Properties

Label 729.2.e.q.325.2
Level $729$
Weight $2$
Character 729.325
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 325.2
Root \(0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 729.325
Dual form 729.2.e.q.406.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50881 - 1.26604i) q^{2} +(0.326352 - 1.85083i) q^{4} +(3.47843 - 1.26604i) q^{5} +(-0.407604 - 2.31164i) q^{7} +(0.118782 + 0.205737i) q^{8} +O(q^{10})\) \(q+(1.50881 - 1.26604i) q^{2} +(0.326352 - 1.85083i) q^{4} +(3.47843 - 1.26604i) q^{5} +(-0.407604 - 2.31164i) q^{7} +(0.118782 + 0.205737i) q^{8} +(3.64543 - 6.31407i) q^{10} +(-2.04715 - 0.745100i) q^{11} +(-3.61334 - 3.03195i) q^{13} +(-3.54163 - 2.97178i) q^{14} +(3.97178 + 1.44561i) q^{16} +(-1.46756 + 2.54189i) q^{17} +(3.11334 + 5.39246i) q^{19} +(-1.20805 - 6.85117i) q^{20} +(-4.03209 + 1.46756i) q^{22} +(-0.0901285 + 0.511144i) q^{23} +(6.66637 - 5.59375i) q^{25} -9.29044 q^{26} -4.41147 q^{28} +(2.67561 - 2.24510i) q^{29} +(-0.747626 + 4.24000i) q^{31} +(7.37641 - 2.68479i) q^{32} +(1.00387 + 5.69323i) q^{34} +(-4.34445 - 7.52481i) q^{35} +(-1.20574 + 2.08840i) q^{37} +(11.5245 + 4.19459i) q^{38} +(0.673648 + 0.565258i) q^{40} +(-1.91404 - 1.60607i) q^{41} +(-1.00000 - 0.363970i) q^{43} +(-2.04715 + 3.54576i) q^{44} +(0.511144 + 0.885328i) q^{46} +(0.0412527 + 0.233956i) q^{47} +(1.40033 - 0.509678i) q^{49} +(2.97637 - 16.8799i) q^{50} +(-6.79086 + 5.69821i) q^{52} -4.66717 q^{53} -8.06418 q^{55} +(0.427173 - 0.358441i) q^{56} +(1.19459 - 6.77487i) q^{58} +(-12.5094 + 4.55303i) q^{59} +(-0.638156 - 3.61916i) q^{61} +(4.24000 + 7.34389i) q^{62} +(3.50387 - 6.06888i) q^{64} +(-16.4073 - 5.97178i) q^{65} +(10.9534 + 9.19096i) q^{67} +(4.22567 + 3.54576i) q^{68} +(-16.0817 - 5.85327i) q^{70} +(0.601535 - 1.04189i) q^{71} +(2.34002 + 4.05304i) q^{73} +(0.824773 + 4.67752i) q^{74} +(10.9966 - 4.00243i) q^{76} +(-0.887975 + 5.03596i) q^{77} +(-9.80587 + 8.22811i) q^{79} +15.6458 q^{80} -4.92127 q^{82} +(8.65933 - 7.26604i) q^{83} +(-1.88666 + 10.6998i) q^{85} +(-1.96962 + 0.716881i) q^{86} +(-0.0898700 - 0.509678i) q^{88} +(0.349643 + 0.605600i) q^{89} +(-5.53596 + 9.58856i) q^{91} +(0.916629 + 0.333626i) q^{92} +(0.358441 + 0.300767i) q^{94} +(17.6566 + 14.8157i) q^{95} +(6.65910 + 2.42371i) q^{97} +(1.46756 - 2.54189i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{4} - 12 q^{7} + 12 q^{10} - 30 q^{13} + 18 q^{16} + 24 q^{19} - 30 q^{22} + 42 q^{25} - 12 q^{28} + 24 q^{31} - 36 q^{34} + 6 q^{37} + 6 q^{40} - 12 q^{43} - 6 q^{46} - 12 q^{49} - 18 q^{52} - 60 q^{55} + 6 q^{58} + 60 q^{61} - 6 q^{64} + 78 q^{67} - 66 q^{70} - 12 q^{73} + 48 q^{76} + 6 q^{79} - 24 q^{82} - 36 q^{85} - 24 q^{88} - 12 q^{94} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50881 1.26604i 1.06689 0.895229i 0.0721247 0.997396i \(-0.477022\pi\)
0.994767 + 0.102167i \(0.0325776\pi\)
\(3\) 0 0
\(4\) 0.326352 1.85083i 0.163176 0.925417i
\(5\) 3.47843 1.26604i 1.55560 0.566192i 0.585877 0.810400i \(-0.300750\pi\)
0.969723 + 0.244207i \(0.0785278\pi\)
\(6\) 0 0
\(7\) −0.407604 2.31164i −0.154060 0.873716i −0.959640 0.281230i \(-0.909258\pi\)
0.805581 0.592486i \(-0.201854\pi\)
\(8\) 0.118782 + 0.205737i 0.0419959 + 0.0727390i
\(9\) 0 0
\(10\) 3.64543 6.31407i 1.15279 1.99668i
\(11\) −2.04715 0.745100i −0.617237 0.224656i 0.0144295 0.999896i \(-0.495407\pi\)
−0.631667 + 0.775240i \(0.717629\pi\)
\(12\) 0 0
\(13\) −3.61334 3.03195i −1.00216 0.840912i −0.0148781 0.999889i \(-0.504736\pi\)
−0.987282 + 0.158977i \(0.949180\pi\)
\(14\) −3.54163 2.97178i −0.946541 0.794242i
\(15\) 0 0
\(16\) 3.97178 + 1.44561i 0.992945 + 0.361403i
\(17\) −1.46756 + 2.54189i −0.355936 + 0.616499i −0.987278 0.159006i \(-0.949171\pi\)
0.631342 + 0.775505i \(0.282504\pi\)
\(18\) 0 0
\(19\) 3.11334 + 5.39246i 0.714249 + 1.23712i 0.963248 + 0.268612i \(0.0865651\pi\)
−0.248999 + 0.968504i \(0.580102\pi\)
\(20\) −1.20805 6.85117i −0.270127 1.53197i
\(21\) 0 0
\(22\) −4.03209 + 1.46756i −0.859644 + 0.312885i
\(23\) −0.0901285 + 0.511144i −0.0187931 + 0.106581i −0.992761 0.120103i \(-0.961677\pi\)
0.973968 + 0.226684i \(0.0727885\pi\)
\(24\) 0 0
\(25\) 6.66637 5.59375i 1.33327 1.11875i
\(26\) −9.29044 −1.82201
\(27\) 0 0
\(28\) −4.41147 −0.833690
\(29\) 2.67561 2.24510i 0.496848 0.416905i −0.359625 0.933097i \(-0.617095\pi\)
0.856473 + 0.516192i \(0.172651\pi\)
\(30\) 0 0
\(31\) −0.747626 + 4.24000i −0.134278 + 0.761526i 0.841082 + 0.540907i \(0.181919\pi\)
−0.975360 + 0.220619i \(0.929192\pi\)
\(32\) 7.37641 2.68479i 1.30398 0.474609i
\(33\) 0 0
\(34\) 1.00387 + 5.69323i 0.172162 + 0.976381i
\(35\) −4.34445 7.52481i −0.734347 1.27193i
\(36\) 0 0
\(37\) −1.20574 + 2.08840i −0.198222 + 0.343330i −0.947952 0.318413i \(-0.896850\pi\)
0.749730 + 0.661744i \(0.230183\pi\)
\(38\) 11.5245 + 4.19459i 1.86953 + 0.680453i
\(39\) 0 0
\(40\) 0.673648 + 0.565258i 0.106513 + 0.0893751i
\(41\) −1.91404 1.60607i −0.298922 0.250826i 0.480973 0.876735i \(-0.340283\pi\)
−0.779896 + 0.625910i \(0.784728\pi\)
\(42\) 0 0
\(43\) −1.00000 0.363970i −0.152499 0.0555049i 0.264643 0.964346i \(-0.414746\pi\)
−0.417142 + 0.908842i \(0.636968\pi\)
\(44\) −2.04715 + 3.54576i −0.308619 + 0.534543i
\(45\) 0 0
\(46\) 0.511144 + 0.885328i 0.0753641 + 0.130534i
\(47\) 0.0412527 + 0.233956i 0.00601732 + 0.0341259i 0.987669 0.156559i \(-0.0500402\pi\)
−0.981651 + 0.190685i \(0.938929\pi\)
\(48\) 0 0
\(49\) 1.40033 0.509678i 0.200047 0.0728112i
\(50\) 2.97637 16.8799i 0.420923 2.38717i
\(51\) 0 0
\(52\) −6.79086 + 5.69821i −0.941723 + 0.790199i
\(53\) −4.66717 −0.641085 −0.320543 0.947234i \(-0.603865\pi\)
−0.320543 + 0.947234i \(0.603865\pi\)
\(54\) 0 0
\(55\) −8.06418 −1.08737
\(56\) 0.427173 0.358441i 0.0570834 0.0478987i
\(57\) 0 0
\(58\) 1.19459 6.77487i 0.156858 0.889584i
\(59\) −12.5094 + 4.55303i −1.62858 + 0.592754i −0.984989 0.172616i \(-0.944778\pi\)
−0.643590 + 0.765370i \(0.722556\pi\)
\(60\) 0 0
\(61\) −0.638156 3.61916i −0.0817075 0.463386i −0.998019 0.0629190i \(-0.979959\pi\)
0.916311 0.400467i \(-0.131152\pi\)
\(62\) 4.24000 + 7.34389i 0.538480 + 0.932675i
\(63\) 0 0
\(64\) 3.50387 6.06888i 0.437984 0.758610i
\(65\) −16.4073 5.97178i −2.03508 0.740708i
\(66\) 0 0
\(67\) 10.9534 + 9.19096i 1.33817 + 1.12285i 0.982093 + 0.188397i \(0.0603291\pi\)
0.356073 + 0.934458i \(0.384115\pi\)
\(68\) 4.22567 + 3.54576i 0.512438 + 0.429986i
\(69\) 0 0
\(70\) −16.0817 5.85327i −1.92213 0.699599i
\(71\) 0.601535 1.04189i 0.0713891 0.123649i −0.828121 0.560549i \(-0.810590\pi\)
0.899510 + 0.436900i \(0.143923\pi\)
\(72\) 0 0
\(73\) 2.34002 + 4.05304i 0.273879 + 0.474372i 0.969852 0.243696i \(-0.0783599\pi\)
−0.695973 + 0.718068i \(0.745027\pi\)
\(74\) 0.824773 + 4.67752i 0.0958779 + 0.543750i
\(75\) 0 0
\(76\) 10.9966 4.00243i 1.26140 0.459111i
\(77\) −0.887975 + 5.03596i −0.101194 + 0.573901i
\(78\) 0 0
\(79\) −9.80587 + 8.22811i −1.10325 + 0.925734i −0.997639 0.0686737i \(-0.978123\pi\)
−0.105608 + 0.994408i \(0.533679\pi\)
\(80\) 15.6458 1.74925
\(81\) 0 0
\(82\) −4.92127 −0.543464
\(83\) 8.65933 7.26604i 0.950485 0.797552i −0.0288938 0.999582i \(-0.509198\pi\)
0.979379 + 0.202030i \(0.0647540\pi\)
\(84\) 0 0
\(85\) −1.88666 + 10.6998i −0.204637 + 1.16055i
\(86\) −1.96962 + 0.716881i −0.212389 + 0.0773033i
\(87\) 0 0
\(88\) −0.0898700 0.509678i −0.00958018 0.0543319i
\(89\) 0.349643 + 0.605600i 0.0370621 + 0.0641935i 0.883961 0.467560i \(-0.154867\pi\)
−0.846899 + 0.531753i \(0.821533\pi\)
\(90\) 0 0
\(91\) −5.53596 + 9.58856i −0.580326 + 1.00515i
\(92\) 0.916629 + 0.333626i 0.0955652 + 0.0347829i
\(93\) 0 0
\(94\) 0.358441 + 0.300767i 0.0369703 + 0.0310218i
\(95\) 17.6566 + 14.8157i 1.81153 + 1.52006i
\(96\) 0 0
\(97\) 6.65910 + 2.42371i 0.676129 + 0.246091i 0.657185 0.753730i \(-0.271747\pi\)
0.0189446 + 0.999821i \(0.493969\pi\)
\(98\) 1.46756 2.54189i 0.148246 0.256770i
\(99\) 0 0
\(100\) −8.17752 14.1639i −0.817752 1.41639i
\(101\) −0.812174 4.60607i −0.0808143 0.458321i −0.998182 0.0602789i \(-0.980801\pi\)
0.917367 0.398042i \(-0.130310\pi\)
\(102\) 0 0
\(103\) 12.8020 4.65955i 1.26142 0.459119i 0.377174 0.926142i \(-0.376896\pi\)
0.884245 + 0.467023i \(0.154674\pi\)
\(104\) 0.194584 1.10354i 0.0190805 0.108211i
\(105\) 0 0
\(106\) −7.04189 + 5.90885i −0.683969 + 0.573918i
\(107\) −11.6340 −1.12470 −0.562350 0.826900i \(-0.690102\pi\)
−0.562350 + 0.826900i \(0.690102\pi\)
\(108\) 0 0
\(109\) 14.6040 1.39881 0.699405 0.714725i \(-0.253448\pi\)
0.699405 + 0.714725i \(0.253448\pi\)
\(110\) −12.1673 + 10.2096i −1.16011 + 0.973448i
\(111\) 0 0
\(112\) 1.72281 9.77055i 0.162790 0.923230i
\(113\) 4.41263 1.60607i 0.415106 0.151086i −0.126020 0.992028i \(-0.540220\pi\)
0.541126 + 0.840942i \(0.317998\pi\)
\(114\) 0 0
\(115\) 0.333626 + 1.89209i 0.0311108 + 0.176438i
\(116\) −3.28212 5.68479i −0.304737 0.527820i
\(117\) 0 0
\(118\) −13.1099 + 22.7071i −1.20687 + 2.09036i
\(119\) 6.47410 + 2.35638i 0.593480 + 0.216009i
\(120\) 0 0
\(121\) −4.79086 4.02001i −0.435533 0.365455i
\(122\) −5.54488 4.65270i −0.502010 0.421236i
\(123\) 0 0
\(124\) 7.60354 + 2.76746i 0.682818 + 0.248525i
\(125\) 6.85240 11.8687i 0.612897 1.06157i
\(126\) 0 0
\(127\) −3.04576 5.27541i −0.270267 0.468117i 0.698663 0.715451i \(-0.253779\pi\)
−0.968930 + 0.247334i \(0.920445\pi\)
\(128\) 0.329421 + 1.86824i 0.0291170 + 0.165131i
\(129\) 0 0
\(130\) −32.3161 + 11.7621i −2.83431 + 1.03161i
\(131\) −1.79698 + 10.1912i −0.157003 + 0.890408i 0.799929 + 0.600095i \(0.204871\pi\)
−0.956932 + 0.290313i \(0.906241\pi\)
\(132\) 0 0
\(133\) 11.1964 9.39490i 0.970851 0.814641i
\(134\) 28.1627 2.43289
\(135\) 0 0
\(136\) −0.697281 −0.0597914
\(137\) −14.6197 + 12.2674i −1.24905 + 1.04807i −0.252285 + 0.967653i \(0.581182\pi\)
−0.996761 + 0.0804207i \(0.974374\pi\)
\(138\) 0 0
\(139\) −4.04664 + 22.9496i −0.343231 + 1.94656i −0.0213784 + 0.999771i \(0.506805\pi\)
−0.321853 + 0.946790i \(0.604306\pi\)
\(140\) −15.3450 + 5.58512i −1.29689 + 0.472029i
\(141\) 0 0
\(142\) −0.411474 2.33359i −0.0345301 0.195830i
\(143\) 5.13793 + 8.89915i 0.429655 + 0.744184i
\(144\) 0 0
\(145\) 6.46451 11.1969i 0.536848 0.929848i
\(146\) 8.66198 + 3.15270i 0.716871 + 0.260920i
\(147\) 0 0
\(148\) 3.47178 + 2.91317i 0.285379 + 0.239461i
\(149\) −11.8782 9.96703i −0.973104 0.816531i 0.00993072 0.999951i \(-0.496839\pi\)
−0.983035 + 0.183419i \(0.941283\pi\)
\(150\) 0 0
\(151\) 5.54576 + 2.01849i 0.451308 + 0.164262i 0.557666 0.830065i \(-0.311697\pi\)
−0.106359 + 0.994328i \(0.533919\pi\)
\(152\) −0.739620 + 1.28106i −0.0599911 + 0.103908i
\(153\) 0 0
\(154\) 5.03596 + 8.72254i 0.405809 + 0.702882i
\(155\) 2.76746 + 15.6951i 0.222288 + 1.26066i
\(156\) 0 0
\(157\) 1.13903 0.414574i 0.0909047 0.0330866i −0.296167 0.955136i \(-0.595709\pi\)
0.387072 + 0.922049i \(0.373486\pi\)
\(158\) −4.37808 + 24.8293i −0.348302 + 1.97532i
\(159\) 0 0
\(160\) 22.2592 18.6777i 1.75975 1.47660i
\(161\) 1.21832 0.0960168
\(162\) 0 0
\(163\) 2.77332 0.217223 0.108612 0.994084i \(-0.465360\pi\)
0.108612 + 0.994084i \(0.465360\pi\)
\(164\) −3.59721 + 3.01842i −0.280895 + 0.235699i
\(165\) 0 0
\(166\) 3.86618 21.9262i 0.300074 1.70180i
\(167\) −3.59721 + 1.30928i −0.278361 + 0.101315i −0.477428 0.878671i \(-0.658431\pi\)
0.199068 + 0.979986i \(0.436209\pi\)
\(168\) 0 0
\(169\) 1.60607 + 9.10846i 0.123544 + 0.700651i
\(170\) 10.6998 + 18.5326i 0.820635 + 1.42138i
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) −6.60549 2.40420i −0.502206 0.182788i 0.0784801 0.996916i \(-0.474993\pi\)
−0.580686 + 0.814128i \(0.697216\pi\)
\(174\) 0 0
\(175\) −15.6480 13.1302i −1.18287 0.992549i
\(176\) −7.05369 5.91875i −0.531692 0.446142i
\(177\) 0 0
\(178\) 1.29426 + 0.471073i 0.0970091 + 0.0353084i
\(179\) −7.19269 + 12.4581i −0.537607 + 0.931163i 0.461425 + 0.887179i \(0.347338\pi\)
−0.999032 + 0.0439838i \(0.985995\pi\)
\(180\) 0 0
\(181\) −6.60014 11.4318i −0.490584 0.849717i 0.509357 0.860555i \(-0.329883\pi\)
−0.999941 + 0.0108384i \(0.996550\pi\)
\(182\) 3.78682 + 21.4761i 0.280698 + 1.59192i
\(183\) 0 0
\(184\) −0.115867 + 0.0421721i −0.00854183 + 0.00310897i
\(185\) −1.55007 + 8.79086i −0.113963 + 0.646317i
\(186\) 0 0
\(187\) 4.89827 4.11014i 0.358197 0.300563i
\(188\) 0.446476 0.0325626
\(189\) 0 0
\(190\) 45.3979 3.29351
\(191\) −10.2829 + 8.62836i −0.744043 + 0.624326i −0.933920 0.357482i \(-0.883635\pi\)
0.189877 + 0.981808i \(0.439191\pi\)
\(192\) 0 0
\(193\) 2.60560 14.7771i 0.187555 1.06368i −0.735073 0.677988i \(-0.762852\pi\)
0.922628 0.385690i \(-0.126037\pi\)
\(194\) 13.1159 4.77379i 0.941664 0.342738i
\(195\) 0 0
\(196\) −0.486329 2.75811i −0.0347378 0.197008i
\(197\) −11.1606 19.3307i −0.795158 1.37725i −0.922739 0.385426i \(-0.874054\pi\)
0.127580 0.991828i \(-0.459279\pi\)
\(198\) 0 0
\(199\) 4.55051 7.88171i 0.322577 0.558720i −0.658442 0.752631i \(-0.728784\pi\)
0.981019 + 0.193912i \(0.0621176\pi\)
\(200\) 1.94269 + 0.707081i 0.137369 + 0.0499982i
\(201\) 0 0
\(202\) −7.05690 5.92145i −0.496522 0.416631i
\(203\) −6.28044 5.26991i −0.440800 0.369876i
\(204\) 0 0
\(205\) −8.69119 3.16333i −0.607019 0.220937i
\(206\) 13.4166 23.2383i 0.934781 1.61909i
\(207\) 0 0
\(208\) −9.96838 17.2657i −0.691183 1.19716i
\(209\) −2.35554 13.3589i −0.162936 0.924055i
\(210\) 0 0
\(211\) 5.61721 2.04450i 0.386705 0.140749i −0.141349 0.989960i \(-0.545144\pi\)
0.528054 + 0.849211i \(0.322922\pi\)
\(212\) −1.52314 + 8.63816i −0.104610 + 0.593271i
\(213\) 0 0
\(214\) −17.5535 + 14.7291i −1.19993 + 1.00686i
\(215\) −3.93923 −0.268653
\(216\) 0 0
\(217\) 10.1061 0.686045
\(218\) 22.0347 18.4893i 1.49238 1.25225i
\(219\) 0 0
\(220\) −2.63176 + 14.9254i −0.177433 + 1.00627i
\(221\) 13.0097 4.73514i 0.875126 0.318520i
\(222\) 0 0
\(223\) −1.54576 8.76644i −0.103512 0.587044i −0.991804 0.127766i \(-0.959219\pi\)
0.888293 0.459278i \(-0.151892\pi\)
\(224\) −9.21291 15.9572i −0.615564 1.06619i
\(225\) 0 0
\(226\) 4.62449 8.00984i 0.307616 0.532807i
\(227\) −10.0251 3.64883i −0.665388 0.242182i −0.0128273 0.999918i \(-0.504083\pi\)
−0.652561 + 0.757736i \(0.726305\pi\)
\(228\) 0 0
\(229\) −6.33615 5.31666i −0.418705 0.351335i 0.408965 0.912550i \(-0.365890\pi\)
−0.827670 + 0.561215i \(0.810334\pi\)
\(230\) 2.89884 + 2.43242i 0.191144 + 0.160389i
\(231\) 0 0
\(232\) 0.779715 + 0.283793i 0.0511908 + 0.0186319i
\(233\) 6.36965 11.0326i 0.417290 0.722767i −0.578376 0.815770i \(-0.696313\pi\)
0.995666 + 0.0930034i \(0.0296467\pi\)
\(234\) 0 0
\(235\) 0.439693 + 0.761570i 0.0286824 + 0.0496793i
\(236\) 4.34445 + 24.6386i 0.282800 + 1.60384i
\(237\) 0 0
\(238\) 12.7515 4.64117i 0.826557 0.300842i
\(239\) −2.60743 + 14.7875i −0.168660 + 0.956521i 0.776549 + 0.630057i \(0.216968\pi\)
−0.945210 + 0.326464i \(0.894143\pi\)
\(240\) 0 0
\(241\) 0.609470 0.511406i 0.0392594 0.0329426i −0.622947 0.782264i \(-0.714065\pi\)
0.662206 + 0.749322i \(0.269620\pi\)
\(242\) −12.3180 −0.791832
\(243\) 0 0
\(244\) −6.90673 −0.442158
\(245\) 4.22567 3.54576i 0.269968 0.226530i
\(246\) 0 0
\(247\) 5.10014 28.9243i 0.324514 1.84041i
\(248\) −0.961130 + 0.349823i −0.0610318 + 0.0222138i
\(249\) 0 0
\(250\) −4.68732 26.5831i −0.296452 1.68126i
\(251\) 4.15749 + 7.20099i 0.262419 + 0.454522i 0.966884 0.255216i \(-0.0821465\pi\)
−0.704465 + 0.709738i \(0.748813\pi\)
\(252\) 0 0
\(253\) 0.565360 0.979232i 0.0355439 0.0615638i
\(254\) −11.2744 4.10354i −0.707418 0.257479i
\(255\) 0 0
\(256\) 13.5988 + 11.4107i 0.849925 + 0.713171i
\(257\) 19.6262 + 16.4684i 1.22425 + 1.02727i 0.998591 + 0.0530632i \(0.0168985\pi\)
0.225661 + 0.974206i \(0.427546\pi\)
\(258\) 0 0
\(259\) 5.31908 + 1.93599i 0.330511 + 0.120296i
\(260\) −16.4073 + 28.4183i −1.01754 + 1.76243i
\(261\) 0 0
\(262\) 10.1912 + 17.6517i 0.629614 + 1.09052i
\(263\) −4.87343 27.6386i −0.300509 1.70427i −0.643926 0.765088i \(-0.722696\pi\)
0.343417 0.939183i \(-0.388415\pi\)
\(264\) 0 0
\(265\) −16.2344 + 5.90885i −0.997273 + 0.362978i
\(266\) 4.99892 28.3503i 0.306504 1.73827i
\(267\) 0 0
\(268\) 20.5856 17.2734i 1.25746 1.05514i
\(269\) 30.1710 1.83956 0.919778 0.392439i \(-0.128369\pi\)
0.919778 + 0.392439i \(0.128369\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) −9.50341 + 7.97431i −0.576229 + 0.483513i
\(273\) 0 0
\(274\) −6.52734 + 37.0184i −0.394331 + 2.23636i
\(275\) −17.8149 + 6.48411i −1.07428 + 0.391006i
\(276\) 0 0
\(277\) 3.66772 + 20.8007i 0.220372 + 1.24979i 0.871338 + 0.490684i \(0.163253\pi\)
−0.650966 + 0.759107i \(0.725636\pi\)
\(278\) 22.9496 + 39.7499i 1.37643 + 2.38404i
\(279\) 0 0
\(280\) 1.03209 1.78763i 0.0616791 0.106831i
\(281\) −1.64192 0.597611i −0.0979489 0.0356505i 0.292581 0.956241i \(-0.405486\pi\)
−0.390530 + 0.920590i \(0.627708\pi\)
\(282\) 0 0
\(283\) −5.58306 4.68475i −0.331879 0.278479i 0.461586 0.887095i \(-0.347281\pi\)
−0.793465 + 0.608616i \(0.791725\pi\)
\(284\) −1.73205 1.45336i −0.102778 0.0862412i
\(285\) 0 0
\(286\) 19.0189 + 6.92231i 1.12461 + 0.409325i
\(287\) −2.93247 + 5.07919i −0.173098 + 0.299815i
\(288\) 0 0
\(289\) 4.19253 + 7.26168i 0.246620 + 0.427158i
\(290\) −4.42198 25.0783i −0.259668 1.47265i
\(291\) 0 0
\(292\) 8.26517 3.00827i 0.483682 0.176046i
\(293\) 2.66565 15.1177i 0.155729 0.883184i −0.802387 0.596804i \(-0.796437\pi\)
0.958116 0.286380i \(-0.0924520\pi\)
\(294\) 0 0
\(295\) −37.7486 + 31.6748i −2.19781 + 1.84418i
\(296\) −0.572881 −0.0332980
\(297\) 0 0
\(298\) −30.5408 −1.76918
\(299\) 1.87543 1.57367i 0.108459 0.0910079i
\(300\) 0 0
\(301\) −0.433763 + 2.45999i −0.0250017 + 0.141792i
\(302\) 10.9230 3.97565i 0.628549 0.228773i
\(303\) 0 0
\(304\) 4.57011 + 25.9184i 0.262114 + 1.48652i
\(305\) −6.80180 11.7811i −0.389470 0.674581i
\(306\) 0 0
\(307\) −8.38191 + 14.5179i −0.478381 + 0.828580i −0.999693 0.0247861i \(-0.992110\pi\)
0.521312 + 0.853366i \(0.325443\pi\)
\(308\) 9.03093 + 3.28699i 0.514585 + 0.187294i
\(309\) 0 0
\(310\) 24.0462 + 20.1772i 1.36573 + 1.14599i
\(311\) −12.2744 10.2995i −0.696020 0.584030i 0.224619 0.974447i \(-0.427886\pi\)
−0.920638 + 0.390417i \(0.872331\pi\)
\(312\) 0 0
\(313\) −32.3307 11.7674i −1.82744 0.665133i −0.993577 0.113160i \(-0.963903\pi\)
−0.833862 0.551973i \(-0.813875\pi\)
\(314\) 1.19372 2.06758i 0.0673654 0.116680i
\(315\) 0 0
\(316\) 12.0287 + 20.8343i 0.676666 + 1.17202i
\(317\) −2.83239 16.0633i −0.159083 0.902205i −0.954957 0.296743i \(-0.904100\pi\)
0.795874 0.605462i \(-0.207012\pi\)
\(318\) 0 0
\(319\) −7.15018 + 2.60245i −0.400333 + 0.145709i
\(320\) 4.50449 25.5462i 0.251809 1.42808i
\(321\) 0 0
\(322\) 1.83821 1.54244i 0.102440 0.0859570i
\(323\) −18.2761 −1.01691
\(324\) 0 0
\(325\) −41.0479 −2.27693
\(326\) 4.18442 3.51114i 0.231754 0.194464i
\(327\) 0 0
\(328\) 0.103074 0.584561i 0.00569130 0.0322770i
\(329\) 0.524005 0.190722i 0.0288893 0.0105149i
\(330\) 0 0
\(331\) −5.48380 31.1002i −0.301417 1.70942i −0.639908 0.768452i \(-0.721028\pi\)
0.338491 0.940970i \(-0.390084\pi\)
\(332\) −10.6222 18.3983i −0.582972 1.00974i
\(333\) 0 0
\(334\) −3.76991 + 6.52968i −0.206281 + 0.357288i
\(335\) 49.7367 + 18.1027i 2.71740 + 0.989054i
\(336\) 0 0
\(337\) 4.60014 + 3.85997i 0.250585 + 0.210266i 0.759424 0.650596i \(-0.225481\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(338\) 13.9550 + 11.7096i 0.759050 + 0.636919i
\(339\) 0 0
\(340\) 19.1878 + 6.98378i 1.04060 + 0.378749i
\(341\) 4.68972 8.12284i 0.253963 0.439876i
\(342\) 0 0
\(343\) −9.96451 17.2590i −0.538033 0.931900i
\(344\) −0.0439002 0.248970i −0.00236694 0.0134236i
\(345\) 0 0
\(346\) −13.0103 + 4.73535i −0.699436 + 0.254574i
\(347\) 3.99919 22.6805i 0.214688 1.21755i −0.666760 0.745272i \(-0.732320\pi\)
0.881448 0.472281i \(-0.156569\pi\)
\(348\) 0 0
\(349\) −8.86025 + 7.43463i −0.474278 + 0.397967i −0.848352 0.529432i \(-0.822405\pi\)
0.374074 + 0.927399i \(0.377961\pi\)
\(350\) −40.2332 −2.15056
\(351\) 0 0
\(352\) −17.1010 −0.911487
\(353\) −1.63522 + 1.37211i −0.0870339 + 0.0730301i −0.685267 0.728292i \(-0.740314\pi\)
0.598233 + 0.801322i \(0.295870\pi\)
\(354\) 0 0
\(355\) 0.773318 4.38571i 0.0410435 0.232769i
\(356\) 1.23497 0.449493i 0.0654533 0.0238231i
\(357\) 0 0
\(358\) 4.92009 + 27.9032i 0.260035 + 1.47473i
\(359\) −12.1118 20.9782i −0.639234 1.10719i −0.985601 0.169087i \(-0.945918\pi\)
0.346367 0.938099i \(-0.387415\pi\)
\(360\) 0 0
\(361\) −9.88578 + 17.1227i −0.520304 + 0.901193i
\(362\) −24.4315 8.89234i −1.28409 0.467371i
\(363\) 0 0
\(364\) 15.9402 + 13.3754i 0.835491 + 0.701061i
\(365\) 13.2709 + 11.1356i 0.694632 + 0.582865i
\(366\) 0 0
\(367\) 2.66385 + 0.969561i 0.139052 + 0.0506107i 0.410609 0.911812i \(-0.365316\pi\)
−0.271557 + 0.962422i \(0.587538\pi\)
\(368\) −1.09689 + 1.89986i −0.0571792 + 0.0990372i
\(369\) 0 0
\(370\) 8.79086 + 15.2262i 0.457015 + 0.791573i
\(371\) 1.90236 + 10.7888i 0.0987654 + 0.560127i
\(372\) 0 0
\(373\) 27.0945 9.86160i 1.40290 0.510614i 0.473863 0.880599i \(-0.342859\pi\)
0.929038 + 0.369985i \(0.120637\pi\)
\(374\) 2.18696 12.4029i 0.113085 0.641336i
\(375\) 0 0
\(376\) −0.0432332 + 0.0362770i −0.00222958 + 0.00187084i
\(377\) −16.4749 −0.848501
\(378\) 0 0
\(379\) 32.1985 1.65393 0.826963 0.562256i \(-0.190066\pi\)
0.826963 + 0.562256i \(0.190066\pi\)
\(380\) 33.1836 27.8444i 1.70228 1.42839i
\(381\) 0 0
\(382\) −4.59105 + 26.0372i −0.234899 + 1.33218i
\(383\) −0.631708 + 0.229923i −0.0322788 + 0.0117485i −0.358109 0.933680i \(-0.616578\pi\)
0.325830 + 0.945428i \(0.394356\pi\)
\(384\) 0 0
\(385\) 3.28699 + 18.6414i 0.167520 + 0.950056i
\(386\) −14.7771 25.5947i −0.752134 1.30273i
\(387\) 0 0
\(388\) 6.65910 11.5339i 0.338065 0.585545i
\(389\) 4.00243 + 1.45677i 0.202931 + 0.0738610i 0.441486 0.897268i \(-0.354451\pi\)
−0.238555 + 0.971129i \(0.576674\pi\)
\(390\) 0 0
\(391\) −1.16700 0.979232i −0.0590179 0.0495219i
\(392\) 0.271194 + 0.227559i 0.0136974 + 0.0114935i
\(393\) 0 0
\(394\) −41.3127 15.0366i −2.08131 0.757533i
\(395\) −23.6919 + 41.0355i −1.19207 + 2.06472i
\(396\) 0 0
\(397\) 4.43242 + 7.67717i 0.222457 + 0.385306i 0.955553 0.294818i \(-0.0952591\pi\)
−0.733097 + 0.680124i \(0.761926\pi\)
\(398\) −3.11273 17.6532i −0.156027 0.884873i
\(399\) 0 0
\(400\) 34.5638 12.5802i 1.72819 0.629009i
\(401\) 6.43956 36.5205i 0.321576 1.82375i −0.211142 0.977455i \(-0.567718\pi\)
0.532718 0.846293i \(-0.321171\pi\)
\(402\) 0 0
\(403\) 15.5569 13.0538i 0.774945 0.650256i
\(404\) −8.79012 −0.437325
\(405\) 0 0
\(406\) −16.1480 −0.801410
\(407\) 4.02438 3.37686i 0.199481 0.167385i
\(408\) 0 0
\(409\) −0.588526 + 3.33770i −0.0291007 + 0.165038i −0.995895 0.0905183i \(-0.971148\pi\)
0.966794 + 0.255557i \(0.0822588\pi\)
\(410\) −17.1183 + 6.23055i −0.845413 + 0.307705i
\(411\) 0 0
\(412\) −4.44609 25.2150i −0.219043 1.24226i
\(413\) 15.6238 + 27.0612i 0.768798 + 1.33160i
\(414\) 0 0
\(415\) 20.9217 36.2375i 1.02701 1.77883i
\(416\) −34.7936 12.6638i −1.70590 0.620896i
\(417\) 0 0
\(418\) −20.4670 17.1739i −1.00108 0.840002i
\(419\) −15.8237 13.2777i −0.773038 0.648656i 0.168447 0.985711i \(-0.446125\pi\)
−0.941485 + 0.337055i \(0.890569\pi\)
\(420\) 0 0
\(421\) −25.8726 9.41685i −1.26095 0.458949i −0.376864 0.926269i \(-0.622998\pi\)
−0.884088 + 0.467320i \(0.845220\pi\)
\(422\) 5.88690 10.1964i 0.286570 0.496353i
\(423\) 0 0
\(424\) −0.554378 0.960210i −0.0269230 0.0466319i
\(425\) 4.43539 + 25.1544i 0.215148 + 1.22017i
\(426\) 0 0
\(427\) −8.10607 + 2.95037i −0.392280 + 0.142778i
\(428\) −3.79677 + 21.5326i −0.183524 + 1.04082i
\(429\) 0 0
\(430\) −5.94356 + 4.98724i −0.286624 + 0.240506i
\(431\) −2.58110 −0.124327 −0.0621636 0.998066i \(-0.519800\pi\)
−0.0621636 + 0.998066i \(0.519800\pi\)
\(432\) 0 0
\(433\) −27.0137 −1.29820 −0.649098 0.760704i \(-0.724854\pi\)
−0.649098 + 0.760704i \(0.724854\pi\)
\(434\) 15.2482 12.7947i 0.731935 0.614167i
\(435\) 0 0
\(436\) 4.76604 27.0296i 0.228252 1.29448i
\(437\) −3.03693 + 1.10535i −0.145276 + 0.0528761i
\(438\) 0 0
\(439\) 2.03343 + 11.5322i 0.0970505 + 0.550401i 0.994100 + 0.108470i \(0.0345951\pi\)
−0.897049 + 0.441931i \(0.854294\pi\)
\(440\) −0.957882 1.65910i −0.0456652 0.0790945i
\(441\) 0 0
\(442\) 13.6343 23.6153i 0.648517 1.12326i
\(443\) −1.95529 0.711667i −0.0928986 0.0338123i 0.295153 0.955450i \(-0.404629\pi\)
−0.388051 + 0.921638i \(0.626852\pi\)
\(444\) 0 0
\(445\) 1.98293 + 1.66387i 0.0939997 + 0.0788751i
\(446\) −13.4310 11.2699i −0.635974 0.533646i
\(447\) 0 0
\(448\) −15.4572 5.62597i −0.730286 0.265802i
\(449\) −5.27541 + 9.13728i −0.248962 + 0.431215i −0.963238 0.268649i \(-0.913423\pi\)
0.714276 + 0.699864i \(0.246756\pi\)
\(450\) 0 0
\(451\) 2.72163 + 4.71400i 0.128157 + 0.221974i
\(452\) −1.53249 8.69119i −0.0720823 0.408799i
\(453\) 0 0
\(454\) −19.7456 + 7.18680i −0.926705 + 0.337293i
\(455\) −7.11689 + 40.3619i −0.333645 + 1.89220i
\(456\) 0 0
\(457\) −6.05896 + 5.08407i −0.283426 + 0.237823i −0.773406 0.633911i \(-0.781449\pi\)
0.489980 + 0.871734i \(0.337004\pi\)
\(458\) −16.2912 −0.761238
\(459\) 0 0
\(460\) 3.61081 0.168355
\(461\) −29.9468 + 25.1284i −1.39476 + 1.17034i −0.431393 + 0.902164i \(0.641978\pi\)
−0.963369 + 0.268180i \(0.913578\pi\)
\(462\) 0 0
\(463\) 4.11422 23.3329i 0.191204 1.08437i −0.726518 0.687148i \(-0.758863\pi\)
0.917722 0.397224i \(-0.130026\pi\)
\(464\) 13.8725 5.04916i 0.644013 0.234402i
\(465\) 0 0
\(466\) −4.35710 24.7103i −0.201839 1.14468i
\(467\) 17.3576 + 30.0642i 0.803214 + 1.39121i 0.917490 + 0.397758i \(0.130212\pi\)
−0.114277 + 0.993449i \(0.536455\pi\)
\(468\) 0 0
\(469\) 16.7815 29.0665i 0.774899 1.34216i
\(470\) 1.62760 + 0.592396i 0.0750754 + 0.0273252i
\(471\) 0 0
\(472\) −2.42262 2.03282i −0.111510 0.0935680i
\(473\) 1.77595 + 1.49020i 0.0816583 + 0.0685195i
\(474\) 0 0
\(475\) 50.9188 + 18.5329i 2.33631 + 0.850349i
\(476\) 6.47410 11.2135i 0.296740 0.513969i
\(477\) 0 0
\(478\) 14.7875 + 25.6126i 0.676362 + 1.17149i
\(479\) −1.12554 6.38326i −0.0514272 0.291658i 0.948237 0.317563i \(-0.102864\pi\)
−0.999664 + 0.0259046i \(0.991753\pi\)
\(480\) 0 0
\(481\) 10.6887 3.89036i 0.487361 0.177385i
\(482\) 0.272114 1.54323i 0.0123944 0.0702923i
\(483\) 0 0
\(484\) −9.00387 + 7.55514i −0.409267 + 0.343416i
\(485\) 26.2317 1.19112
\(486\) 0 0
\(487\) 19.9828 0.905505 0.452753 0.891636i \(-0.350442\pi\)
0.452753 + 0.891636i \(0.350442\pi\)
\(488\) 0.668794 0.561185i 0.0302749 0.0254036i
\(489\) 0 0
\(490\) 1.88666 10.6998i 0.0852306 0.483367i
\(491\) 24.6454 8.97019i 1.11223 0.404819i 0.280420 0.959877i \(-0.409526\pi\)
0.831811 + 0.555059i \(0.187304\pi\)
\(492\) 0 0
\(493\) 1.78018 + 10.0959i 0.0801754 + 0.454697i
\(494\) −28.9243 50.0984i −1.30137 2.25403i
\(495\) 0 0
\(496\) −9.09879 + 15.7596i −0.408548 + 0.707626i
\(497\) −2.65366 0.965852i −0.119033 0.0433244i
\(498\) 0 0
\(499\) 4.83931 + 4.06066i 0.216637 + 0.181780i 0.744648 0.667458i \(-0.232617\pi\)
−0.528011 + 0.849238i \(0.677062\pi\)
\(500\) −19.7307 16.5560i −0.882384 0.740408i
\(501\) 0 0
\(502\) 15.3897 + 5.60138i 0.686874 + 0.250002i
\(503\) 10.9131 18.9020i 0.486589 0.842798i −0.513292 0.858214i \(-0.671574\pi\)
0.999881 + 0.0154166i \(0.00490745\pi\)
\(504\) 0 0
\(505\) −8.65657 14.9936i −0.385212 0.667208i
\(506\) −0.386729 2.19325i −0.0171922 0.0975018i
\(507\) 0 0
\(508\) −10.7579 + 3.91555i −0.477304 + 0.173725i
\(509\) 5.05196 28.6511i 0.223924 1.26994i −0.640806 0.767703i \(-0.721400\pi\)
0.864731 0.502236i \(-0.167489\pi\)
\(510\) 0 0
\(511\) 8.41534 7.06131i 0.372273 0.312374i
\(512\) 31.1704 1.37755
\(513\) 0 0
\(514\) 50.4620 2.22579
\(515\) 38.6317 32.4158i 1.70231 1.42841i
\(516\) 0 0
\(517\) 0.0898700 0.509678i 0.00395248 0.0224156i
\(518\) 10.4765 3.81315i 0.460313 0.167540i
\(519\) 0 0
\(520\) −0.720285 4.08494i −0.0315866 0.179136i
\(521\) 6.84743 + 11.8601i 0.299991 + 0.519600i 0.976134 0.217171i \(-0.0696829\pi\)
−0.676142 + 0.736771i \(0.736350\pi\)
\(522\) 0 0
\(523\) −6.57532 + 11.3888i −0.287519 + 0.497997i −0.973217 0.229889i \(-0.926164\pi\)
0.685698 + 0.727886i \(0.259497\pi\)
\(524\) 18.2757 + 6.65183i 0.798380 + 0.290586i
\(525\) 0 0
\(526\) −42.3448 35.5315i −1.84632 1.54925i
\(527\) −9.68042 8.12284i −0.421686 0.353836i
\(528\) 0 0
\(529\) 21.3598 + 7.77433i 0.928686 + 0.338014i
\(530\) −17.0138 + 29.4688i −0.739034 + 1.28004i
\(531\) 0 0
\(532\) −13.7344 23.7887i −0.595463 1.03137i
\(533\) 2.04655 + 11.6065i 0.0886457 + 0.502735i
\(534\) 0 0
\(535\) −40.4680 + 14.7291i −1.74958 + 0.636796i
\(536\) −0.589856 + 3.34524i −0.0254779 + 0.144492i
\(537\) 0 0
\(538\) 45.5223 38.1978i 1.96261 1.64682i
\(539\) −3.24644 −0.139834
\(540\) 0 0
\(541\) 6.26083 0.269174 0.134587 0.990902i \(-0.457029\pi\)
0.134587 + 0.990902i \(0.457029\pi\)
\(542\) −28.6674 + 24.0548i −1.23137 + 1.03324i
\(543\) 0 0
\(544\) −4.00088 + 22.6901i −0.171536 + 0.972830i
\(545\) 50.7990 18.4893i 2.17599 0.791996i
\(546\) 0 0
\(547\) −5.44878 30.9016i −0.232973 1.32126i −0.846841 0.531846i \(-0.821498\pi\)
0.613868 0.789409i \(-0.289613\pi\)
\(548\) 17.9337 + 31.0621i 0.766091 + 1.32691i
\(549\) 0 0
\(550\) −18.6702 + 32.3378i −0.796102 + 1.37889i
\(551\) 20.4367 + 7.43835i 0.870632 + 0.316884i
\(552\) 0 0
\(553\) 23.0173 + 19.3138i 0.978795 + 0.821306i
\(554\) 31.8685 + 26.7408i 1.35396 + 1.13611i
\(555\) 0 0
\(556\) 41.1553 + 14.9793i 1.74537 + 0.635264i
\(557\) 21.7196 37.6195i 0.920290 1.59399i 0.121324 0.992613i \(-0.461286\pi\)
0.798966 0.601376i \(-0.205381\pi\)
\(558\) 0 0
\(559\) 2.50980 + 4.34710i 0.106153 + 0.183863i
\(560\) −6.37727 36.1673i −0.269489 1.52835i
\(561\) 0 0
\(562\) −3.23396 + 1.17706i −0.136416 + 0.0496514i
\(563\) −5.55980 + 31.5312i −0.234318 + 1.32888i 0.609728 + 0.792611i \(0.291279\pi\)
−0.844046 + 0.536271i \(0.819832\pi\)
\(564\) 0 0
\(565\) 13.3157 11.1732i 0.560195 0.470059i
\(566\) −14.3549 −0.603381
\(567\) 0 0
\(568\) 0.285807 0.0119922
\(569\) −5.18761 + 4.35292i −0.217476 + 0.182484i −0.745017 0.667046i \(-0.767559\pi\)
0.527541 + 0.849530i \(0.323114\pi\)
\(570\) 0 0
\(571\) −3.67318 + 20.8316i −0.153718 + 0.871777i 0.806231 + 0.591601i \(0.201504\pi\)
−0.959949 + 0.280176i \(0.909607\pi\)
\(572\) 18.1476 6.60519i 0.758790 0.276177i
\(573\) 0 0
\(574\) 2.00593 + 11.3762i 0.0837259 + 0.474833i
\(575\) 2.25838 + 3.91164i 0.0941811 + 0.163127i
\(576\) 0 0
\(577\) −5.95811 + 10.3198i −0.248039 + 0.429617i −0.962982 0.269567i \(-0.913120\pi\)
0.714942 + 0.699183i \(0.246453\pi\)
\(578\) 15.5194 + 5.64858i 0.645520 + 0.234950i
\(579\) 0 0
\(580\) −18.6138 15.6188i −0.772896 0.648537i
\(581\) −20.3260 17.0556i −0.843266 0.707584i
\(582\) 0 0
\(583\) 9.55438 + 3.47751i 0.395702 + 0.144024i
\(584\) −0.555907 + 0.962859i −0.0230036 + 0.0398434i
\(585\) 0 0
\(586\) −15.1177 26.1846i −0.624506 1.08168i
\(587\) −0.0225502 0.127889i −0.000930748 0.00527853i 0.984339 0.176287i \(-0.0564086\pi\)
−0.985270 + 0.171008i \(0.945298\pi\)
\(588\) 0 0
\(589\) −25.1917 + 9.16901i −1.03800 + 0.377803i
\(590\) −16.8538 + 95.5827i −0.693860 + 3.93508i
\(591\) 0 0
\(592\) −7.80793 + 6.55163i −0.320904 + 0.269271i
\(593\) 26.2622 1.07846 0.539230 0.842158i \(-0.318715\pi\)
0.539230 + 0.842158i \(0.318715\pi\)
\(594\) 0 0
\(595\) 25.5030 1.04552
\(596\) −22.3238 + 18.7319i −0.914419 + 0.767288i
\(597\) 0 0
\(598\) 0.837334 4.74876i 0.0342411 0.194191i
\(599\) −25.9310 + 9.43810i −1.05951 + 0.385630i −0.812244 0.583317i \(-0.801754\pi\)
−0.247266 + 0.968948i \(0.579532\pi\)
\(600\) 0 0
\(601\) 0.231429 + 1.31250i 0.00944020 + 0.0535380i 0.989164 0.146815i \(-0.0469022\pi\)
−0.979724 + 0.200353i \(0.935791\pi\)
\(602\) 2.45999 + 4.26083i 0.100262 + 0.173658i
\(603\) 0 0
\(604\) 5.54576 9.60554i 0.225654 0.390844i
\(605\) −21.7542 7.91787i −0.884433 0.321907i
\(606\) 0 0
\(607\) −9.62495 8.07629i −0.390665 0.327807i 0.426207 0.904626i \(-0.359849\pi\)
−0.816872 + 0.576819i \(0.804294\pi\)
\(608\) 37.4429 + 31.4183i 1.51851 + 1.27418i
\(609\) 0 0
\(610\) −25.1780 9.16404i −1.01943 0.371041i
\(611\) 0.560282 0.970437i 0.0226666 0.0392597i
\(612\) 0 0
\(613\) 6.99912 + 12.1228i 0.282692 + 0.489637i 0.972047 0.234787i \(-0.0754393\pi\)
−0.689355 + 0.724424i \(0.742106\pi\)
\(614\) 5.73357 + 32.5167i 0.231388 + 1.31227i
\(615\) 0 0
\(616\) −1.14156 + 0.415494i −0.0459947 + 0.0167407i
\(617\) 4.17567 23.6814i 0.168106 0.953377i −0.777698 0.628638i \(-0.783613\pi\)
0.945804 0.324738i \(-0.105276\pi\)
\(618\) 0 0
\(619\) 5.26399 4.41701i 0.211577 0.177535i −0.530840 0.847472i \(-0.678124\pi\)
0.742418 + 0.669937i \(0.233679\pi\)
\(620\) 29.9521 1.20291
\(621\) 0 0
\(622\) −31.5594 −1.26542
\(623\) 1.25741 1.05509i 0.0503771 0.0422714i
\(624\) 0 0
\(625\) 1.25356 7.10927i 0.0501422 0.284371i
\(626\) −63.6790 + 23.1773i −2.54513 + 0.926350i
\(627\) 0 0
\(628\) −0.395582 2.24346i −0.0157854 0.0895237i
\(629\) −3.53898 6.12970i −0.141109 0.244407i
\(630\) 0 0
\(631\) 17.6887 30.6377i 0.704175 1.21967i −0.262814 0.964847i \(-0.584651\pi\)
0.966989 0.254820i \(-0.0820161\pi\)
\(632\) −2.85759 1.04008i −0.113669 0.0413721i
\(633\) 0 0
\(634\) −24.6104 20.6506i −0.977404 0.820139i
\(635\) −17.2734 14.4941i −0.685472 0.575180i
\(636\) 0 0
\(637\) −6.60519 2.40409i −0.261707 0.0952536i
\(638\) −7.49346 + 12.9791i −0.296669 + 0.513846i
\(639\) 0 0
\(640\) 3.51114 + 6.08148i 0.138790 + 0.240392i
\(641\) −3.32947 18.8824i −0.131506 0.745809i −0.977229 0.212187i \(-0.931941\pi\)
0.845723 0.533622i \(-0.179170\pi\)
\(642\) 0 0
\(643\) −18.2079 + 6.62712i −0.718048 + 0.261348i −0.675097 0.737729i \(-0.735898\pi\)
−0.0429509 + 0.999077i \(0.513676\pi\)
\(644\) 0.397600 2.25490i 0.0156676 0.0888555i
\(645\) 0 0
\(646\) −27.5752 + 23.1383i −1.08493 + 0.910364i
\(647\) 8.77141 0.344840 0.172420 0.985024i \(-0.444841\pi\)
0.172420 + 0.985024i \(0.444841\pi\)
\(648\) 0 0
\(649\) 29.0009 1.13839
\(650\) −61.9336 + 51.9684i −2.42923 + 2.03837i
\(651\) 0 0
\(652\) 0.905078 5.13295i 0.0354456 0.201022i
\(653\) −30.8307 + 11.2215i −1.20650 + 0.439130i −0.865488 0.500929i \(-0.832992\pi\)
−0.341011 + 0.940059i \(0.610769\pi\)
\(654\) 0 0
\(655\) 6.65183 + 37.7244i 0.259908 + 1.47401i
\(656\) −5.28039 9.14590i −0.206164 0.357087i
\(657\) 0 0
\(658\) 0.549163 0.951178i 0.0214086 0.0370808i
\(659\) −17.5268 6.37922i −0.682746 0.248499i −0.0227199 0.999742i \(-0.507233\pi\)
−0.660026 + 0.751243i \(0.729455\pi\)
\(660\) 0 0
\(661\) 27.8897 + 23.4022i 1.08478 + 0.910240i 0.996309 0.0858386i \(-0.0273570\pi\)
0.0884727 + 0.996079i \(0.471801\pi\)
\(662\) −47.6483 39.9816i −1.85190 1.55393i
\(663\) 0 0
\(664\) 2.52347 + 0.918468i 0.0979297 + 0.0356435i
\(665\) 27.0515 46.8546i 1.04901 1.81694i
\(666\) 0 0
\(667\) 0.906422 + 1.56997i 0.0350968 + 0.0607894i
\(668\) 1.24930 + 7.08512i 0.0483368 + 0.274132i
\(669\) 0 0
\(670\) 97.9621 35.6553i 3.78461 1.37748i
\(671\) −1.39024 + 7.88444i −0.0536696 + 0.304375i
\(672\) 0 0
\(673\) 30.1746 25.3195i 1.16314 0.975994i 0.163201 0.986593i \(-0.447818\pi\)
0.999944 + 0.0105986i \(0.00337371\pi\)
\(674\) 11.8276 0.455584
\(675\) 0 0
\(676\) 17.3824 0.668553
\(677\) 24.2648 20.3606i 0.932571 0.782520i −0.0437064 0.999044i \(-0.513917\pi\)
0.976277 + 0.216525i \(0.0694722\pi\)
\(678\) 0 0
\(679\) 2.88847 16.3813i 0.110849 0.628658i
\(680\) −2.42544 + 0.882789i −0.0930115 + 0.0338534i
\(681\) 0 0
\(682\) −3.20796 18.1932i −0.122839 0.696655i
\(683\) 14.5328 + 25.1716i 0.556083 + 0.963164i 0.997818 + 0.0660187i \(0.0210297\pi\)
−0.441735 + 0.897145i \(0.645637\pi\)
\(684\) 0 0
\(685\) −35.3225 + 61.1804i −1.34960 + 2.33758i
\(686\) −36.8853 13.4251i −1.40829 0.512574i
\(687\) 0 0
\(688\) −3.44562 2.89122i −0.131363 0.110227i
\(689\) 16.8641 + 14.1506i 0.642470 + 0.539097i
\(690\) 0 0
\(691\) −5.03431 1.83234i −0.191514 0.0697055i 0.244483 0.969654i \(-0.421382\pi\)
−0.435997 + 0.899948i \(0.643604\pi\)
\(692\) −6.60549 + 11.4410i −0.251103 + 0.434923i
\(693\) 0 0
\(694\) −22.6805 39.2838i −0.860940 1.49119i
\(695\) 14.9793 + 84.9518i 0.568197 + 3.22241i
\(696\) 0 0
\(697\) 6.89141 2.50827i 0.261031 0.0950074i
\(698\) −3.95589 + 22.4349i −0.149732 + 0.849175i
\(699\) 0 0
\(700\) −29.4085 + 24.6767i −1.11154 + 0.932691i
\(701\) −25.6536 −0.968922 −0.484461 0.874813i \(-0.660984\pi\)
−0.484461 + 0.874813i \(0.660984\pi\)
\(702\) 0 0
\(703\) −15.0155 −0.566320
\(704\) −11.6949 + 9.81315i −0.440766 + 0.369847i
\(705\) 0 0
\(706\) −0.730085 + 4.14052i −0.0274771 + 0.155830i
\(707\) −10.3165 + 3.75490i −0.387992 + 0.141218i
\(708\) 0 0
\(709\) −0.814492 4.61922i −0.0305889 0.173478i 0.965686 0.259712i \(-0.0836278\pi\)
−0.996275 + 0.0862342i \(0.972517\pi\)
\(710\) −4.38571 7.59627i −0.164593 0.285083i
\(711\) 0 0
\(712\) −0.0830629 + 0.143869i −0.00311291 + 0.00539173i
\(713\) −2.09987 0.764290i −0.0786407 0.0286229i
\(714\) 0 0
\(715\) 29.1386 + 24.4502i 1.08972 + 0.914386i
\(716\) 20.7105 + 17.3782i 0.773989 + 0.649454i
\(717\) 0 0
\(718\) −44.8337 16.3181i −1.67318 0.608987i
\(719\) −19.5335 + 33.8330i −0.728476 + 1.26176i 0.229052 + 0.973414i \(0.426438\pi\)
−0.957527 + 0.288343i \(0.906896\pi\)
\(720\) 0 0
\(721\) −15.9893 27.6943i −0.595473 1.03139i
\(722\) 6.76227 + 38.3508i 0.251666 + 1.42727i
\(723\) 0 0
\(724\) −23.3123 + 8.48497i −0.866394 + 0.315342i
\(725\) 5.27806 29.9334i 0.196022 1.11170i
\(726\) 0 0
\(727\) −8.29267 + 6.95838i −0.307558 + 0.258072i −0.783482 0.621415i \(-0.786558\pi\)
0.475924 + 0.879487i \(0.342114\pi\)
\(728\) −2.63030 −0.0974853
\(729\) 0 0
\(730\) 34.1215 1.26290
\(731\) 2.39273 2.00774i 0.0884984 0.0742590i
\(732\) 0 0
\(733\) −0.592558 + 3.36057i −0.0218866 + 0.124125i −0.993794 0.111240i \(-0.964518\pi\)
0.971907 + 0.235366i \(0.0756288\pi\)
\(734\) 5.24676 1.90966i 0.193661 0.0704870i
\(735\) 0 0
\(736\) 0.707492 + 4.01239i 0.0260785 + 0.147898i
\(737\) −15.5749 26.9766i −0.573710 0.993695i
\(738\) 0 0
\(739\) −13.1505 + 22.7773i −0.483748 + 0.837877i −0.999826 0.0186653i \(-0.994058\pi\)
0.516077 + 0.856542i \(0.327392\pi\)
\(740\) 15.7645 + 5.73783i 0.579516 + 0.210927i
\(741\) 0 0
\(742\) 16.5294 + 13.8698i 0.606813 + 0.509177i
\(743\) 22.1723 + 18.6048i 0.813423 + 0.682543i 0.951422 0.307889i \(-0.0996226\pi\)
−0.137999 + 0.990432i \(0.544067\pi\)
\(744\) 0 0
\(745\) −53.9363 19.6312i −1.97607 0.719232i
\(746\) 28.3953 49.1822i 1.03963 1.80069i
\(747\) 0 0
\(748\) −6.00862 10.4072i −0.219697 0.380526i
\(749\) 4.74205 + 26.8935i 0.173271 + 0.982668i
\(750\) 0 0
\(751\) 18.2754 6.65171i 0.666880 0.242724i 0.0136761 0.999906i \(-0.495647\pi\)
0.653204 + 0.757182i \(0.273424\pi\)
\(752\) −0.174362 + 0.988856i −0.00635833 + 0.0360599i
\(753\) 0 0
\(754\) −24.8576 + 20.8580i −0.905259 + 0.759603i
\(755\) 21.8460 0.795058
\(756\) 0 0
\(757\) 6.59627 0.239745 0.119873 0.992789i \(-0.461751\pi\)
0.119873 + 0.992789i \(0.461751\pi\)
\(758\) 48.5815 40.7648i 1.76456 1.48064i
\(759\) 0 0
\(760\) −0.950837 + 5.39246i −0.0344905 + 0.195605i
\(761\) −9.70674 + 3.53297i −0.351869 + 0.128070i −0.511907 0.859041i \(-0.671061\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(762\) 0 0
\(763\) −5.95265 33.7591i −0.215500 1.22216i
\(764\) 12.6138 + 21.8478i 0.456352 + 0.790424i
\(765\) 0 0
\(766\) −0.662037 + 1.14668i −0.0239204 + 0.0414313i
\(767\) 59.0052 + 21.4761i 2.13055 + 0.775458i
\(768\) 0 0
\(769\) 34.3640 + 28.8348i 1.23920 + 1.03981i 0.997586 + 0.0694355i \(0.0221198\pi\)
0.241610 + 0.970374i \(0.422325\pi\)
\(770\) 28.5603 + 23.9650i 1.02924 + 0.863638i
\(771\) 0 0
\(772\) −26.4996 9.64506i −0.953741 0.347133i
\(773\) −21.4677 + 37.1832i −0.772141 + 1.33739i 0.164247 + 0.986419i \(0.447481\pi\)
−0.936388 + 0.350968i \(0.885853\pi\)
\(774\) 0 0
\(775\) 18.7335 + 32.4475i 0.672929 + 1.16555i
\(776\) 0.292336 + 1.65792i 0.0104942 + 0.0595158i
\(777\) 0 0
\(778\) 7.88326 2.86927i 0.282628 0.102868i
\(779\) 2.70161 15.3216i 0.0967953 0.548953i
\(780\) 0 0