Properties

Label 729.2.e.n.82.2
Level $729$
Weight $2$
Character 729.82
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.2
Root \(-0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 729.82
Dual form 729.2.e.n.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.300767 + 1.70574i) q^{2} +(-0.939693 + 0.342020i) q^{4} +(2.65366 + 2.22668i) q^{5} +(0.939693 + 0.342020i) q^{7} +(0.866025 + 1.50000i) q^{8} +(-3.00000 + 5.19615i) q^{10} +(-2.65366 + 2.22668i) q^{11} +(0.868241 - 4.92404i) q^{13} +(-0.300767 + 1.70574i) q^{14} +(-3.83022 + 3.21394i) q^{16} +(0.500000 + 0.866025i) q^{19} +(-3.25519 - 1.18479i) q^{20} +(-4.59627 - 3.85673i) q^{22} +(6.51038 - 2.36959i) q^{23} +(1.21554 + 6.89365i) q^{25} +8.66025 q^{26} -1.00000 q^{28} +(-0.601535 - 3.41147i) q^{29} +(-4.69846 + 1.71010i) q^{31} +(-3.98048 - 3.34002i) q^{32} +(1.73205 + 3.00000i) q^{35} +(0.500000 - 0.866025i) q^{37} +(-1.32683 + 1.11334i) q^{38} +(-1.04189 + 5.90885i) q^{40} +(0.601535 - 3.41147i) q^{41} +(-0.766044 + 0.642788i) q^{43} +(1.73205 - 3.00000i) q^{44} +(6.00000 + 10.3923i) q^{46} +(3.25519 + 1.18479i) q^{47} +(-4.59627 - 3.85673i) q^{49} +(-11.3932 + 4.14677i) q^{50} +(0.868241 + 4.92404i) q^{52} -10.3923 q^{53} -12.0000 q^{55} +(0.300767 + 1.70574i) q^{56} +(5.63816 - 2.05212i) q^{58} +(2.65366 + 2.22668i) q^{59} +(-1.87939 - 0.684040i) q^{61} +(-4.33013 - 7.50000i) q^{62} +(-0.500000 + 0.866025i) q^{64} +(13.2683 - 11.1334i) q^{65} +(1.38919 - 7.87846i) q^{67} +(-4.59627 + 3.85673i) q^{70} +(-5.19615 + 9.00000i) q^{71} +(-1.00000 - 1.73205i) q^{73} +(1.62760 + 0.592396i) q^{74} +(-0.766044 - 0.642788i) q^{76} +(-3.25519 + 1.18479i) q^{77} +(-0.173648 - 0.984808i) q^{79} -17.3205 q^{80} +6.00000 q^{82} +(1.20307 + 6.82295i) q^{83} +(-1.32683 - 1.11334i) q^{86} +(-5.63816 - 2.05212i) q^{88} +(-5.19615 - 9.00000i) q^{89} +(2.50000 - 4.33013i) q^{91} +(-5.30731 + 4.45336i) q^{92} +(-1.04189 + 5.90885i) q^{94} +(-0.601535 + 3.41147i) q^{95} +(13.0228 - 10.9274i) q^{97} +(5.19615 - 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{10} + 6 q^{19} - 12 q^{28} + 6 q^{37} + 72 q^{46} - 144 q^{55} - 6 q^{64} - 12 q^{73} + 72 q^{82} + 30 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.300767 + 1.70574i 0.212675 + 1.20614i 0.884896 + 0.465788i \(0.154229\pi\)
−0.672222 + 0.740350i \(0.734660\pi\)
\(3\) 0 0
\(4\) −0.939693 + 0.342020i −0.469846 + 0.171010i
\(5\) 2.65366 + 2.22668i 1.18675 + 0.995802i 0.999910 + 0.0134121i \(0.00426933\pi\)
0.186841 + 0.982390i \(0.440175\pi\)
\(6\) 0 0
\(7\) 0.939693 + 0.342020i 0.355170 + 0.129271i 0.513442 0.858124i \(-0.328370\pi\)
−0.158272 + 0.987396i \(0.550592\pi\)
\(8\) 0.866025 + 1.50000i 0.306186 + 0.530330i
\(9\) 0 0
\(10\) −3.00000 + 5.19615i −0.948683 + 1.64317i
\(11\) −2.65366 + 2.22668i −0.800107 + 0.671370i −0.948225 0.317600i \(-0.897123\pi\)
0.148117 + 0.988970i \(0.452679\pi\)
\(12\) 0 0
\(13\) 0.868241 4.92404i 0.240807 1.36568i −0.589226 0.807968i \(-0.700567\pi\)
0.830033 0.557714i \(-0.188322\pi\)
\(14\) −0.300767 + 1.70574i −0.0803835 + 0.455877i
\(15\) 0 0
\(16\) −3.83022 + 3.21394i −0.957556 + 0.803485i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −3.25519 1.18479i −0.727883 0.264928i
\(21\) 0 0
\(22\) −4.59627 3.85673i −0.979927 0.822257i
\(23\) 6.51038 2.36959i 1.35751 0.494093i 0.442225 0.896904i \(-0.354189\pi\)
0.915283 + 0.402811i \(0.131967\pi\)
\(24\) 0 0
\(25\) 1.21554 + 6.89365i 0.243107 + 1.37873i
\(26\) 8.66025 1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −0.601535 3.41147i −0.111702 0.633495i −0.988330 0.152326i \(-0.951324\pi\)
0.876628 0.481169i \(-0.159788\pi\)
\(30\) 0 0
\(31\) −4.69846 + 1.71010i −0.843869 + 0.307143i −0.727538 0.686067i \(-0.759336\pi\)
−0.116331 + 0.993211i \(0.537113\pi\)
\(32\) −3.98048 3.34002i −0.703657 0.590438i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.73205 + 3.00000i 0.292770 + 0.507093i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −1.32683 + 1.11334i −0.215240 + 0.180608i
\(39\) 0 0
\(40\) −1.04189 + 5.90885i −0.164737 + 0.934271i
\(41\) 0.601535 3.41147i 0.0939440 0.532783i −0.901122 0.433566i \(-0.857255\pi\)
0.995066 0.0992168i \(-0.0316337\pi\)
\(42\) 0 0
\(43\) −0.766044 + 0.642788i −0.116821 + 0.0980242i −0.699327 0.714802i \(-0.746517\pi\)
0.582506 + 0.812826i \(0.302072\pi\)
\(44\) 1.73205 3.00000i 0.261116 0.452267i
\(45\) 0 0
\(46\) 6.00000 + 10.3923i 0.884652 + 1.53226i
\(47\) 3.25519 + 1.18479i 0.474818 + 0.172820i 0.568334 0.822798i \(-0.307588\pi\)
−0.0935154 + 0.995618i \(0.529810\pi\)
\(48\) 0 0
\(49\) −4.59627 3.85673i −0.656610 0.550961i
\(50\) −11.3932 + 4.14677i −1.61124 + 0.586442i
\(51\) 0 0
\(52\) 0.868241 + 4.92404i 0.120403 + 0.682841i
\(53\) −10.3923 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0.300767 + 1.70574i 0.0401917 + 0.227939i
\(57\) 0 0
\(58\) 5.63816 2.05212i 0.740326 0.269457i
\(59\) 2.65366 + 2.22668i 0.345477 + 0.289889i 0.798971 0.601370i \(-0.205378\pi\)
−0.453494 + 0.891259i \(0.649823\pi\)
\(60\) 0 0
\(61\) −1.87939 0.684040i −0.240631 0.0875824i 0.218890 0.975750i \(-0.429756\pi\)
−0.459520 + 0.888167i \(0.651979\pi\)
\(62\) −4.33013 7.50000i −0.549927 0.952501i
\(63\) 0 0
\(64\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(65\) 13.2683 11.1334i 1.64573 1.38093i
\(66\) 0 0
\(67\) 1.38919 7.87846i 0.169716 0.962507i −0.774352 0.632756i \(-0.781924\pi\)
0.944068 0.329752i \(-0.106965\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −4.59627 + 3.85673i −0.549359 + 0.460967i
\(71\) −5.19615 + 9.00000i −0.616670 + 1.06810i 0.373419 + 0.927663i \(0.378185\pi\)
−0.990089 + 0.140441i \(0.955148\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 1.62760 + 0.592396i 0.189204 + 0.0688647i
\(75\) 0 0
\(76\) −0.766044 0.642788i −0.0878713 0.0737328i
\(77\) −3.25519 + 1.18479i −0.370963 + 0.135020i
\(78\) 0 0
\(79\) −0.173648 0.984808i −0.0195369 0.110800i 0.973480 0.228773i \(-0.0734713\pi\)
−0.993017 + 0.117973i \(0.962360\pi\)
\(80\) −17.3205 −1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 1.20307 + 6.82295i 0.132054 + 0.748916i 0.976866 + 0.213852i \(0.0686012\pi\)
−0.844812 + 0.535063i \(0.820288\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.32683 1.11334i −0.143076 0.120055i
\(87\) 0 0
\(88\) −5.63816 2.05212i −0.601029 0.218757i
\(89\) −5.19615 9.00000i −0.550791 0.953998i −0.998218 0.0596775i \(-0.980993\pi\)
0.447427 0.894321i \(-0.352341\pi\)
\(90\) 0 0
\(91\) 2.50000 4.33013i 0.262071 0.453921i
\(92\) −5.30731 + 4.45336i −0.553325 + 0.464295i
\(93\) 0 0
\(94\) −1.04189 + 5.90885i −0.107463 + 0.609451i
\(95\) −0.601535 + 3.41147i −0.0617162 + 0.350010i
\(96\) 0 0
\(97\) 13.0228 10.9274i 1.32226 1.10951i 0.336440 0.941705i \(-0.390777\pi\)
0.985820 0.167803i \(-0.0536674\pi\)
\(98\) 5.19615 9.00000i 0.524891 0.909137i
\(99\) 0 0
\(100\) −3.50000 6.06218i −0.350000 0.606218i
\(101\) 13.0208 + 4.73917i 1.29561 + 0.471565i 0.895566 0.444929i \(-0.146771\pi\)
0.400048 + 0.916494i \(0.368993\pi\)
\(102\) 0 0
\(103\) 6.12836 + 5.14230i 0.603845 + 0.506686i 0.892679 0.450693i \(-0.148823\pi\)
−0.288834 + 0.957379i \(0.593268\pi\)
\(104\) 8.13798 2.96198i 0.797994 0.290446i
\(105\) 0 0
\(106\) −3.12567 17.7265i −0.303592 1.72175i
\(107\) 10.3923 1.00466 0.502331 0.864675i \(-0.332476\pi\)
0.502331 + 0.864675i \(0.332476\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) −3.60921 20.4688i −0.344125 1.95163i
\(111\) 0 0
\(112\) −4.69846 + 1.71010i −0.443963 + 0.161589i
\(113\) −13.2683 11.1334i −1.24817 1.04734i −0.996839 0.0794428i \(-0.974686\pi\)
−0.251335 0.967900i \(-0.580870\pi\)
\(114\) 0 0
\(115\) 22.5526 + 8.20848i 2.10304 + 0.765445i
\(116\) 1.73205 + 3.00000i 0.160817 + 0.278543i
\(117\) 0 0
\(118\) −3.00000 + 5.19615i −0.276172 + 0.478345i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.173648 0.984808i 0.0157862 0.0895280i
\(122\) 0.601535 3.41147i 0.0544604 0.308860i
\(123\) 0 0
\(124\) 3.83022 3.21394i 0.343964 0.288620i
\(125\) −3.46410 + 6.00000i −0.309839 + 0.536656i
\(126\) 0 0
\(127\) −8.50000 14.7224i −0.754253 1.30640i −0.945745 0.324910i \(-0.894666\pi\)
0.191492 0.981494i \(-0.438667\pi\)
\(128\) −11.3932 4.14677i −1.00702 0.366526i
\(129\) 0 0
\(130\) 22.9813 + 19.2836i 2.01560 + 1.69129i
\(131\) −3.25519 + 1.18479i −0.284407 + 0.103516i −0.480285 0.877113i \(-0.659467\pi\)
0.195878 + 0.980628i \(0.437244\pi\)
\(132\) 0 0
\(133\) 0.173648 + 0.984808i 0.0150572 + 0.0853937i
\(134\) 13.8564 1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) 1.20307 + 6.82295i 0.102785 + 0.582924i 0.992082 + 0.125593i \(0.0400833\pi\)
−0.889297 + 0.457331i \(0.848806\pi\)
\(138\) 0 0
\(139\) 12.2160 4.44626i 1.03615 0.377127i 0.232729 0.972542i \(-0.425234\pi\)
0.803419 + 0.595415i \(0.203012\pi\)
\(140\) −2.65366 2.22668i −0.224275 0.188189i
\(141\) 0 0
\(142\) −16.9145 6.15636i −1.41943 0.516630i
\(143\) 8.66025 + 15.0000i 0.724207 + 1.25436i
\(144\) 0 0
\(145\) 6.00000 10.3923i 0.498273 0.863034i
\(146\) 2.65366 2.22668i 0.219618 0.184281i
\(147\) 0 0
\(148\) −0.173648 + 0.984808i −0.0142738 + 0.0809507i
\(149\) −1.20307 + 6.82295i −0.0985593 + 0.558958i 0.895039 + 0.445988i \(0.147148\pi\)
−0.993598 + 0.112970i \(0.963964\pi\)
\(150\) 0 0
\(151\) −12.2567 + 10.2846i −0.997437 + 0.836949i −0.986627 0.162993i \(-0.947885\pi\)
−0.0108097 + 0.999942i \(0.503441\pi\)
\(152\) −0.866025 + 1.50000i −0.0702439 + 0.121666i
\(153\) 0 0
\(154\) −3.00000 5.19615i −0.241747 0.418718i
\(155\) −16.2760 5.92396i −1.30732 0.475824i
\(156\) 0 0
\(157\) −9.95858 8.35624i −0.794781 0.666900i 0.152143 0.988359i \(-0.451383\pi\)
−0.946924 + 0.321458i \(0.895827\pi\)
\(158\) 1.62760 0.592396i 0.129485 0.0471285i
\(159\) 0 0
\(160\) −3.12567 17.7265i −0.247106 1.40141i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 0.601535 + 3.41147i 0.0469720 + 0.266391i
\(165\) 0 0
\(166\) −11.2763 + 4.10424i −0.875212 + 0.318551i
\(167\) 18.5756 + 15.5868i 1.43742 + 1.20614i 0.941157 + 0.337970i \(0.109740\pi\)
0.496265 + 0.868171i \(0.334704\pi\)
\(168\) 0 0
\(169\) −11.2763 4.10424i −0.867409 0.315711i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.500000 0.866025i 0.0381246 0.0660338i
\(173\) −10.6146 + 8.90673i −0.807015 + 0.677166i −0.949893 0.312574i \(-0.898809\pi\)
0.142878 + 0.989740i \(0.454364\pi\)
\(174\) 0 0
\(175\) −1.21554 + 6.89365i −0.0918860 + 0.521111i
\(176\) 3.00767 17.0574i 0.226712 1.28575i
\(177\) 0 0
\(178\) 13.7888 11.5702i 1.03351 0.867221i
\(179\) 10.3923 18.0000i 0.776757 1.34538i −0.157044 0.987592i \(-0.550196\pi\)
0.933801 0.357792i \(-0.116470\pi\)
\(180\) 0 0
\(181\) −8.50000 14.7224i −0.631800 1.09431i −0.987184 0.159589i \(-0.948983\pi\)
0.355383 0.934721i \(-0.384350\pi\)
\(182\) 8.13798 + 2.96198i 0.603227 + 0.219557i
\(183\) 0 0
\(184\) 9.19253 + 7.71345i 0.677683 + 0.568643i
\(185\) 3.25519 1.18479i 0.239326 0.0871077i
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 −0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 1.20307 + 6.82295i 0.0870511 + 0.493691i 0.996895 + 0.0787408i \(0.0250900\pi\)
−0.909844 + 0.414950i \(0.863799\pi\)
\(192\) 0 0
\(193\) 9.39693 3.42020i 0.676406 0.246191i 0.0191021 0.999818i \(-0.493919\pi\)
0.657303 + 0.753626i \(0.271697\pi\)
\(194\) 22.5561 + 18.9268i 1.61943 + 1.35886i
\(195\) 0 0
\(196\) 5.63816 + 2.05212i 0.402725 + 0.146580i
\(197\) 5.19615 + 9.00000i 0.370211 + 0.641223i 0.989598 0.143862i \(-0.0459522\pi\)
−0.619387 + 0.785086i \(0.712619\pi\)
\(198\) 0 0
\(199\) 9.50000 16.4545i 0.673437 1.16643i −0.303486 0.952836i \(-0.598151\pi\)
0.976923 0.213591i \(-0.0685161\pi\)
\(200\) −9.28780 + 7.79339i −0.656746 + 0.551076i
\(201\) 0 0
\(202\) −4.16756 + 23.6354i −0.293228 + 1.66298i
\(203\) 0.601535 3.41147i 0.0422195 0.239439i
\(204\) 0 0
\(205\) 9.19253 7.71345i 0.642034 0.538731i
\(206\) −6.92820 + 12.0000i −0.482711 + 0.836080i
\(207\) 0 0
\(208\) 12.5000 + 21.6506i 0.866719 + 1.50120i
\(209\) −3.25519 1.18479i −0.225166 0.0819538i
\(210\) 0 0
\(211\) 3.83022 + 3.21394i 0.263683 + 0.221257i 0.765038 0.643985i \(-0.222720\pi\)
−0.501354 + 0.865242i \(0.667165\pi\)
\(212\) 9.76557 3.55438i 0.670702 0.244116i
\(213\) 0 0
\(214\) 3.12567 + 17.7265i 0.213666 + 1.21176i
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 5.11305 + 28.9975i 0.346299 + 1.96396i
\(219\) 0 0
\(220\) 11.2763 4.10424i 0.760249 0.276708i
\(221\) 0 0
\(222\) 0 0
\(223\) 17.8542 + 6.49838i 1.19560 + 0.435164i 0.861688 0.507439i \(-0.169408\pi\)
0.333915 + 0.942603i \(0.391630\pi\)
\(224\) −2.59808 4.50000i −0.173591 0.300669i
\(225\) 0 0
\(226\) 15.0000 25.9808i 0.997785 1.72821i
\(227\) −10.6146 + 8.90673i −0.704517 + 0.591160i −0.923055 0.384668i \(-0.874316\pi\)
0.218538 + 0.975829i \(0.429871\pi\)
\(228\) 0 0
\(229\) 0.868241 4.92404i 0.0573750 0.325390i −0.942588 0.333957i \(-0.891616\pi\)
0.999963 + 0.00856731i \(0.00272709\pi\)
\(230\) −7.21842 + 40.9377i −0.475968 + 2.69935i
\(231\) 0 0
\(232\) 4.59627 3.85673i 0.301760 0.253206i
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) 6.00000 + 10.3923i 0.391397 + 0.677919i
\(236\) −3.25519 1.18479i −0.211895 0.0771234i
\(237\) 0 0
\(238\) 0 0
\(239\) 6.51038 2.36959i 0.421122 0.153276i −0.122763 0.992436i \(-0.539175\pi\)
0.543884 + 0.839160i \(0.316953\pi\)
\(240\) 0 0
\(241\) −3.29932 18.7113i −0.212528 1.20530i −0.885146 0.465314i \(-0.845941\pi\)
0.672618 0.739990i \(-0.265170\pi\)
\(242\) 1.73205 0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) −3.60921 20.4688i −0.230584 1.30771i
\(246\) 0 0
\(247\) 4.69846 1.71010i 0.298956 0.108811i
\(248\) −6.63414 5.56670i −0.421268 0.353486i
\(249\) 0 0
\(250\) −11.2763 4.10424i −0.713177 0.259575i
\(251\) −10.3923 18.0000i −0.655956 1.13615i −0.981653 0.190676i \(-0.938932\pi\)
0.325697 0.945474i \(-0.394401\pi\)
\(252\) 0 0
\(253\) −12.0000 + 20.7846i −0.754434 + 1.30672i
\(254\) 22.5561 18.9268i 1.41529 1.18757i
\(255\) 0 0
\(256\) 3.29932 18.7113i 0.206207 1.16946i
\(257\) 0.601535 3.41147i 0.0375227 0.212802i −0.960282 0.279033i \(-0.909986\pi\)
0.997804 + 0.0662307i \(0.0210973\pi\)
\(258\) 0 0
\(259\) 0.766044 0.642788i 0.0475997 0.0399409i
\(260\) −8.66025 + 15.0000i −0.537086 + 0.930261i
\(261\) 0 0
\(262\) −3.00000 5.19615i −0.185341 0.321019i
\(263\) 13.0208 + 4.73917i 0.802895 + 0.292230i 0.710685 0.703510i \(-0.248385\pi\)
0.0922092 + 0.995740i \(0.470607\pi\)
\(264\) 0 0
\(265\) −27.5776 23.1404i −1.69408 1.42150i
\(266\) −1.62760 + 0.592396i −0.0997943 + 0.0363221i
\(267\) 0 0
\(268\) 1.38919 + 7.87846i 0.0848580 + 0.481254i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −11.2763 + 4.10424i −0.681227 + 0.247946i
\(275\) −18.5756 15.5868i −1.12015 0.939918i
\(276\) 0 0
\(277\) −15.9748 5.81434i −0.959831 0.349350i −0.185864 0.982576i \(-0.559508\pi\)
−0.773967 + 0.633226i \(0.781731\pi\)
\(278\) 11.2583 + 19.5000i 0.675230 + 1.16953i
\(279\) 0 0
\(280\) −3.00000 + 5.19615i −0.179284 + 0.310530i
\(281\) −10.6146 + 8.90673i −0.633215 + 0.531331i −0.901926 0.431890i \(-0.857847\pi\)
0.268711 + 0.963221i \(0.413402\pi\)
\(282\) 0 0
\(283\) −2.25743 + 12.8025i −0.134190 + 0.761030i 0.841230 + 0.540677i \(0.181832\pi\)
−0.975420 + 0.220353i \(0.929279\pi\)
\(284\) 1.80460 10.2344i 0.107084 0.607301i
\(285\) 0 0
\(286\) −22.9813 + 19.2836i −1.35891 + 1.14026i
\(287\) 1.73205 3.00000i 0.102240 0.177084i
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 19.5311 + 7.10876i 1.14691 + 0.417440i
\(291\) 0 0
\(292\) 1.53209 + 1.28558i 0.0896587 + 0.0752326i
\(293\) −13.0208 + 4.73917i −0.760681 + 0.276865i −0.693093 0.720848i \(-0.743753\pi\)
−0.0675880 + 0.997713i \(0.521530\pi\)
\(294\) 0 0
\(295\) 2.08378 + 11.8177i 0.121322 + 0.688053i
\(296\) 1.73205 0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −6.01535 34.1147i −0.347877 1.97291i
\(300\) 0 0
\(301\) −0.939693 + 0.342020i −0.0541630 + 0.0197137i
\(302\) −21.2292 17.8135i −1.22161 1.02505i
\(303\) 0 0
\(304\) −4.69846 1.71010i −0.269475 0.0980810i
\(305\) −3.46410 6.00000i −0.198354 0.343559i
\(306\) 0 0
\(307\) −10.0000 + 17.3205i −0.570730 + 0.988534i 0.425761 + 0.904836i \(0.360006\pi\)
−0.996491 + 0.0836980i \(0.973327\pi\)
\(308\) 2.65366 2.22668i 0.151206 0.126877i
\(309\) 0 0
\(310\) 5.20945 29.5442i 0.295877 1.67800i
\(311\) 2.40614 13.6459i 0.136440 0.773788i −0.837407 0.546580i \(-0.815929\pi\)
0.973846 0.227208i \(-0.0729596\pi\)
\(312\) 0 0
\(313\) −0.766044 + 0.642788i −0.0432994 + 0.0363325i −0.664181 0.747572i \(-0.731219\pi\)
0.620881 + 0.783905i \(0.286775\pi\)
\(314\) 11.2583 19.5000i 0.635344 1.10045i
\(315\) 0 0
\(316\) 0.500000 + 0.866025i 0.0281272 + 0.0487177i
\(317\) −26.0415 9.47834i −1.46264 0.532357i −0.516547 0.856259i \(-0.672783\pi\)
−0.946091 + 0.323902i \(0.895005\pi\)
\(318\) 0 0
\(319\) 9.19253 + 7.71345i 0.514683 + 0.431870i
\(320\) −3.25519 + 1.18479i −0.181971 + 0.0662319i
\(321\) 0 0
\(322\) 2.08378 + 11.8177i 0.116124 + 0.658574i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) −0.300767 1.70574i −0.0166580 0.0944720i
\(327\) 0 0
\(328\) 5.63816 2.05212i 0.311315 0.113309i
\(329\) 2.65366 + 2.22668i 0.146301 + 0.122761i
\(330\) 0 0
\(331\) 17.8542 + 6.49838i 0.981353 + 0.357183i 0.782366 0.622819i \(-0.214013\pi\)
0.198987 + 0.980002i \(0.436235\pi\)
\(332\) −3.46410 6.00000i −0.190117 0.329293i
\(333\) 0 0
\(334\) −21.0000 + 36.3731i −1.14907 + 1.99025i
\(335\) 21.2292 17.8135i 1.15988 0.973253i
\(336\) 0 0
\(337\) 0.868241 4.92404i 0.0472961 0.268229i −0.951985 0.306145i \(-0.900961\pi\)
0.999281 + 0.0379157i \(0.0120718\pi\)
\(338\) 3.60921 20.4688i 0.196315 1.11336i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.66025 15.0000i 0.468979 0.812296i
\(342\) 0 0
\(343\) −6.50000 11.2583i −0.350967 0.607893i
\(344\) −1.62760 0.592396i −0.0877541 0.0319399i
\(345\) 0 0
\(346\) −18.3851 15.4269i −0.988387 0.829355i
\(347\) −22.7863 + 8.29355i −1.22323 + 0.445221i −0.871275 0.490794i \(-0.836707\pi\)
−0.351959 + 0.936015i \(0.614484\pi\)
\(348\) 0 0
\(349\) −0.173648 0.984808i −0.00929517 0.0527156i 0.979807 0.199944i \(-0.0640759\pi\)
−0.989103 + 0.147228i \(0.952965\pi\)
\(350\) −12.1244 −0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) 3.00767 + 17.0574i 0.160082 + 0.907872i 0.953991 + 0.299835i \(0.0969317\pi\)
−0.793909 + 0.608037i \(0.791957\pi\)
\(354\) 0 0
\(355\) −33.8289 + 12.3127i −1.79545 + 0.653492i
\(356\) 7.96097 + 6.68004i 0.421930 + 0.354042i
\(357\) 0 0
\(358\) 33.8289 + 12.3127i 1.78791 + 0.650748i
\(359\) −15.5885 27.0000i −0.822727 1.42501i −0.903644 0.428285i \(-0.859118\pi\)
0.0809166 0.996721i \(-0.474215\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 22.5561 18.9268i 1.18552 0.994770i
\(363\) 0 0
\(364\) −0.868241 + 4.92404i −0.0455082 + 0.258090i
\(365\) 1.20307 6.82295i 0.0629716 0.357129i
\(366\) 0 0
\(367\) −12.2567 + 10.2846i −0.639795 + 0.536852i −0.903955 0.427627i \(-0.859350\pi\)
0.264160 + 0.964479i \(0.414905\pi\)
\(368\) −17.3205 + 30.0000i −0.902894 + 1.56386i
\(369\) 0 0
\(370\) 3.00000 + 5.19615i 0.155963 + 0.270135i
\(371\) −9.76557 3.55438i −0.507003 0.184534i
\(372\) 0 0
\(373\) 17.6190 + 14.7841i 0.912278 + 0.765492i 0.972551 0.232689i \(-0.0747526\pi\)
−0.0602727 + 0.998182i \(0.519197\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.04189 + 5.90885i 0.0537313 + 0.304725i
\(377\) −17.3205 −0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) −0.601535 3.41147i −0.0308581 0.175005i
\(381\) 0 0
\(382\) −11.2763 + 4.10424i −0.576946 + 0.209991i
\(383\) −13.2683 11.1334i −0.677977 0.568891i 0.237437 0.971403i \(-0.423693\pi\)
−0.915415 + 0.402512i \(0.868137\pi\)
\(384\) 0 0
\(385\) −11.2763 4.10424i −0.574694 0.209172i
\(386\) 8.66025 + 15.0000i 0.440795 + 0.763480i
\(387\) 0 0
\(388\) −8.50000 + 14.7224i −0.431522 + 0.747418i
\(389\) 5.30731 4.45336i 0.269091 0.225794i −0.498250 0.867034i \(-0.666024\pi\)
0.767341 + 0.641239i \(0.221579\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.80460 10.2344i 0.0911463 0.516916i
\(393\) 0 0
\(394\) −13.7888 + 11.5702i −0.694670 + 0.582897i
\(395\) 1.73205 3.00000i 0.0871489 0.150946i
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.0250943 + 0.0434646i 0.878300 0.478110i \(-0.158678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 30.9243 + 11.2555i 1.55010 + 0.564189i
\(399\) 0 0
\(400\) −26.8116 22.4976i −1.34058 1.12488i
\(401\) −3.25519 + 1.18479i −0.162556 + 0.0591657i −0.422017 0.906588i \(-0.638678\pi\)
0.259460 + 0.965754i \(0.416455\pi\)
\(402\) 0 0
\(403\) 4.34120 + 24.6202i 0.216251 + 1.22642i
\(404\) −13.8564 −0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 0.601535 + 3.41147i 0.0298170 + 0.169100i
\(408\) 0 0
\(409\) −4.69846 + 1.71010i −0.232324 + 0.0845590i −0.455559 0.890206i \(-0.650561\pi\)
0.223235 + 0.974765i \(0.428338\pi\)
\(410\) 15.9219 + 13.3601i 0.786328 + 0.659808i
\(411\) 0 0
\(412\) −7.51754 2.73616i −0.370363 0.134801i
\(413\) 1.73205 + 3.00000i 0.0852286 + 0.147620i
\(414\) 0 0
\(415\) −12.0000 + 20.7846i −0.589057 + 1.02028i
\(416\) −19.9024 + 16.7001i −0.975796 + 0.818790i
\(417\) 0 0
\(418\) 1.04189 5.90885i 0.0509605 0.289011i
\(419\) −6.61688 + 37.5262i −0.323256 + 1.83328i 0.198402 + 0.980121i \(0.436425\pi\)
−0.521658 + 0.853155i \(0.674686\pi\)
\(420\) 0 0
\(421\) −14.5548 + 12.2130i −0.709360 + 0.595223i −0.924419 0.381377i \(-0.875450\pi\)
0.215060 + 0.976601i \(0.431005\pi\)
\(422\) −4.33013 + 7.50000i −0.210787 + 0.365094i
\(423\) 0 0
\(424\) −9.00000 15.5885i −0.437079 0.757042i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.53209 1.28558i −0.0741430 0.0622133i
\(428\) −9.76557 + 3.55438i −0.472037 + 0.171807i
\(429\) 0 0
\(430\) −1.04189 5.90885i −0.0502444 0.284950i
\(431\) −20.7846 −1.00116 −0.500580 0.865690i \(-0.666880\pi\)
−0.500580 + 0.865690i \(0.666880\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) −1.50384 8.52869i −0.0721865 0.409390i
\(435\) 0 0
\(436\) −15.9748 + 5.81434i −0.765053 + 0.278457i
\(437\) 5.30731 + 4.45336i 0.253883 + 0.213033i
\(438\) 0 0
\(439\) −18.7939 6.84040i −0.896982 0.326475i −0.147939 0.988996i \(-0.547264\pi\)
−0.749043 + 0.662522i \(0.769486\pi\)
\(440\) −10.3923 18.0000i −0.495434 0.858116i
\(441\) 0 0
\(442\) 0 0
\(443\) −10.6146 + 8.90673i −0.504316 + 0.423171i −0.859124 0.511768i \(-0.828991\pi\)
0.354808 + 0.934939i \(0.384546\pi\)
\(444\) 0 0
\(445\) 6.25133 35.4531i 0.296342 1.68064i
\(446\) −5.71458 + 32.4090i −0.270593 + 1.53461i
\(447\) 0 0
\(448\) −0.766044 + 0.642788i −0.0361922 + 0.0303689i
\(449\) 5.19615 9.00000i 0.245222 0.424736i −0.716972 0.697102i \(-0.754473\pi\)
0.962194 + 0.272365i \(0.0878059\pi\)
\(450\) 0 0
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) 16.2760 + 5.92396i 0.765556 + 0.278640i
\(453\) 0 0
\(454\) −18.3851 15.4269i −0.862854 0.724020i
\(455\) 16.2760 5.92396i 0.763028 0.277720i
\(456\) 0 0
\(457\) 2.95202 + 16.7417i 0.138090 + 0.783145i 0.972658 + 0.232241i \(0.0746059\pi\)
−0.834569 + 0.550904i \(0.814283\pi\)
\(458\) 8.66025 0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) 4.81228 + 27.2918i 0.224130 + 1.27111i 0.864341 + 0.502906i \(0.167736\pi\)
−0.640211 + 0.768199i \(0.721153\pi\)
\(462\) 0 0
\(463\) 29.1305 10.6026i 1.35381 0.492746i 0.439674 0.898158i \(-0.355094\pi\)
0.914134 + 0.405412i \(0.132872\pi\)
\(464\) 13.2683 + 11.1334i 0.615964 + 0.516855i
\(465\) 0 0
\(466\) 0 0
\(467\) 5.19615 + 9.00000i 0.240449 + 0.416470i 0.960842 0.277096i \(-0.0893719\pi\)
−0.720393 + 0.693566i \(0.756039\pi\)
\(468\) 0 0
\(469\) 4.00000 6.92820i 0.184703 0.319915i
\(470\) −15.9219 + 13.3601i −0.734424 + 0.616255i
\(471\) 0 0
\(472\) −1.04189 + 5.90885i −0.0479568 + 0.271977i
\(473\) 0.601535 3.41147i 0.0276586 0.156860i
\(474\) 0 0
\(475\) −5.36231 + 4.49951i −0.246040 + 0.206452i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) 13.0208 + 4.73917i 0.594934 + 0.216538i 0.621898 0.783098i \(-0.286362\pi\)
−0.0269642 + 0.999636i \(0.508584\pi\)
\(480\) 0 0
\(481\) −3.83022 3.21394i −0.174643 0.146543i
\(482\) 30.9243 11.2555i 1.40856 0.512675i
\(483\) 0 0
\(484\) 0.173648 + 0.984808i 0.00789310 + 0.0447640i
\(485\) 58.8897 2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) −0.601535 3.41147i −0.0272302 0.154430i
\(489\) 0 0
\(490\) 33.8289 12.3127i 1.52824 0.556232i
\(491\) −29.1902 24.4935i −1.31734 1.10538i −0.986863 0.161561i \(-0.948347\pi\)
−0.330473 0.943815i \(-0.607208\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.33013 + 7.50000i 0.194822 + 0.337441i
\(495\) 0 0
\(496\) 12.5000 21.6506i 0.561267 0.972142i
\(497\) −7.96097 + 6.68004i −0.357098 + 0.299641i
\(498\) 0 0
\(499\) −4.86215 + 27.5746i −0.217660 + 1.23441i 0.658571 + 0.752518i \(0.271161\pi\)
−0.876231 + 0.481891i \(0.839950\pi\)
\(500\) 1.20307 6.82295i 0.0538029 0.305132i
\(501\) 0 0
\(502\) 27.5776 23.1404i 1.23085 1.03280i
\(503\) −20.7846 + 36.0000i −0.926740 + 1.60516i −0.138001 + 0.990432i \(0.544068\pi\)
−0.788739 + 0.614729i \(0.789266\pi\)
\(504\) 0 0
\(505\) 24.0000 + 41.5692i 1.06799 + 1.84981i
\(506\) −39.0623 14.2175i −1.73653 0.632045i
\(507\) 0 0
\(508\) 13.0228 + 10.9274i 0.577791 + 0.484825i
\(509\) 26.0415 9.47834i 1.15427 0.420120i 0.307223 0.951638i \(-0.400600\pi\)
0.847047 + 0.531517i \(0.178378\pi\)
\(510\) 0 0
\(511\) −0.347296 1.96962i −0.0153635 0.0871307i
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 4.81228 + 27.2918i 0.212054 + 1.20262i
\(516\) 0 0
\(517\) −11.2763 + 4.10424i −0.495932 + 0.180504i
\(518\) 1.32683 + 1.11334i 0.0582975 + 0.0489174i
\(519\) 0 0
\(520\) 28.1908 + 10.2606i 1.23625 + 0.449957i
\(521\) 10.3923 + 18.0000i 0.455295 + 0.788594i 0.998705 0.0508731i \(-0.0162004\pi\)
−0.543410 + 0.839467i \(0.682867\pi\)
\(522\) 0 0
\(523\) −10.0000 + 17.3205i −0.437269 + 0.757373i −0.997478 0.0709788i \(-0.977388\pi\)
0.560208 + 0.828352i \(0.310721\pi\)
\(524\) 2.65366 2.22668i 0.115925 0.0972730i
\(525\) 0 0
\(526\) −4.16756 + 23.6354i −0.181714 + 1.03055i
\(527\) 0 0
\(528\) 0 0
\(529\) 19.1511 16.0697i 0.832657 0.698682i
\(530\) 31.1769 54.0000i 1.35424 2.34561i
\(531\) 0 0
\(532\) −0.500000 0.866025i −0.0216777 0.0375470i
\(533\) −16.2760 5.92396i −0.704990 0.256595i
\(534\) 0 0
\(535\) 27.5776 + 23.1404i 1.19228 + 1.00044i
\(536\) 13.0208 4.73917i 0.562411 0.204701i
\(537\) 0 0
\(538\) 0 0
\(539\) 20.7846 0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) −4.81228 27.2918i −0.206705 1.17228i
\(543\) 0 0
\(544\) 0 0
\(545\) 45.1121 + 37.8536i 1.93239 + 1.62147i
\(546\) 0 0
\(547\) −18.7939 6.84040i −0.803567 0.292475i −0.0926033 0.995703i \(-0.529519\pi\)
−0.710964 + 0.703229i \(0.751741\pi\)
\(548\) −3.46410 6.00000i −0.147979 0.256307i
\(549\) 0 0
\(550\) 21.0000 36.3731i 0.895443 1.55095i
\(551\) 2.65366 2.22668i 0.113050 0.0948598i
\(552\) 0 0
\(553\) 0.173648 0.984808i 0.00738427 0.0418783i
\(554\) 5.11305 28.9975i 0.217233 1.23199i
\(555\) 0 0
\(556\) −9.95858 + 8.35624i −0.422338 + 0.354383i
\(557\) −5.19615 + 9.00000i −0.220168 + 0.381342i −0.954859 0.297060i \(-0.903994\pi\)
0.734691 + 0.678402i \(0.237327\pi\)
\(558\) 0 0
\(559\) 2.50000 + 4.33013i 0.105739 + 0.183145i
\(560\) −16.2760 5.92396i −0.687785 0.250333i
\(561\) 0 0
\(562\) −18.3851 15.4269i −0.775527 0.650745i
\(563\) −32.5519 + 11.8479i −1.37190 + 0.499331i −0.919712 0.392593i \(-0.871578\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(564\) 0 0
\(565\) −10.4189 59.0885i −0.438326 2.48587i
\(566\) −22.5167 −0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) −4.21074 23.8803i −0.176524 1.00112i −0.936371 0.351013i \(-0.885837\pi\)
0.759847 0.650102i \(-0.225274\pi\)
\(570\) 0 0
\(571\) −38.5274 + 14.0228i −1.61232 + 0.586837i −0.981897 0.189414i \(-0.939341\pi\)
−0.630424 + 0.776251i \(0.717119\pi\)
\(572\) −13.2683 11.1334i −0.554775 0.465511i
\(573\) 0 0
\(574\) 5.63816 + 2.05212i 0.235332 + 0.0856539i
\(575\) 24.2487 + 42.0000i 1.01124 + 1.75152i
\(576\) 0 0
\(577\) 17.0000 29.4449i 0.707719 1.22581i −0.257982 0.966150i \(-0.583058\pi\)
0.965701 0.259656i \(-0.0836092\pi\)
\(578\) −22.5561 + 18.9268i −0.938209 + 0.787251i
\(579\) 0 0
\(580\) −2.08378 + 11.8177i −0.0865242 + 0.490703i
\(581\) −1.20307 + 6.82295i −0.0499117 + 0.283064i
\(582\) 0 0
\(583\) 27.5776 23.1404i 1.14215 0.958376i
\(584\) 1.73205 3.00000i 0.0716728 0.124141i
\(585\) 0 0
\(586\) −12.0000 20.7846i −0.495715 0.858604i
\(587\) −6.51038 2.36959i −0.268712 0.0978032i 0.204150 0.978940i \(-0.434557\pi\)
−0.472862 + 0.881136i \(0.656779\pi\)
\(588\) 0 0
\(589\) −3.83022 3.21394i −0.157822 0.132428i
\(590\) −19.5311 + 7.10876i −0.804084 + 0.292663i
\(591\) 0 0
\(592\) 0.868241 + 4.92404i 0.0356845 + 0.202377i
\(593\) 20.7846 0.853522 0.426761 0.904365i \(-0.359655\pi\)
0.426761 + 0.904365i \(0.359655\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.20307 6.82295i −0.0492797 0.279479i
\(597\) 0 0
\(598\) 56.3816 20.5212i 2.30561 0.839175i
\(599\) 18.5756 + 15.5868i 0.758978 + 0.636858i 0.937861 0.347012i \(-0.112804\pi\)
−0.178883 + 0.983870i \(0.557248\pi\)
\(600\) 0 0
\(601\) −32.8892 11.9707i −1.34158 0.488295i −0.431270 0.902223i \(-0.641934\pi\)
−0.910310 + 0.413928i \(0.864157\pi\)
\(602\) −0.866025 1.50000i −0.0352966 0.0611354i
\(603\) 0 0
\(604\) 8.00000 13.8564i 0.325515 0.563809i
\(605\) 2.65366 2.22668i 0.107886 0.0905275i
\(606\) 0 0
\(607\) −2.25743 + 12.8025i −0.0916261 + 0.519637i 0.904103 + 0.427315i \(0.140540\pi\)
−0.995729 + 0.0923229i \(0.970571\pi\)
\(608\) 0.902302 5.11721i 0.0365932 0.207530i
\(609\) 0 0
\(610\) 9.19253 7.71345i 0.372195 0.312309i
\(611\) 8.66025 15.0000i 0.350356 0.606835i
\(612\) 0 0
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) −32.5519 11.8479i −1.31369 0.478143i
\(615\) 0 0
\(616\) −4.59627 3.85673i −0.185189 0.155392i
\(617\) 6.51038 2.36959i 0.262098 0.0953959i −0.207629 0.978208i \(-0.566575\pi\)
0.469727 + 0.882812i \(0.344352\pi\)
\(618\) 0 0
\(619\) 3.47296 + 19.6962i 0.139590 + 0.791655i 0.971553 + 0.236823i \(0.0761063\pi\)
−0.831963 + 0.554832i \(0.812783\pi\)
\(620\) 17.3205 0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −1.80460 10.2344i −0.0723000 0.410033i
\(624\) 0 0
\(625\) 10.3366 3.76222i 0.413465 0.150489i
\(626\) −1.32683 1.11334i −0.0530307 0.0444980i
\(627\) 0 0
\(628\) 12.2160 + 4.44626i 0.487472 + 0.177425i
\(629\) 0 0
\(630\) 0 0
\(631\) −8.50000 + 14.7224i −0.338380 + 0.586091i −0.984128 0.177459i \(-0.943212\pi\)
0.645748 + 0.763550i \(0.276545\pi\)
\(632\) 1.32683 1.11334i 0.0527784 0.0442863i
\(633\) 0 0
\(634\) 8.33511 47.2708i 0.331030 1.87736i
\(635\) 10.2261 57.9951i 0.405810 2.30146i
\(636\) 0 0
\(637\) −22.9813 + 19.2836i −0.910554 + 0.764045i
\(638\) −10.3923 + 18.0000i −0.411435 + 0.712627i
\(639\) 0 0
\(640\) −21.0000 36.3731i −0.830098 1.43777i
\(641\) 42.3175 + 15.4023i 1.67144 + 0.608354i 0.992098 0.125467i \(-0.0400430\pi\)
0.679342 + 0.733822i \(0.262265\pi\)
\(642\) 0 0
\(643\) 33.7060 + 28.2827i 1.32923 + 1.11536i 0.984256 + 0.176748i \(0.0565577\pi\)
0.344977 + 0.938611i \(0.387887\pi\)
\(644\) −6.51038 + 2.36959i −0.256545 + 0.0933747i
\(645\) 0 0
\(646\) 0 0
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 10.5269 + 59.7008i 0.412897 + 2.34166i
\(651\) 0 0
\(652\) 0.939693 0.342020i 0.0368012 0.0133945i
\(653\) −13.2683 11.1334i −0.519228 0.435684i 0.345135 0.938553i \(-0.387833\pi\)
−0.864362 + 0.502869i \(0.832278\pi\)
\(654\) 0 0
\(655\) −11.2763 4.10424i −0.440602 0.160366i
\(656\) 8.66025 + 15.0000i 0.338126 + 0.585652i
\(657\) 0 0
\(658\) −3.00000 + 5.19615i −0.116952 + 0.202567i
\(659\) 21.2292 17.8135i 0.826974 0.693914i −0.127620 0.991823i \(-0.540734\pi\)
0.954594 + 0.297910i \(0.0962894\pi\)
\(660\) 0 0
\(661\) −1.73648 + 9.84808i −0.0675413 + 0.383046i 0.932234 + 0.361856i \(0.117857\pi\)
−0.999775 + 0.0211902i \(0.993254\pi\)
\(662\) −5.71458 + 32.4090i −0.222104 + 1.25961i
\(663\) 0 0
\(664\) −9.19253 + 7.71345i −0.356739 + 0.299340i
\(665\) −1.73205 + 3.00000i −0.0671660 + 0.116335i
\(666\) 0 0
\(667\) −12.0000 20.7846i −0.464642 0.804783i
\(668\) −22.7863 8.29355i −0.881630 0.320887i
\(669\) 0 0
\(670\) 36.7701 + 30.8538i 1.42055 + 1.19199i
\(671\) 6.51038 2.36959i 0.251330 0.0914768i
\(672\) 0 0
\(673\) −6.42498 36.4379i −0.247665 1.40458i −0.814221 0.580554i \(-0.802836\pi\)
0.566557 0.824023i \(-0.308275\pi\)
\(674\) 8.66025 0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 3.00767 + 17.0574i 0.115594 + 0.655568i 0.986454 + 0.164037i \(0.0524516\pi\)
−0.870860 + 0.491531i \(0.836437\pi\)
\(678\) 0 0
\(679\) 15.9748 5.81434i 0.613056 0.223134i
\(680\) 0 0
\(681\) 0 0
\(682\) 28.1908 + 10.2606i 1.07948 + 0.392899i
\(683\) −20.7846 36.0000i −0.795301 1.37750i −0.922648 0.385643i \(-0.873979\pi\)
0.127347 0.991858i \(-0.459354\pi\)
\(684\) 0 0
\(685\) −12.0000 + 20.7846i −0.458496 + 0.794139i
\(686\) 17.2488 14.4734i 0.658561 0.552598i
\(687\) 0 0
\(688\) 0.868241 4.92404i 0.0331014 0.187727i
\(689\) −9.02302 + 51.1721i −0.343750 + 1.94950i
\(690\) 0 0
\(691\) 13.0228 10.9274i 0.495409 0.415697i −0.360551 0.932739i \(-0.617411\pi\)
0.855960 + 0.517042i \(0.172967\pi\)
\(692\) 6.92820 12.0000i 0.263371 0.456172i
\(693\) 0 0
\(694\) −21.0000 36.3731i −0.797149 1.38070i
\(695\) 42.3175 + 15.4023i 1.60519 + 0.584243i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.62760 0.592396i 0.0616054 0.0224225i
\(699\) 0 0
\(700\) −1.21554 6.89365i −0.0459430 0.260556i
\(701\) −41.5692 −1.57005 −0.785024 0.619466i \(-0.787349\pi\)
−0.785024 + 0.619466i \(0.787349\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) −0.601535 3.41147i −0.0226712 0.128575i
\(705\) 0 0
\(706\) −28.1908 + 10.2606i −1.06097 + 0.386163i
\(707\) 10.6146 + 8.90673i 0.399204 + 0.334972i
\(708\) 0 0
\(709\) 17.8542 + 6.49838i 0.670527 + 0.244052i 0.654775 0.755824i \(-0.272763\pi\)
0.0157523 + 0.999876i \(0.494986\pi\)
\(710\) −31.1769 54.0000i −1.17005 2.02658i
\(711\) 0 0
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) −26.5366 + 22.2668i −0.993802 + 0.833899i
\(714\) 0 0
\(715\) −10.4189 + 59.0885i −0.389644 + 2.20978i
\(716\) −3.60921 + 20.4688i −0.134882 + 0.764957i
\(717\) 0 0
\(718\) 41.3664 34.7105i 1.54378 1.29539i
\(719\) −5.19615 + 9.00000i −0.193784 + 0.335643i −0.946501 0.322700i \(-0.895409\pi\)
0.752717 + 0.658344i \(0.228743\pi\)
\(720\) 0 0
\(721\) 4.00000 + 6.92820i 0.148968 + 0.258020i
\(722\) 29.2967 + 10.6631i 1.09031 + 0.396841i
\(723\) 0 0
\(724\) 13.0228 + 10.9274i 0.483987 + 0.406113i
\(725\) 22.7863 8.29355i 0.846263 0.308015i
\(726\) 0 0
\(727\) −2.77837 15.7569i −0.103044 0.584392i −0.991984 0.126367i \(-0.959668\pi\)
0.888939 0.458025i \(-0.151443\pi\)
\(728\) 8.66025 0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) −38.5274 + 14.0228i −1.42304 + 0.517945i −0.934929 0.354835i \(-0.884537\pi\)
−0.488113 + 0.872780i \(0.662315\pi\)
\(734\) −21.2292 17.8135i −0.783586 0.657507i
\(735\) 0 0
\(736\) −33.8289 12.3127i −1.24695 0.453853i
\(737\) 13.8564 + 24.0000i 0.510407 + 0.884051i
\(738\) 0 0
\(739\) 9.50000 16.4545i 0.349463 0.605288i −0.636691 0.771119i \(-0.719697\pi\)
0.986154 + 0.165831i \(0.0530307\pi\)
\(740\) −2.65366 + 2.22668i −0.0975503 + 0.0818544i
\(741\) 0 0
\(742\) 3.12567 17.7265i 0.114747 0.650762i
\(743\) −1.20307 + 6.82295i −0.0441364 + 0.250310i −0.998891 0.0470853i \(-0.985007\pi\)
0.954755 + 0.297395i \(0.0961178\pi\)
\(744\) 0 0
\(745\) −18.3851 + 15.4269i −0.673577 + 0.565198i
\(746\) −19.9186 + 34.5000i −0.729271 + 1.26313i
\(747\) 0 0
\(748\) 0 0
\(749\) 9.76557 + 3.55438i 0.356826 + 0.129874i
\(750\) 0 0
\(751\) 3.83022 + 3.21394i 0.139767 + 0.117278i 0.709991 0.704211i \(-0.248699\pi\)
−0.570224 + 0.821489i \(0.693144\pi\)
\(752\) −16.2760 + 5.92396i −0.593523 + 0.216025i
\(753\) 0 0
\(754\) −5.20945 29.5442i −0.189717 1.07594i
\(755\) −55.4256 −2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −5.71458 32.4090i −0.207563 1.17715i
\(759\) 0 0
\(760\) −5.63816 + 2.05212i −0.204517 + 0.0744382i
\(761\) −21.2292 17.8135i −0.769560 0.645737i 0.171037 0.985265i \(-0.445288\pi\)
−0.940596 + 0.339528i \(0.889733\pi\)
\(762\) 0 0
\(763\) 15.9748 + 5.81434i 0.578326 + 0.210493i
\(764\) −3.46410 6.00000i −0.125327 0.217072i
\(765\) 0 0
\(766\) 15.0000 25.9808i 0.541972 0.938723i
\(767\) 13.2683 11.1334i 0.479090 0.402004i
\(768\) 0 0
\(769\) −2.25743 + 12.8025i −0.0814049 + 0.461670i 0.916670 + 0.399646i \(0.130867\pi\)
−0.998075 + 0.0620244i \(0.980244\pi\)
\(770\) 3.60921 20.4688i 0.130067 0.737646i
\(771\) 0 0
\(772\) −7.66044 + 6.42788i −0.275705 + 0.231344i
\(773\) −10.3923 + 18.0000i −0.373785 + 0.647415i −0.990144 0.140050i \(-0.955274\pi\)
0.616359 + 0.787465i \(0.288607\pi\)
\(774\) 0 0
\(775\) −17.5000 30.3109i −0.628619 1.08880i
\(776\) 27.6691 + 10.0707i 0.993264 + 0.361518i
\(777\) 0 0
\(778\) 9.19253 + 7.71345i 0.329568 + 0.276541i
\(779\) 3.25519 1.18479i 0.116629 0.0424496i
\(780\) 0 0
\(781\) −6.25133 35.4531i −0.223690 1.26861i
\(782\) 0 0
\(783\) 0 0