Properties

Label 729.2.e.r.568.1
Level $729$
Weight $2$
Character 729.568
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 568.1
Root \(-0.984808 + 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 729.568
Dual form 729.2.e.r.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85083 - 0.673648i) q^{2} +(1.43969 + 1.20805i) q^{4} +(-0.642788 + 3.64543i) q^{5} +(-1.79813 + 1.50881i) q^{7} +(0.118782 + 0.205737i) q^{8} +O(q^{10})\) \(q+(-1.85083 - 0.673648i) q^{2} +(1.43969 + 1.20805i) q^{4} +(-0.642788 + 3.64543i) q^{5} +(-1.79813 + 1.50881i) q^{7} +(0.118782 + 0.205737i) q^{8} +(3.64543 - 6.31407i) q^{10} +(0.378297 + 2.14543i) q^{11} +(4.43242 - 1.61327i) q^{13} +(4.34445 - 1.58125i) q^{14} +(-0.733956 - 4.16247i) q^{16} +(-1.46756 + 2.54189i) q^{17} +(3.11334 + 5.39246i) q^{19} +(-5.32926 + 4.47178i) q^{20} +(0.745100 - 4.22567i) q^{22} +(-0.397600 - 0.333626i) q^{23} +(-8.17752 - 2.97637i) q^{25} -9.29044 q^{26} -4.41147 q^{28} +(-3.28212 - 1.19459i) q^{29} +(-3.29813 - 2.76746i) q^{31} +(-1.36310 + 7.73055i) q^{32} +(4.42855 - 3.71599i) q^{34} +(-4.34445 - 7.52481i) q^{35} +(-1.20574 + 2.08840i) q^{37} +(-2.12965 - 12.0778i) q^{38} +(-0.826352 + 0.300767i) q^{40} +(2.34791 - 0.854570i) q^{41} +(0.184793 + 1.04801i) q^{43} +(-2.04715 + 3.54576i) q^{44} +(0.511144 + 0.885328i) q^{46} +(0.181985 - 0.152704i) q^{47} +(-0.258770 + 1.46756i) q^{49} +(13.1302 + 11.0175i) q^{50} +(8.33022 + 3.03195i) q^{52} -4.66717 q^{53} -8.06418 q^{55} +(-0.524005 - 0.190722i) q^{56} +(5.26991 + 4.42198i) q^{58} +(2.31164 - 13.1099i) q^{59} +(-2.81521 + 2.36224i) q^{61} +(4.24000 + 7.34389i) q^{62} +(3.50387 - 6.06888i) q^{64} +(3.03195 + 17.1951i) q^{65} +(-13.4363 + 4.89041i) q^{67} +(-5.18355 + 1.88666i) q^{68} +(2.97178 + 16.8538i) q^{70} +(0.601535 - 1.04189i) q^{71} +(2.34002 + 4.05304i) q^{73} +(3.63846 - 3.05303i) q^{74} +(-2.03209 + 11.5245i) q^{76} +(-3.91728 - 3.28699i) q^{77} +(12.0287 + 4.37808i) q^{79} +15.6458 q^{80} -4.92127 q^{82} +(-10.6222 - 3.86618i) q^{83} +(-8.32295 - 6.98378i) q^{85} +(0.363970 - 2.06418i) q^{86} +(-0.396459 + 0.332669i) q^{88} +(0.349643 + 0.605600i) q^{89} +(-5.53596 + 9.58856i) q^{91} +(-0.169386 - 0.960637i) q^{92} +(-0.439693 + 0.160035i) q^{94} +(-21.6591 + 7.88326i) q^{95} +(-1.23055 - 6.97881i) q^{97} +(1.46756 - 2.54189i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{4} + 6 q^{7} + 12 q^{10} + 6 q^{13} - 18 q^{16} + 24 q^{19} + 6 q^{22} - 48 q^{25} - 12 q^{28} - 12 q^{31} + 54 q^{34} + 6 q^{37} - 12 q^{40} - 12 q^{43} - 6 q^{46} + 42 q^{49} + 54 q^{52} - 60 q^{55} + 6 q^{58} - 48 q^{61} - 6 q^{64} - 66 q^{67} + 6 q^{70} - 12 q^{73} - 6 q^{76} + 42 q^{79} - 24 q^{82} - 18 q^{85} - 24 q^{88} + 6 q^{94} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85083 0.673648i −1.30874 0.476341i −0.408904 0.912577i \(-0.634089\pi\)
−0.899832 + 0.436236i \(0.856311\pi\)
\(3\) 0 0
\(4\) 1.43969 + 1.20805i 0.719846 + 0.604023i
\(5\) −0.642788 + 3.64543i −0.287463 + 1.63029i 0.408888 + 0.912585i \(0.365917\pi\)
−0.696351 + 0.717701i \(0.745194\pi\)
\(6\) 0 0
\(7\) −1.79813 + 1.50881i −0.679631 + 0.570278i −0.915898 0.401410i \(-0.868520\pi\)
0.236268 + 0.971688i \(0.424076\pi\)
\(8\) 0.118782 + 0.205737i 0.0419959 + 0.0727390i
\(9\) 0 0
\(10\) 3.64543 6.31407i 1.15279 1.99668i
\(11\) 0.378297 + 2.14543i 0.114061 + 0.646871i 0.987211 + 0.159420i \(0.0509623\pi\)
−0.873150 + 0.487452i \(0.837927\pi\)
\(12\) 0 0
\(13\) 4.43242 1.61327i 1.22933 0.447440i 0.355963 0.934500i \(-0.384153\pi\)
0.873369 + 0.487060i \(0.161931\pi\)
\(14\) 4.34445 1.58125i 1.16110 0.422607i
\(15\) 0 0
\(16\) −0.733956 4.16247i −0.183489 1.04062i
\(17\) −1.46756 + 2.54189i −0.355936 + 0.616499i −0.987278 0.159006i \(-0.949171\pi\)
0.631342 + 0.775505i \(0.282504\pi\)
\(18\) 0 0
\(19\) 3.11334 + 5.39246i 0.714249 + 1.23712i 0.963248 + 0.268612i \(0.0865651\pi\)
−0.248999 + 0.968504i \(0.580102\pi\)
\(20\) −5.32926 + 4.47178i −1.19166 + 0.999921i
\(21\) 0 0
\(22\) 0.745100 4.22567i 0.158856 0.900916i
\(23\) −0.397600 0.333626i −0.0829053 0.0695658i 0.600393 0.799705i \(-0.295011\pi\)
−0.683298 + 0.730139i \(0.739455\pi\)
\(24\) 0 0
\(25\) −8.17752 2.97637i −1.63550 0.595275i
\(26\) −9.29044 −1.82201
\(27\) 0 0
\(28\) −4.41147 −0.833690
\(29\) −3.28212 1.19459i −0.609474 0.221830i 0.0187992 0.999823i \(-0.494016\pi\)
−0.628273 + 0.777993i \(0.716238\pi\)
\(30\) 0 0
\(31\) −3.29813 2.76746i −0.592362 0.497051i 0.296618 0.954996i \(-0.404141\pi\)
−0.888980 + 0.457945i \(0.848586\pi\)
\(32\) −1.36310 + 7.73055i −0.240965 + 1.36658i
\(33\) 0 0
\(34\) 4.42855 3.71599i 0.759490 0.637288i
\(35\) −4.34445 7.52481i −0.734347 1.27193i
\(36\) 0 0
\(37\) −1.20574 + 2.08840i −0.198222 + 0.343330i −0.947952 0.318413i \(-0.896850\pi\)
0.749730 + 0.661744i \(0.230183\pi\)
\(38\) −2.12965 12.0778i −0.345475 1.95929i
\(39\) 0 0
\(40\) −0.826352 + 0.300767i −0.130658 + 0.0475555i
\(41\) 2.34791 0.854570i 0.366682 0.133461i −0.152106 0.988364i \(-0.548606\pi\)
0.518788 + 0.854903i \(0.326383\pi\)
\(42\) 0 0
\(43\) 0.184793 + 1.04801i 0.0281806 + 0.159820i 0.995651 0.0931655i \(-0.0296986\pi\)
−0.967470 + 0.252986i \(0.918587\pi\)
\(44\) −2.04715 + 3.54576i −0.308619 + 0.534543i
\(45\) 0 0
\(46\) 0.511144 + 0.885328i 0.0753641 + 0.130534i
\(47\) 0.181985 0.152704i 0.0265453 0.0222741i −0.629418 0.777067i \(-0.716707\pi\)
0.655964 + 0.754792i \(0.272262\pi\)
\(48\) 0 0
\(49\) −0.258770 + 1.46756i −0.0369672 + 0.209651i
\(50\) 13.1302 + 11.0175i 1.85689 + 1.55812i
\(51\) 0 0
\(52\) 8.33022 + 3.03195i 1.15519 + 0.420456i
\(53\) −4.66717 −0.641085 −0.320543 0.947234i \(-0.603865\pi\)
−0.320543 + 0.947234i \(0.603865\pi\)
\(54\) 0 0
\(55\) −8.06418 −1.08737
\(56\) −0.524005 0.190722i −0.0700231 0.0254863i
\(57\) 0 0
\(58\) 5.26991 + 4.42198i 0.691974 + 0.580635i
\(59\) 2.31164 13.1099i 0.300949 1.70677i −0.341035 0.940051i \(-0.610777\pi\)
0.641984 0.766718i \(-0.278111\pi\)
\(60\) 0 0
\(61\) −2.81521 + 2.36224i −0.360450 + 0.302454i −0.804970 0.593315i \(-0.797819\pi\)
0.444520 + 0.895769i \(0.353374\pi\)
\(62\) 4.24000 + 7.34389i 0.538480 + 0.932675i
\(63\) 0 0
\(64\) 3.50387 6.06888i 0.437984 0.758610i
\(65\) 3.03195 + 17.1951i 0.376067 + 2.13278i
\(66\) 0 0
\(67\) −13.4363 + 4.89041i −1.64150 + 0.597459i −0.987301 0.158860i \(-0.949218\pi\)
−0.654203 + 0.756319i \(0.726996\pi\)
\(68\) −5.18355 + 1.88666i −0.628598 + 0.228791i
\(69\) 0 0
\(70\) 2.97178 + 16.8538i 0.355196 + 2.01442i
\(71\) 0.601535 1.04189i 0.0713891 0.123649i −0.828121 0.560549i \(-0.810590\pi\)
0.899510 + 0.436900i \(0.143923\pi\)
\(72\) 0 0
\(73\) 2.34002 + 4.05304i 0.273879 + 0.474372i 0.969852 0.243696i \(-0.0783599\pi\)
−0.695973 + 0.718068i \(0.745027\pi\)
\(74\) 3.63846 3.05303i 0.422963 0.354908i
\(75\) 0 0
\(76\) −2.03209 + 11.5245i −0.233097 + 1.32196i
\(77\) −3.91728 3.28699i −0.446416 0.374587i
\(78\) 0 0
\(79\) 12.0287 + 4.37808i 1.35333 + 0.492573i 0.913986 0.405745i \(-0.132988\pi\)
0.439346 + 0.898318i \(0.355210\pi\)
\(80\) 15.6458 1.74925
\(81\) 0 0
\(82\) −4.92127 −0.543464
\(83\) −10.6222 3.86618i −1.16594 0.424369i −0.314726 0.949183i \(-0.601913\pi\)
−0.851217 + 0.524814i \(0.824135\pi\)
\(84\) 0 0
\(85\) −8.32295 6.98378i −0.902750 0.757498i
\(86\) 0.363970 2.06418i 0.0392479 0.222586i
\(87\) 0 0
\(88\) −0.396459 + 0.332669i −0.0422627 + 0.0354626i
\(89\) 0.349643 + 0.605600i 0.0370621 + 0.0641935i 0.883961 0.467560i \(-0.154867\pi\)
−0.846899 + 0.531753i \(0.821533\pi\)
\(90\) 0 0
\(91\) −5.53596 + 9.58856i −0.580326 + 1.00515i
\(92\) −0.169386 0.960637i −0.0176597 0.100153i
\(93\) 0 0
\(94\) −0.439693 + 0.160035i −0.0453508 + 0.0165064i
\(95\) −21.6591 + 7.88326i −2.22217 + 0.808805i
\(96\) 0 0
\(97\) −1.23055 6.97881i −0.124944 0.708591i −0.981341 0.192274i \(-0.938414\pi\)
0.856398 0.516317i \(-0.172697\pi\)
\(98\) 1.46756 2.54189i 0.148246 0.256770i
\(99\) 0 0
\(100\) −8.17752 14.1639i −0.817752 1.41639i
\(101\) −3.58288 + 3.00640i −0.356510 + 0.299148i −0.803398 0.595442i \(-0.796977\pi\)
0.446888 + 0.894590i \(0.352532\pi\)
\(102\) 0 0
\(103\) −2.36571 + 13.4166i −0.233101 + 1.32198i 0.613476 + 0.789713i \(0.289771\pi\)
−0.846577 + 0.532267i \(0.821340\pi\)
\(104\) 0.858402 + 0.720285i 0.0841733 + 0.0706298i
\(105\) 0 0
\(106\) 8.63816 + 3.14403i 0.839012 + 0.305375i
\(107\) −11.6340 −1.12470 −0.562350 0.826900i \(-0.690102\pi\)
−0.562350 + 0.826900i \(0.690102\pi\)
\(108\) 0 0
\(109\) 14.6040 1.39881 0.699405 0.714725i \(-0.253448\pi\)
0.699405 + 0.714725i \(0.253448\pi\)
\(110\) 14.9254 + 5.43242i 1.42309 + 0.517961i
\(111\) 0 0
\(112\) 7.60014 + 6.37727i 0.718145 + 0.602596i
\(113\) −0.815422 + 4.62449i −0.0767084 + 0.435035i 0.922131 + 0.386877i \(0.126446\pi\)
−0.998840 + 0.0481580i \(0.984665\pi\)
\(114\) 0 0
\(115\) 1.47178 1.23497i 0.137244 0.115162i
\(116\) −3.28212 5.68479i −0.304737 0.527820i
\(117\) 0 0
\(118\) −13.1099 + 22.7071i −1.20687 + 2.09036i
\(119\) −1.19637 6.78493i −0.109671 0.621973i
\(120\) 0 0
\(121\) 5.87686 2.13900i 0.534260 0.194455i
\(122\) 6.80180 2.47565i 0.615806 0.224135i
\(123\) 0 0
\(124\) −1.40508 7.96859i −0.126180 0.715601i
\(125\) 6.85240 11.8687i 0.612897 1.06157i
\(126\) 0 0
\(127\) −3.04576 5.27541i −0.270267 0.468117i 0.698663 0.715451i \(-0.253779\pi\)
−0.968930 + 0.247334i \(0.920445\pi\)
\(128\) 1.45323 1.21941i 0.128449 0.107781i
\(129\) 0 0
\(130\) 5.97178 33.8677i 0.523760 2.97039i
\(131\) −7.92734 6.65183i −0.692615 0.581173i 0.227047 0.973884i \(-0.427093\pi\)
−0.919662 + 0.392711i \(0.871537\pi\)
\(132\) 0 0
\(133\) −13.7344 4.99892i −1.19093 0.433461i
\(134\) 28.1627 2.43289
\(135\) 0 0
\(136\) −0.697281 −0.0597914
\(137\) 17.9337 + 6.52734i 1.53218 + 0.557668i 0.964154 0.265342i \(-0.0854847\pi\)
0.568027 + 0.823010i \(0.307707\pi\)
\(138\) 0 0
\(139\) −17.8516 14.9793i −1.51416 1.27053i −0.855138 0.518400i \(-0.826528\pi\)
−0.659018 0.752128i \(-0.729028\pi\)
\(140\) 2.83564 16.0817i 0.239655 1.35915i
\(141\) 0 0
\(142\) −1.81521 + 1.52314i −0.152329 + 0.127819i
\(143\) 5.13793 + 8.89915i 0.429655 + 0.744184i
\(144\) 0 0
\(145\) 6.46451 11.1969i 0.536848 0.929848i
\(146\) −1.60067 9.07785i −0.132472 0.751288i
\(147\) 0 0
\(148\) −4.25877 + 1.55007i −0.350069 + 0.127415i
\(149\) 14.5708 5.30335i 1.19369 0.434467i 0.332671 0.943043i \(-0.392050\pi\)
0.861017 + 0.508576i \(0.169828\pi\)
\(150\) 0 0
\(151\) −1.02481 5.81201i −0.0833983 0.472975i −0.997691 0.0679204i \(-0.978364\pi\)
0.914292 0.405055i \(-0.132748\pi\)
\(152\) −0.739620 + 1.28106i −0.0599911 + 0.103908i
\(153\) 0 0
\(154\) 5.03596 + 8.72254i 0.405809 + 0.702882i
\(155\) 12.2086 10.2442i 0.980617 0.822836i
\(156\) 0 0
\(157\) −0.210485 + 1.19372i −0.0167985 + 0.0952691i −0.992054 0.125810i \(-0.959847\pi\)
0.975256 + 0.221079i \(0.0709580\pi\)
\(158\) −19.3138 16.2062i −1.53652 1.28930i
\(159\) 0 0
\(160\) −27.3050 9.93821i −2.15865 0.785684i
\(161\) 1.21832 0.0960168
\(162\) 0 0
\(163\) 2.77332 0.217223 0.108612 0.994084i \(-0.465360\pi\)
0.108612 + 0.994084i \(0.465360\pi\)
\(164\) 4.41263 + 1.60607i 0.344569 + 0.125413i
\(165\) 0 0
\(166\) 17.0556 + 14.3113i 1.32377 + 1.11077i
\(167\) 0.664738 3.76991i 0.0514389 0.291725i −0.948226 0.317595i \(-0.897125\pi\)
0.999665 + 0.0258705i \(0.00823577\pi\)
\(168\) 0 0
\(169\) 7.08512 5.94512i 0.545009 0.457317i
\(170\) 10.6998 + 18.5326i 0.820635 + 1.42138i
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 1.22064 + 6.92262i 0.0928039 + 0.526317i 0.995398 + 0.0958248i \(0.0305489\pi\)
−0.902594 + 0.430492i \(0.858340\pi\)
\(174\) 0 0
\(175\) 19.1951 6.98643i 1.45101 0.528124i
\(176\) 8.65263 3.14930i 0.652217 0.237387i
\(177\) 0 0
\(178\) −0.239170 1.35640i −0.0179266 0.101667i
\(179\) −7.19269 + 12.4581i −0.537607 + 0.931163i 0.461425 + 0.887179i \(0.347338\pi\)
−0.999032 + 0.0439838i \(0.985995\pi\)
\(180\) 0 0
\(181\) −6.60014 11.4318i −0.490584 0.849717i 0.509357 0.860555i \(-0.329883\pi\)
−0.999941 + 0.0108384i \(0.996550\pi\)
\(182\) 16.7055 14.0175i 1.23829 1.03905i
\(183\) 0 0
\(184\) 0.0214114 0.121430i 0.00157847 0.00895193i
\(185\) −6.83807 5.73783i −0.502745 0.421853i
\(186\) 0 0
\(187\) −6.00862 2.18696i −0.439394 0.159926i
\(188\) 0.446476 0.0325626
\(189\) 0 0
\(190\) 45.3979 3.29351
\(191\) 12.6138 + 4.59105i 0.912703 + 0.332197i 0.755332 0.655343i \(-0.227476\pi\)
0.157372 + 0.987539i \(0.449698\pi\)
\(192\) 0 0
\(193\) 11.4945 + 9.64506i 0.827395 + 0.694267i 0.954691 0.297598i \(-0.0961855\pi\)
−0.127296 + 0.991865i \(0.540630\pi\)
\(194\) −2.42371 + 13.7456i −0.174013 + 0.986874i
\(195\) 0 0
\(196\) −2.14543 + 1.80023i −0.153245 + 0.128588i
\(197\) −11.1606 19.3307i −0.795158 1.37725i −0.922739 0.385426i \(-0.874054\pi\)
0.127580 0.991828i \(-0.459279\pi\)
\(198\) 0 0
\(199\) 4.55051 7.88171i 0.322577 0.558720i −0.658442 0.752631i \(-0.728784\pi\)
0.981019 + 0.193912i \(0.0621176\pi\)
\(200\) −0.358995 2.03596i −0.0253847 0.143964i
\(201\) 0 0
\(202\) 8.65657 3.15074i 0.609074 0.221685i
\(203\) 7.70410 2.80406i 0.540722 0.196807i
\(204\) 0 0
\(205\) 1.60607 + 9.10846i 0.112173 + 0.636162i
\(206\) 13.4166 23.2383i 0.934781 1.61909i
\(207\) 0 0
\(208\) −9.96838 17.2657i −0.691183 1.19716i
\(209\) −10.3914 + 8.71941i −0.718787 + 0.603134i
\(210\) 0 0
\(211\) −1.03802 + 5.88690i −0.0714602 + 0.405271i 0.928005 + 0.372568i \(0.121523\pi\)
−0.999465 + 0.0327028i \(0.989589\pi\)
\(212\) −6.71929 5.63816i −0.461483 0.387230i
\(213\) 0 0
\(214\) 21.5326 + 7.83721i 1.47194 + 0.535741i
\(215\) −3.93923 −0.268653
\(216\) 0 0
\(217\) 10.1061 0.686045
\(218\) −27.0296 9.83796i −1.83067 0.666311i
\(219\) 0 0
\(220\) −11.6099 9.74189i −0.782742 0.656798i
\(221\) −2.40409 + 13.6343i −0.161717 + 0.917141i
\(222\) 0 0
\(223\) −6.81908 + 5.72189i −0.456639 + 0.383166i −0.841893 0.539645i \(-0.818558\pi\)
0.385253 + 0.922811i \(0.374114\pi\)
\(224\) −9.21291 15.9572i −0.615564 1.06619i
\(225\) 0 0
\(226\) 4.62449 8.00984i 0.307616 0.532807i
\(227\) 1.85256 + 10.5064i 0.122959 + 0.697334i 0.982499 + 0.186266i \(0.0596387\pi\)
−0.859540 + 0.511068i \(0.829250\pi\)
\(228\) 0 0
\(229\) 7.77244 2.82894i 0.513617 0.186941i −0.0721913 0.997391i \(-0.522999\pi\)
0.585809 + 0.810449i \(0.300777\pi\)
\(230\) −3.55596 + 1.29426i −0.234473 + 0.0853412i
\(231\) 0 0
\(232\) −0.144086 0.817150i −0.00945968 0.0536485i
\(233\) 6.36965 11.0326i 0.417290 0.722767i −0.578376 0.815770i \(-0.696313\pi\)
0.995666 + 0.0930034i \(0.0296467\pi\)
\(234\) 0 0
\(235\) 0.439693 + 0.761570i 0.0286824 + 0.0496793i
\(236\) 19.1654 16.0817i 1.24756 1.04683i
\(237\) 0 0
\(238\) −2.35638 + 13.3637i −0.152742 + 0.866240i
\(239\) −11.5026 9.65183i −0.744041 0.624325i 0.189878 0.981808i \(-0.439191\pi\)
−0.933920 + 0.357483i \(0.883635\pi\)
\(240\) 0 0
\(241\) −0.747626 0.272114i −0.0481588 0.0175284i 0.317828 0.948148i \(-0.397046\pi\)
−0.365987 + 0.930620i \(0.619269\pi\)
\(242\) −12.3180 −0.791832
\(243\) 0 0
\(244\) −6.90673 −0.442158
\(245\) −5.18355 1.88666i −0.331165 0.120534i
\(246\) 0 0
\(247\) 22.4991 + 18.8790i 1.43158 + 1.20124i
\(248\) 0.177610 1.00727i 0.0112782 0.0639620i
\(249\) 0 0
\(250\) −20.6780 + 17.3509i −1.30779 + 1.09737i
\(251\) 4.15749 + 7.20099i 0.262419 + 0.454522i 0.966884 0.255216i \(-0.0821465\pi\)
−0.704465 + 0.709738i \(0.748813\pi\)
\(252\) 0 0
\(253\) 0.565360 0.979232i 0.0355439 0.0615638i
\(254\) 2.08342 + 11.8157i 0.130726 + 0.741381i
\(255\) 0 0
\(256\) −16.6814 + 6.07153i −1.04259 + 0.379471i
\(257\) −24.0752 + 8.76264i −1.50177 + 0.546599i −0.956517 0.291675i \(-0.905787\pi\)
−0.545250 + 0.838274i \(0.683565\pi\)
\(258\) 0 0
\(259\) −0.982926 5.57445i −0.0610760 0.346379i
\(260\) −16.4073 + 28.4183i −1.01754 + 1.76243i
\(261\) 0 0
\(262\) 10.1912 + 17.6517i 0.629614 + 1.09052i
\(263\) −21.4990 + 18.0398i −1.32569 + 1.11238i −0.340622 + 0.940200i \(0.610638\pi\)
−0.985065 + 0.172183i \(0.944918\pi\)
\(264\) 0 0
\(265\) 3.00000 17.0138i 0.184289 1.04515i
\(266\) 22.0526 + 18.5043i 1.35213 + 1.13457i
\(267\) 0 0
\(268\) −25.2520 9.19096i −1.54251 0.561427i
\(269\) 30.1710 1.83956 0.919778 0.392439i \(-0.128369\pi\)
0.919778 + 0.392439i \(0.128369\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 11.6577 + 4.24304i 0.706849 + 0.257272i
\(273\) 0 0
\(274\) −28.7952 24.1620i −1.73958 1.45968i
\(275\) 3.29207 18.6702i 0.198519 1.12586i
\(276\) 0 0
\(277\) 16.1800 13.5767i 0.972165 0.815743i −0.0107242 0.999942i \(-0.503414\pi\)
0.982889 + 0.184199i \(0.0589692\pi\)
\(278\) 22.9496 + 39.7499i 1.37643 + 2.38404i
\(279\) 0 0
\(280\) 1.03209 1.78763i 0.0616791 0.106831i
\(281\) 0.303415 + 1.72075i 0.0181002 + 0.102651i 0.992519 0.122086i \(-0.0389585\pi\)
−0.974419 + 0.224738i \(0.927847\pi\)
\(282\) 0 0
\(283\) 6.84864 2.49270i 0.407109 0.148176i −0.130345 0.991469i \(-0.541608\pi\)
0.537454 + 0.843293i \(0.319386\pi\)
\(284\) 2.12467 0.773318i 0.126076 0.0458880i
\(285\) 0 0
\(286\) −3.51455 19.9320i −0.207820 1.17860i
\(287\) −2.93247 + 5.07919i −0.173098 + 0.299815i
\(288\) 0 0
\(289\) 4.19253 + 7.26168i 0.246620 + 0.427158i
\(290\) −19.5075 + 16.3687i −1.14552 + 0.961204i
\(291\) 0 0
\(292\) −1.52734 + 8.66198i −0.0893809 + 0.506904i
\(293\) 11.7595 + 9.86736i 0.686995 + 0.576458i 0.918041 0.396485i \(-0.129770\pi\)
−0.231046 + 0.972943i \(0.574215\pi\)
\(294\) 0 0
\(295\) 46.3055 + 16.8538i 2.69601 + 0.981267i
\(296\) −0.572881 −0.0332980
\(297\) 0 0
\(298\) −30.5408 −1.76918
\(299\) −2.30056 0.837334i −0.133045 0.0484243i
\(300\) 0 0
\(301\) −1.91353 1.60565i −0.110294 0.0925479i
\(302\) −2.01849 + 11.4474i −0.116151 + 0.658726i
\(303\) 0 0
\(304\) 20.1609 16.9170i 1.15631 0.970257i
\(305\) −6.80180 11.7811i −0.389470 0.674581i
\(306\) 0 0
\(307\) −8.38191 + 14.5179i −0.478381 + 0.828580i −0.999693 0.0247861i \(-0.992110\pi\)
0.521312 + 0.853366i \(0.325443\pi\)
\(308\) −1.66885 9.46451i −0.0950914 0.539290i
\(309\) 0 0
\(310\) −29.4971 + 10.7361i −1.67532 + 0.609767i
\(311\) 15.0568 5.48024i 0.853794 0.310756i 0.122208 0.992505i \(-0.461002\pi\)
0.731586 + 0.681749i \(0.238780\pi\)
\(312\) 0 0
\(313\) 5.97447 + 33.8829i 0.337697 + 1.91517i 0.398789 + 0.917043i \(0.369431\pi\)
−0.0610920 + 0.998132i \(0.519458\pi\)
\(314\) 1.19372 2.06758i 0.0673654 0.116680i
\(315\) 0 0
\(316\) 12.0287 + 20.8343i 0.676666 + 1.17202i
\(317\) −12.4950 + 10.4846i −0.701791 + 0.588872i −0.922283 0.386516i \(-0.873678\pi\)
0.220492 + 0.975389i \(0.429234\pi\)
\(318\) 0 0
\(319\) 1.32130 7.49346i 0.0739786 0.419553i
\(320\) 19.8714 + 16.6741i 1.11085 + 0.932111i
\(321\) 0 0
\(322\) −2.25490 0.820717i −0.125661 0.0457367i
\(323\) −18.2761 −1.01691
\(324\) 0 0
\(325\) −41.0479 −2.27693
\(326\) −5.13295 1.86824i −0.284288 0.103472i
\(327\) 0 0
\(328\) 0.454707 + 0.381545i 0.0251070 + 0.0210673i
\(329\) −0.0968323 + 0.549163i −0.00533854 + 0.0302763i
\(330\) 0 0
\(331\) −24.1917 + 20.2992i −1.32969 + 1.11575i −0.345545 + 0.938402i \(0.612306\pi\)
−0.984149 + 0.177343i \(0.943250\pi\)
\(332\) −10.6222 18.3983i −0.582972 1.00974i
\(333\) 0 0
\(334\) −3.76991 + 6.52968i −0.206281 + 0.357288i
\(335\) −9.19096 52.1245i −0.502156 2.84787i
\(336\) 0 0
\(337\) −5.64290 + 2.05385i −0.307389 + 0.111880i −0.491109 0.871098i \(-0.663408\pi\)
0.183720 + 0.982979i \(0.441186\pi\)
\(338\) −17.1183 + 6.23055i −0.931113 + 0.338897i
\(339\) 0 0
\(340\) −3.54576 20.1090i −0.192296 1.09056i
\(341\) 4.68972 8.12284i 0.253963 0.439876i
\(342\) 0 0
\(343\) −9.96451 17.2590i −0.538033 0.931900i
\(344\) −0.193665 + 0.162504i −0.0104417 + 0.00876162i
\(345\) 0 0
\(346\) 2.40420 13.6349i 0.129251 0.733017i
\(347\) 17.6423 + 14.8037i 0.947089 + 0.794702i 0.978805 0.204795i \(-0.0656528\pi\)
−0.0317162 + 0.999497i \(0.510097\pi\)
\(348\) 0 0
\(349\) 10.8687 + 3.95589i 0.581789 + 0.211754i 0.616114 0.787657i \(-0.288706\pi\)
−0.0343254 + 0.999411i \(0.510928\pi\)
\(350\) −40.2332 −2.15056
\(351\) 0 0
\(352\) −17.1010 −0.911487
\(353\) 2.00589 + 0.730085i 0.106763 + 0.0388585i 0.394849 0.918746i \(-0.370797\pi\)
−0.288086 + 0.957604i \(0.593019\pi\)
\(354\) 0 0
\(355\) 3.41147 + 2.86257i 0.181062 + 0.151929i
\(356\) −0.228213 + 1.29426i −0.0120953 + 0.0685958i
\(357\) 0 0
\(358\) 21.7049 18.2125i 1.14714 0.962563i
\(359\) −12.1118 20.9782i −0.639234 1.10719i −0.985601 0.169087i \(-0.945918\pi\)
0.346367 0.938099i \(-0.387415\pi\)
\(360\) 0 0
\(361\) −9.88578 + 17.1227i −0.520304 + 0.901193i
\(362\) 4.51476 + 25.6045i 0.237290 + 1.34574i
\(363\) 0 0
\(364\) −19.5535 + 7.11689i −1.02488 + 0.373027i
\(365\) −16.2792 + 5.92514i −0.852092 + 0.310136i
\(366\) 0 0
\(367\) −0.492259 2.79174i −0.0256957 0.145728i 0.969261 0.246036i \(-0.0791282\pi\)
−0.994956 + 0.100308i \(0.968017\pi\)
\(368\) −1.09689 + 1.89986i −0.0571792 + 0.0990372i
\(369\) 0 0
\(370\) 8.79086 + 15.2262i 0.457015 + 0.791573i
\(371\) 8.39220 7.04189i 0.435701 0.365597i
\(372\) 0 0
\(373\) −5.00686 + 28.3953i −0.259246 + 1.47025i 0.525689 + 0.850677i \(0.323807\pi\)
−0.784935 + 0.619578i \(0.787304\pi\)
\(374\) 9.64771 + 8.09539i 0.498871 + 0.418603i
\(375\) 0 0
\(376\) 0.0530334 + 0.0193026i 0.00273499 + 0.000995455i
\(377\) −16.4749 −0.848501
\(378\) 0 0
\(379\) 32.1985 1.65393 0.826963 0.562256i \(-0.190066\pi\)
0.826963 + 0.562256i \(0.190066\pi\)
\(380\) −40.7057 14.8157i −2.08816 0.760028i
\(381\) 0 0
\(382\) −20.2533 16.9945i −1.03625 0.869516i
\(383\) 0.116735 0.662037i 0.00596488 0.0338285i −0.981680 0.190537i \(-0.938977\pi\)
0.987645 + 0.156708i \(0.0500883\pi\)
\(384\) 0 0
\(385\) 14.5005 12.1673i 0.739012 0.620105i
\(386\) −14.7771 25.5947i −0.752134 1.30273i
\(387\) 0 0
\(388\) 6.65910 11.5339i 0.338065 0.585545i
\(389\) −0.739620 4.19459i −0.0375002 0.212674i 0.960300 0.278970i \(-0.0899930\pi\)
−0.997800 + 0.0662958i \(0.978882\pi\)
\(390\) 0 0
\(391\) 1.43154 0.521038i 0.0723962 0.0263500i
\(392\) −0.332669 + 0.121082i −0.0168023 + 0.00611554i
\(393\) 0 0
\(394\) 7.63429 + 43.2962i 0.384610 + 2.18123i
\(395\) −23.6919 + 41.0355i −1.19207 + 2.06472i
\(396\) 0 0
\(397\) 4.43242 + 7.67717i 0.222457 + 0.385306i 0.955553 0.294818i \(-0.0952591\pi\)
−0.733097 + 0.680124i \(0.761926\pi\)
\(398\) −13.7317 + 11.5223i −0.688309 + 0.577560i
\(399\) 0 0
\(400\) −6.38713 + 36.2232i −0.319356 + 1.81116i
\(401\) 28.4079 + 23.8371i 1.41862 + 1.19037i 0.952072 + 0.305874i \(0.0989485\pi\)
0.466552 + 0.884494i \(0.345496\pi\)
\(402\) 0 0
\(403\) −19.0834 6.94578i −0.950610 0.345994i
\(404\) −8.79012 −0.437325
\(405\) 0 0
\(406\) −16.1480 −0.801410
\(407\) −4.93664 1.79679i −0.244700 0.0890635i
\(408\) 0 0
\(409\) −2.59627 2.17853i −0.128377 0.107721i 0.576339 0.817211i \(-0.304481\pi\)
−0.704716 + 0.709490i \(0.748925\pi\)
\(410\) 3.16333 17.9402i 0.156226 0.886001i
\(411\) 0 0
\(412\) −19.6138 + 16.4579i −0.966303 + 0.810824i
\(413\) 15.6238 + 27.0612i 0.768798 + 1.33160i
\(414\) 0 0
\(415\) 20.9217 36.2375i 1.02701 1.77883i
\(416\) 6.42960 + 36.4641i 0.315237 + 1.78780i
\(417\) 0 0
\(418\) 25.1065 9.13803i 1.22800 0.446956i
\(419\) 19.4106 7.06489i 0.948272 0.345143i 0.178845 0.983877i \(-0.442764\pi\)
0.769427 + 0.638735i \(0.220542\pi\)
\(420\) 0 0
\(421\) 4.78106 + 27.1147i 0.233015 + 1.32149i 0.846755 + 0.531983i \(0.178553\pi\)
−0.613740 + 0.789508i \(0.710336\pi\)
\(422\) 5.88690 10.1964i 0.286570 0.496353i
\(423\) 0 0
\(424\) −0.554378 0.960210i −0.0269230 0.0466319i
\(425\) 19.5666 16.4183i 0.949120 0.796406i
\(426\) 0 0
\(427\) 1.49794 8.49524i 0.0724904 0.411114i
\(428\) −16.7494 14.0544i −0.809611 0.679344i
\(429\) 0 0
\(430\) 7.29086 + 2.65366i 0.351596 + 0.127971i
\(431\) −2.58110 −0.124327 −0.0621636 0.998066i \(-0.519800\pi\)
−0.0621636 + 0.998066i \(0.519800\pi\)
\(432\) 0 0
\(433\) −27.0137 −1.29820 −0.649098 0.760704i \(-0.724854\pi\)
−0.649098 + 0.760704i \(0.724854\pi\)
\(434\) −18.7046 6.80793i −0.897852 0.326791i
\(435\) 0 0
\(436\) 21.0253 + 17.6423i 1.00693 + 0.844913i
\(437\) 0.561202 3.18273i 0.0268459 0.152251i
\(438\) 0 0
\(439\) 8.97044 7.52709i 0.428136 0.359248i −0.403112 0.915151i \(-0.632072\pi\)
0.831248 + 0.555902i \(0.187627\pi\)
\(440\) −0.957882 1.65910i −0.0456652 0.0790945i
\(441\) 0 0
\(442\) 13.6343 23.6153i 0.648517 1.12326i
\(443\) 0.361323 + 2.04916i 0.0171670 + 0.0973587i 0.992187 0.124757i \(-0.0398150\pi\)
−0.975020 + 0.222115i \(0.928704\pi\)
\(444\) 0 0
\(445\) −2.43242 + 0.885328i −0.115308 + 0.0419686i
\(446\) 16.4755 5.99660i 0.780138 0.283947i
\(447\) 0 0
\(448\) 2.85638 + 16.1993i 0.134951 + 0.765347i
\(449\) −5.27541 + 9.13728i −0.248962 + 0.431215i −0.963238 0.268649i \(-0.913423\pi\)
0.714276 + 0.699864i \(0.246756\pi\)
\(450\) 0 0
\(451\) 2.72163 + 4.71400i 0.128157 + 0.221974i
\(452\) −6.76055 + 5.67277i −0.317989 + 0.266825i
\(453\) 0 0
\(454\) 3.64883 20.6936i 0.171248 0.971197i
\(455\) −31.3960 26.3444i −1.47187 1.23504i
\(456\) 0 0
\(457\) 7.43242 + 2.70518i 0.347674 + 0.126543i 0.509954 0.860202i \(-0.329663\pi\)
−0.162280 + 0.986745i \(0.551885\pi\)
\(458\) −16.2912 −0.761238
\(459\) 0 0
\(460\) 3.61081 0.168355
\(461\) 36.7352 + 13.3705i 1.71093 + 0.622727i 0.996994 0.0774846i \(-0.0246889\pi\)
0.713935 + 0.700212i \(0.246911\pi\)
\(462\) 0 0
\(463\) 18.1498 + 15.2295i 0.843491 + 0.707773i 0.958346 0.285609i \(-0.0921959\pi\)
−0.114855 + 0.993382i \(0.536640\pi\)
\(464\) −2.56353 + 14.5385i −0.119009 + 0.674932i
\(465\) 0 0
\(466\) −19.2212 + 16.1285i −0.890406 + 0.747139i
\(467\) 17.3576 + 30.0642i 0.803214 + 1.39121i 0.917490 + 0.397758i \(0.130212\pi\)
−0.114277 + 0.993449i \(0.536455\pi\)
\(468\) 0 0
\(469\) 16.7815 29.0665i 0.774899 1.34216i
\(470\) −0.300767 1.70574i −0.0138734 0.0786798i
\(471\) 0 0
\(472\) 2.97178 1.08164i 0.136787 0.0497865i
\(473\) −2.17853 + 0.792919i −0.100169 + 0.0364584i
\(474\) 0 0
\(475\) −9.40941 53.3634i −0.431734 2.44848i
\(476\) 6.47410 11.2135i 0.296740 0.513969i
\(477\) 0 0
\(478\) 14.7875 + 25.6126i 0.676362 + 1.17149i
\(479\) −4.96529 + 4.16637i −0.226870 + 0.190366i −0.749136 0.662416i \(-0.769531\pi\)
0.522266 + 0.852782i \(0.325087\pi\)
\(480\) 0 0
\(481\) −1.97519 + 11.2018i −0.0900607 + 0.510760i
\(482\) 1.20042 + 1.00727i 0.0546777 + 0.0458801i
\(483\) 0 0
\(484\) 11.0449 + 4.02001i 0.502040 + 0.182728i
\(485\) 26.2317 1.19112
\(486\) 0 0
\(487\) 19.9828 0.905505 0.452753 0.891636i \(-0.350442\pi\)
0.452753 + 0.891636i \(0.350442\pi\)
\(488\) −0.820397 0.298600i −0.0371376 0.0135170i
\(489\) 0 0
\(490\) 8.32295 + 6.98378i 0.375992 + 0.315495i
\(491\) −4.55428 + 25.8286i −0.205532 + 1.16563i 0.691068 + 0.722789i \(0.257140\pi\)
−0.896600 + 0.442840i \(0.853971\pi\)
\(492\) 0 0
\(493\) 7.85323 6.58964i 0.353692 0.296782i
\(494\) −28.9243 50.0984i −1.30137 2.25403i
\(495\) 0 0
\(496\) −9.09879 + 15.7596i −0.408548 + 0.707626i
\(497\) 0.490376 + 2.78106i 0.0219964 + 0.124748i
\(498\) 0 0
\(499\) −5.93629 + 2.16063i −0.265745 + 0.0967232i −0.471456 0.881890i \(-0.656271\pi\)
0.205711 + 0.978613i \(0.434049\pi\)
\(500\) 24.2033 8.80928i 1.08240 0.393963i
\(501\) 0 0
\(502\) −2.84389 16.1285i −0.126929 0.719851i
\(503\) 10.9131 18.9020i 0.486589 0.842798i −0.513292 0.858214i \(-0.671574\pi\)
0.999881 + 0.0154166i \(0.00490745\pi\)
\(504\) 0 0
\(505\) −8.65657 14.9936i −0.385212 0.667208i
\(506\) −1.70604 + 1.43154i −0.0758429 + 0.0636398i
\(507\) 0 0
\(508\) 1.98798 11.2744i 0.0882023 0.500220i
\(509\) 22.2866 + 18.7007i 0.987837 + 0.828893i 0.985253 0.171103i \(-0.0547332\pi\)
0.00258346 + 0.999997i \(0.499178\pi\)
\(510\) 0 0
\(511\) −10.3229 3.75725i −0.456660 0.166211i
\(512\) 31.1704 1.37755
\(513\) 0 0
\(514\) 50.4620 2.22579
\(515\) −47.3887 17.2481i −2.08820 0.760042i
\(516\) 0 0
\(517\) 0.396459 + 0.332669i 0.0174363 + 0.0146308i
\(518\) −1.93599 + 10.9795i −0.0850623 + 0.482413i
\(519\) 0 0
\(520\) −3.17752 + 2.66625i −0.139343 + 0.116923i
\(521\) 6.84743 + 11.8601i 0.299991 + 0.519600i 0.976134 0.217171i \(-0.0696829\pi\)
−0.676142 + 0.736771i \(0.736350\pi\)
\(522\) 0 0
\(523\) −6.57532 + 11.3888i −0.287519 + 0.497997i −0.973217 0.229889i \(-0.926164\pi\)
0.685698 + 0.727886i \(0.259497\pi\)
\(524\) −3.37722 19.1532i −0.147535 0.836710i
\(525\) 0 0
\(526\) 51.9436 18.9059i 2.26485 0.824338i
\(527\) 11.8748 4.32207i 0.517274 0.188272i
\(528\) 0 0
\(529\) −3.94713 22.3853i −0.171614 0.973273i
\(530\) −17.0138 + 29.4688i −0.739034 + 1.28004i
\(531\) 0 0
\(532\) −13.7344 23.7887i −0.595463 1.03137i
\(533\) 9.02828 7.57563i 0.391058 0.328137i
\(534\) 0 0
\(535\) 7.47818 42.4109i 0.323310 1.83358i
\(536\) −2.60213 2.18345i −0.112395 0.0943106i
\(537\) 0 0
\(538\) −55.8414 20.3246i −2.40749 0.876256i
\(539\) −3.24644 −0.139834
\(540\) 0 0
\(541\) 6.26083 0.269174 0.134587 0.990902i \(-0.457029\pi\)
0.134587 + 0.990902i \(0.457029\pi\)
\(542\) 35.1658 + 12.7993i 1.51050 + 0.549778i
\(543\) 0 0
\(544\) −17.6498 14.8099i −0.756728 0.634970i
\(545\) −9.38728 + 53.2379i −0.402107 + 2.28046i
\(546\) 0 0
\(547\) −24.0371 + 20.1696i −1.02775 + 0.862388i −0.990582 0.136921i \(-0.956279\pi\)
−0.0371720 + 0.999309i \(0.511835\pi\)
\(548\) 17.9337 + 31.0621i 0.766091 + 1.32691i
\(549\) 0 0
\(550\) −18.6702 + 32.3378i −0.796102 + 1.37889i
\(551\) −3.77655 21.4179i −0.160886 0.912432i
\(552\) 0 0
\(553\) −28.2349 + 10.2767i −1.20067 + 0.437008i
\(554\) −39.0925 + 14.2285i −1.66088 + 0.604511i
\(555\) 0 0
\(556\) −7.60519 43.1312i −0.322532 1.82917i
\(557\) 21.7196 37.6195i 0.920290 1.59399i 0.121324 0.992613i \(-0.461286\pi\)
0.798966 0.601376i \(-0.205381\pi\)
\(558\) 0 0
\(559\) 2.50980 + 4.34710i 0.106153 + 0.183863i
\(560\) −28.1332 + 23.6065i −1.18884 + 0.997558i
\(561\) 0 0
\(562\) 0.597611 3.38922i 0.0252087 0.142966i
\(563\) −24.5269 20.5805i −1.03369 0.867366i −0.0424018 0.999101i \(-0.513501\pi\)
−0.991285 + 0.131734i \(0.957945\pi\)
\(564\) 0 0
\(565\) −16.3341 5.94512i −0.687180 0.250113i
\(566\) −14.3549 −0.603381
\(567\) 0 0
\(568\) 0.285807 0.0119922
\(569\) 6.36355 + 2.31614i 0.266774 + 0.0970977i 0.471944 0.881629i \(-0.343553\pi\)
−0.205170 + 0.978726i \(0.565775\pi\)
\(570\) 0 0
\(571\) −16.2041 13.5969i −0.678122 0.569012i 0.237335 0.971428i \(-0.423726\pi\)
−0.915457 + 0.402416i \(0.868171\pi\)
\(572\) −3.35354 + 19.0189i −0.140219 + 0.795220i
\(573\) 0 0
\(574\) 8.84911 7.42528i 0.369355 0.309925i
\(575\) 2.25838 + 3.91164i 0.0941811 + 0.163127i
\(576\) 0 0
\(577\) −5.95811 + 10.3198i −0.248039 + 0.429617i −0.962982 0.269567i \(-0.913120\pi\)
0.714942 + 0.699183i \(0.246453\pi\)
\(578\) −2.86786 16.2645i −0.119287 0.676512i
\(579\) 0 0
\(580\) 22.8332 8.31061i 0.948098 0.345079i
\(581\) 24.9336 9.07507i 1.03442 0.376497i
\(582\) 0 0
\(583\) −1.76558 10.0131i −0.0731228 0.414700i
\(584\) −0.555907 + 0.962859i −0.0230036 + 0.0398434i
\(585\) 0 0
\(586\) −15.1177 26.1846i −0.624506 1.08168i
\(587\) −0.0994798 + 0.0834734i −0.00410597 + 0.00344532i −0.644838 0.764319i \(-0.723075\pi\)
0.640732 + 0.767764i \(0.278631\pi\)
\(588\) 0 0
\(589\) 4.65523 26.4011i 0.191815 1.08784i
\(590\) −74.3501 62.3872i −3.06095 2.56844i
\(591\) 0 0
\(592\) 9.57785 + 3.48605i 0.393647 + 0.143276i
\(593\) 26.2622 1.07846 0.539230 0.842158i \(-0.318715\pi\)
0.539230 + 0.842158i \(0.318715\pi\)
\(594\) 0 0
\(595\) 25.5030 1.04552
\(596\) 27.3842 + 9.96703i 1.12170 + 0.408266i
\(597\) 0 0
\(598\) 3.69388 + 3.09953i 0.151054 + 0.126749i
\(599\) 4.79185 27.1759i 0.195790 1.11038i −0.715500 0.698613i \(-0.753801\pi\)
0.911290 0.411766i \(-0.135088\pi\)
\(600\) 0 0
\(601\) 1.02094 0.856674i 0.0416452 0.0349445i −0.621728 0.783234i \(-0.713569\pi\)
0.663373 + 0.748289i \(0.269124\pi\)
\(602\) 2.45999 + 4.26083i 0.100262 + 0.173658i
\(603\) 0 0
\(604\) 5.54576 9.60554i 0.225654 0.390844i
\(605\) 4.02001 + 22.7986i 0.163437 + 0.926895i
\(606\) 0 0
\(607\) 11.8068 4.29731i 0.479221 0.174422i −0.0911037 0.995841i \(-0.529039\pi\)
0.570325 + 0.821419i \(0.306817\pi\)
\(608\) −45.9305 + 16.7173i −1.86273 + 0.677978i
\(609\) 0 0
\(610\) 4.65270 + 26.3868i 0.188382 + 1.06837i
\(611\) 0.560282 0.970437i 0.0226666 0.0392597i
\(612\) 0 0
\(613\) 6.99912 + 12.1228i 0.282692 + 0.489637i 0.972047 0.234787i \(-0.0754393\pi\)
−0.689355 + 0.724424i \(0.742106\pi\)
\(614\) 25.2935 21.2237i 1.02076 0.856521i
\(615\) 0 0
\(616\) 0.210952 1.19637i 0.00849948 0.0482030i
\(617\) 18.4209 + 15.4569i 0.741596 + 0.622273i 0.933266 0.359187i \(-0.116946\pi\)
−0.191670 + 0.981459i \(0.561390\pi\)
\(618\) 0 0
\(619\) −6.45723 2.35024i −0.259538 0.0944642i 0.208974 0.977921i \(-0.432988\pi\)
−0.468512 + 0.883457i \(0.655210\pi\)
\(620\) 29.9521 1.20291
\(621\) 0 0
\(622\) −31.5594 −1.26542
\(623\) −1.54244 0.561403i −0.0617967 0.0224921i
\(624\) 0 0
\(625\) 5.53003 + 4.64025i 0.221201 + 0.185610i
\(626\) 11.7674 66.7363i 0.470320 2.66732i
\(627\) 0 0
\(628\) −1.74510 + 1.46431i −0.0696371 + 0.0584324i
\(629\) −3.53898 6.12970i −0.141109 0.244407i
\(630\) 0 0
\(631\) 17.6887 30.6377i 0.704175 1.21967i −0.262814 0.964847i \(-0.584651\pi\)
0.966989 0.254820i \(-0.0820161\pi\)
\(632\) 0.528061 + 2.99479i 0.0210052 + 0.119126i
\(633\) 0 0
\(634\) 30.1891 10.9879i 1.19896 0.436387i
\(635\) 21.1889 7.71213i 0.840856 0.306047i
\(636\) 0 0
\(637\) 1.22059 + 6.92231i 0.0483615 + 0.274272i
\(638\) −7.49346 + 12.9791i −0.296669 + 0.513846i
\(639\) 0 0
\(640\) 3.51114 + 6.08148i 0.138790 + 0.240392i
\(641\) −14.6879 + 12.3246i −0.580136 + 0.486792i −0.884992 0.465606i \(-0.845836\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(642\) 0 0
\(643\) 3.36468 19.0820i 0.132690 0.752521i −0.843751 0.536735i \(-0.819657\pi\)
0.976441 0.215786i \(-0.0692315\pi\)
\(644\) 1.75400 + 1.47178i 0.0691173 + 0.0579963i
\(645\) 0 0
\(646\) 33.8259 + 12.3116i 1.33086 + 0.484395i
\(647\) 8.77141 0.344840 0.172420 0.985024i \(-0.444841\pi\)
0.172420 + 0.985024i \(0.444841\pi\)
\(648\) 0 0
\(649\) 29.0009 1.13839
\(650\) 75.9728 + 27.6518i 2.97990 + 1.08459i
\(651\) 0 0
\(652\) 3.99273 + 3.35029i 0.156367 + 0.131208i
\(653\) 5.69729 32.3109i 0.222952 1.26442i −0.643609 0.765354i \(-0.722564\pi\)
0.866562 0.499070i \(-0.166325\pi\)
\(654\) 0 0
\(655\) 29.3444 24.6228i 1.14658 0.962094i
\(656\) −5.28039 9.14590i −0.206164 0.357087i
\(657\) 0 0
\(658\) 0.549163 0.951178i 0.0214086 0.0370808i
\(659\) 3.23882 + 18.3682i 0.126166 + 0.715525i 0.980608 + 0.195978i \(0.0627882\pi\)
−0.854442 + 0.519547i \(0.826101\pi\)
\(660\) 0 0
\(661\) −34.2117 + 12.4520i −1.33068 + 0.484329i −0.906866 0.421420i \(-0.861532\pi\)
−0.423816 + 0.905748i \(0.639310\pi\)
\(662\) 58.4492 21.2738i 2.27169 0.826829i
\(663\) 0 0
\(664\) −0.466319 2.64462i −0.0180967 0.102631i
\(665\) 27.0515 46.8546i 1.04901 1.81694i
\(666\) 0 0
\(667\) 0.906422 + 1.56997i 0.0350968 + 0.0607894i
\(668\) 5.51125 4.62449i 0.213237 0.178927i
\(669\) 0 0
\(670\) −18.1027 + 102.665i −0.699367 + 3.96631i
\(671\) −6.13300 5.14620i −0.236762 0.198667i
\(672\) 0 0
\(673\) −37.0146 13.4722i −1.42681 0.519316i −0.490793 0.871276i \(-0.663293\pi\)
−0.936015 + 0.351960i \(0.885515\pi\)
\(674\) 11.8276 0.455584
\(675\) 0 0
\(676\) 17.3824 0.668553
\(677\) −29.7651 10.8336i −1.14397 0.416370i −0.300623 0.953743i \(-0.597194\pi\)
−0.843345 + 0.537373i \(0.819417\pi\)
\(678\) 0 0
\(679\) 12.7424 + 10.6922i 0.489009 + 0.410327i
\(680\) 0.448204 2.54189i 0.0171878 0.0974770i
\(681\) 0 0
\(682\) −14.1518 + 11.8748i −0.541901 + 0.454709i
\(683\) 14.5328 + 25.1716i 0.556083 + 0.963164i 0.997818 + 0.0660187i \(0.0210297\pi\)
−0.441735 + 0.897145i \(0.645637\pi\)
\(684\) 0 0
\(685\) −35.3225 + 61.1804i −1.34960 + 2.33758i
\(686\) 6.81612 + 38.6562i 0.260241 + 1.47590i
\(687\) 0 0
\(688\) 4.22668 1.53839i 0.161141 0.0586504i
\(689\) −20.6869 + 7.52940i −0.788107 + 0.286847i
\(690\) 0 0
\(691\) 0.930303 + 5.27601i 0.0353904 + 0.200709i 0.997376 0.0723898i \(-0.0230626\pi\)
−0.961986 + 0.273099i \(0.911951\pi\)
\(692\) −6.60549 + 11.4410i −0.251103 + 0.434923i
\(693\) 0 0
\(694\) −22.6805 39.2838i −0.860940 1.49119i
\(695\) 66.0808 55.4484i 2.50659 2.10328i
\(696\) 0 0
\(697\) −1.27348 + 7.22227i −0.0482365 + 0.273563i
\(698\) −17.4513 14.6434i −0.660541 0.554260i
\(699\) 0 0
\(700\) 36.0749 + 13.1302i 1.36350 + 0.496275i
\(701\) −25.6536 −0.968922 −0.484461 0.874813i \(-0.660984\pi\)
−0.484461 + 0.874813i \(0.660984\pi\)
\(702\) 0 0
\(703\) −15.0155 −0.566320
\(704\) 14.3459 + 5.22147i 0.540680 + 0.196791i
\(705\) 0 0
\(706\) −3.22075 2.70253i −0.121215 0.101711i
\(707\) 1.90641 10.8118i 0.0716980 0.406620i
\(708\) 0 0
\(709\) −3.59311 + 3.01498i −0.134942 + 0.113230i −0.707761 0.706452i \(-0.750294\pi\)
0.572818 + 0.819682i \(0.305850\pi\)
\(710\) −4.38571 7.59627i −0.164593 0.285083i
\(711\) 0 0
\(712\) −0.0830629 + 0.143869i −0.00311291 + 0.00539173i
\(713\) 0.388040 + 2.20068i 0.0145322 + 0.0824163i
\(714\) 0 0
\(715\) −35.7438 + 13.0097i −1.33674 + 0.486535i
\(716\) −25.4052 + 9.24675i −0.949438 + 0.345567i
\(717\) 0 0
\(718\) 8.28493 + 46.9862i 0.309191 + 1.75351i
\(719\) −19.5335 + 33.8330i −0.728476 + 1.26176i 0.229052 + 0.973414i \(0.426438\pi\)
−0.957527 + 0.288343i \(0.906896\pi\)
\(720\) 0 0
\(721\) −15.9893 27.6943i −0.595473 1.03139i
\(722\) 29.8316 25.0317i 1.11022 0.931583i
\(723\) 0 0
\(724\) 4.30793 24.4315i 0.160103 0.907990i
\(725\) 23.2840 + 19.5376i 0.864747 + 0.725609i
\(726\) 0 0
\(727\) 10.1725 + 3.70247i 0.377276 + 0.137317i 0.523696 0.851905i \(-0.324553\pi\)
−0.146420 + 0.989223i \(0.546775\pi\)
\(728\) −2.63030 −0.0974853
\(729\) 0 0
\(730\) 34.1215 1.26290
\(731\) −2.93512 1.06830i −0.108559 0.0395124i
\(732\) 0 0
\(733\) −2.61406 2.19345i −0.0965524 0.0810171i 0.593234 0.805030i \(-0.297851\pi\)
−0.689786 + 0.724013i \(0.742295\pi\)
\(734\) −0.969561 + 5.49866i −0.0357872 + 0.202959i
\(735\) 0 0
\(736\) 3.12108 2.61890i 0.115045 0.0965339i
\(737\) −15.5749 26.9766i −0.573710 0.993695i
\(738\) 0 0
\(739\) −13.1505 + 22.7773i −0.483748 + 0.837877i −0.999826 0.0186653i \(-0.994058\pi\)
0.516077 + 0.856542i \(0.327392\pi\)
\(740\) −2.91317 16.5214i −0.107090 0.607339i
\(741\) 0 0
\(742\) −20.2763 + 7.37997i −0.744367 + 0.270927i
\(743\) −27.1984 + 9.89940i −0.997811 + 0.363174i −0.788740 0.614727i \(-0.789266\pi\)
−0.209071 + 0.977900i \(0.567044\pi\)
\(744\) 0 0
\(745\) 9.96703 + 56.5259i 0.365164 + 2.07095i
\(746\) 28.3953 49.1822i 1.03963 1.80069i
\(747\) 0 0
\(748\) −6.00862 10.4072i −0.219697 0.380526i
\(749\) 20.9194 17.5535i 0.764380 0.641391i
\(750\) 0 0
\(751\) −3.37716 + 19.1528i −0.123234 + 0.698897i 0.859106 + 0.511797i \(0.171020\pi\)
−0.982341 + 0.187100i \(0.940091\pi\)
\(752\) −0.769193 0.645430i −0.0280496 0.0235364i
\(753\) 0 0
\(754\) 30.4923 + 11.0983i 1.11046 + 0.404176i
\(755\) 21.8460 0.795058
\(756\) 0 0
\(757\) 6.59627 0.239745 0.119873 0.992789i \(-0.461751\pi\)
0.119873 + 0.992789i \(0.461751\pi\)
\(758\) −59.5941 21.6905i −2.16455 0.787833i
\(759\) 0 0
\(760\) −4.19459 3.51968i −0.152154 0.127672i
\(761\) 1.79373 10.1728i 0.0650228 0.368763i −0.934882 0.354959i \(-0.884495\pi\)
0.999905 0.0138038i \(-0.00439402\pi\)
\(762\) 0 0
\(763\) −26.2600 + 22.0347i −0.950674 + 0.797710i
\(764\) 12.6138 + 21.8478i 0.456352 + 0.790424i
\(765\) 0 0
\(766\) −0.662037 + 1.14668i −0.0239204 + 0.0414313i
\(767\) −10.9037 61.8380i −0.393710 2.23284i
\(768\) 0 0
\(769\) −42.1536 + 15.3427i −1.52010 + 0.553271i −0.961173 0.275947i \(-0.911009\pi\)
−0.558926 + 0.829217i \(0.688786\pi\)
\(770\) −35.0344 + 12.7515i −1.26255 + 0.459532i
\(771\) 0 0
\(772\) 4.89693 + 27.7718i 0.176244 + 0.999531i
\(773\) −21.4677 + 37.1832i −0.772141 + 1.33739i 0.164247 + 0.986419i \(0.447481\pi\)
−0.936388 + 0.350968i \(0.885853\pi\)
\(774\) 0 0
\(775\) 18.7335 + 32.4475i 0.672929 + 1.16555i
\(776\) 1.28963 1.08213i 0.0462951 0.0388462i
\(777\) 0 0
\(778\) −1.45677 + 8.26173i −0.0522276 + 0.296198i
\(779\) 11.9181 + 10.0005i 0.427010 + 0.358304i
\(780\) 0 0