Properties

Label 729.2.e.n.649.2
Level $729$
Weight $2$
Character 729.649
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 649.2
Root \(-0.984808 + 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 729.649
Dual form 729.2.e.n.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.300767 - 1.70574i) q^{2} +(-0.939693 - 0.342020i) q^{4} +(2.65366 - 2.22668i) q^{5} +(0.939693 - 0.342020i) q^{7} +(0.866025 - 1.50000i) q^{8} +(-3.00000 - 5.19615i) q^{10} +(-2.65366 - 2.22668i) q^{11} +(0.868241 + 4.92404i) q^{13} +(-0.300767 - 1.70574i) q^{14} +(-3.83022 - 3.21394i) q^{16} +(0.500000 - 0.866025i) q^{19} +(-3.25519 + 1.18479i) q^{20} +(-4.59627 + 3.85673i) q^{22} +(6.51038 + 2.36959i) q^{23} +(1.21554 - 6.89365i) q^{25} +8.66025 q^{26} -1.00000 q^{28} +(-0.601535 + 3.41147i) q^{29} +(-4.69846 - 1.71010i) q^{31} +(-3.98048 + 3.34002i) q^{32} +(1.73205 - 3.00000i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-1.32683 - 1.11334i) q^{38} +(-1.04189 - 5.90885i) q^{40} +(0.601535 + 3.41147i) q^{41} +(-0.766044 - 0.642788i) q^{43} +(1.73205 + 3.00000i) q^{44} +(6.00000 - 10.3923i) q^{46} +(3.25519 - 1.18479i) q^{47} +(-4.59627 + 3.85673i) q^{49} +(-11.3932 - 4.14677i) q^{50} +(0.868241 - 4.92404i) q^{52} -10.3923 q^{53} -12.0000 q^{55} +(0.300767 - 1.70574i) q^{56} +(5.63816 + 2.05212i) q^{58} +(2.65366 - 2.22668i) q^{59} +(-1.87939 + 0.684040i) q^{61} +(-4.33013 + 7.50000i) q^{62} +(-0.500000 - 0.866025i) q^{64} +(13.2683 + 11.1334i) q^{65} +(1.38919 + 7.87846i) q^{67} +(-4.59627 - 3.85673i) q^{70} +(-5.19615 - 9.00000i) q^{71} +(-1.00000 + 1.73205i) q^{73} +(1.62760 - 0.592396i) q^{74} +(-0.766044 + 0.642788i) q^{76} +(-3.25519 - 1.18479i) q^{77} +(-0.173648 + 0.984808i) q^{79} -17.3205 q^{80} +6.00000 q^{82} +(1.20307 - 6.82295i) q^{83} +(-1.32683 + 1.11334i) q^{86} +(-5.63816 + 2.05212i) q^{88} +(-5.19615 + 9.00000i) q^{89} +(2.50000 + 4.33013i) q^{91} +(-5.30731 - 4.45336i) q^{92} +(-1.04189 - 5.90885i) q^{94} +(-0.601535 - 3.41147i) q^{95} +(13.0228 + 10.9274i) q^{97} +(5.19615 + 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{10} + 6 q^{19} - 12 q^{28} + 6 q^{37} + 72 q^{46} - 144 q^{55} - 6 q^{64} - 12 q^{73} + 72 q^{82} + 30 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.300767 1.70574i 0.212675 1.20614i −0.672222 0.740350i \(-0.734660\pi\)
0.884896 0.465788i \(-0.154229\pi\)
\(3\) 0 0
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) 2.65366 2.22668i 1.18675 0.995802i 0.186841 0.982390i \(-0.440175\pi\)
0.999910 0.0134121i \(-0.00426933\pi\)
\(6\) 0 0
\(7\) 0.939693 0.342020i 0.355170 0.129271i −0.158272 0.987396i \(-0.550592\pi\)
0.513442 + 0.858124i \(0.328370\pi\)
\(8\) 0.866025 1.50000i 0.306186 0.530330i
\(9\) 0 0
\(10\) −3.00000 5.19615i −0.948683 1.64317i
\(11\) −2.65366 2.22668i −0.800107 0.671370i 0.148117 0.988970i \(-0.452679\pi\)
−0.948225 + 0.317600i \(0.897123\pi\)
\(12\) 0 0
\(13\) 0.868241 + 4.92404i 0.240807 + 1.36568i 0.830033 + 0.557714i \(0.188322\pi\)
−0.589226 + 0.807968i \(0.700567\pi\)
\(14\) −0.300767 1.70574i −0.0803835 0.455877i
\(15\) 0 0
\(16\) −3.83022 3.21394i −0.957556 0.803485i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −3.25519 + 1.18479i −0.727883 + 0.264928i
\(21\) 0 0
\(22\) −4.59627 + 3.85673i −0.979927 + 0.822257i
\(23\) 6.51038 + 2.36959i 1.35751 + 0.494093i 0.915283 0.402811i \(-0.131967\pi\)
0.442225 + 0.896904i \(0.354189\pi\)
\(24\) 0 0
\(25\) 1.21554 6.89365i 0.243107 1.37873i
\(26\) 8.66025 1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −0.601535 + 3.41147i −0.111702 + 0.633495i 0.876628 + 0.481169i \(0.159788\pi\)
−0.988330 + 0.152326i \(0.951324\pi\)
\(30\) 0 0
\(31\) −4.69846 1.71010i −0.843869 0.307143i −0.116331 0.993211i \(-0.537113\pi\)
−0.727538 + 0.686067i \(0.759336\pi\)
\(32\) −3.98048 + 3.34002i −0.703657 + 0.590438i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.73205 3.00000i 0.292770 0.507093i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −1.32683 1.11334i −0.215240 0.180608i
\(39\) 0 0
\(40\) −1.04189 5.90885i −0.164737 0.934271i
\(41\) 0.601535 + 3.41147i 0.0939440 + 0.532783i 0.995066 + 0.0992168i \(0.0316337\pi\)
−0.901122 + 0.433566i \(0.857255\pi\)
\(42\) 0 0
\(43\) −0.766044 0.642788i −0.116821 0.0980242i 0.582506 0.812826i \(-0.302072\pi\)
−0.699327 + 0.714802i \(0.746517\pi\)
\(44\) 1.73205 + 3.00000i 0.261116 + 0.452267i
\(45\) 0 0
\(46\) 6.00000 10.3923i 0.884652 1.53226i
\(47\) 3.25519 1.18479i 0.474818 0.172820i −0.0935154 0.995618i \(-0.529810\pi\)
0.568334 + 0.822798i \(0.307588\pi\)
\(48\) 0 0
\(49\) −4.59627 + 3.85673i −0.656610 + 0.550961i
\(50\) −11.3932 4.14677i −1.61124 0.586442i
\(51\) 0 0
\(52\) 0.868241 4.92404i 0.120403 0.682841i
\(53\) −10.3923 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0.300767 1.70574i 0.0401917 0.227939i
\(57\) 0 0
\(58\) 5.63816 + 2.05212i 0.740326 + 0.269457i
\(59\) 2.65366 2.22668i 0.345477 0.289889i −0.453494 0.891259i \(-0.649823\pi\)
0.798971 + 0.601370i \(0.205378\pi\)
\(60\) 0 0
\(61\) −1.87939 + 0.684040i −0.240631 + 0.0875824i −0.459520 0.888167i \(-0.651979\pi\)
0.218890 + 0.975750i \(0.429756\pi\)
\(62\) −4.33013 + 7.50000i −0.549927 + 0.952501i
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 13.2683 + 11.1334i 1.64573 + 1.38093i
\(66\) 0 0
\(67\) 1.38919 + 7.87846i 0.169716 + 0.962507i 0.944068 + 0.329752i \(0.106965\pi\)
−0.774352 + 0.632756i \(0.781924\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −4.59627 3.85673i −0.549359 0.460967i
\(71\) −5.19615 9.00000i −0.616670 1.06810i −0.990089 0.140441i \(-0.955148\pi\)
0.373419 0.927663i \(-0.378185\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 1.62760 0.592396i 0.189204 0.0688647i
\(75\) 0 0
\(76\) −0.766044 + 0.642788i −0.0878713 + 0.0737328i
\(77\) −3.25519 1.18479i −0.370963 0.135020i
\(78\) 0 0
\(79\) −0.173648 + 0.984808i −0.0195369 + 0.110800i −0.993017 0.117973i \(-0.962360\pi\)
0.973480 + 0.228773i \(0.0734713\pi\)
\(80\) −17.3205 −1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 1.20307 6.82295i 0.132054 0.748916i −0.844812 0.535063i \(-0.820288\pi\)
0.976866 0.213852i \(-0.0686012\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.32683 + 1.11334i −0.143076 + 0.120055i
\(87\) 0 0
\(88\) −5.63816 + 2.05212i −0.601029 + 0.218757i
\(89\) −5.19615 + 9.00000i −0.550791 + 0.953998i 0.447427 + 0.894321i \(0.352341\pi\)
−0.998218 + 0.0596775i \(0.980993\pi\)
\(90\) 0 0
\(91\) 2.50000 + 4.33013i 0.262071 + 0.453921i
\(92\) −5.30731 4.45336i −0.553325 0.464295i
\(93\) 0 0
\(94\) −1.04189 5.90885i −0.107463 0.609451i
\(95\) −0.601535 3.41147i −0.0617162 0.350010i
\(96\) 0 0
\(97\) 13.0228 + 10.9274i 1.32226 + 1.10951i 0.985820 + 0.167803i \(0.0536674\pi\)
0.336440 + 0.941705i \(0.390777\pi\)
\(98\) 5.19615 + 9.00000i 0.524891 + 0.909137i
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) 13.0208 4.73917i 1.29561 0.471565i 0.400048 0.916494i \(-0.368993\pi\)
0.895566 + 0.444929i \(0.146771\pi\)
\(102\) 0 0
\(103\) 6.12836 5.14230i 0.603845 0.506686i −0.288834 0.957379i \(-0.593268\pi\)
0.892679 + 0.450693i \(0.148823\pi\)
\(104\) 8.13798 + 2.96198i 0.797994 + 0.290446i
\(105\) 0 0
\(106\) −3.12567 + 17.7265i −0.303592 + 1.72175i
\(107\) 10.3923 1.00466 0.502331 0.864675i \(-0.332476\pi\)
0.502331 + 0.864675i \(0.332476\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) −3.60921 + 20.4688i −0.344125 + 1.95163i
\(111\) 0 0
\(112\) −4.69846 1.71010i −0.443963 0.161589i
\(113\) −13.2683 + 11.1334i −1.24817 + 1.04734i −0.251335 + 0.967900i \(0.580870\pi\)
−0.996839 + 0.0794428i \(0.974686\pi\)
\(114\) 0 0
\(115\) 22.5526 8.20848i 2.10304 0.765445i
\(116\) 1.73205 3.00000i 0.160817 0.278543i
\(117\) 0 0
\(118\) −3.00000 5.19615i −0.276172 0.478345i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.173648 + 0.984808i 0.0157862 + 0.0895280i
\(122\) 0.601535 + 3.41147i 0.0544604 + 0.308860i
\(123\) 0 0
\(124\) 3.83022 + 3.21394i 0.343964 + 0.288620i
\(125\) −3.46410 6.00000i −0.309839 0.536656i
\(126\) 0 0
\(127\) −8.50000 + 14.7224i −0.754253 + 1.30640i 0.191492 + 0.981494i \(0.438667\pi\)
−0.945745 + 0.324910i \(0.894666\pi\)
\(128\) −11.3932 + 4.14677i −1.00702 + 0.366526i
\(129\) 0 0
\(130\) 22.9813 19.2836i 2.01560 1.69129i
\(131\) −3.25519 1.18479i −0.284407 0.103516i 0.195878 0.980628i \(-0.437244\pi\)
−0.480285 + 0.877113i \(0.659467\pi\)
\(132\) 0 0
\(133\) 0.173648 0.984808i 0.0150572 0.0853937i
\(134\) 13.8564 1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) 1.20307 6.82295i 0.102785 0.582924i −0.889297 0.457331i \(-0.848806\pi\)
0.992082 0.125593i \(-0.0400833\pi\)
\(138\) 0 0
\(139\) 12.2160 + 4.44626i 1.03615 + 0.377127i 0.803419 0.595415i \(-0.203012\pi\)
0.232729 + 0.972542i \(0.425234\pi\)
\(140\) −2.65366 + 2.22668i −0.224275 + 0.188189i
\(141\) 0 0
\(142\) −16.9145 + 6.15636i −1.41943 + 0.516630i
\(143\) 8.66025 15.0000i 0.724207 1.25436i
\(144\) 0 0
\(145\) 6.00000 + 10.3923i 0.498273 + 0.863034i
\(146\) 2.65366 + 2.22668i 0.219618 + 0.184281i
\(147\) 0 0
\(148\) −0.173648 0.984808i −0.0142738 0.0809507i
\(149\) −1.20307 6.82295i −0.0985593 0.558958i −0.993598 0.112970i \(-0.963964\pi\)
0.895039 0.445988i \(-0.147148\pi\)
\(150\) 0 0
\(151\) −12.2567 10.2846i −0.997437 0.836949i −0.0108097 0.999942i \(-0.503441\pi\)
−0.986627 + 0.162993i \(0.947885\pi\)
\(152\) −0.866025 1.50000i −0.0702439 0.121666i
\(153\) 0 0
\(154\) −3.00000 + 5.19615i −0.241747 + 0.418718i
\(155\) −16.2760 + 5.92396i −1.30732 + 0.475824i
\(156\) 0 0
\(157\) −9.95858 + 8.35624i −0.794781 + 0.666900i −0.946924 0.321458i \(-0.895827\pi\)
0.152143 + 0.988359i \(0.451383\pi\)
\(158\) 1.62760 + 0.592396i 0.129485 + 0.0471285i
\(159\) 0 0
\(160\) −3.12567 + 17.7265i −0.247106 + 1.40141i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) 0.601535 3.41147i 0.0469720 0.266391i
\(165\) 0 0
\(166\) −11.2763 4.10424i −0.875212 0.318551i
\(167\) 18.5756 15.5868i 1.43742 1.20614i 0.496265 0.868171i \(-0.334704\pi\)
0.941157 0.337970i \(-0.109740\pi\)
\(168\) 0 0
\(169\) −11.2763 + 4.10424i −0.867409 + 0.315711i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.0381246 + 0.0660338i
\(173\) −10.6146 8.90673i −0.807015 0.677166i 0.142878 0.989740i \(-0.454364\pi\)
−0.949893 + 0.312574i \(0.898809\pi\)
\(174\) 0 0
\(175\) −1.21554 6.89365i −0.0918860 0.521111i
\(176\) 3.00767 + 17.0574i 0.226712 + 1.28575i
\(177\) 0 0
\(178\) 13.7888 + 11.5702i 1.03351 + 0.867221i
\(179\) 10.3923 + 18.0000i 0.776757 + 1.34538i 0.933801 + 0.357792i \(0.116470\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(180\) 0 0
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) 8.13798 2.96198i 0.603227 0.219557i
\(183\) 0 0
\(184\) 9.19253 7.71345i 0.677683 0.568643i
\(185\) 3.25519 + 1.18479i 0.239326 + 0.0871077i
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 −0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 1.20307 6.82295i 0.0870511 0.493691i −0.909844 0.414950i \(-0.863799\pi\)
0.996895 0.0787408i \(-0.0250900\pi\)
\(192\) 0 0
\(193\) 9.39693 + 3.42020i 0.676406 + 0.246191i 0.657303 0.753626i \(-0.271697\pi\)
0.0191021 + 0.999818i \(0.493919\pi\)
\(194\) 22.5561 18.9268i 1.61943 1.35886i
\(195\) 0 0
\(196\) 5.63816 2.05212i 0.402725 0.146580i
\(197\) 5.19615 9.00000i 0.370211 0.641223i −0.619387 0.785086i \(-0.712619\pi\)
0.989598 + 0.143862i \(0.0459522\pi\)
\(198\) 0 0
\(199\) 9.50000 + 16.4545i 0.673437 + 1.16643i 0.976923 + 0.213591i \(0.0685161\pi\)
−0.303486 + 0.952836i \(0.598151\pi\)
\(200\) −9.28780 7.79339i −0.656746 0.551076i
\(201\) 0 0
\(202\) −4.16756 23.6354i −0.293228 1.66298i
\(203\) 0.601535 + 3.41147i 0.0422195 + 0.239439i
\(204\) 0 0
\(205\) 9.19253 + 7.71345i 0.642034 + 0.538731i
\(206\) −6.92820 12.0000i −0.482711 0.836080i
\(207\) 0 0
\(208\) 12.5000 21.6506i 0.866719 1.50120i
\(209\) −3.25519 + 1.18479i −0.225166 + 0.0819538i
\(210\) 0 0
\(211\) 3.83022 3.21394i 0.263683 0.221257i −0.501354 0.865242i \(-0.667165\pi\)
0.765038 + 0.643985i \(0.222720\pi\)
\(212\) 9.76557 + 3.55438i 0.670702 + 0.244116i
\(213\) 0 0
\(214\) 3.12567 17.7265i 0.213666 1.21176i
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) 5.11305 28.9975i 0.346299 1.96396i
\(219\) 0 0
\(220\) 11.2763 + 4.10424i 0.760249 + 0.276708i
\(221\) 0 0
\(222\) 0 0
\(223\) 17.8542 6.49838i 1.19560 0.435164i 0.333915 0.942603i \(-0.391630\pi\)
0.861688 + 0.507439i \(0.169408\pi\)
\(224\) −2.59808 + 4.50000i −0.173591 + 0.300669i
\(225\) 0 0
\(226\) 15.0000 + 25.9808i 0.997785 + 1.72821i
\(227\) −10.6146 8.90673i −0.704517 0.591160i 0.218538 0.975829i \(-0.429871\pi\)
−0.923055 + 0.384668i \(0.874316\pi\)
\(228\) 0 0
\(229\) 0.868241 + 4.92404i 0.0573750 + 0.325390i 0.999963 0.00856731i \(-0.00272709\pi\)
−0.942588 + 0.333957i \(0.891616\pi\)
\(230\) −7.21842 40.9377i −0.475968 2.69935i
\(231\) 0 0
\(232\) 4.59627 + 3.85673i 0.301760 + 0.253206i
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 6.00000 10.3923i 0.391397 0.677919i
\(236\) −3.25519 + 1.18479i −0.211895 + 0.0771234i
\(237\) 0 0
\(238\) 0 0
\(239\) 6.51038 + 2.36959i 0.421122 + 0.153276i 0.543884 0.839160i \(-0.316953\pi\)
−0.122763 + 0.992436i \(0.539175\pi\)
\(240\) 0 0
\(241\) −3.29932 + 18.7113i −0.212528 + 1.20530i 0.672618 + 0.739990i \(0.265170\pi\)
−0.885146 + 0.465314i \(0.845941\pi\)
\(242\) 1.73205 0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) −3.60921 + 20.4688i −0.230584 + 1.30771i
\(246\) 0 0
\(247\) 4.69846 + 1.71010i 0.298956 + 0.108811i
\(248\) −6.63414 + 5.56670i −0.421268 + 0.353486i
\(249\) 0 0
\(250\) −11.2763 + 4.10424i −0.713177 + 0.259575i
\(251\) −10.3923 + 18.0000i −0.655956 + 1.13615i 0.325697 + 0.945474i \(0.394401\pi\)
−0.981653 + 0.190676i \(0.938932\pi\)
\(252\) 0 0
\(253\) −12.0000 20.7846i −0.754434 1.30672i
\(254\) 22.5561 + 18.9268i 1.41529 + 1.18757i
\(255\) 0 0
\(256\) 3.29932 + 18.7113i 0.206207 + 1.16946i
\(257\) 0.601535 + 3.41147i 0.0375227 + 0.212802i 0.997804 0.0662307i \(-0.0210973\pi\)
−0.960282 + 0.279033i \(0.909986\pi\)
\(258\) 0 0
\(259\) 0.766044 + 0.642788i 0.0475997 + 0.0399409i
\(260\) −8.66025 15.0000i −0.537086 0.930261i
\(261\) 0 0
\(262\) −3.00000 + 5.19615i −0.185341 + 0.321019i
\(263\) 13.0208 4.73917i 0.802895 0.292230i 0.0922092 0.995740i \(-0.470607\pi\)
0.710685 + 0.703510i \(0.248385\pi\)
\(264\) 0 0
\(265\) −27.5776 + 23.1404i −1.69408 + 1.42150i
\(266\) −1.62760 0.592396i −0.0997943 0.0363221i
\(267\) 0 0
\(268\) 1.38919 7.87846i 0.0848580 0.481254i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −11.2763 4.10424i −0.681227 0.247946i
\(275\) −18.5756 + 15.5868i −1.12015 + 0.939918i
\(276\) 0 0
\(277\) −15.9748 + 5.81434i −0.959831 + 0.349350i −0.773967 0.633226i \(-0.781731\pi\)
−0.185864 + 0.982576i \(0.559508\pi\)
\(278\) 11.2583 19.5000i 0.675230 1.16953i
\(279\) 0 0
\(280\) −3.00000 5.19615i −0.179284 0.310530i
\(281\) −10.6146 8.90673i −0.633215 0.531331i 0.268711 0.963221i \(-0.413402\pi\)
−0.901926 + 0.431890i \(0.857847\pi\)
\(282\) 0 0
\(283\) −2.25743 12.8025i −0.134190 0.761030i −0.975420 0.220353i \(-0.929279\pi\)
0.841230 0.540677i \(-0.181832\pi\)
\(284\) 1.80460 + 10.2344i 0.107084 + 0.607301i
\(285\) 0 0
\(286\) −22.9813 19.2836i −1.35891 1.14026i
\(287\) 1.73205 + 3.00000i 0.102240 + 0.177084i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 19.5311 7.10876i 1.14691 0.417440i
\(291\) 0 0
\(292\) 1.53209 1.28558i 0.0896587 0.0752326i
\(293\) −13.0208 4.73917i −0.760681 0.276865i −0.0675880 0.997713i \(-0.521530\pi\)
−0.693093 + 0.720848i \(0.743753\pi\)
\(294\) 0 0
\(295\) 2.08378 11.8177i 0.121322 0.688053i
\(296\) 1.73205 0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −6.01535 + 34.1147i −0.347877 + 1.97291i
\(300\) 0 0
\(301\) −0.939693 0.342020i −0.0541630 0.0197137i
\(302\) −21.2292 + 17.8135i −1.22161 + 1.02505i
\(303\) 0 0
\(304\) −4.69846 + 1.71010i −0.269475 + 0.0980810i
\(305\) −3.46410 + 6.00000i −0.198354 + 0.343559i
\(306\) 0 0
\(307\) −10.0000 17.3205i −0.570730 0.988534i −0.996491 0.0836980i \(-0.973327\pi\)
0.425761 0.904836i \(-0.360006\pi\)
\(308\) 2.65366 + 2.22668i 0.151206 + 0.126877i
\(309\) 0 0
\(310\) 5.20945 + 29.5442i 0.295877 + 1.67800i
\(311\) 2.40614 + 13.6459i 0.136440 + 0.773788i 0.973846 + 0.227208i \(0.0729596\pi\)
−0.837407 + 0.546580i \(0.815929\pi\)
\(312\) 0 0
\(313\) −0.766044 0.642788i −0.0432994 0.0363325i 0.620881 0.783905i \(-0.286775\pi\)
−0.664181 + 0.747572i \(0.731219\pi\)
\(314\) 11.2583 + 19.5000i 0.635344 + 1.10045i
\(315\) 0 0
\(316\) 0.500000 0.866025i 0.0281272 0.0487177i
\(317\) −26.0415 + 9.47834i −1.46264 + 0.532357i −0.946091 0.323902i \(-0.895005\pi\)
−0.516547 + 0.856259i \(0.672783\pi\)
\(318\) 0 0
\(319\) 9.19253 7.71345i 0.514683 0.431870i
\(320\) −3.25519 1.18479i −0.181971 0.0662319i
\(321\) 0 0
\(322\) 2.08378 11.8177i 0.116124 0.658574i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) −0.300767 + 1.70574i −0.0166580 + 0.0944720i
\(327\) 0 0
\(328\) 5.63816 + 2.05212i 0.311315 + 0.113309i
\(329\) 2.65366 2.22668i 0.146301 0.122761i
\(330\) 0 0
\(331\) 17.8542 6.49838i 0.981353 0.357183i 0.198987 0.980002i \(-0.436235\pi\)
0.782366 + 0.622819i \(0.214013\pi\)
\(332\) −3.46410 + 6.00000i −0.190117 + 0.329293i
\(333\) 0 0
\(334\) −21.0000 36.3731i −1.14907 1.99025i
\(335\) 21.2292 + 17.8135i 1.15988 + 0.973253i
\(336\) 0 0
\(337\) 0.868241 + 4.92404i 0.0472961 + 0.268229i 0.999281 0.0379157i \(-0.0120718\pi\)
−0.951985 + 0.306145i \(0.900961\pi\)
\(338\) 3.60921 + 20.4688i 0.196315 + 1.11336i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.66025 + 15.0000i 0.468979 + 0.812296i
\(342\) 0 0
\(343\) −6.50000 + 11.2583i −0.350967 + 0.607893i
\(344\) −1.62760 + 0.592396i −0.0877541 + 0.0319399i
\(345\) 0 0
\(346\) −18.3851 + 15.4269i −0.988387 + 0.829355i
\(347\) −22.7863 8.29355i −1.22323 0.445221i −0.351959 0.936015i \(-0.614484\pi\)
−0.871275 + 0.490794i \(0.836707\pi\)
\(348\) 0 0
\(349\) −0.173648 + 0.984808i −0.00929517 + 0.0527156i −0.989103 0.147228i \(-0.952965\pi\)
0.979807 + 0.199944i \(0.0640759\pi\)
\(350\) −12.1244 −0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) 3.00767 17.0574i 0.160082 0.907872i −0.793909 0.608037i \(-0.791957\pi\)
0.953991 0.299835i \(-0.0969317\pi\)
\(354\) 0 0
\(355\) −33.8289 12.3127i −1.79545 0.653492i
\(356\) 7.96097 6.68004i 0.421930 0.354042i
\(357\) 0 0
\(358\) 33.8289 12.3127i 1.78791 0.650748i
\(359\) −15.5885 + 27.0000i −0.822727 + 1.42501i 0.0809166 + 0.996721i \(0.474215\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 22.5561 + 18.9268i 1.18552 + 0.994770i
\(363\) 0 0
\(364\) −0.868241 4.92404i −0.0455082 0.258090i
\(365\) 1.20307 + 6.82295i 0.0629716 + 0.357129i
\(366\) 0 0
\(367\) −12.2567 10.2846i −0.639795 0.536852i 0.264160 0.964479i \(-0.414905\pi\)
−0.903955 + 0.427627i \(0.859350\pi\)
\(368\) −17.3205 30.0000i −0.902894 1.56386i
\(369\) 0 0
\(370\) 3.00000 5.19615i 0.155963 0.270135i
\(371\) −9.76557 + 3.55438i −0.507003 + 0.184534i
\(372\) 0 0
\(373\) 17.6190 14.7841i 0.912278 0.765492i −0.0602727 0.998182i \(-0.519197\pi\)
0.972551 + 0.232689i \(0.0747526\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.04189 5.90885i 0.0537313 0.304725i
\(377\) −17.3205 −0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) −0.601535 + 3.41147i −0.0308581 + 0.175005i
\(381\) 0 0
\(382\) −11.2763 4.10424i −0.576946 0.209991i
\(383\) −13.2683 + 11.1334i −0.677977 + 0.568891i −0.915415 0.402512i \(-0.868137\pi\)
0.237437 + 0.971403i \(0.423693\pi\)
\(384\) 0 0
\(385\) −11.2763 + 4.10424i −0.574694 + 0.209172i
\(386\) 8.66025 15.0000i 0.440795 0.763480i
\(387\) 0 0
\(388\) −8.50000 14.7224i −0.431522 0.747418i
\(389\) 5.30731 + 4.45336i 0.269091 + 0.225794i 0.767341 0.641239i \(-0.221579\pi\)
−0.498250 + 0.867034i \(0.666024\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.80460 + 10.2344i 0.0911463 + 0.516916i
\(393\) 0 0
\(394\) −13.7888 11.5702i −0.694670 0.582897i
\(395\) 1.73205 + 3.00000i 0.0871489 + 0.150946i
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) 30.9243 11.2555i 1.55010 0.564189i
\(399\) 0 0
\(400\) −26.8116 + 22.4976i −1.34058 + 1.12488i
\(401\) −3.25519 1.18479i −0.162556 0.0591657i 0.259460 0.965754i \(-0.416455\pi\)
−0.422017 + 0.906588i \(0.638678\pi\)
\(402\) 0 0
\(403\) 4.34120 24.6202i 0.216251 1.22642i
\(404\) −13.8564 −0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 0.601535 3.41147i 0.0298170 0.169100i
\(408\) 0 0
\(409\) −4.69846 1.71010i −0.232324 0.0845590i 0.223235 0.974765i \(-0.428338\pi\)
−0.455559 + 0.890206i \(0.650561\pi\)
\(410\) 15.9219 13.3601i 0.786328 0.659808i
\(411\) 0 0
\(412\) −7.51754 + 2.73616i −0.370363 + 0.134801i
\(413\) 1.73205 3.00000i 0.0852286 0.147620i
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) −19.9024 16.7001i −0.975796 0.818790i
\(417\) 0 0
\(418\) 1.04189 + 5.90885i 0.0509605 + 0.289011i
\(419\) −6.61688 37.5262i −0.323256 1.83328i −0.521658 0.853155i \(-0.674686\pi\)
0.198402 0.980121i \(-0.436425\pi\)
\(420\) 0 0
\(421\) −14.5548 12.2130i −0.709360 0.595223i 0.215060 0.976601i \(-0.431005\pi\)
−0.924419 + 0.381377i \(0.875450\pi\)
\(422\) −4.33013 7.50000i −0.210787 0.365094i
\(423\) 0 0
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.53209 + 1.28558i −0.0741430 + 0.0622133i
\(428\) −9.76557 3.55438i −0.472037 0.171807i
\(429\) 0 0
\(430\) −1.04189 + 5.90885i −0.0502444 + 0.284950i
\(431\) −20.7846 −1.00116 −0.500580 0.865690i \(-0.666880\pi\)
−0.500580 + 0.865690i \(0.666880\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) −1.50384 + 8.52869i −0.0721865 + 0.409390i
\(435\) 0 0
\(436\) −15.9748 5.81434i −0.765053 0.278457i
\(437\) 5.30731 4.45336i 0.253883 0.213033i
\(438\) 0 0
\(439\) −18.7939 + 6.84040i −0.896982 + 0.326475i −0.749043 0.662522i \(-0.769486\pi\)
−0.147939 + 0.988996i \(0.547264\pi\)
\(440\) −10.3923 + 18.0000i −0.495434 + 0.858116i
\(441\) 0 0
\(442\) 0 0
\(443\) −10.6146 8.90673i −0.504316 0.423171i 0.354808 0.934939i \(-0.384546\pi\)
−0.859124 + 0.511768i \(0.828991\pi\)
\(444\) 0 0
\(445\) 6.25133 + 35.4531i 0.296342 + 1.68064i
\(446\) −5.71458 32.4090i −0.270593 1.53461i
\(447\) 0 0
\(448\) −0.766044 0.642788i −0.0361922 0.0303689i
\(449\) 5.19615 + 9.00000i 0.245222 + 0.424736i 0.962194 0.272365i \(-0.0878059\pi\)
−0.716972 + 0.697102i \(0.754473\pi\)
\(450\) 0 0
\(451\) 6.00000 10.3923i 0.282529 0.489355i
\(452\) 16.2760 5.92396i 0.765556 0.278640i
\(453\) 0 0
\(454\) −18.3851 + 15.4269i −0.862854 + 0.724020i
\(455\) 16.2760 + 5.92396i 0.763028 + 0.277720i
\(456\) 0 0
\(457\) 2.95202 16.7417i 0.138090 0.783145i −0.834569 0.550904i \(-0.814283\pi\)
0.972658 0.232241i \(-0.0746059\pi\)
\(458\) 8.66025 0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) 4.81228 27.2918i 0.224130 1.27111i −0.640211 0.768199i \(-0.721153\pi\)
0.864341 0.502906i \(-0.167736\pi\)
\(462\) 0 0
\(463\) 29.1305 + 10.6026i 1.35381 + 0.492746i 0.914134 0.405412i \(-0.132872\pi\)
0.439674 + 0.898158i \(0.355094\pi\)
\(464\) 13.2683 11.1334i 0.615964 0.516855i
\(465\) 0 0
\(466\) 0 0
\(467\) 5.19615 9.00000i 0.240449 0.416470i −0.720393 0.693566i \(-0.756039\pi\)
0.960842 + 0.277096i \(0.0893719\pi\)
\(468\) 0 0
\(469\) 4.00000 + 6.92820i 0.184703 + 0.319915i
\(470\) −15.9219 13.3601i −0.734424 0.616255i
\(471\) 0 0
\(472\) −1.04189 5.90885i −0.0479568 0.271977i
\(473\) 0.601535 + 3.41147i 0.0276586 + 0.156860i
\(474\) 0 0
\(475\) −5.36231 4.49951i −0.246040 0.206452i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) 13.0208 4.73917i 0.594934 0.216538i −0.0269642 0.999636i \(-0.508584\pi\)
0.621898 + 0.783098i \(0.286362\pi\)
\(480\) 0 0
\(481\) −3.83022 + 3.21394i −0.174643 + 0.146543i
\(482\) 30.9243 + 11.2555i 1.40856 + 0.512675i
\(483\) 0 0
\(484\) 0.173648 0.984808i 0.00789310 0.0447640i
\(485\) 58.8897 2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) −0.601535 + 3.41147i −0.0272302 + 0.154430i
\(489\) 0 0
\(490\) 33.8289 + 12.3127i 1.52824 + 0.556232i
\(491\) −29.1902 + 24.4935i −1.31734 + 1.10538i −0.330473 + 0.943815i \(0.607208\pi\)
−0.986863 + 0.161561i \(0.948347\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.33013 7.50000i 0.194822 0.337441i
\(495\) 0 0
\(496\) 12.5000 + 21.6506i 0.561267 + 0.972142i
\(497\) −7.96097 6.68004i −0.357098 0.299641i
\(498\) 0 0
\(499\) −4.86215 27.5746i −0.217660 1.23441i −0.876231 0.481891i \(-0.839950\pi\)
0.658571 0.752518i \(-0.271161\pi\)
\(500\) 1.20307 + 6.82295i 0.0538029 + 0.305132i
\(501\) 0 0
\(502\) 27.5776 + 23.1404i 1.23085 + 1.03280i
\(503\) −20.7846 36.0000i −0.926740 1.60516i −0.788739 0.614729i \(-0.789266\pi\)
−0.138001 0.990432i \(-0.544068\pi\)
\(504\) 0 0
\(505\) 24.0000 41.5692i 1.06799 1.84981i
\(506\) −39.0623 + 14.2175i −1.73653 + 0.632045i
\(507\) 0 0
\(508\) 13.0228 10.9274i 0.577791 0.484825i
\(509\) 26.0415 + 9.47834i 1.15427 + 0.420120i 0.847047 0.531517i \(-0.178378\pi\)
0.307223 + 0.951638i \(0.400600\pi\)
\(510\) 0 0
\(511\) −0.347296 + 1.96962i −0.0153635 + 0.0871307i
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 4.81228 27.2918i 0.212054 1.20262i
\(516\) 0 0
\(517\) −11.2763 4.10424i −0.495932 0.180504i
\(518\) 1.32683 1.11334i 0.0582975 0.0489174i
\(519\) 0 0
\(520\) 28.1908 10.2606i 1.23625 0.449957i
\(521\) 10.3923 18.0000i 0.455295 0.788594i −0.543410 0.839467i \(-0.682867\pi\)
0.998705 + 0.0508731i \(0.0162004\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 2.65366 + 2.22668i 0.115925 + 0.0972730i
\(525\) 0 0
\(526\) −4.16756 23.6354i −0.181714 1.03055i
\(527\) 0 0
\(528\) 0 0
\(529\) 19.1511 + 16.0697i 0.832657 + 0.698682i
\(530\) 31.1769 + 54.0000i 1.35424 + 2.34561i
\(531\) 0 0
\(532\) −0.500000 + 0.866025i −0.0216777 + 0.0375470i
\(533\) −16.2760 + 5.92396i −0.704990 + 0.256595i
\(534\) 0 0
\(535\) 27.5776 23.1404i 1.19228 1.00044i
\(536\) 13.0208 + 4.73917i 0.562411 + 0.204701i
\(537\) 0 0
\(538\) 0 0
\(539\) 20.7846 0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) −4.81228 + 27.2918i −0.206705 + 1.17228i
\(543\) 0 0
\(544\) 0 0
\(545\) 45.1121 37.8536i 1.93239 1.62147i
\(546\) 0 0
\(547\) −18.7939 + 6.84040i −0.803567 + 0.292475i −0.710964 0.703229i \(-0.751741\pi\)
−0.0926033 + 0.995703i \(0.529519\pi\)
\(548\) −3.46410 + 6.00000i −0.147979 + 0.256307i
\(549\) 0 0
\(550\) 21.0000 + 36.3731i 0.895443 + 1.55095i
\(551\) 2.65366 + 2.22668i 0.113050 + 0.0948598i
\(552\) 0 0
\(553\) 0.173648 + 0.984808i 0.00738427 + 0.0418783i
\(554\) 5.11305 + 28.9975i 0.217233 + 1.23199i
\(555\) 0 0
\(556\) −9.95858 8.35624i −0.422338 0.354383i
\(557\) −5.19615 9.00000i −0.220168 0.381342i 0.734691 0.678402i \(-0.237327\pi\)
−0.954859 + 0.297060i \(0.903994\pi\)
\(558\) 0 0
\(559\) 2.50000 4.33013i 0.105739 0.183145i
\(560\) −16.2760 + 5.92396i −0.687785 + 0.250333i
\(561\) 0 0
\(562\) −18.3851 + 15.4269i −0.775527 + 0.650745i
\(563\) −32.5519 11.8479i −1.37190 0.499331i −0.452187 0.891923i \(-0.649356\pi\)
−0.919712 + 0.392593i \(0.871578\pi\)
\(564\) 0 0
\(565\) −10.4189 + 59.0885i −0.438326 + 2.48587i
\(566\) −22.5167 −0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) −4.21074 + 23.8803i −0.176524 + 1.00112i 0.759847 + 0.650102i \(0.225274\pi\)
−0.936371 + 0.351013i \(0.885837\pi\)
\(570\) 0 0
\(571\) −38.5274 14.0228i −1.61232 0.586837i −0.630424 0.776251i \(-0.717119\pi\)
−0.981897 + 0.189414i \(0.939341\pi\)
\(572\) −13.2683 + 11.1334i −0.554775 + 0.465511i
\(573\) 0 0
\(574\) 5.63816 2.05212i 0.235332 0.0856539i
\(575\) 24.2487 42.0000i 1.01124 1.75152i
\(576\) 0 0
\(577\) 17.0000 + 29.4449i 0.707719 + 1.22581i 0.965701 + 0.259656i \(0.0836092\pi\)
−0.257982 + 0.966150i \(0.583058\pi\)
\(578\) −22.5561 18.9268i −0.938209 0.787251i
\(579\) 0 0
\(580\) −2.08378 11.8177i −0.0865242 0.490703i
\(581\) −1.20307 6.82295i −0.0499117 0.283064i
\(582\) 0 0
\(583\) 27.5776 + 23.1404i 1.14215 + 0.958376i
\(584\) 1.73205 + 3.00000i 0.0716728 + 0.124141i
\(585\) 0 0
\(586\) −12.0000 + 20.7846i −0.495715 + 0.858604i
\(587\) −6.51038 + 2.36959i −0.268712 + 0.0978032i −0.472862 0.881136i \(-0.656779\pi\)
0.204150 + 0.978940i \(0.434557\pi\)
\(588\) 0 0
\(589\) −3.83022 + 3.21394i −0.157822 + 0.132428i
\(590\) −19.5311 7.10876i −0.804084 0.292663i
\(591\) 0 0
\(592\) 0.868241 4.92404i 0.0356845 0.202377i
\(593\) 20.7846 0.853522 0.426761 0.904365i \(-0.359655\pi\)
0.426761 + 0.904365i \(0.359655\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.20307 + 6.82295i −0.0492797 + 0.279479i
\(597\) 0 0
\(598\) 56.3816 + 20.5212i 2.30561 + 0.839175i
\(599\) 18.5756 15.5868i 0.758978 0.636858i −0.178883 0.983870i \(-0.557248\pi\)
0.937861 + 0.347012i \(0.112804\pi\)
\(600\) 0 0
\(601\) −32.8892 + 11.9707i −1.34158 + 0.488295i −0.910310 0.413928i \(-0.864157\pi\)
−0.431270 + 0.902223i \(0.641934\pi\)
\(602\) −0.866025 + 1.50000i −0.0352966 + 0.0611354i
\(603\) 0 0
\(604\) 8.00000 + 13.8564i 0.325515 + 0.563809i
\(605\) 2.65366 + 2.22668i 0.107886 + 0.0905275i
\(606\) 0 0
\(607\) −2.25743 12.8025i −0.0916261 0.519637i −0.995729 0.0923229i \(-0.970571\pi\)
0.904103 0.427315i \(-0.140540\pi\)
\(608\) 0.902302 + 5.11721i 0.0365932 + 0.207530i
\(609\) 0 0
\(610\) 9.19253 + 7.71345i 0.372195 + 0.312309i
\(611\) 8.66025 + 15.0000i 0.350356 + 0.606835i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) −32.5519 + 11.8479i −1.31369 + 0.478143i
\(615\) 0 0
\(616\) −4.59627 + 3.85673i −0.185189 + 0.155392i
\(617\) 6.51038 + 2.36959i 0.262098 + 0.0953959i 0.469727 0.882812i \(-0.344352\pi\)
−0.207629 + 0.978208i \(0.566575\pi\)
\(618\) 0 0
\(619\) 3.47296 19.6962i 0.139590 0.791655i −0.831963 0.554832i \(-0.812783\pi\)
0.971553 0.236823i \(-0.0761063\pi\)
\(620\) 17.3205 0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −1.80460 + 10.2344i −0.0723000 + 0.410033i
\(624\) 0 0
\(625\) 10.3366 + 3.76222i 0.413465 + 0.150489i
\(626\) −1.32683 + 1.11334i −0.0530307 + 0.0444980i
\(627\) 0 0
\(628\) 12.2160 4.44626i 0.487472 0.177425i
\(629\) 0 0
\(630\) 0 0
\(631\) −8.50000 14.7224i −0.338380 0.586091i 0.645748 0.763550i \(-0.276545\pi\)
−0.984128 + 0.177459i \(0.943212\pi\)
\(632\) 1.32683 + 1.11334i 0.0527784 + 0.0442863i
\(633\) 0 0
\(634\) 8.33511 + 47.2708i 0.331030 + 1.87736i
\(635\) 10.2261 + 57.9951i 0.405810 + 2.30146i
\(636\) 0 0
\(637\) −22.9813 19.2836i −0.910554 0.764045i
\(638\) −10.3923 18.0000i −0.411435 0.712627i
\(639\) 0 0
\(640\) −21.0000 + 36.3731i −0.830098 + 1.43777i
\(641\) 42.3175 15.4023i 1.67144 0.608354i 0.679342 0.733822i \(-0.262265\pi\)
0.992098 + 0.125467i \(0.0400430\pi\)
\(642\) 0 0
\(643\) 33.7060 28.2827i 1.32923 1.11536i 0.344977 0.938611i \(-0.387887\pi\)
0.984256 0.176748i \(-0.0565577\pi\)
\(644\) −6.51038 2.36959i −0.256545 0.0933747i
\(645\) 0 0
\(646\) 0 0
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 10.5269 59.7008i 0.412897 2.34166i
\(651\) 0 0
\(652\) 0.939693 + 0.342020i 0.0368012 + 0.0133945i
\(653\) −13.2683 + 11.1334i −0.519228 + 0.435684i −0.864362 0.502869i \(-0.832278\pi\)
0.345135 + 0.938553i \(0.387833\pi\)
\(654\) 0 0
\(655\) −11.2763 + 4.10424i −0.440602 + 0.160366i
\(656\) 8.66025 15.0000i 0.338126 0.585652i
\(657\) 0 0
\(658\) −3.00000 5.19615i −0.116952 0.202567i
\(659\) 21.2292 + 17.8135i 0.826974 + 0.693914i 0.954594 0.297910i \(-0.0962894\pi\)
−0.127620 + 0.991823i \(0.540734\pi\)
\(660\) 0 0
\(661\) −1.73648 9.84808i −0.0675413 0.383046i −0.999775 0.0211902i \(-0.993254\pi\)
0.932234 0.361856i \(-0.117857\pi\)
\(662\) −5.71458 32.4090i −0.222104 1.25961i
\(663\) 0 0
\(664\) −9.19253 7.71345i −0.356739 0.299340i
\(665\) −1.73205 3.00000i −0.0671660 0.116335i
\(666\) 0 0
\(667\) −12.0000 + 20.7846i −0.464642 + 0.804783i
\(668\) −22.7863 + 8.29355i −0.881630 + 0.320887i
\(669\) 0 0
\(670\) 36.7701 30.8538i 1.42055 1.19199i
\(671\) 6.51038 + 2.36959i 0.251330 + 0.0914768i
\(672\) 0 0
\(673\) −6.42498 + 36.4379i −0.247665 + 1.40458i 0.566557 + 0.824023i \(0.308275\pi\)
−0.814221 + 0.580554i \(0.802836\pi\)
\(674\) 8.66025 0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) 3.00767 17.0574i 0.115594 0.655568i −0.870860 0.491531i \(-0.836437\pi\)
0.986454 0.164037i \(-0.0524516\pi\)
\(678\) 0 0
\(679\) 15.9748 + 5.81434i 0.613056 + 0.223134i
\(680\) 0 0
\(681\) 0 0
\(682\) 28.1908 10.2606i 1.07948 0.392899i
\(683\) −20.7846 + 36.0000i −0.795301 + 1.37750i 0.127347 + 0.991858i \(0.459354\pi\)
−0.922648 + 0.385643i \(0.873979\pi\)
\(684\) 0 0
\(685\) −12.0000 20.7846i −0.458496 0.794139i
\(686\) 17.2488 + 14.4734i 0.658561 + 0.552598i
\(687\) 0 0
\(688\) 0.868241 + 4.92404i 0.0331014 + 0.187727i
\(689\) −9.02302 51.1721i −0.343750 1.94950i
\(690\) 0 0
\(691\) 13.0228 + 10.9274i 0.495409 + 0.415697i 0.855960 0.517042i \(-0.172967\pi\)
−0.360551 + 0.932739i \(0.617411\pi\)
\(692\) 6.92820 + 12.0000i 0.263371 + 0.456172i
\(693\) 0 0
\(694\) −21.0000 + 36.3731i −0.797149 + 1.38070i
\(695\) 42.3175 15.4023i 1.60519 0.584243i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.62760 + 0.592396i 0.0616054 + 0.0224225i
\(699\) 0 0
\(700\) −1.21554 + 6.89365i −0.0459430 + 0.260556i
\(701\) −41.5692 −1.57005 −0.785024 0.619466i \(-0.787349\pi\)
−0.785024 + 0.619466i \(0.787349\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) −0.601535 + 3.41147i −0.0226712 + 0.128575i
\(705\) 0 0
\(706\) −28.1908 10.2606i −1.06097 0.386163i
\(707\) 10.6146 8.90673i 0.399204 0.334972i
\(708\) 0 0
\(709\) 17.8542 6.49838i 0.670527 0.244052i 0.0157523 0.999876i \(-0.494986\pi\)
0.654775 + 0.755824i \(0.272763\pi\)
\(710\) −31.1769 + 54.0000i −1.17005 + 2.02658i
\(711\) 0 0
\(712\) 9.00000 + 15.5885i 0.337289 + 0.584202i
\(713\) −26.5366 22.2668i −0.993802 0.833899i
\(714\) 0 0
\(715\) −10.4189 59.0885i −0.389644 2.20978i
\(716\) −3.60921 20.4688i −0.134882 0.764957i
\(717\) 0 0
\(718\) 41.3664 + 34.7105i 1.54378 + 1.29539i
\(719\) −5.19615 9.00000i −0.193784 0.335643i 0.752717 0.658344i \(-0.228743\pi\)
−0.946501 + 0.322700i \(0.895409\pi\)
\(720\) 0 0
\(721\) 4.00000 6.92820i 0.148968 0.258020i
\(722\) 29.2967 10.6631i 1.09031 0.396841i
\(723\) 0 0
\(724\) 13.0228 10.9274i 0.483987 0.406113i
\(725\) 22.7863 + 8.29355i 0.846263 + 0.308015i
\(726\) 0 0
\(727\) −2.77837 + 15.7569i −0.103044 + 0.584392i 0.888939 + 0.458025i \(0.151443\pi\)
−0.991984 + 0.126367i \(0.959668\pi\)
\(728\) 8.66025 0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) −38.5274 14.0228i −1.42304 0.517945i −0.488113 0.872780i \(-0.662315\pi\)
−0.934929 + 0.354835i \(0.884537\pi\)
\(734\) −21.2292 + 17.8135i −0.783586 + 0.657507i
\(735\) 0 0
\(736\) −33.8289 + 12.3127i −1.24695 + 0.453853i
\(737\) 13.8564 24.0000i 0.510407 0.884051i
\(738\) 0 0
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) −2.65366 2.22668i −0.0975503 0.0818544i
\(741\) 0 0
\(742\) 3.12567 + 17.7265i 0.114747 + 0.650762i
\(743\) −1.20307 6.82295i −0.0441364 0.250310i 0.954755 0.297395i \(-0.0961178\pi\)
−0.998891 + 0.0470853i \(0.985007\pi\)
\(744\) 0 0
\(745\) −18.3851 15.4269i −0.673577 0.565198i
\(746\) −19.9186 34.5000i −0.729271 1.26313i
\(747\) 0 0
\(748\) 0 0
\(749\) 9.76557 3.55438i 0.356826 0.129874i
\(750\) 0 0
\(751\) 3.83022 3.21394i 0.139767 0.117278i −0.570224 0.821489i \(-0.693144\pi\)
0.709991 + 0.704211i \(0.248699\pi\)
\(752\) −16.2760 5.92396i −0.593523 0.216025i
\(753\) 0 0
\(754\) −5.20945 + 29.5442i −0.189717 + 1.07594i
\(755\) −55.4256 −2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −5.71458 + 32.4090i −0.207563 + 1.17715i
\(759\) 0 0
\(760\) −5.63816 2.05212i −0.204517 0.0744382i
\(761\) −21.2292 + 17.8135i −0.769560 + 0.645737i −0.940596 0.339528i \(-0.889733\pi\)
0.171037 + 0.985265i \(0.445288\pi\)
\(762\) 0 0
\(763\) 15.9748 5.81434i 0.578326 0.210493i
\(764\) −3.46410 + 6.00000i −0.125327 + 0.217072i
\(765\) 0 0
\(766\) 15.0000 + 25.9808i 0.541972 + 0.938723i
\(767\) 13.2683 + 11.1334i 0.479090 + 0.402004i
\(768\) 0 0
\(769\) −2.25743 12.8025i −0.0814049 0.461670i −0.998075 0.0620244i \(-0.980244\pi\)
0.916670 0.399646i \(-0.130867\pi\)
\(770\) 3.60921 + 20.4688i 0.130067 + 0.737646i
\(771\) 0 0
\(772\) −7.66044 6.42788i −0.275705 0.231344i
\(773\) −10.3923 18.0000i −0.373785 0.647415i 0.616359 0.787465i \(-0.288607\pi\)
−0.990144 + 0.140050i \(0.955274\pi\)
\(774\) 0 0
\(775\) −17.5000 + 30.3109i −0.628619 + 1.08880i
\(776\) 27.6691 10.0707i 0.993264 0.361518i
\(777\) 0 0
\(778\) 9.19253 7.71345i 0.329568 0.276541i
\(779\) 3.25519 + 1.18479i 0.116629 + 0.0424496i
\(780\) 0 0
\(781\) −6.25133 + 35.4531i −0.223690 + 1.26861i
\(782\) 0 0
\(783\) 0 0