Properties

Label 729.2.e.p.82.2
Level $729$
Weight $2$
Character 729.82
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.101559956668416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 8x^{6} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.2
Root \(-0.483690 + 1.32893i\) of defining polynomial
Character \(\chi\) \(=\) 729.82
Dual form 729.2.e.p.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.425349 + 2.41228i) q^{2} +(-3.75877 + 1.36808i) q^{4} +(-1.87642 - 1.57450i) q^{5} +(-1.87939 - 0.684040i) q^{7} +(-2.44949 - 4.24264i) q^{8} +O(q^{10})\) \(q+(0.425349 + 2.41228i) q^{2} +(-3.75877 + 1.36808i) q^{4} +(-1.87642 - 1.57450i) q^{5} +(-1.87939 - 0.684040i) q^{7} +(-2.44949 - 4.24264i) q^{8} +(3.00000 - 5.19615i) q^{10} +(1.87642 - 1.57450i) q^{11} +(-0.173648 + 0.984808i) q^{13} +(0.850699 - 4.82455i) q^{14} +(3.06418 - 2.57115i) q^{16} +(3.67423 - 6.36396i) q^{17} +(0.500000 + 0.866025i) q^{19} +(9.20707 + 3.35110i) q^{20} +(4.59627 + 3.85673i) q^{22} +(2.30177 - 0.837775i) q^{23} +(0.173648 + 0.984808i) q^{25} -2.44949 q^{26} +8.00000 q^{28} +(-0.850699 - 4.82455i) q^{29} +(0.939693 - 0.342020i) q^{31} +(16.9145 + 6.15636i) q^{34} +(2.44949 + 4.24264i) q^{35} +(-4.00000 + 6.92820i) q^{37} +(-1.87642 + 1.57450i) q^{38} +(-2.08378 + 11.8177i) q^{40} +(0.850699 - 4.82455i) q^{41} +(8.42649 - 7.07066i) q^{43} +(-4.89898 + 8.48528i) q^{44} +(3.00000 + 5.19615i) q^{46} +(-9.20707 - 3.35110i) q^{47} +(-2.29813 - 1.92836i) q^{49} +(-2.30177 + 0.837775i) q^{50} +(-0.694593 - 3.93923i) q^{52} +7.34847 q^{53} -6.00000 q^{55} +(1.70140 + 9.64911i) q^{56} +(11.2763 - 4.10424i) q^{58} +(-1.87642 - 1.57450i) q^{59} +(-4.69846 - 1.71010i) q^{61} +(1.22474 + 2.12132i) q^{62} +(4.00000 - 6.92820i) q^{64} +(1.87642 - 1.57450i) q^{65} +(-1.21554 + 6.89365i) q^{67} +(-5.10419 + 28.9473i) q^{68} +(-9.19253 + 7.71345i) q^{70} +(-3.67423 + 6.36396i) q^{71} +(-5.50000 - 9.52628i) q^{73} +(-18.4141 - 6.70220i) q^{74} +(-3.06418 - 2.57115i) q^{76} +(-4.60353 + 1.67555i) q^{77} +(-1.21554 - 6.89365i) q^{79} -9.79796 q^{80} +12.0000 q^{82} +(-2.12675 - 12.0614i) q^{83} +(-16.9145 + 6.15636i) q^{85} +(20.6406 + 17.3195i) q^{86} +(-11.2763 - 4.10424i) q^{88} +(1.00000 - 1.73205i) q^{91} +(-7.50567 + 6.29801i) q^{92} +(4.16756 - 23.6354i) q^{94} +(0.425349 - 2.41228i) q^{95} +(-5.36231 + 4.49951i) q^{97} +(3.67423 - 6.36396i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 36 q^{10} + 6 q^{19} + 96 q^{28} - 48 q^{37} + 36 q^{46} - 72 q^{55} + 48 q^{64} - 66 q^{73} + 144 q^{82} + 12 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.425349 + 2.41228i 0.300767 + 1.70574i 0.642788 + 0.766044i \(0.277778\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(3\) 0 0
\(4\) −3.75877 + 1.36808i −1.87939 + 0.684040i
\(5\) −1.87642 1.57450i −0.839160 0.704139i 0.118215 0.992988i \(-0.462283\pi\)
−0.957375 + 0.288849i \(0.906727\pi\)
\(6\) 0 0
\(7\) −1.87939 0.684040i −0.710341 0.258543i −0.0385213 0.999258i \(-0.512265\pi\)
−0.671820 + 0.740715i \(0.734487\pi\)
\(8\) −2.44949 4.24264i −0.866025 1.50000i
\(9\) 0 0
\(10\) 3.00000 5.19615i 0.948683 1.64317i
\(11\) 1.87642 1.57450i 0.565761 0.474730i −0.314475 0.949266i \(-0.601828\pi\)
0.880236 + 0.474536i \(0.157384\pi\)
\(12\) 0 0
\(13\) −0.173648 + 0.984808i −0.0481613 + 0.273137i −0.999373 0.0354021i \(-0.988729\pi\)
0.951212 + 0.308539i \(0.0998399\pi\)
\(14\) 0.850699 4.82455i 0.227359 1.28942i
\(15\) 0 0
\(16\) 3.06418 2.57115i 0.766044 0.642788i
\(17\) 3.67423 6.36396i 0.891133 1.54349i 0.0526138 0.998615i \(-0.483245\pi\)
0.838519 0.544872i \(-0.183422\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 9.20707 + 3.35110i 2.05876 + 0.749329i
\(21\) 0 0
\(22\) 4.59627 + 3.85673i 0.979927 + 0.822257i
\(23\) 2.30177 0.837775i 0.479952 0.174688i −0.0907034 0.995878i \(-0.528912\pi\)
0.570655 + 0.821190i \(0.306689\pi\)
\(24\) 0 0
\(25\) 0.173648 + 0.984808i 0.0347296 + 0.196962i
\(26\) −2.44949 −0.480384
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) −0.850699 4.82455i −0.157971 0.895897i −0.956019 0.293304i \(-0.905245\pi\)
0.798048 0.602593i \(-0.205866\pi\)
\(30\) 0 0
\(31\) 0.939693 0.342020i 0.168774 0.0614286i −0.256251 0.966610i \(-0.582487\pi\)
0.425025 + 0.905182i \(0.360265\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 16.9145 + 6.15636i 2.90081 + 1.05581i
\(35\) 2.44949 + 4.24264i 0.414039 + 0.717137i
\(36\) 0 0
\(37\) −4.00000 + 6.92820i −0.657596 + 1.13899i 0.323640 + 0.946180i \(0.395093\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(38\) −1.87642 + 1.57450i −0.304395 + 0.255418i
\(39\) 0 0
\(40\) −2.08378 + 11.8177i −0.329474 + 1.86854i
\(41\) 0.850699 4.82455i 0.132857 0.753469i −0.843471 0.537174i \(-0.819492\pi\)
0.976328 0.216294i \(-0.0693971\pi\)
\(42\) 0 0
\(43\) 8.42649 7.07066i 1.28503 1.07827i 0.292497 0.956266i \(-0.405514\pi\)
0.992530 0.122000i \(-0.0389307\pi\)
\(44\) −4.89898 + 8.48528i −0.738549 + 1.27920i
\(45\) 0 0
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) −9.20707 3.35110i −1.34299 0.488808i −0.432236 0.901760i \(-0.642275\pi\)
−0.910753 + 0.412952i \(0.864498\pi\)
\(48\) 0 0
\(49\) −2.29813 1.92836i −0.328305 0.275480i
\(50\) −2.30177 + 0.837775i −0.325519 + 0.118479i
\(51\) 0 0
\(52\) −0.694593 3.93923i −0.0963227 0.546273i
\(53\) 7.34847 1.00939 0.504695 0.863298i \(-0.331605\pi\)
0.504695 + 0.863298i \(0.331605\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 1.70140 + 9.64911i 0.227359 + 1.28942i
\(57\) 0 0
\(58\) 11.2763 4.10424i 1.48065 0.538913i
\(59\) −1.87642 1.57450i −0.244289 0.204983i 0.512420 0.858735i \(-0.328749\pi\)
−0.756708 + 0.653753i \(0.773194\pi\)
\(60\) 0 0
\(61\) −4.69846 1.71010i −0.601577 0.218956i 0.0232370 0.999730i \(-0.492603\pi\)
−0.624814 + 0.780774i \(0.714825\pi\)
\(62\) 1.22474 + 2.12132i 0.155543 + 0.269408i
\(63\) 0 0
\(64\) 4.00000 6.92820i 0.500000 0.866025i
\(65\) 1.87642 1.57450i 0.232741 0.195293i
\(66\) 0 0
\(67\) −1.21554 + 6.89365i −0.148502 + 0.842194i 0.815987 + 0.578070i \(0.196194\pi\)
−0.964489 + 0.264124i \(0.914917\pi\)
\(68\) −5.10419 + 28.9473i −0.618974 + 3.51038i
\(69\) 0 0
\(70\) −9.19253 + 7.71345i −1.09872 + 0.921934i
\(71\) −3.67423 + 6.36396i −0.436051 + 0.755263i −0.997381 0.0723293i \(-0.976957\pi\)
0.561329 + 0.827592i \(0.310290\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) −18.4141 6.70220i −2.14060 0.779115i
\(75\) 0 0
\(76\) −3.06418 2.57115i −0.351485 0.294931i
\(77\) −4.60353 + 1.67555i −0.524621 + 0.190947i
\(78\) 0 0
\(79\) −1.21554 6.89365i −0.136759 0.775597i −0.973619 0.228180i \(-0.926722\pi\)
0.836860 0.547417i \(-0.184389\pi\)
\(80\) −9.79796 −1.09545
\(81\) 0 0
\(82\) 12.0000 1.32518
\(83\) −2.12675 12.0614i −0.233441 1.32391i −0.845872 0.533385i \(-0.820920\pi\)
0.612432 0.790524i \(-0.290191\pi\)
\(84\) 0 0
\(85\) −16.9145 + 6.15636i −1.83463 + 0.667751i
\(86\) 20.6406 + 17.3195i 2.22573 + 1.86761i
\(87\) 0 0
\(88\) −11.2763 4.10424i −1.20206 0.437514i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 1.00000 1.73205i 0.104828 0.181568i
\(92\) −7.50567 + 6.29801i −0.782520 + 0.656613i
\(93\) 0 0
\(94\) 4.16756 23.6354i 0.429851 2.43780i
\(95\) 0.425349 2.41228i 0.0436399 0.247494i
\(96\) 0 0
\(97\) −5.36231 + 4.49951i −0.544460 + 0.456856i −0.873060 0.487613i \(-0.837868\pi\)
0.328600 + 0.944469i \(0.393423\pi\)
\(98\) 3.67423 6.36396i 0.371154 0.642857i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) 4.60353 + 1.67555i 0.458069 + 0.166723i 0.560740 0.827992i \(-0.310517\pi\)
−0.102671 + 0.994715i \(0.532739\pi\)
\(102\) 0 0
\(103\) −5.36231 4.49951i −0.528364 0.443350i 0.339172 0.940724i \(-0.389853\pi\)
−0.867536 + 0.497374i \(0.834298\pi\)
\(104\) 4.60353 1.67555i 0.451414 0.164301i
\(105\) 0 0
\(106\) 3.12567 + 17.7265i 0.303592 + 1.72175i
\(107\) 14.6969 1.42081 0.710403 0.703795i \(-0.248513\pi\)
0.710403 + 0.703795i \(0.248513\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) −2.55210 14.4737i −0.243333 1.38001i
\(111\) 0 0
\(112\) −7.51754 + 2.73616i −0.710341 + 0.258543i
\(113\) −7.50567 6.29801i −0.706074 0.592467i 0.217420 0.976078i \(-0.430236\pi\)
−0.923495 + 0.383611i \(0.874680\pi\)
\(114\) 0 0
\(115\) −5.63816 2.05212i −0.525761 0.191361i
\(116\) 9.79796 + 16.9706i 0.909718 + 1.57568i
\(117\) 0 0
\(118\) 3.00000 5.19615i 0.276172 0.478345i
\(119\) −11.2585 + 9.44701i −1.03207 + 0.866006i
\(120\) 0 0
\(121\) −0.868241 + 4.92404i −0.0789310 + 0.447640i
\(122\) 2.12675 12.0614i 0.192547 1.09199i
\(123\) 0 0
\(124\) −3.06418 + 2.57115i −0.275171 + 0.230896i
\(125\) −4.89898 + 8.48528i −0.438178 + 0.758947i
\(126\) 0 0
\(127\) 9.50000 + 16.4545i 0.842989 + 1.46010i 0.887357 + 0.461084i \(0.152539\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 18.4141 + 6.70220i 1.62760 + 0.592396i
\(129\) 0 0
\(130\) 4.59627 + 3.85673i 0.403119 + 0.338257i
\(131\) −11.5088 + 4.18887i −1.00553 + 0.365984i −0.791715 0.610890i \(-0.790812\pi\)
−0.213816 + 0.976874i \(0.568589\pi\)
\(132\) 0 0
\(133\) −0.347296 1.96962i −0.0301144 0.170787i
\(134\) −17.1464 −1.48123
\(135\) 0 0
\(136\) −36.0000 −3.08697
\(137\) 1.70140 + 9.64911i 0.145360 + 0.824379i 0.967077 + 0.254483i \(0.0819053\pi\)
−0.821717 + 0.569896i \(0.806984\pi\)
\(138\) 0 0
\(139\) 9.39693 3.42020i 0.797037 0.290098i 0.0887789 0.996051i \(-0.471704\pi\)
0.708258 + 0.705954i \(0.249481\pi\)
\(140\) −15.0113 12.5960i −1.26869 1.06456i
\(141\) 0 0
\(142\) −16.9145 6.15636i −1.41943 0.516630i
\(143\) 1.22474 + 2.12132i 0.102418 + 0.177394i
\(144\) 0 0
\(145\) −6.00000 + 10.3923i −0.498273 + 0.863034i
\(146\) 20.6406 17.3195i 1.70823 1.43337i
\(147\) 0 0
\(148\) 5.55674 31.5138i 0.456761 2.59042i
\(149\) 2.12675 12.0614i 0.174230 0.988107i −0.764799 0.644269i \(-0.777162\pi\)
0.939029 0.343838i \(-0.111727\pi\)
\(150\) 0 0
\(151\) 3.83022 3.21394i 0.311699 0.261547i −0.473495 0.880797i \(-0.657008\pi\)
0.785194 + 0.619250i \(0.212563\pi\)
\(152\) 2.44949 4.24264i 0.198680 0.344124i
\(153\) 0 0
\(154\) −6.00000 10.3923i −0.483494 0.837436i
\(155\) −2.30177 0.837775i −0.184882 0.0672917i
\(156\) 0 0
\(157\) 13.0228 + 10.9274i 1.03933 + 0.872101i 0.991931 0.126775i \(-0.0404628\pi\)
0.0473976 + 0.998876i \(0.484907\pi\)
\(158\) 16.1124 5.86442i 1.28183 0.466549i
\(159\) 0 0
\(160\) 0 0
\(161\) −4.89898 −0.386094
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 3.40280 + 19.2982i 0.265714 + 1.50694i
\(165\) 0 0
\(166\) 28.1908 10.2606i 2.18803 0.796377i
\(167\) 3.75284 + 3.14900i 0.290403 + 0.243677i 0.776336 0.630319i \(-0.217076\pi\)
−0.485933 + 0.873996i \(0.661520\pi\)
\(168\) 0 0
\(169\) 11.2763 + 4.10424i 0.867409 + 0.315711i
\(170\) −22.0454 38.1838i −1.69081 2.92856i
\(171\) 0 0
\(172\) −22.0000 + 38.1051i −1.67748 + 2.90549i
\(173\) 7.50567 6.29801i 0.570646 0.478829i −0.311214 0.950340i \(-0.600736\pi\)
0.881860 + 0.471511i \(0.156291\pi\)
\(174\) 0 0
\(175\) 0.347296 1.96962i 0.0262531 0.148889i
\(176\) 1.70140 9.64911i 0.128248 0.727329i
\(177\) 0 0
\(178\) 0 0
\(179\) 7.34847 12.7279i 0.549250 0.951330i −0.449076 0.893494i \(-0.648247\pi\)
0.998326 0.0578359i \(-0.0184200\pi\)
\(180\) 0 0
\(181\) −4.00000 6.92820i −0.297318 0.514969i 0.678204 0.734874i \(-0.262759\pi\)
−0.975521 + 0.219905i \(0.929425\pi\)
\(182\) 4.60353 + 1.67555i 0.341237 + 0.124200i
\(183\) 0 0
\(184\) −9.19253 7.71345i −0.677683 0.568643i
\(185\) 18.4141 6.70220i 1.35383 0.492755i
\(186\) 0 0
\(187\) −3.12567 17.7265i −0.228571 1.29629i
\(188\) 39.1918 2.85836
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) 1.70140 + 9.64911i 0.123109 + 0.698185i 0.982413 + 0.186720i \(0.0597858\pi\)
−0.859304 + 0.511465i \(0.829103\pi\)
\(192\) 0 0
\(193\) −10.3366 + 3.76222i −0.744046 + 0.270811i −0.686098 0.727509i \(-0.740678\pi\)
−0.0579479 + 0.998320i \(0.518456\pi\)
\(194\) −13.1349 11.0215i −0.943033 0.791298i
\(195\) 0 0
\(196\) 11.2763 + 4.10424i 0.805451 + 0.293160i
\(197\) −7.34847 12.7279i −0.523557 0.906827i −0.999624 0.0274180i \(-0.991271\pi\)
0.476067 0.879409i \(-0.342062\pi\)
\(198\) 0 0
\(199\) 0.500000 0.866025i 0.0354441 0.0613909i −0.847759 0.530381i \(-0.822049\pi\)
0.883203 + 0.468990i \(0.155382\pi\)
\(200\) 3.75284 3.14900i 0.265366 0.222668i
\(201\) 0 0
\(202\) −2.08378 + 11.8177i −0.146614 + 0.831490i
\(203\) −1.70140 + 9.64911i −0.119415 + 0.677234i
\(204\) 0 0
\(205\) −9.19253 + 7.71345i −0.642034 + 0.538731i
\(206\) 8.57321 14.8492i 0.597324 1.03460i
\(207\) 0 0
\(208\) 2.00000 + 3.46410i 0.138675 + 0.240192i
\(209\) 2.30177 + 0.837775i 0.159217 + 0.0579501i
\(210\) 0 0
\(211\) −0.766044 0.642788i −0.0527367 0.0442513i 0.616038 0.787716i \(-0.288737\pi\)
−0.668775 + 0.743465i \(0.733181\pi\)
\(212\) −27.6212 + 10.0533i −1.89703 + 0.690463i
\(213\) 0 0
\(214\) 6.25133 + 35.4531i 0.427332 + 2.42352i
\(215\) −26.9444 −1.83759
\(216\) 0 0
\(217\) −2.00000 −0.135769
\(218\) −0.425349 2.41228i −0.0288083 0.163380i
\(219\) 0 0
\(220\) 22.5526 8.20848i 1.52050 0.553416i
\(221\) 5.62925 + 4.72350i 0.378665 + 0.317737i
\(222\) 0 0
\(223\) 6.57785 + 2.39414i 0.440485 + 0.160324i 0.552736 0.833356i \(-0.313584\pi\)
−0.112251 + 0.993680i \(0.535806\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 12.0000 20.7846i 0.798228 1.38257i
\(227\) 7.50567 6.29801i 0.498169 0.418013i −0.358774 0.933424i \(-0.616805\pi\)
0.856943 + 0.515411i \(0.172361\pi\)
\(228\) 0 0
\(229\) −0.173648 + 0.984808i −0.0114750 + 0.0650779i −0.990008 0.141014i \(-0.954964\pi\)
0.978533 + 0.206092i \(0.0660747\pi\)
\(230\) 2.55210 14.4737i 0.168280 0.954365i
\(231\) 0 0
\(232\) −18.3851 + 15.4269i −1.20704 + 1.01283i
\(233\) 3.67423 6.36396i 0.240707 0.416917i −0.720209 0.693757i \(-0.755954\pi\)
0.960916 + 0.276840i \(0.0892873\pi\)
\(234\) 0 0
\(235\) 12.0000 + 20.7846i 0.782794 + 1.35584i
\(236\) 9.20707 + 3.35110i 0.599329 + 0.218138i
\(237\) 0 0
\(238\) −27.5776 23.1404i −1.78759 1.49997i
\(239\) 2.30177 0.837775i 0.148889 0.0541911i −0.266501 0.963835i \(-0.585867\pi\)
0.415390 + 0.909644i \(0.363645\pi\)
\(240\) 0 0
\(241\) −2.77837 15.7569i −0.178971 1.01499i −0.933460 0.358681i \(-0.883227\pi\)
0.754490 0.656312i \(-0.227884\pi\)
\(242\) −12.2474 −0.787296
\(243\) 0 0
\(244\) 20.0000 1.28037
\(245\) 1.27605 + 7.23683i 0.0815237 + 0.462344i
\(246\) 0 0
\(247\) −0.939693 + 0.342020i −0.0597912 + 0.0217622i
\(248\) −3.75284 3.14900i −0.238305 0.199962i
\(249\) 0 0
\(250\) −22.5526 8.20848i −1.42635 0.519150i
\(251\) 3.67423 + 6.36396i 0.231916 + 0.401690i 0.958372 0.285523i \(-0.0921673\pi\)
−0.726456 + 0.687213i \(0.758834\pi\)
\(252\) 0 0
\(253\) 3.00000 5.19615i 0.188608 0.326679i
\(254\) −35.6519 + 29.9155i −2.23700 + 1.87707i
\(255\) 0 0
\(256\) −5.55674 + 31.5138i −0.347296 + 1.96962i
\(257\) −2.97745 + 16.8859i −0.185728 + 1.05332i 0.739289 + 0.673389i \(0.235162\pi\)
−0.925017 + 0.379927i \(0.875949\pi\)
\(258\) 0 0
\(259\) 12.2567 10.2846i 0.761595 0.639054i
\(260\) −4.89898 + 8.48528i −0.303822 + 0.526235i
\(261\) 0 0
\(262\) −15.0000 25.9808i −0.926703 1.60510i
\(263\) 25.3194 + 9.21552i 1.56126 + 0.568254i 0.971026 0.238976i \(-0.0768116\pi\)
0.590238 + 0.807229i \(0.299034\pi\)
\(264\) 0 0
\(265\) −13.7888 11.5702i −0.847039 0.710750i
\(266\) 4.60353 1.67555i 0.282261 0.102735i
\(267\) 0 0
\(268\) −4.86215 27.5746i −0.297003 1.68439i
\(269\) −22.0454 −1.34413 −0.672066 0.740491i \(-0.734593\pi\)
−0.672066 + 0.740491i \(0.734593\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) −5.10419 28.9473i −0.309487 1.75519i
\(273\) 0 0
\(274\) −22.5526 + 8.20848i −1.36245 + 0.495893i
\(275\) 1.87642 + 1.57450i 0.113152 + 0.0949460i
\(276\) 0 0
\(277\) −10.3366 3.76222i −0.621067 0.226050i 0.0122715 0.999925i \(-0.496094\pi\)
−0.633339 + 0.773875i \(0.718316\pi\)
\(278\) 12.2474 + 21.2132i 0.734553 + 1.27228i
\(279\) 0 0
\(280\) 12.0000 20.7846i 0.717137 1.24212i
\(281\) −9.38209 + 7.87251i −0.559689 + 0.469634i −0.878206 0.478283i \(-0.841259\pi\)
0.318517 + 0.947917i \(0.396815\pi\)
\(282\) 0 0
\(283\) 2.95202 16.7417i 0.175479 0.995193i −0.762110 0.647448i \(-0.775836\pi\)
0.937589 0.347745i \(-0.113052\pi\)
\(284\) 5.10419 28.9473i 0.302878 1.71771i
\(285\) 0 0
\(286\) −4.59627 + 3.85673i −0.271783 + 0.228053i
\(287\) −4.89898 + 8.48528i −0.289178 + 0.500870i
\(288\) 0 0
\(289\) −18.5000 32.0429i −1.08824 1.88488i
\(290\) −27.6212 10.0533i −1.62197 0.590350i
\(291\) 0 0
\(292\) 33.7060 + 28.2827i 1.97249 + 1.65512i
\(293\) −4.60353 + 1.67555i −0.268941 + 0.0978867i −0.472971 0.881078i \(-0.656818\pi\)
0.204029 + 0.978965i \(0.434596\pi\)
\(294\) 0 0
\(295\) 1.04189 + 5.90885i 0.0606611 + 0.344026i
\(296\) 39.1918 2.27798
\(297\) 0 0
\(298\) 30.0000 1.73785
\(299\) 0.425349 + 2.41228i 0.0245986 + 0.139506i
\(300\) 0 0
\(301\) −20.6732 + 7.52444i −1.19159 + 0.433702i
\(302\) 9.38209 + 7.87251i 0.539879 + 0.453012i
\(303\) 0 0
\(304\) 3.75877 + 1.36808i 0.215580 + 0.0784648i
\(305\) 6.12372 + 10.6066i 0.350643 + 0.607332i
\(306\) 0 0
\(307\) −1.00000 + 1.73205i −0.0570730 + 0.0988534i −0.893150 0.449758i \(-0.851510\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(308\) 15.0113 12.5960i 0.855351 0.717724i
\(309\) 0 0
\(310\) 1.04189 5.90885i 0.0591753 0.335600i
\(311\) −4.25349 + 24.1228i −0.241194 + 1.36788i 0.587976 + 0.808879i \(0.299925\pi\)
−0.829169 + 0.558998i \(0.811186\pi\)
\(312\) 0 0
\(313\) −12.2567 + 10.2846i −0.692790 + 0.581320i −0.919712 0.392593i \(-0.871578\pi\)
0.226922 + 0.973913i \(0.427134\pi\)
\(314\) −20.8207 + 36.0624i −1.17498 + 2.03512i
\(315\) 0 0
\(316\) 14.0000 + 24.2487i 0.787562 + 1.36410i
\(317\) −9.20707 3.35110i −0.517121 0.188216i 0.0702579 0.997529i \(-0.477618\pi\)
−0.587378 + 0.809312i \(0.699840\pi\)
\(318\) 0 0
\(319\) −9.19253 7.71345i −0.514683 0.431870i
\(320\) −18.4141 + 6.70220i −1.02938 + 0.374664i
\(321\) 0 0
\(322\) −2.08378 11.8177i −0.116124 0.658574i
\(323\) 7.34847 0.408880
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −4.25349 24.1228i −0.235579 1.33604i
\(327\) 0 0
\(328\) −22.5526 + 8.20848i −1.24526 + 0.453238i
\(329\) 15.0113 + 12.5960i 0.827602 + 0.694441i
\(330\) 0 0
\(331\) 6.57785 + 2.39414i 0.361551 + 0.131594i 0.516407 0.856343i \(-0.327269\pi\)
−0.154856 + 0.987937i \(0.549491\pi\)
\(332\) 24.4949 + 42.4264i 1.34433 + 2.32845i
\(333\) 0 0
\(334\) −6.00000 + 10.3923i −0.328305 + 0.568642i
\(335\) 13.1349 11.0215i 0.717638 0.602170i
\(336\) 0 0
\(337\) −4.86215 + 27.5746i −0.264858 + 1.50209i 0.504581 + 0.863365i \(0.331647\pi\)
−0.769439 + 0.638721i \(0.779464\pi\)
\(338\) −5.10419 + 28.9473i −0.277632 + 1.57453i
\(339\) 0 0
\(340\) 55.1552 46.2807i 2.99121 2.50992i
\(341\) 1.22474 2.12132i 0.0663237 0.114876i
\(342\) 0 0
\(343\) 10.0000 + 17.3205i 0.539949 + 0.935220i
\(344\) −50.6389 18.4310i −2.73027 0.993735i
\(345\) 0 0
\(346\) 18.3851 + 15.4269i 0.988387 + 0.829355i
\(347\) 23.0177 8.37775i 1.23565 0.449741i 0.360123 0.932905i \(-0.382735\pi\)
0.875530 + 0.483164i \(0.160512\pi\)
\(348\) 0 0
\(349\) 3.47296 + 19.6962i 0.185903 + 1.05431i 0.924789 + 0.380480i \(0.124241\pi\)
−0.738886 + 0.673831i \(0.764648\pi\)
\(350\) 4.89898 0.261861
\(351\) 0 0
\(352\) 0 0
\(353\) 0.425349 + 2.41228i 0.0226391 + 0.128393i 0.994033 0.109083i \(-0.0347913\pi\)
−0.971394 + 0.237475i \(0.923680\pi\)
\(354\) 0 0
\(355\) 16.9145 6.15636i 0.897727 0.326746i
\(356\) 0 0
\(357\) 0 0
\(358\) 33.8289 + 12.3127i 1.78791 + 0.650748i
\(359\) −14.6969 25.4558i −0.775675 1.34351i −0.934414 0.356188i \(-0.884076\pi\)
0.158740 0.987320i \(-0.449257\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 15.0113 12.5960i 0.788979 0.662032i
\(363\) 0 0
\(364\) −1.38919 + 7.87846i −0.0728131 + 0.412944i
\(365\) −4.67884 + 26.5350i −0.244902 + 1.38891i
\(366\) 0 0
\(367\) 3.83022 3.21394i 0.199936 0.167766i −0.537323 0.843377i \(-0.680564\pi\)
0.737259 + 0.675610i \(0.236120\pi\)
\(368\) 4.89898 8.48528i 0.255377 0.442326i
\(369\) 0 0
\(370\) 24.0000 + 41.5692i 1.24770 + 2.16108i
\(371\) −13.8106 5.02665i −0.717011 0.260971i
\(372\) 0 0
\(373\) 26.8116 + 22.4976i 1.38825 + 1.16488i 0.966043 + 0.258380i \(0.0831887\pi\)
0.422206 + 0.906500i \(0.361256\pi\)
\(374\) 41.4318 15.0799i 2.14239 0.779765i
\(375\) 0 0
\(376\) 8.33511 + 47.2708i 0.429851 + 2.43780i
\(377\) 4.89898 0.252310
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 1.70140 + 9.64911i 0.0872799 + 0.494989i
\(381\) 0 0
\(382\) −22.5526 + 8.20848i −1.15389 + 0.419983i
\(383\) 26.2699 + 22.0430i 1.34233 + 1.12635i 0.981022 + 0.193898i \(0.0621132\pi\)
0.361305 + 0.932448i \(0.382331\pi\)
\(384\) 0 0
\(385\) 11.2763 + 4.10424i 0.574694 + 0.209172i
\(386\) −13.4722 23.3345i −0.685717 1.18770i
\(387\) 0 0
\(388\) 14.0000 24.2487i 0.710742 1.23104i
\(389\) −20.6406 + 17.3195i −1.04652 + 0.878134i −0.992723 0.120417i \(-0.961577\pi\)
−0.0537965 + 0.998552i \(0.517132\pi\)
\(390\) 0 0
\(391\) 3.12567 17.7265i 0.158072 0.896470i
\(392\) −2.55210 + 14.4737i −0.128900 + 0.731030i
\(393\) 0 0
\(394\) 27.5776 23.1404i 1.38934 1.16579i
\(395\) −8.57321 + 14.8492i −0.431365 + 0.747146i
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.0250943 + 0.0434646i 0.878300 0.478110i \(-0.158678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 2.30177 + 0.837775i 0.115377 + 0.0419939i
\(399\) 0 0
\(400\) 3.06418 + 2.57115i 0.153209 + 0.128558i
\(401\) −32.2247 + 11.7288i −1.60923 + 0.585711i −0.981287 0.192551i \(-0.938324\pi\)
−0.627940 + 0.778262i \(0.716102\pi\)
\(402\) 0 0
\(403\) 0.173648 + 0.984808i 0.00865003 + 0.0490568i
\(404\) −19.5959 −0.974933
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 3.40280 + 19.2982i 0.168670 + 0.956577i
\(408\) 0 0
\(409\) 26.3114 9.57656i 1.30101 0.473531i 0.403688 0.914897i \(-0.367728\pi\)
0.897327 + 0.441366i \(0.145506\pi\)
\(410\) −22.5170 18.8940i −1.11204 0.933109i
\(411\) 0 0
\(412\) 26.3114 + 9.57656i 1.29627 + 0.471803i
\(413\) 2.44949 + 4.24264i 0.120532 + 0.208767i
\(414\) 0 0
\(415\) −15.0000 + 25.9808i −0.736321 + 1.27535i
\(416\) 0 0
\(417\) 0 0
\(418\) −1.04189 + 5.90885i −0.0509605 + 0.289011i
\(419\) 5.95489 33.7719i 0.290916 1.64986i −0.392440 0.919778i \(-0.628369\pi\)
0.683355 0.730086i \(-0.260520\pi\)
\(420\) 0 0
\(421\) 1.53209 1.28558i 0.0746694 0.0626551i −0.604689 0.796462i \(-0.706703\pi\)
0.679358 + 0.733807i \(0.262258\pi\)
\(422\) 1.22474 2.12132i 0.0596196 0.103264i
\(423\) 0 0
\(424\) −18.0000 31.1769i −0.874157 1.51408i
\(425\) 6.90530 + 2.51332i 0.334956 + 0.121914i
\(426\) 0 0
\(427\) 7.66044 + 6.42788i 0.370715 + 0.311067i
\(428\) −55.2424 + 20.1066i −2.67024 + 0.971889i
\(429\) 0 0
\(430\) −11.4608 64.9973i −0.552688 3.13445i
\(431\) −7.34847 −0.353963 −0.176982 0.984214i \(-0.556633\pi\)
−0.176982 + 0.984214i \(0.556633\pi\)
\(432\) 0 0
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) −0.850699 4.82455i −0.0408349 0.231586i
\(435\) 0 0
\(436\) 3.75877 1.36808i 0.180012 0.0655192i
\(437\) 1.87642 + 1.57450i 0.0897612 + 0.0753186i
\(438\) 0 0
\(439\) −13.1557 4.78828i −0.627887 0.228532i 0.00842428 0.999965i \(-0.497318\pi\)
−0.636311 + 0.771432i \(0.719541\pi\)
\(440\) 14.6969 + 25.4558i 0.700649 + 1.21356i
\(441\) 0 0
\(442\) −9.00000 + 15.5885i −0.428086 + 0.741467i
\(443\) −9.38209 + 7.87251i −0.445757 + 0.374034i −0.837858 0.545888i \(-0.816193\pi\)
0.392102 + 0.919922i \(0.371748\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2.97745 + 16.8859i −0.140986 + 0.799572i
\(447\) 0 0
\(448\) −12.2567 + 10.2846i −0.579075 + 0.485902i
\(449\) −11.0227 + 19.0919i −0.520194 + 0.901002i 0.479531 + 0.877525i \(0.340807\pi\)
−0.999724 + 0.0234766i \(0.992526\pi\)
\(450\) 0 0
\(451\) −6.00000 10.3923i −0.282529 0.489355i
\(452\) 36.8283 + 13.4044i 1.73226 + 0.630490i
\(453\) 0 0
\(454\) 18.3851 + 15.4269i 0.862854 + 0.724020i
\(455\) −4.60353 + 1.67555i −0.215817 + 0.0785510i
\(456\) 0 0
\(457\) 5.03580 + 28.5594i 0.235565 + 1.33595i 0.841421 + 0.540380i \(0.181719\pi\)
−0.605857 + 0.795574i \(0.707169\pi\)
\(458\) −2.44949 −0.114457
\(459\) 0 0
\(460\) 24.0000 1.11901
\(461\) −4.67884 26.5350i −0.217915 1.23586i −0.875775 0.482719i \(-0.839649\pi\)
0.657860 0.753141i \(-0.271462\pi\)
\(462\) 0 0
\(463\) 17.8542 6.49838i 0.829753 0.302005i 0.107996 0.994151i \(-0.465557\pi\)
0.721758 + 0.692146i \(0.243335\pi\)
\(464\) −15.0113 12.5960i −0.696884 0.584755i
\(465\) 0 0
\(466\) 16.9145 + 6.15636i 0.783548 + 0.285188i
\(467\) −7.34847 12.7279i −0.340047 0.588978i 0.644394 0.764693i \(-0.277110\pi\)
−0.984441 + 0.175715i \(0.943776\pi\)
\(468\) 0 0
\(469\) 7.00000 12.1244i 0.323230 0.559851i
\(470\) −45.0340 + 37.7880i −2.07727 + 1.74303i
\(471\) 0 0
\(472\) −2.08378 + 11.8177i −0.0959137 + 0.543953i
\(473\) 4.67884 26.5350i 0.215133 1.22008i
\(474\) 0 0
\(475\) −0.766044 + 0.642788i −0.0351485 + 0.0294931i
\(476\) 29.3939 50.9117i 1.34727 2.33353i
\(477\) 0 0
\(478\) 3.00000 + 5.19615i 0.137217 + 0.237666i
\(479\) 25.3194 + 9.21552i 1.15687 + 0.421068i 0.847980 0.530028i \(-0.177819\pi\)
0.308895 + 0.951096i \(0.400041\pi\)
\(480\) 0 0
\(481\) −6.12836 5.14230i −0.279429 0.234469i
\(482\) 36.8283 13.4044i 1.67748 0.610554i
\(483\) 0 0
\(484\) −3.47296 19.6962i −0.157862 0.895280i
\(485\) 17.1464 0.778579
\(486\) 0 0
\(487\) 35.0000 1.58600 0.793001 0.609221i \(-0.208518\pi\)
0.793001 + 0.609221i \(0.208518\pi\)
\(488\) 4.25349 + 24.1228i 0.192547 + 1.09199i
\(489\) 0 0
\(490\) −16.9145 + 6.15636i −0.764118 + 0.278116i
\(491\) −30.0227 25.1920i −1.35490 1.13690i −0.977520 0.210844i \(-0.932379\pi\)
−0.377385 0.926056i \(-0.623177\pi\)
\(492\) 0 0
\(493\) −33.8289 12.3127i −1.52358 0.554537i
\(494\) −1.22474 2.12132i −0.0551039 0.0954427i
\(495\) 0 0
\(496\) 2.00000 3.46410i 0.0898027 0.155543i
\(497\) 11.2585 9.44701i 0.505013 0.423756i
\(498\) 0 0
\(499\) 0.347296 1.96962i 0.0155471 0.0881721i −0.976047 0.217560i \(-0.930190\pi\)
0.991594 + 0.129388i \(0.0413013\pi\)
\(500\) 6.80559 38.5964i 0.304355 1.72608i
\(501\) 0 0
\(502\) −13.7888 + 11.5702i −0.615424 + 0.516402i
\(503\) 7.34847 12.7279i 0.327652 0.567510i −0.654393 0.756154i \(-0.727076\pi\)
0.982045 + 0.188644i \(0.0604093\pi\)
\(504\) 0 0
\(505\) −6.00000 10.3923i −0.266996 0.462451i
\(506\) 13.8106 + 5.02665i 0.613956 + 0.223462i
\(507\) 0 0
\(508\) −58.2194 48.8519i −2.58307 2.16745i
\(509\) 9.20707 3.35110i 0.408096 0.148535i −0.129811 0.991539i \(-0.541437\pi\)
0.537908 + 0.843004i \(0.319215\pi\)
\(510\) 0 0
\(511\) 3.82026 + 21.6658i 0.168998 + 0.958437i
\(512\) −39.1918 −1.73205
\(513\) 0 0
\(514\) −42.0000 −1.85254
\(515\) 2.97745 + 16.8859i 0.131202 + 0.744083i
\(516\) 0 0
\(517\) −22.5526 + 8.20848i −0.991863 + 0.361009i
\(518\) 30.0227 + 25.1920i 1.31912 + 1.10687i
\(519\) 0 0
\(520\) −11.2763 4.10424i −0.494499 0.179983i
\(521\) −11.0227 19.0919i −0.482913 0.836431i 0.516894 0.856049i \(-0.327088\pi\)
−0.999808 + 0.0196188i \(0.993755\pi\)
\(522\) 0 0
\(523\) 12.5000 21.6506i 0.546587 0.946716i −0.451918 0.892059i \(-0.649260\pi\)
0.998505 0.0546569i \(-0.0174065\pi\)
\(524\) 37.5284 31.4900i 1.63943 1.37565i
\(525\) 0 0
\(526\) −11.4608 + 64.9973i −0.499714 + 2.83402i
\(527\) 1.27605 7.23683i 0.0555855 0.315241i
\(528\) 0 0
\(529\) −13.0228 + 10.9274i −0.566207 + 0.475104i
\(530\) 22.0454 38.1838i 0.957591 1.65860i
\(531\) 0 0
\(532\) 4.00000 + 6.92820i 0.173422 + 0.300376i
\(533\) 4.60353 + 1.67555i 0.199401 + 0.0725761i
\(534\) 0 0
\(535\) −27.5776 23.1404i −1.19228 1.00044i
\(536\) 32.2247 11.7288i 1.39190 0.506609i
\(537\) 0 0
\(538\) −9.37700 53.1796i −0.404271 2.29274i
\(539\) −7.34847 −0.316521
\(540\) 0 0
\(541\) −28.0000 −1.20381 −0.601907 0.798566i \(-0.705592\pi\)
−0.601907 + 0.798566i \(0.705592\pi\)
\(542\) −2.97745 16.8859i −0.127892 0.725313i
\(543\) 0 0
\(544\) 0 0
\(545\) 1.87642 + 1.57450i 0.0803769 + 0.0674442i
\(546\) 0 0
\(547\) 12.2160 + 4.44626i 0.522319 + 0.190108i 0.589705 0.807619i \(-0.299244\pi\)
−0.0673867 + 0.997727i \(0.521466\pi\)
\(548\) −19.5959 33.9411i −0.837096 1.44989i
\(549\) 0 0
\(550\) −3.00000 + 5.19615i −0.127920 + 0.221565i
\(551\) 3.75284 3.14900i 0.159876 0.134152i
\(552\) 0 0
\(553\) −2.43107 + 13.7873i −0.103380 + 0.586296i
\(554\) 4.67884 26.5350i 0.198785 1.12737i
\(555\) 0 0
\(556\) −30.6418 + 25.7115i −1.29950 + 1.09041i
\(557\) −3.67423 + 6.36396i −0.155682 + 0.269650i −0.933307 0.359079i \(-0.883091\pi\)
0.777625 + 0.628728i \(0.216424\pi\)
\(558\) 0 0
\(559\) 5.50000 + 9.52628i 0.232625 + 0.402919i
\(560\) 18.4141 + 6.70220i 0.778139 + 0.283220i
\(561\) 0 0
\(562\) −22.9813 19.2836i −0.969409 0.813431i
\(563\) −11.5088 + 4.18887i −0.485040 + 0.176540i −0.572953 0.819588i \(-0.694202\pi\)
0.0879135 + 0.996128i \(0.471980\pi\)
\(564\) 0 0
\(565\) 4.16756 + 23.6354i 0.175330 + 0.994348i
\(566\) 41.6413 1.75032
\(567\) 0 0
\(568\) 36.0000 1.51053
\(569\) −2.12675 12.0614i −0.0891579 0.505639i −0.996382 0.0849912i \(-0.972914\pi\)
0.907224 0.420648i \(-0.138197\pi\)
\(570\) 0 0
\(571\) 9.39693 3.42020i 0.393249 0.143131i −0.137824 0.990457i \(-0.544011\pi\)
0.531074 + 0.847326i \(0.321789\pi\)
\(572\) −7.50567 6.29801i −0.313828 0.263333i
\(573\) 0 0
\(574\) −22.5526 8.20848i −0.941328 0.342615i
\(575\) 1.22474 + 2.12132i 0.0510754 + 0.0884652i
\(576\) 0 0
\(577\) 12.5000 21.6506i 0.520382 0.901328i −0.479337 0.877631i \(-0.659123\pi\)
0.999719 0.0236970i \(-0.00754370\pi\)
\(578\) 69.4275 58.2566i 2.88780 2.42315i
\(579\) 0 0
\(580\) 8.33511 47.2708i 0.346097 1.96281i
\(581\) −4.25349 + 24.1228i −0.176465 + 1.00078i
\(582\) 0 0
\(583\) 13.7888 11.5702i 0.571074 0.479188i
\(584\) −26.9444 + 46.6690i −1.11497 + 1.93118i
\(585\) 0 0
\(586\) −6.00000 10.3923i −0.247858 0.429302i
\(587\) −2.30177 0.837775i −0.0950041 0.0345787i 0.294081 0.955781i \(-0.404987\pi\)
−0.389085 + 0.921202i \(0.627209\pi\)
\(588\) 0 0
\(589\) 0.766044 + 0.642788i 0.0315643 + 0.0264856i
\(590\) −13.8106 + 5.02665i −0.568574 + 0.206944i
\(591\) 0 0
\(592\) 5.55674 + 31.5138i 0.228381 + 1.29521i
\(593\) 7.34847 0.301765 0.150883 0.988552i \(-0.451788\pi\)
0.150883 + 0.988552i \(0.451788\pi\)
\(594\) 0 0
\(595\) 36.0000 1.47586
\(596\) 8.50699 + 48.2455i 0.348460 + 1.97621i
\(597\) 0 0
\(598\) −5.63816 + 2.05212i −0.230561 + 0.0839175i
\(599\) −30.0227 25.1920i −1.22669 1.02932i −0.998447 0.0557151i \(-0.982256\pi\)
−0.228247 0.973603i \(-0.573299\pi\)
\(600\) 0 0
\(601\) 6.57785 + 2.39414i 0.268316 + 0.0976590i 0.472675 0.881237i \(-0.343289\pi\)
−0.204359 + 0.978896i \(0.565511\pi\)
\(602\) −26.9444 46.6690i −1.09817 1.90209i
\(603\) 0 0
\(604\) −10.0000 + 17.3205i −0.406894 + 0.704761i
\(605\) 9.38209 7.87251i 0.381436 0.320063i
\(606\) 0 0
\(607\) 7.64052 43.3315i 0.310119 1.75877i −0.288253 0.957554i \(-0.593074\pi\)
0.598372 0.801219i \(-0.295815\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −22.9813 + 19.2836i −0.930487 + 0.780771i
\(611\) 4.89898 8.48528i 0.198191 0.343278i
\(612\) 0 0
\(613\) −5.50000 9.52628i −0.222143 0.384763i 0.733316 0.679888i \(-0.237972\pi\)
−0.955458 + 0.295126i \(0.904638\pi\)
\(614\) −4.60353 1.67555i −0.185784 0.0676197i
\(615\) 0 0
\(616\) 18.3851 + 15.4269i 0.740755 + 0.621568i
\(617\) 23.0177 8.37775i 0.926657 0.337275i 0.165773 0.986164i \(-0.446988\pi\)
0.760884 + 0.648888i \(0.224766\pi\)
\(618\) 0 0
\(619\) −8.50876 48.2556i −0.341996 1.93956i −0.342396 0.939556i \(-0.611239\pi\)
0.000400419 1.00000i \(-0.499873\pi\)
\(620\) 9.79796 0.393496
\(621\) 0 0
\(622\) −60.0000 −2.40578
\(623\) 0 0
\(624\) 0 0
\(625\) 27.2511 9.91858i 1.09004 0.396743i
\(626\) −30.0227 25.1920i −1.19995 1.00688i
\(627\) 0 0
\(628\) −63.8991 23.2574i −2.54985 0.928070i
\(629\) 29.3939 + 50.9117i 1.17201 + 2.02998i
\(630\) 0 0
\(631\) −22.0000 + 38.1051i −0.875806 + 1.51694i −0.0199047 + 0.999802i \(0.506336\pi\)
−0.855901 + 0.517139i \(0.826997\pi\)
\(632\) −26.2699 + 22.0430i −1.04496 + 0.876824i
\(633\) 0 0
\(634\) 4.16756 23.6354i 0.165515 0.938681i
\(635\) 8.08164 45.8333i 0.320710 1.81884i
\(636\) 0 0
\(637\) 2.29813 1.92836i 0.0910554 0.0764045i
\(638\) 14.6969 25.4558i 0.581857 1.00781i
\(639\) 0 0
\(640\) −24.0000 41.5692i −0.948683 1.64317i
\(641\) −16.1124 5.86442i −0.636400 0.231631i 0.00361428 0.999993i \(-0.498850\pi\)
−0.640015 + 0.768363i \(0.721072\pi\)
\(642\) 0 0
\(643\) 29.1097 + 24.4259i 1.14797 + 0.963265i 0.999670 0.0256772i \(-0.00817422\pi\)
0.148304 + 0.988942i \(0.452619\pi\)
\(644\) 18.4141 6.70220i 0.725619 0.264104i
\(645\) 0 0
\(646\) 3.12567 + 17.7265i 0.122978 + 0.697441i
\(647\) 36.7423 1.44449 0.722245 0.691637i \(-0.243110\pi\)
0.722245 + 0.691637i \(0.243110\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) −0.425349 2.41228i −0.0166836 0.0946173i
\(651\) 0 0
\(652\) 37.5877 13.6808i 1.47205 0.535782i
\(653\) −7.50567 6.29801i −0.293720 0.246460i 0.484005 0.875065i \(-0.339182\pi\)
−0.777725 + 0.628605i \(0.783626\pi\)
\(654\) 0 0
\(655\) 28.1908 + 10.2606i 1.10150 + 0.400915i
\(656\) −9.79796 16.9706i −0.382546 0.662589i
\(657\) 0 0
\(658\) −24.0000 + 41.5692i −0.935617 + 1.62054i
\(659\) −15.0113 + 12.5960i −0.584759 + 0.490671i −0.886506 0.462717i \(-0.846875\pi\)
0.301747 + 0.953388i \(0.402430\pi\)
\(660\) 0 0
\(661\) 1.91013 10.8329i 0.0742954 0.421350i −0.924862 0.380303i \(-0.875820\pi\)
0.999157 0.0410470i \(-0.0130693\pi\)
\(662\) −2.97745 + 16.8859i −0.115722 + 0.656291i
\(663\) 0 0
\(664\) −45.9627 + 38.5673i −1.78370 + 1.49670i
\(665\) −2.44949 + 4.24264i −0.0949871 + 0.164523i
\(666\) 0 0
\(667\) −6.00000 10.3923i −0.232321 0.402392i
\(668\) −18.4141 6.70220i −0.712464 0.259316i
\(669\) 0 0
\(670\) 32.1739 + 26.9971i 1.24298 + 1.04299i
\(671\) −11.5088 + 4.18887i −0.444294 + 0.161710i
\(672\) 0 0
\(673\) 5.03580 + 28.5594i 0.194116 + 1.10088i 0.913672 + 0.406451i \(0.133234\pi\)
−0.719557 + 0.694434i \(0.755655\pi\)
\(674\) −68.5857 −2.64182
\(675\) 0 0
\(676\) −48.0000 −1.84615
\(677\) 8.08164 + 45.8333i 0.310603 + 1.76152i 0.595883 + 0.803071i \(0.296802\pi\)
−0.285281 + 0.958444i \(0.592087\pi\)
\(678\) 0 0
\(679\) 13.1557 4.78828i 0.504869 0.183757i
\(680\) 67.5510 + 56.6821i 2.59046 + 2.17366i
\(681\) 0 0
\(682\) 5.63816 + 2.05212i 0.215896 + 0.0785798i
\(683\) 11.0227 + 19.0919i 0.421772 + 0.730531i 0.996113 0.0880857i \(-0.0280749\pi\)
−0.574341 + 0.818616i \(0.694742\pi\)
\(684\) 0 0
\(685\) 12.0000 20.7846i 0.458496 0.794139i
\(686\) −37.5284 + 31.4900i −1.43284 + 1.20230i
\(687\) 0 0
\(688\) 7.64052 43.3315i 0.291292 1.65200i
\(689\) −1.27605 + 7.23683i −0.0486136 + 0.275701i
\(690\) 0 0
\(691\) 36.0041 30.2110i 1.36966 1.14928i 0.396795 0.917907i \(-0.370122\pi\)
0.972865 0.231374i \(-0.0743221\pi\)
\(692\) −19.5959 + 33.9411i −0.744925 + 1.29025i
\(693\) 0 0
\(694\) 30.0000 + 51.9615i 1.13878 + 1.97243i
\(695\) −23.0177 8.37775i −0.873110 0.317786i
\(696\) 0 0
\(697\) −27.5776 23.1404i −1.04458 0.876503i
\(698\) −46.0353 + 16.7555i −1.74246 + 0.634205i
\(699\) 0 0
\(700\) 1.38919 + 7.87846i 0.0525063 + 0.297778i
\(701\) −14.6969 −0.555096 −0.277548 0.960712i \(-0.589522\pi\)
−0.277548 + 0.960712i \(0.589522\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) −3.40280 19.2982i −0.128248 0.727329i
\(705\) 0 0
\(706\) −5.63816 + 2.05212i −0.212195 + 0.0772326i
\(707\) −7.50567 6.29801i −0.282280 0.236861i
\(708\) 0 0
\(709\) 6.57785 + 2.39414i 0.247036 + 0.0899139i 0.462571 0.886582i \(-0.346927\pi\)
−0.215534 + 0.976496i \(0.569149\pi\)
\(710\) 22.0454 + 38.1838i 0.827349 + 1.43301i
\(711\) 0 0
\(712\) 0 0
\(713\) 1.87642 1.57450i 0.0702724 0.0589656i
\(714\) 0 0
\(715\) 1.04189 5.90885i 0.0389644 0.220978i
\(716\) −10.2084 + 57.8946i −0.381505 + 2.16362i
\(717\) 0 0
\(718\) 55.1552 46.2807i 2.05837 1.72718i
\(719\) 18.3712 31.8198i 0.685129 1.18668i −0.288267 0.957550i \(-0.593079\pi\)
0.973396 0.229128i \(-0.0735876\pi\)
\(720\) 0 0
\(721\) 7.00000 + 12.1244i 0.260694 + 0.451535i
\(722\) 41.4318 + 15.0799i 1.54193 + 0.561218i
\(723\) 0 0
\(724\) 24.5134 + 20.5692i 0.911034 + 0.764448i
\(725\) 4.60353 1.67555i 0.170971 0.0622284i
\(726\) 0 0
\(727\) 2.43107 + 13.7873i 0.0901636 + 0.511343i 0.996122 + 0.0879774i \(0.0280403\pi\)
−0.905959 + 0.423366i \(0.860849\pi\)
\(728\) −9.79796 −0.363137
\(729\) 0 0
\(730\) −66.0000 −2.44277
\(731\) −14.0365 79.6051i −0.519160 2.94430i
\(732\) 0 0
\(733\) −15.9748 + 5.81434i −0.590042 + 0.214758i −0.619748 0.784801i \(-0.712765\pi\)
0.0297060 + 0.999559i \(0.490543\pi\)
\(734\) 9.38209 + 7.87251i 0.346299 + 0.290580i
\(735\) 0 0
\(736\) 0 0
\(737\) 8.57321 + 14.8492i 0.315798 + 0.546979i
\(738\) 0 0
\(739\) 0.500000 0.866025i 0.0183928 0.0318573i −0.856683 0.515844i \(-0.827478\pi\)
0.875075 + 0.483987i \(0.160812\pi\)
\(740\) −60.0454 + 50.3841i −2.20731 + 1.85215i
\(741\) 0 0
\(742\) 6.25133 35.4531i 0.229494 1.30152i
\(743\) −5.52954 + 31.3596i −0.202859 + 1.15047i 0.697914 + 0.716182i \(0.254112\pi\)
−0.900773 + 0.434290i \(0.856999\pi\)
\(744\) 0 0
\(745\) −22.9813 + 19.2836i −0.841971 + 0.706497i
\(746\) −42.8661 + 74.2462i −1.56944 + 2.71835i
\(747\) 0 0
\(748\) 36.0000 + 62.3538i 1.31629 + 2.27988i
\(749\) −27.6212 10.0533i −1.00926 0.367340i
\(750\) 0 0
\(751\) 19.9172 + 16.7125i 0.726787 + 0.609847i 0.929254 0.369442i \(-0.120451\pi\)
−0.202466 + 0.979289i \(0.564896\pi\)
\(752\) −36.8283 + 13.4044i −1.34299 + 0.488808i
\(753\) 0 0
\(754\) 2.08378 + 11.8177i 0.0758867 + 0.430375i
\(755\) −12.2474 −0.445730
\(756\) 0 0
\(757\) −7.00000 −0.254419 −0.127210 0.991876i \(-0.540602\pi\)
−0.127210 + 0.991876i \(0.540602\pi\)
\(758\) 3.40280 + 19.2982i 0.123595 + 0.700943i
\(759\) 0 0
\(760\) −11.2763 + 4.10424i −0.409035 + 0.148876i
\(761\) −1.87642 1.57450i −0.0680201 0.0570756i 0.608144 0.793827i \(-0.291914\pi\)
−0.676164 + 0.736751i \(0.736359\pi\)
\(762\) 0 0
\(763\) 1.87939 + 0.684040i 0.0680383 + 0.0247639i
\(764\) −19.5959 33.9411i −0.708955 1.22795i
\(765\) 0 0
\(766\) −42.0000 + 72.7461i −1.51752 + 2.62842i
\(767\) 1.87642 1.57450i 0.0677535 0.0568520i
\(768\) 0 0
\(769\) −6.42498 + 36.4379i −0.231691 + 1.31398i 0.617781 + 0.786350i \(0.288032\pi\)
−0.849472 + 0.527634i \(0.823079\pi\)
\(770\) −5.10419 + 28.9473i −0.183942 + 1.04319i
\(771\) 0 0
\(772\) 33.7060 28.2827i 1.21310 1.01792i
\(773\) 22.0454 38.1838i 0.792918 1.37337i −0.131235 0.991351i \(-0.541894\pi\)
0.924153 0.382023i \(-0.124773\pi\)
\(774\) 0 0
\(775\) 0.500000 + 0.866025i 0.0179605 + 0.0311086i
\(776\) 32.2247 + 11.7288i 1.15680 + 0.421041i
\(777\) 0 0
\(778\) −50.5589 42.4240i −1.81263 1.52097i
\(779\) 4.60353 1.67555i 0.164939 0.0600328i
\(780\) 0 0
\(781\) 3.12567 + 17.7265i 0.111845 + 0.634305i
\(782\) 44.0908 1.57668
\(783\)