.67344i −0.176766 0.306167i 0.764005 0.645210i \(-0.223230\pi\)
−0.940771 + 0.339043i \(0.889897\pi\)
\(234\) 0 0
\(235\) 5.48248 9.49593i 0.357637 0.619446i
\(236\) 4.27359 + 3.58596i 0.278187 + 0.233426i
\(237\) 0 0
\(238\) −2.11963 12.0210i −0.137395 0.779206i
\(239\) −6.41259 + 5.38080i −0.414796 + 0.348055i −0.826179 0.563407i \(-0.809490\pi\)
0.411383 + 0.911462i \(0.365046\pi\)
\(240\) 0 0
\(241\) 0.415522 0.151238i 0.0267661 0.00974208i −0.328602 0.944468i \(-0.606578\pi\)
0.355369 + 0.934726i \(0.384355\pi\)
\(242\) −0.880231 −0.0565834
\(243\) 0 0
\(244\) −0.476854 −0.0305274
\(245\) 1.65941 0.603974i 0.106016 0.0385865i
\(246\) 0 0
\(247\) 8.25758 6.92893i 0.525417 0.440877i
\(248\) −1.29844 7.36384i −0.0824512 0.467604i
\(249\) 0 0
\(250\) −6.16283 5.17123i −0.389771 0.327057i
\(251\) 8.51427 14.7471i 0.537416 0.930832i −0.461626 0.887074i \(-0.652734\pi\)
0.999042 0.0437571i \(-0.0139328\pi\)
\(252\) 0 0
\(253\) −6.36850 11.0306i −0.400384 0.693486i
\(254\) −0.535559 + 3.03730i −0.0336039 + 0.190577i
\(255\) 0 0
\(256\) 12.5936 + 4.58371i 0.787102 + 0.286482i
\(257\) 19.6177 + 7.14026i 1.22372 + 0.445397i 0.871442 0.490499i \(-0.163185\pi\)
0.352277 + 0.935896i \(0.385408\pi\)
\(258\) 0 0
\(259\) −2.40284 + 13.6272i −0.149305 + 0.846751i
\(260\) 2.21568 + 3.83767i 0.137411 + 0.238002i
\(261\) 0 0
\(262\) 0.0398582 0.0690364i 0.00246245 0.00426508i
\(263\) −14.8548 12.4647i −0.915986 0.768603i 0.0572625 0.998359i \(-0.481763\pi\)
−0.973248 + 0.229756i \(0.926207\pi\)
\(264\) 0 0
\(265\) 0.0559121 + 0.317093i 0.00343465 + 0.0194789i
\(266\) −12.0185 + 10.0847i −0.736902 + 0.618334i
\(267\) 0 0
\(268\) 13.2711 4.83029i 0.810662 0.295057i
\(269\) −18.6791 −1.13889 −0.569443 0.822031i \(-0.692841\pi\)
−0.569443 + 0.822031i \(0.692841\pi\)
\(270\) 0 0
\(271\) 12.9378 0.785917 0.392958 0.919556i \(-0.371452\pi\)
0.392958 + 0.919556i \(0.371452\pi\)
\(272\) −4.34343 + 1.58088i −0.263359 + 0.0958548i
\(273\) 0 0
\(274\) −4.53956 + 3.80914i −0.274245 + 0.230119i
\(275\) 0.352950 + 2.00168i 0.0212837 + 0.120706i
\(276\) 0 0
\(277\) 7.99852 + 6.71156i 0.480585 + 0.403258i 0.850638 0.525752i \(-0.176216\pi\)
−0.370053 + 0.929011i \(0.620661\pi\)
\(278\) 4.06005 7.03221i 0.243505 0.421764i
\(279\) 0 0
\(280\) −7.84776 13.5927i −0.468994 0.812321i
\(281\) −2.49112 + 14.1278i −0.148608 + 0.842797i 0.815791 + 0.578346i \(0.196302\pi\)
−0.964399 + 0.264451i \(0.914809\pi\)
\(282\) 0 0
\(283\) 17.5653 + 6.39325i 1.04415 + 0.380039i 0.806452 0.591300i \(-0.201385\pi\)
0.237697 + 0.971339i \(0.423607\pi\)
\(284\) 10.7381 + 3.90835i 0.637189 + 0.231918i
\(285\) 0 0
\(286\) 0.567062 3.21597i 0.0335311 0.190164i
\(287\) −8.88709 15.3929i −0.524588 0.908614i
\(288\) 0 0
\(289\) −11.1848 + 19.3726i −0.657929 + 1.13957i
\(290\) −13.1486 11.0330i −0.772114 0.647880i
\(291\) 0 0
\(292\) 2.98332 + 16.9193i 0.174586 + 0.990125i
\(293\) 8.26423 6.93451i 0.482801 0.405118i −0.368637 0.929574i \(-0.620175\pi\)
0.851438 + 0.524455i \(0.175731\pi\)
\(294\) 0 0
\(295\) 8.92933 3.25001i 0.519886 0.189223i
\(296\) −14.6070 −0.849017
\(297\) 0 0
\(298\) 7.02493 0.406943
\(299\) −5.09266 + 1.85358i −0.294516 + 0.107195i
\(300\) 0 0
\(301\) −4.47789 + 3.75740i −0.258101 + 0.216573i
\(302\) 3.22644 + 18.2981i 0.185661 + 1.05293i
\(303\) 0 0
\(304\) 4.55101 + 3.81875i 0.261018 + 0.219020i
\(305\) −0.406116 + 0.703413i −0.0232541 + 0.0402773i
\(306\) 0 0
\(307\) −0.0248747 0.0430843i −0.00141967 0.00245895i 0.865315 0.501229i \(-0.167119\pi\)
−0.866734 + 0.498770i \(0.833785\pi\)
\(308\) 1.90364 10.7961i 0.108470 0.615162i
\(309\) 0 0
\(310\) −4.91804 1.79002i −0.279326 0.101666i
\(311\) 12.4373 + 4.52679i 0.705252 + 0.256691i 0.669652 0.742675i \(-0.266443\pi\)
0.0356007 + 0.999366i \(0.488666\pi\)
\(312\) 0 0
\(313\) −2.61912 + 14.8538i −0.148041 + 0.839585i 0.816833 + 0.576874i \(0.195728\pi\)
−0.964875 + 0.262711i \(0.915383\pi\)
\(314\) −1.05460 1.82662i −0.0595145 0.103082i
\(315\) 0 0
\(316\) 2.84656 4.93038i 0.160131 0.277356i
\(317\) −6.61159 5.54779i −0.371344 0.311595i 0.437949 0.899000i \(-0.355705\pi\)
−0.809293 + 0.587405i \(0.800150\pi\)
\(318\) 0 0
\(319\) −5.06612 28.7314i −0.283648 1.60865i
\(320\) 5.60584 4.70386i 0.313376 0.262954i
\(321\) 0 0
\(322\) 7.41213 2.69779i 0.413062 0.150342i
\(323\) 50.6020 2.81557
\(324\) 0 0
\(325\) 0.864837 0.0479725
\(326\) 16.1140 5.86502i 0.892473 0.324834i
\(327\) 0 0
\(328\) 14.3731 12.0605i 0.793624 0.665929i
\(329\) 2.00422 + 11.3665i 0.110496 + 0.626656i
\(330\) 0 0
\(331\) 23.7669 + 19.9428i 1.30635 + 1.09615i 0.989011 + 0.147842i \(0.0472326\pi\)
0.317336 + 0.948313i \(0.397212\pi\)
\(332\) 0.637037 1.10338i 0.0349619 0.0605559i
\(333\) 0 0
\(334\) 3.48067 + 6.02869i 0.190454 + 0.329875i
\(335\) 4.17721 23.6901i 0.228225 1.29433i
\(336\) 0 0
\(337\) 22.4279 + 8.16311i 1.22173 + 0.444673i 0.870757 0.491714i \(-0.163629\pi\)
0.350971 + 0.936386i \(0.385852\pi\)
\(338\) 8.19510 + 2.98277i 0.445755 + 0.162241i
\(339\) 0 0
\(340\) −3.61223 + 20.4860i −0.195901 + 1.11101i
\(341\) −4.44790 7.70399i −0.240867 0.417194i
\(342\) 0 0
\(343\) −9.68422 + 16.7736i −0.522899 + 0.905688i
\(344\) −4.72695 3.96638i −0.254860 0.213853i
\(345\) 0 0
\(346\) −0.355760 2.01762i −0.0191258 0.108468i
\(347\) −16.7850 + 14.0843i −0.901065 + 0.756083i −0.970398 0.241510i \(-0.922357\pi\)
0.0693332 + 0.997594i \(0.477913\pi\)
\(348\) 0 0
\(349\) −14.8912 + 5.41995i −0.797107 + 0.290123i −0.708287 0.705925i \(-0.750532\pi\)
−0.0888197 + 0.996048i \(0.528309\pi\)
\(350\) −1.25873 −0.0672819
\(351\) 0 0
\(352\) 18.3894 0.980157
\(353\) 12.1285 4.41442i 0.645535 0.234956i 0.00155627 0.999999i \(-0.499505\pi\)
0.643979 + 0.765043i \(0.277282\pi\)
\(354\) 0 0
\(355\) 14.9104 12.5113i 0.791364 0.664033i
\(356\) 0.903334 + 5.12306i 0.0478766 + 0.271522i
\(357\) 0 0
\(358\) −2.19516 1.84196i −0.116018 0.0973505i
\(359\) 12.9142 22.3681i 0.681588 1.18054i −0.292909 0.956140i \(-0.594623\pi\)
0.974496 0.224404i \(-0.0720435\pi\)
\(360\) 0 0
\(361\) −23.0196 39.8711i −1.21156 2.09848i
\(362\) −0.0362626 + 0.205656i −0.00190592 + 0.0108090i
\(363\) 0 0
\(364\) −4.38320 1.59536i −0.229742 0.0836193i
\(365\) 27.4986 + 10.0087i 1.43934 + 0.523878i
\(366\) 0 0
\(367\) 2.77396 15.7319i 0.144799 0.821198i −0.822729 0.568434i \(-0.807549\pi\)
0.967528 0.252764i \(-0.0813395\pi\)
\(368\) −1.49343 2.58669i −0.0778503 0.134841i
\(369\) 0 0
\(370\) −5.11194 + 8.85413i −0.265757 + 0.460304i
\(371\) −0.259632 0.217857i −0.0134794 0.0113106i
\(372\) 0 0
\(373\) 0.317180 + 1.79882i 0.0164229 + 0.0931392i 0.991918 0.126884i \(-0.0404977\pi\)
−0.975495 + 0.220023i \(0.929387\pi\)
\(374\) 11.7431 9.85365i 0.607222 0.509520i
\(375\) 0 0
\(376\) −11.4491 + 4.16712i −0.590440 + 0.214903i
\(377\) −12.4136 −0.639332
\(378\) 0 0
\(379\) 1.14694 0.0589141 0.0294571 0.999566i \(-0.490622\pi\)
0.0294571 + 0.999566i \(0.490622\pi\)
\(380\) 25.1246 9.14460i 1.28886 0.469108i
\(381\) 0 0
\(382\) 1.42867 1.19879i 0.0730969 0.0613356i
\(383\) −3.79031 21.4959i −0.193676 1.09839i −0.914292 0.405056i \(-0.867252\pi\)
0.720616 0.693335i \(-0.243859\pi\)
\(384\) 0 0
\(385\) −14.3042 12.0026i −0.729007 0.611710i
\(386\) −0.192957 + 0.334210i −0.00982123 + 0.0170109i
\(387\) 0 0
\(388\) −4.18281 7.24484i −0.212350 0.367801i
\(389\) 4.54892 25.7982i 0.230639 1.30802i −0.620966 0.783837i \(-0.713260\pi\)
0.851605 0.524183i \(-0.175629\pi\)
\(390\) 0 0
\(391\) −23.9064 8.70121i −1.20900 0.440039i
\(392\) −1.84387 0.671112i −0.0931293 0.0338963i
\(393\) 0 0
\(394\) 2.99096 16.9626i 0.150682 0.854563i
\(395\) −4.84858 8.39798i −0.243958 0.422548i
\(396\) 0 0
\(397\) −2.09915 + 3.63584i −0.105353 + 0.182478i −0.913883 0.405979i \(-0.866931\pi\)
0.808529 + 0.588456i \(0.200264\pi\)
\(398\) 1.27048 + 1.06606i 0.0636833 + 0.0534366i
\(399\) 0 0
\(400\) 0.0827675 + 0.469398i 0.00413838 + 0.0234699i
\(401\) 5.99798 5.03290i 0.299525 0.251331i −0.480622 0.876928i \(-0.659589\pi\)
0.780147 + 0.625597i \(0.215144\pi\)
\(402\) 0 0
\(403\) −3.55683 + 1.29458i −0.177178 + 0.0644876i
\(404\) −14.2606 −0.709493
\(405\) 0 0
\(406\) 18.0674 0.896669
\(407\) −16.3298 + 5.94355i −0.809437 + 0.294611i
\(408\) 0 0
\(409\) −13.3514 + 11.2031i −0.660183 + 0.553960i −0.910142 0.414297i \(-0.864028\pi\)
0.249958 + 0.968257i \(0.419583\pi\)
\(410\) −2.28045 12.9331i −0.112624 0.638720i
\(411\) 0 0
\(412\) −9.12063 7.65312i −0.449341 0.377042i
\(413\) −5.00118 + 8.66229i −0.246092 + 0.426243i
\(414\) 0 0
\(415\) −1.08507 1.87940i −0.0532642 0.0922563i
\(416\) 1.35872 7.70567i 0.0666166 0.377802i
\(417\) 0 0
\(418\) −18.5150 6.73889i −0.905596 0.329610i
\(419\) 10.7907 + 3.92748i 0.527158 + 0.191870i 0.591869 0.806034i \(-0.298390\pi\)
−0.0647110 + 0.997904i \(0.520613\pi\)
\(420\) 0 0
\(421\) 1.26611 7.18046i 0.0617064 0.349954i −0.938285 0.345862i \(-0.887586\pi\)
0.999992 0.00409180i \(-0.00130246\pi\)
\(422\) −7.78066 13.4765i −0.378757 0.656026i
\(423\) 0 0
\(424\) 0.178889 0.309844i 0.00868759 0.0150474i
\(425\) 3.10998 + 2.60958i 0.150856 + 0.126583i
\(426\) 0 0
\(427\) −0.148463 0.841977i −0.00718464 0.0407461i
\(428\) 8.27734 6.94552i 0.400101 0.335724i
\(429\) 0 0
\(430\) −4.05851 + 1.47718i −0.195719 + 0.0712358i
\(431\) −0.389084 −0.0187415 −0.00937075 0.999956i \(-0.502983\pi\)
−0.00937075 + 0.999956i \(0.502983\pi\)
\(432\) 0 0
\(433\) 24.1011 1.15822 0.579112 0.815248i \(-0.303400\pi\)
0.579112 + 0.815248i \(0.303400\pi\)
\(434\) 5.17679 1.88420i 0.248494 0.0904444i
\(435\) 0 0
\(436\) −1.34059 + 1.12489i −0.0642028 + 0.0538726i
\(437\) 5.67813 + 32.2023i 0.271622 + 1.54044i
\(438\) 0 0
\(439\) 28.0875 + 23.5682i 1.34054 + 1.12485i 0.981486 + 0.191532i \(0.0613457\pi\)
0.359056 + 0.933316i \(0.383099\pi\)
\(440\) 9.85567 17.0705i 0.469851 0.813805i
\(441\) 0 0
\(442\) −3.26131 5.64875i −0.155125 0.268684i
\(443\) 6.56158 37.2126i 0.311750 1.76802i −0.278140 0.960540i \(-0.589718\pi\)
0.589890 0.807483i \(-0.299171\pi\)
\(444\) 0 0
\(445\) 8.32642 + 3.03057i 0.394710 + 0.143663i
\(446\) 9.70429 + 3.53207i 0.459512 + 0.167249i
\(447\) 0 0
\(448\) −1.33760 + 7.58590i −0.0631956 + 0.358400i
\(449\) 5.89289 + 10.2068i 0.278103 + 0.481688i 0.970913 0.239432i \(-0.0769611\pi\)
−0.692811 + 0.721120i \(0.743628\pi\)
\(450\) 0 0
\(451\) 11.1609 19.3313i 0.525547 0.910274i
\(452\) 18.9815 + 15.9274i 0.892816 + 0.749162i
\(453\) 0 0
\(454\) 1.68422 + 9.55170i 0.0790444 + 0.448283i
\(455\) −6.08631 + 5.10702i −0.285331 + 0.239421i
\(456\) 0 0
\(457\) 18.6584 6.79112i 0.872805 0.317675i 0.133503 0.991048i \(-0.457378\pi\)
0.739303 + 0.673373i \(0.235155\pi\)
\(458\) 19.9578 0.932568
\(459\) 0 0
\(460\) −13.4423 −0.626750
\(461\) −7.18097 + 2.61366i −0.334451 + 0.121730i −0.503786 0.863828i \(-0.668060\pi\)
0.169335 + 0.985558i \(0.445838\pi\)
\(462\) 0 0
\(463\) −12.2218 + 10.2553i −0.567995 + 0.476604i −0.880980 0.473154i \(-0.843115\pi\)
0.312985 + 0.949758i \(0.398671\pi\)
\(464\) −1.18802 6.73758i −0.0551523 0.312784i
\(465\) 0 0
\(466\) 3.21507 + 2.69776i 0.148935 + 0.124971i
\(467\) 13.0703 22.6385i 0.604822 1.04758i −0.387257 0.921972i \(-0.626577\pi\)
0.992080 0.125611i \(-0.0400892\pi\)
\(468\) 0 0
\(469\) 12.6606 + 21.9288i 0.584613 + 1.01258i
\(470\) −1.48084 + 8.39825i −0.0683059 + 0.387382i
\(471\) 0 0
\(472\) −9.92192 3.61128i −0.456693 0.166223i
\(473\) −6.89835 2.51080i −0.317187 0.115446i
\(474\) 0 0
\(475\) 0.906110 5.13881i 0.0415752 0.235785i
\(476\) −10.9483 18.9629i −0.501812 0.869164i
\(477\) 0 0
\(478\) 3.25522 5.63820i 0.148890 0.257885i
\(479\) −30.1441 25.2939i −1.37732 1.15571i −0.970193 0.242334i \(-0.922087\pi\)
−0.407125 0.913373i \(-0.633469\pi\)
\(480\) 0 0
\(481\) 1.28398 + 7.28179i 0.0585442 + 0.332021i
\(482\) −0.263447 + 0.221058i −0.0119997 + 0.0100689i
\(483\) 0 0
\(484\) −1.48377 + 0.540049i −0.0674442 + 0.0245477i
\(485\) −14.2493 −0.647027
\(486\) 0 0
\(487\) 11.7133 0.530779 0.265389 0.964141i \(-0.414500\pi\)
0.265389 + 0.964141i \(0.414500\pi\)
\(488\) 0.848091 0.308680i 0.0383913 0.0139733i
\(489\) 0 0
\(490\) −1.05208 + 0.882804i −0.0475284 + 0.0398810i
\(491\) 6.69411 + 37.9642i 0.302101 + 1.71330i 0.636846 + 0.770991i \(0.280239\pi\)
−0.334745 + 0.942309i \(0.608650\pi\)
\(492\) 0 0
\(493\) −44.6396 37.4571i −2.01047 1.68698i
\(494\) −4.19178 + 7.26038i −0.188597 + 0.326660i
\(495\) 0 0
\(496\) −1.04304 1.80660i −0.0468340 0.0811189i
\(497\) −3.55775 + 20.1770i −0.159587 + 0.905063i
\(498\) 0 0
\(499\) 27.7788 + 10.1107i 1.24355 + 0.452615i 0.878217 0.478262i \(-0.158733\pi\)
0.365333 + 0.930877i \(0.380955\pi\)
\(500\) −13.5612 4.93586i −0.606474 0.220738i
\(501\) 0 0
\(502\) −2.29973 + 13.0424i −0.102642 + 0.582113i
\(503\) 17.7888 + 30.8110i 0.793161 + 1.37380i 0.924000 + 0.382392i \(0.124900\pi\)
−0.130839 + 0.991404i \(0.541767\pi\)
\(504\) 0 0
\(505\) −12.1452 + 21.0361i −0.540453 + 0.936092i
\(506\) 7.58842 + 6.36744i 0.337346 + 0.283067i
\(507\) 0 0
\(508\) 0.960710 + 5.44846i 0.0426246 + 0.241736i
\(509\) 21.7421 18.2438i 0.963703 0.808643i −0.0178483 0.999841i \(-0.505682\pi\)
0.981552 + 0.191198i \(0.0612372\pi\)
\(510\) 0 0
\(511\) −28.9454 + 10.5353i −1.28047 + 0.466053i
\(512\) 8.20265 0.362510
\(513\) 0 0
\(514\) −16.2365 −0.716161
\(515\) −19.0569 + 6.93613i −0.839746 + 0.305642i
\(516\) 0 0
\(517\) −11.1038 + 9.31716i −0.488343 + 0.409768i
\(518\) −1.86877 10.5983i −0.0821088 0.465662i
\(519\) 0 0
\(520\) −6.42484 5.39108i −0.281748 0.236414i
\(521\) −12.7176 + 22.0275i −0.557167 + 0.965041i 0.440565 + 0.897721i \(0.354778\pi\)
−0.997731 + 0.0673204i \(0.978555\pi\)
\(522\) 0 0
\(523\) −4.20395 7.28145i −0.183826 0.318396i 0.759354 0.650677i \(-0.225515\pi\)
−0.943180 + 0.332282i \(0.892182\pi\)
\(524\) 0.0248315 0.140826i 0.00108477 0.00615203i
\(525\) 0 0
\(526\) 14.1719 + 5.15816i 0.617925 + 0.224906i
\(527\) −16.6967 6.07712i −0.727322 0.264723i
\(528\) 0 0
\(529\) −1.13917 + 6.46057i −0.0495292 + 0.280894i
\(530\) −0.125209 0.216868i −0.00543873 0.00942016i
\(531\) 0 0
\(532\) −14.0719 + 24.3732i −0.610093 + 1.05671i
\(533\) −7.27572 6.10505i −0.315146 0.264439i
\(534\) 0 0
\(535\) −3.19596 18.1252i −0.138174 0.783621i
\(536\) −20.4761 + 17.1815i −0.884432 + 0.742126i
\(537\) 0 0
\(538\) 13.6513 4.96865i 0.588547 0.214214i
\(539\) −2.33440 −0.100550
\(540\) 0 0
\(541\) −12.8635 −0.553043 −0.276522 0.961008i \(-0.589182\pi\)
−0.276522 + 0.961008i \(0.589182\pi\)
\(542\) −9.45534 + 3.44146i −0.406142 + 0.147823i
\(543\) 0 0
\(544\) 28.1373 23.6100i 1.20638 1.01227i
\(545\) 0.517617 + 2.93555i 0.0221723 + 0.125745i
\(546\) 0 0
\(547\) 10.0290 + 8.41535i 0.428810 + 0.359814i 0.831503 0.555521i \(-0.187481\pi\)
−0.402692 + 0.915335i \(0.631926\pi\)
\(548\) −5.31514 + 9.20609i −0.227051 + 0.393265i
\(549\) 0 0
\(550\) −0.790392 1.36900i −0.0337024 0.0583743i
\(551\) −13.0060 + 73.7607i −0.554074 + 3.14231i
\(552\) 0 0
\(553\) 9.59178 + 3.49112i 0.407884 + 0.148458i
\(554\) −7.63083 2.77740i −0.324203 0.118000i
\(555\) 0 0
\(556\) 2.52939 14.3449i 0.107270 0.608360i
\(557\) 2.29110 + 3.96830i 0.0970769 + 0.168142i 0.910474 0.413567i \(-0.135717\pi\)
−0.813397 + 0.581710i \(0.802384\pi\)
\(558\) 0 0
\(559\) −1.56179 + 2.70509i −0.0660565 + 0.114413i
\(560\) −3.35436 2.81464i −0.141748 0.118940i
\(561\) 0 0
\(562\) −1.93743 10.9877i −0.0817254 0.463488i
\(563\) −9.41003 + 7.89595i −0.396585 + 0.332775i −0.819172 0.573548i \(-0.805567\pi\)
0.422587 + 0.906323i \(0.361122\pi\)
\(564\) 0 0
\(565\) 39.6604 14.4352i 1.66853 0.607294i
\(566\) −14.5378 −0.611071
\(567\) 0 0
\(568\) −21.6278 −0.907484
\(569\) 13.6196 4.95712i 0.570963 0.207813i −0.0403732 0.999185i \(-0.512855\pi\)
0.611336 + 0.791371i \(0.290632\pi\)
\(570\) 0 0
\(571\) −16.8877 + 14.1705i −0.706729 + 0.593016i −0.923679 0.383166i \(-0.874834\pi\)
0.216950 + 0.976183i \(0.430389\pi\)
\(572\) −1.01722 5.76896i −0.0425322 0.241212i
\(573\) 0 0
\(574\) 10.5895 + 8.88561i 0.441996 + 0.370878i
\(575\) −1.31172 + 2.27197i −0.0547025 + 0.0947475i
\(576\) 0 0
\(577\) 15.7418 + 27.2655i 0.655338 + 1.13508i 0.981809 + 0.189872i \(0.0608072\pi\)
−0.326471 + 0.945207i \(0.605859\pi\)
\(578\) 3.02105 17.1332i 0.125659 0.712648i
\(579\) 0 0
\(580\) −28.9333 10.5308i −1.20139 0.437269i
\(581\) 2.14657 + 0.781286i 0.0890545 + 0.0324132i
\(582\) 0 0
\(583\) 0.0739120 0.419176i 0.00306112 0.0173605i
\(584\) −16.2582 28.1600i −0.672768 1.16527i
\(585\) 0 0
\(586\) −4.19516 + 7.26623i −0.173300 + 0.300165i
\(587\) 11.0076 + 9.23650i 0.454334 + 0.381231i 0.841041 0.540971i \(-0.181943\pi\)
−0.386707 + 0.922202i \(0.626388\pi\)
\(588\) 0 0
\(589\) 3.96573 + 22.4908i 0.163405 + 0.926717i
\(590\) −5.66131 + 4.75041i −0.233073 + 0.195571i
\(591\) 0 0
\(592\) −3.82937 + 1.39378i −0.157386 + 0.0572839i
\(593\) 41.0988 1.68772 0.843862 0.536560i \(-0.180276\pi\)
0.843862 + 0.536560i \(0.180276\pi\)
\(594\) 0 0
\(595\) −37.2966 −1.52901
\(596\) 11.8417 4.31002i 0.485054 0.176545i
\(597\) 0 0
\(598\) 3.22882 2.70930i 0.132036 0.110791i
\(599\) −1.48680 8.43208i −0.0607491 0.344525i −0.999999 0.00129176i \(-0.999589\pi\)
0.939250 0.343234i \(-0.111522\pi\)
\(600\) 0 0
\(601\) −1.25264 1.05109i −0.0510964 0.0428750i 0.616882 0.787056i \(-0.288396\pi\)
−0.667978 + 0.744181i \(0.732840\pi\)
\(602\) 2.27311 3.93713i 0.0926449 0.160466i
\(603\) 0 0
\(604\) 16.6651 + 28.8648i 0.678094 + 1.17449i
\(605\) −0.467032 + 2.64867i −0.0189875 + 0.107684i
\(606\) 0 0
\(607\) −6.17325 2.24688i −0.250564 0.0911980i 0.213685 0.976903i \(-0.431453\pi\)
−0.464249 + 0.885705i \(0.653676\pi\)
\(608\) −44.3630 16.1468i −1.79916 0.654840i
\(609\) 0 0
\(610\) 0.109693 0.622102i 0.00444135 0.0251882i
\(611\) 3.08374 + 5.34120i 0.124755 + 0.216082i
\(612\) 0 0
\(613\) 13.1363 22.7527i 0.530569 0.918973i −0.468795 0.883307i \(-0.655312\pi\)
0.999364 0.0356656i \(-0.0113551\pi\)
\(614\) 0.0296396 + 0.0248706i 0.00119616 + 0.00100369i
\(615\) 0 0
\(616\) 3.60293 + 20.4332i 0.145166 + 0.823277i
\(617\) 4.80542 4.03222i 0.193459 0.162331i −0.540913 0.841078i \(-0.681921\pi\)
0.734372 + 0.678747i \(0.237477\pi\)
\(618\) 0 0
\(619\) −4.64290 + 1.68988i −0.186614 + 0.0679219i −0.433637 0.901088i \(-0.642770\pi\)
0.247023 + 0.969010i \(0.420548\pi\)
\(620\) −9.38839 −0.377047
\(621\) 0 0
\(622\) −10.2936 −0.412738
\(623\) −8.76451 + 3.19002i −0.351143 + 0.127805i
\(624\) 0 0
\(625\) −21.3087 + 17.8801i −0.852347 + 0.715204i
\(626\) −2.03698 11.5523i −0.0814139 0.461721i
\(627\) 0 0
\(628\) −2.89839 2.43204i −0.115658 0.0970489i
\(629\) −17.3550 + 30.0598i −0.691991 + 1.19856i
\(630\) 0 0
\(631\) 3.46210 + 5.99653i 0.137824 + 0.238718i 0.926673 0.375869i \(-0.122656\pi\)
−0.788849 + 0.614587i \(0.789322\pi\)
\(632\) −1.87108 + 10.6114i −0.0744274 + 0.422099i
\(633\) 0 0
\(634\) 6.30766 + 2.29580i 0.250509 + 0.0911779i
\(635\) 8.85528 + 3.22306i 0.351411 + 0.127903i
\(636\) 0 0
\(637\) −0.172480 + 0.978181i −0.00683390 + 0.0387570i
\(638\) 11.3450 + 19.6502i 0.449154 + 0.777957i
\(639\) 0 0
\(640\) 11.0653 19.1657i 0.437394 0.757589i
\(641\) 25.9834 + 21.8026i 1.02628 + 0.861152i 0.990404 0.138204i \(-0.0441329\pi\)
0.0358777 + 0.999356i \(0.488577\pi\)
\(642\) 0 0
\(643\) 1.34112 + 7.60588i 0.0528887 + 0.299947i 0.999766 0.0216494i \(-0.00689176\pi\)
−0.946877 + 0.321596i \(0.895781\pi\)
\(644\) 10.8392 9.09515i 0.427123 0.358399i
\(645\) 0 0
\(646\) −36.9814 + 13.4601i −1.45502 + 0.529582i
\(647\) −35.1862 −1.38331 −0.691655 0.722228i \(-0.743118\pi\)
−0.691655 + 0.722228i \(0.743118\pi\)
\(648\) 0 0
\(649\) −12.5615 −0.493083
\(650\) −0.632049 + 0.230047i −0.0247910 + 0.00902318i
\(651\) 0 0
\(652\) 23.5644 19.7729i 0.922855 0.774367i
\(653\) −3.38822 19.2155i −0.132591 0.751962i −0.976507 0.215486i \(-0.930866\pi\)
0.843916 0.536476i \(-0.180245\pi\)
\(654\) 0 0
\(655\) −0.186587 0.156565i −0.00729055 0.00611750i
\(656\) 2.61726 4.53323i 0.102187 0.176993i
\(657\) 0 0
\(658\) −4.48824 7.77386i −0.174970 0.303057i
\(659\) −4.00892 + 22.7357i −0.156165 + 0.885658i 0.801547 + 0.597931i \(0.204010\pi\)
−0.957713 + 0.287726i \(0.907101\pi\)
\(660\) 0 0
\(661\) 6.46166 + 2.35185i 0.251330 + 0.0914765i 0.464613 0.885514i \(-0.346194\pi\)
−0.213283 + 0.976990i \(0.568416\pi\)
\(662\) −22.6743 8.25278i −0.881263 0.320753i
\(663\) 0 0
\(664\) −0.418732 + 2.37475i −0.0162500 + 0.0921581i
\(665\) 23.9688 + 41.5152i 0.929471 + 1.60989i
\(666\) 0 0
\(667\) 18.8280 32.6110i 0.729023 1.26270i
\(668\) 9.56602 + 8.02685i 0.370121 + 0.310568i
\(669\) 0 0
\(670\) 3.24875 + 18.4246i 0.125510 + 0.711803i
\(671\) 0.822513 0.690170i 0.0317528 0.0266437i
\(672\) 0 0
\(673\) 28.8226 10.4906i 1.11103 0.404381i 0.279657 0.960100i \(-0.409779\pi\)
0.831370 + 0.555719i \(0.187557\pi\)
\(674\) −18.5624 −0.714997
\(675\) 0 0
\(676\) 15.6442 0.601700
\(677\) −12.7648 + 4.64599i −0.490589 + 0.178560i −0.575457 0.817832i \(-0.695176\pi\)
0.0848672 + 0.996392i \(0.472953\pi\)
\(678\) 0 0
\(679\) 11.4899 9.64117i 0.440942 0.369994i
\(680\) −6.83671 38.7729i −0.262176 1.48687i
\(681\) 0 0
\(682\) 5.29992 + 4.44716i 0.202944 + 0.170290i
\(683\) −3.03350 + 5.25418i −0.116074 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203698\pi\)
\(684\) 0 0
\(685\) 9.05335 + 15.6809i 0.345911 + 0.599135i
\(686\) 2.61574 14.8346i 0.0998696 0.566388i
\(687\) 0 0
\(688\) −1.61768 0.588787i −0.0616735 0.0224473i
\(689\) −0.170186 0.0619425i −0.00648355 0.00235982i
\(690\) 0 0
\(691\) 3.58845 20.3511i 0.136511 0.774194i −0.837284 0.546768i \(-0.815858\pi\)
0.973795 0.227426i \(-0.0730309\pi\)
\(692\) −1.83756 3.18275i −0.0698537 0.120990i
\(693\) 0 0
\(694\) 8.52054 14.7580i 0.323435 0.560206i
\(695\) −19.0062 15.9481i −0.720945 0.604945i
\(696\) 0 0
\(697\) −7.74214 43.9079i −0.293255 1.66313i
\(698\) 9.44121 7.92211i 0.357355 0.299856i
\(699\) 0 0
\(700\) −2.12180 + 0.772270i −0.0801963 + 0.0291891i
\(701\) −11.0222 −0.416303 −0.208151 0.978097i \(-0.566745\pi\)
−0.208151 + 0.978097i \(0.566745\pi\)
\(702\) 0 0
\(703\) 44.6131 1.68262
\(704\) −9.09037 + 3.30862i −0.342606 + 0.124698i
\(705\) 0 0
\(706\) −7.68963 + 6.45237i −0.289403 + 0.242838i
\(707\) −4.43990 25.1799i −0.166980 0.946988i
\(708\) 0 0
\(709\) −8.41687 7.06260i −0.316102 0.265241i 0.470906 0.882183i \(-0.343927\pi\)
−0.787009 + 0.616942i \(0.788371\pi\)
\(710\) −7.56897 + 13.1098i −0.284058 + 0.492003i
\(711\) 0 0
\(712\) −4.92288 8.52669i −0.184493 0.319551i
\(713\) 1.99381 11.3075i 0.0746688 0.423468i
\(714\) 0 0
\(715\) −9.37618 3.41265i −0.350649 0.127626i
\(716\) −4.83040 1.75812i −0.180521 0.0657041i
\(717\) 0 0
\(718\) −3.48818 + 19.7825i −0.130178 + 0.738275i
\(719\) 16.3529 + 28.3240i 0.609859 + 1.05631i 0.991263 + 0.131898i \(0.0421072\pi\)
−0.381404 + 0.924408i \(0.624559\pi\)
\(720\) 0 0
\(721\) 10.6734 18.4870i 0.397500 0.688490i
\(722\) 27.4291 + 23.0158i 1.02081 + 0.856558i
\(723\) 0 0
\(724\) 0.0650496 + 0.368915i 0.00241755 + 0.0137106i
\(725\) −4.60324 + 3.86257i −0.170960 + 0.143452i
\(726\) 0 0
\(727\) −36.1412 + 13.1543i −1.34040 + 0.487866i −0.909939 0.414742i \(-0.863872\pi\)
−0.430462 + 0.902609i \(0.641649\pi\)
\(728\) 8.82830 0.327199
\(729\) 0 0
\(730\) −22.7591 −0.842352
\(731\) −13.7786 + 5.01502i −0.509622 + 0.185487i
\(732\) 0 0
\(733\) 10.8072 9.06829i 0.399172 0.334945i −0.421002 0.907060i \(-0.638321\pi\)
0.820173 + 0.572115i \(0.193877\pi\)
\(734\) 2.15740 + 12.2352i 0.0796309 + 0.451609i
\(735\) 0 0
\(736\) 18.1823 + 15.2568i 0.670210 + 0.562373i
\(737\) −15.8999 + 27.5395i −0.585681 + 1.01443i
\(738\) 0 0
\(739\) 5.92286 + 10.2587i 0.217876 + 0.377372i 0.954158 0.299302i \(-0.0967539\pi\)
−0.736283 + 0.676674i \(0.763421\pi\)
\(740\) −3.18472 + 18.0614i −0.117073 + 0.663951i
\(741\) 0 0
\(742\) 0.247697 + 0.0901543i 0.00909324 + 0.00330967i
\(743\) −20.4548 7.44494i −0.750414 0.273129i −0.0616343 0.998099i \(-0.519631\pi\)
−0.688780 + 0.724970i \(0.741853\pi\)
\(744\) 0 0
\(745\) 3.72728 21.1385i 0.136557 0.774453i
\(746\) −0.710290 1.23026i −0.0260056 0.0450429i
\(747\) 0 0
\(748\) 13.7494 23.8147i 0.502729 0.870753i
\(749\) 14.8407 + 12.4528i 0.542268 + 0.455017i
\(750\) 0 0
\(751\) −7.38856 41.9026i −0.269612 1.52905i −0.755571 0.655066i \(-0.772641\pi\)
0.485959 0.873982i \(-0.338470\pi\)
\(752\) −2.60386 + 2.18490i −0.0949530 + 0.0796750i
\(753\) 0 0
\(754\) 9.07221 3.30202i 0.330391 0.120252i
\(755\) 56.7719 2.06614
\(756\) 0 0
\(757\) −20.6382 −0.750110 −0.375055 0.927003i \(-0.622376\pi\)
−0.375055 + 0.927003i \(0.622376\pi\)
\(758\) −0.838214 + 0.305085i −0.0304453 + 0.0110812i
\(759\) 0 0
\(760\) −38.7649 + 32.5276i −1.40615 + 1.17990i
\(761\) 8.58604 + 48.6938i 0.311244 + 1.76515i 0.592551 + 0.805533i \(0.298121\pi\)
−0.281307 + 0.959618i \(0.590768\pi\)
\(762\) 0 0
\(763\) −2.40359 2.01686i −0.0870160 0.0730151i
\(764\) 1.67275 2.89729i 0.0605181 0.104820i
\(765\) 0 0
\(766\) 8.48799 + 14.7016i 0.306684 + 0.531192i
\(767\) −0.928121 + 5.26363i −0.0335125 + 0.190059i
\(768\) 0 0
\(769\) −20.7988 7.57014i −0.750023 0.272986i −0.0614076 0.998113i \(-0.519559\pi\)
−0.688616 + 0.725127i \(0.741781\pi\)
\(770\) 13.6466 + 4.96695i 0.491789 + 0.178997i
\(771\) 0 0
\(772\) −0.120211 + 0.681752i −0.00432650 + 0.0245368i
\(773\) 10.9836 + 19.0241i 0.395051 + 0.684248i 0.993108 0.117206i \(-0.0373936\pi\)
−0.598057 + 0.801454i \(0.704060\pi\)
\(774\) 0 0
\(775\) −0.916134 + 1.58679i −0.0329085 + 0.0569992i
\(776\) 12.1290 + 10.1774i 0.435405 + 0.365348i
\(777\) 0 0
\(778\) 3.53784 + 20.0641i 0.126838 + 0.719333i
\(779\) −43.8988 + 36.8354i −1.57284 + 1.31977i