Properties

Label 729.2.e.n.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.1
Root \(-0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.n.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32683 - 1.11334i) q^{2} +(0.173648 + 0.984808i) q^{4} +(3.25519 + 1.18479i) q^{5} +(-0.173648 + 0.984808i) q^{7} +(-0.866025 + 1.50000i) q^{8} +(-3.00000 - 5.19615i) q^{10} +(-3.25519 + 1.18479i) q^{11} +(3.83022 - 3.21394i) q^{13} +(1.32683 - 1.11334i) q^{14} +(4.69846 - 1.71010i) q^{16} +(0.500000 - 0.866025i) q^{19} +(-0.601535 + 3.41147i) q^{20} +(5.63816 + 2.05212i) q^{22} +(1.20307 + 6.82295i) q^{23} +(5.36231 + 4.49951i) q^{25} -8.66025 q^{26} -1.00000 q^{28} +(2.65366 + 2.22668i) q^{29} +(0.868241 + 4.92404i) q^{31} +(-4.88279 - 1.77719i) q^{32} +(-1.73205 + 3.00000i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-1.62760 + 0.592396i) q^{38} +(-4.59627 + 3.85673i) q^{40} +(-2.65366 + 2.22668i) q^{41} +(0.939693 - 0.342020i) q^{43} +(-1.73205 - 3.00000i) q^{44} +(6.00000 - 10.3923i) q^{46} +(0.601535 - 3.41147i) q^{47} +(5.63816 + 2.05212i) q^{49} +(-2.10537 - 11.9402i) q^{50} +(3.83022 + 3.21394i) q^{52} +10.3923 q^{53} -12.0000 q^{55} +(-1.32683 - 1.11334i) q^{56} +(-1.04189 - 5.90885i) q^{58} +(3.25519 + 1.18479i) q^{59} +(0.347296 - 1.96962i) q^{61} +(4.33013 - 7.50000i) q^{62} +(-0.500000 - 0.866025i) q^{64} +(16.2760 - 5.92396i) q^{65} +(6.12836 - 5.14230i) q^{67} +(5.63816 - 2.05212i) q^{70} +(5.19615 + 9.00000i) q^{71} +(-1.00000 + 1.73205i) q^{73} +(0.300767 - 1.70574i) q^{74} +(0.939693 + 0.342020i) q^{76} +(-0.601535 - 3.41147i) q^{77} +(-0.766044 - 0.642788i) q^{79} +17.3205 q^{80} +6.00000 q^{82} +(-5.30731 - 4.45336i) q^{83} +(-1.62760 - 0.592396i) q^{86} +(1.04189 - 5.90885i) q^{88} +(5.19615 - 9.00000i) q^{89} +(2.50000 + 4.33013i) q^{91} +(-6.51038 + 2.36959i) q^{92} +(-4.59627 + 3.85673i) q^{94} +(2.65366 - 2.22668i) q^{95} +(-15.9748 + 5.81434i) q^{97} +(-5.19615 - 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{10} + 6 q^{19} - 12 q^{28} + 6 q^{37} + 72 q^{46} - 144 q^{55} - 6 q^{64} - 12 q^{73} + 72 q^{82} + 30 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32683 1.11334i −0.938209 0.787251i 0.0390637 0.999237i \(-0.487562\pi\)
−0.977273 + 0.211986i \(0.932007\pi\)
\(3\) 0 0
\(4\) 0.173648 + 0.984808i 0.0868241 + 0.492404i
\(5\) 3.25519 + 1.18479i 1.45577 + 0.529855i 0.944195 0.329386i \(-0.106842\pi\)
0.511570 + 0.859241i \(0.329064\pi\)
\(6\) 0 0
\(7\) −0.173648 + 0.984808i −0.0656328 + 0.372222i 0.934246 + 0.356630i \(0.116074\pi\)
−0.999878 + 0.0155920i \(0.995037\pi\)
\(8\) −0.866025 + 1.50000i −0.306186 + 0.530330i
\(9\) 0 0
\(10\) −3.00000 5.19615i −0.948683 1.64317i
\(11\) −3.25519 + 1.18479i −0.981477 + 0.357228i −0.782414 0.622758i \(-0.786012\pi\)
−0.199063 + 0.979987i \(0.563790\pi\)
\(12\) 0 0
\(13\) 3.83022 3.21394i 1.06231 0.891386i 0.0679785 0.997687i \(-0.478345\pi\)
0.994334 + 0.106301i \(0.0339006\pi\)
\(14\) 1.32683 1.11334i 0.354610 0.297553i
\(15\) 0 0
\(16\) 4.69846 1.71010i 1.17462 0.427525i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −0.601535 + 3.41147i −0.134507 + 0.762829i
\(21\) 0 0
\(22\) 5.63816 + 2.05212i 1.20206 + 0.437514i
\(23\) 1.20307 + 6.82295i 0.250857 + 1.42268i 0.806486 + 0.591253i \(0.201366\pi\)
−0.555629 + 0.831430i \(0.687522\pi\)
\(24\) 0 0
\(25\) 5.36231 + 4.49951i 1.07246 + 0.899903i
\(26\) −8.66025 −1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 2.65366 + 2.22668i 0.492772 + 0.413484i 0.855018 0.518598i \(-0.173546\pi\)
−0.362247 + 0.932082i \(0.617990\pi\)
\(30\) 0 0
\(31\) 0.868241 + 4.92404i 0.155941 + 0.884383i 0.957921 + 0.287033i \(0.0926689\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(32\) −4.88279 1.77719i −0.863163 0.314166i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.73205 + 3.00000i −0.292770 + 0.507093i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −1.62760 + 0.592396i −0.264031 + 0.0960994i
\(39\) 0 0
\(40\) −4.59627 + 3.85673i −0.726734 + 0.609802i
\(41\) −2.65366 + 2.22668i −0.414431 + 0.347749i −0.826040 0.563611i \(-0.809412\pi\)
0.411609 + 0.911361i \(0.364967\pi\)
\(42\) 0 0
\(43\) 0.939693 0.342020i 0.143302 0.0521576i −0.269374 0.963036i \(-0.586817\pi\)
0.412675 + 0.910878i \(0.364594\pi\)
\(44\) −1.73205 3.00000i −0.261116 0.452267i
\(45\) 0 0
\(46\) 6.00000 10.3923i 0.884652 1.53226i
\(47\) 0.601535 3.41147i 0.0877429 0.497615i −0.908988 0.416822i \(-0.863144\pi\)
0.996731 0.0807925i \(-0.0257451\pi\)
\(48\) 0 0
\(49\) 5.63816 + 2.05212i 0.805451 + 0.293160i
\(50\) −2.10537 11.9402i −0.297745 1.68859i
\(51\) 0 0
\(52\) 3.83022 + 3.21394i 0.531156 + 0.445693i
\(53\) 10.3923 1.42749 0.713746 0.700404i \(-0.246997\pi\)
0.713746 + 0.700404i \(0.246997\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) −1.32683 1.11334i −0.177305 0.148776i
\(57\) 0 0
\(58\) −1.04189 5.90885i −0.136807 0.775870i
\(59\) 3.25519 + 1.18479i 0.423790 + 0.154247i 0.545106 0.838367i \(-0.316489\pi\)
−0.121316 + 0.992614i \(0.538712\pi\)
\(60\) 0 0
\(61\) 0.347296 1.96962i 0.0444667 0.252183i −0.954469 0.298311i \(-0.903577\pi\)
0.998936 + 0.0461272i \(0.0146880\pi\)
\(62\) 4.33013 7.50000i 0.549927 0.952501i
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 16.2760 5.92396i 2.01878 0.734777i
\(66\) 0 0
\(67\) 6.12836 5.14230i 0.748698 0.628232i −0.186460 0.982462i \(-0.559702\pi\)
0.935158 + 0.354230i \(0.115257\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 5.63816 2.05212i 0.673889 0.245275i
\(71\) 5.19615 + 9.00000i 0.616670 + 1.06810i 0.990089 + 0.140441i \(0.0448520\pi\)
−0.373419 + 0.927663i \(0.621815\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0.300767 1.70574i 0.0349635 0.198288i
\(75\) 0 0
\(76\) 0.939693 + 0.342020i 0.107790 + 0.0392324i
\(77\) −0.601535 3.41147i −0.0685513 0.388774i
\(78\) 0 0
\(79\) −0.766044 0.642788i −0.0861867 0.0723193i 0.598676 0.800991i \(-0.295694\pi\)
−0.684863 + 0.728672i \(0.740138\pi\)
\(80\) 17.3205 1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −5.30731 4.45336i −0.582553 0.488820i 0.303231 0.952917i \(-0.401935\pi\)
−0.885784 + 0.464097i \(0.846379\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.62760 0.592396i −0.175508 0.0638797i
\(87\) 0 0
\(88\) 1.04189 5.90885i 0.111066 0.629885i
\(89\) 5.19615 9.00000i 0.550791 0.953998i −0.447427 0.894321i \(-0.647659\pi\)
0.998218 0.0596775i \(-0.0190072\pi\)
\(90\) 0 0
\(91\) 2.50000 + 4.33013i 0.262071 + 0.453921i
\(92\) −6.51038 + 2.36959i −0.678754 + 0.247046i
\(93\) 0 0
\(94\) −4.59627 + 3.85673i −0.474069 + 0.397791i
\(95\) 2.65366 2.22668i 0.272259 0.228453i
\(96\) 0 0
\(97\) −15.9748 + 5.81434i −1.62199 + 0.590357i −0.983760 0.179487i \(-0.942556\pi\)
−0.638232 + 0.769844i \(0.720334\pi\)
\(98\) −5.19615 9.00000i −0.524891 0.909137i
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) 2.40614 13.6459i 0.239420 1.35782i −0.593683 0.804699i \(-0.702327\pi\)
0.833103 0.553118i \(-0.186562\pi\)
\(102\) 0 0
\(103\) −7.51754 2.73616i −0.740725 0.269602i −0.0560277 0.998429i \(-0.517844\pi\)
−0.684698 + 0.728827i \(0.740066\pi\)
\(104\) 1.50384 + 8.52869i 0.147463 + 0.836306i
\(105\) 0 0
\(106\) −13.7888 11.5702i −1.33929 1.12379i
\(107\) −10.3923 −1.00466 −0.502331 0.864675i \(-0.667524\pi\)
−0.502331 + 0.864675i \(0.667524\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 15.9219 + 13.3601i 1.51810 + 1.27383i
\(111\) 0 0
\(112\) 0.868241 + 4.92404i 0.0820411 + 0.465278i
\(113\) −16.2760 5.92396i −1.53111 0.557280i −0.567219 0.823567i \(-0.691981\pi\)
−0.963894 + 0.266287i \(0.914203\pi\)
\(114\) 0 0
\(115\) −4.16756 + 23.6354i −0.388627 + 2.20401i
\(116\) −1.73205 + 3.00000i −0.160817 + 0.278543i
\(117\) 0 0
\(118\) −3.00000 5.19615i −0.276172 0.478345i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.766044 0.642788i 0.0696404 0.0584352i
\(122\) −2.65366 + 2.22668i −0.240251 + 0.201594i
\(123\) 0 0
\(124\) −4.69846 + 1.71010i −0.421934 + 0.153572i
\(125\) 3.46410 + 6.00000i 0.309839 + 0.536656i
\(126\) 0 0
\(127\) −8.50000 + 14.7224i −0.754253 + 1.30640i 0.191492 + 0.981494i \(0.438667\pi\)
−0.945745 + 0.324910i \(0.894666\pi\)
\(128\) −2.10537 + 11.9402i −0.186090 + 1.05537i
\(129\) 0 0
\(130\) −28.1908 10.2606i −2.47249 0.899915i
\(131\) −0.601535 3.41147i −0.0525564 0.298062i 0.947188 0.320679i \(-0.103911\pi\)
−0.999744 + 0.0226174i \(0.992800\pi\)
\(132\) 0 0
\(133\) 0.766044 + 0.642788i 0.0664245 + 0.0557368i
\(134\) −13.8564 −1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) −5.30731 4.45336i −0.453434 0.380476i 0.387274 0.921965i \(-0.373417\pi\)
−0.840708 + 0.541488i \(0.817861\pi\)
\(138\) 0 0
\(139\) −2.25743 12.8025i −0.191472 1.08589i −0.917353 0.398074i \(-0.869679\pi\)
0.725881 0.687820i \(-0.241432\pi\)
\(140\) −3.25519 1.18479i −0.275114 0.100133i
\(141\) 0 0
\(142\) 3.12567 17.7265i 0.262300 1.48758i
\(143\) −8.66025 + 15.0000i −0.724207 + 1.25436i
\(144\) 0 0
\(145\) 6.00000 + 10.3923i 0.498273 + 0.863034i
\(146\) 3.25519 1.18479i 0.269402 0.0980541i
\(147\) 0 0
\(148\) −0.766044 + 0.642788i −0.0629685 + 0.0528368i
\(149\) 5.30731 4.45336i 0.434792 0.364834i −0.398964 0.916966i \(-0.630630\pi\)
0.833756 + 0.552133i \(0.186186\pi\)
\(150\) 0 0
\(151\) 15.0351 5.47232i 1.22354 0.445331i 0.352158 0.935941i \(-0.385448\pi\)
0.871380 + 0.490609i \(0.163226\pi\)
\(152\) 0.866025 + 1.50000i 0.0702439 + 0.121666i
\(153\) 0 0
\(154\) −3.00000 + 5.19615i −0.241747 + 0.418718i
\(155\) −3.00767 + 17.0574i −0.241582 + 1.37008i
\(156\) 0 0
\(157\) 12.2160 + 4.44626i 0.974943 + 0.354850i 0.779872 0.625939i \(-0.215284\pi\)
0.195071 + 0.980789i \(0.437506\pi\)
\(158\) 0.300767 + 1.70574i 0.0239278 + 0.135701i
\(159\) 0 0
\(160\) −13.7888 11.5702i −1.09010 0.914703i
\(161\) −6.92820 −0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) −2.65366 2.22668i −0.207216 0.173875i
\(165\) 0 0
\(166\) 2.08378 + 11.8177i 0.161733 + 0.917231i
\(167\) 22.7863 + 8.29355i 1.76326 + 0.641774i 0.999991 0.00430705i \(-0.00137098\pi\)
0.763269 + 0.646081i \(0.223593\pi\)
\(168\) 0 0
\(169\) 2.08378 11.8177i 0.160291 0.909053i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.0381246 + 0.0660338i
\(173\) −13.0208 + 4.73917i −0.989950 + 0.360312i −0.785701 0.618606i \(-0.787698\pi\)
−0.204249 + 0.978919i \(0.565475\pi\)
\(174\) 0 0
\(175\) −5.36231 + 4.49951i −0.405353 + 0.340131i
\(176\) −13.2683 + 11.1334i −1.00013 + 0.839212i
\(177\) 0 0
\(178\) −16.9145 + 6.15636i −1.26779 + 0.461439i
\(179\) −10.3923 18.0000i −0.776757 1.34538i −0.933801 0.357792i \(-0.883530\pi\)
0.157044 0.987592i \(-0.449804\pi\)
\(180\) 0 0
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) 1.50384 8.52869i 0.111472 0.632188i
\(183\) 0 0
\(184\) −11.2763 4.10424i −0.831301 0.302569i
\(185\) 0.601535 + 3.41147i 0.0442257 + 0.250817i
\(186\) 0 0
\(187\) 0 0
\(188\) 3.46410 0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) −5.30731 4.45336i −0.384024 0.322234i 0.430256 0.902707i \(-0.358423\pi\)
−0.814280 + 0.580473i \(0.802868\pi\)
\(192\) 0 0
\(193\) −1.73648 9.84808i −0.124995 0.708880i −0.981311 0.192428i \(-0.938364\pi\)
0.856316 0.516452i \(-0.172747\pi\)
\(194\) 27.6691 + 10.0707i 1.98653 + 0.723037i
\(195\) 0 0
\(196\) −1.04189 + 5.90885i −0.0744206 + 0.422060i
\(197\) −5.19615 + 9.00000i −0.370211 + 0.641223i −0.989598 0.143862i \(-0.954048\pi\)
0.619387 + 0.785086i \(0.287381\pi\)
\(198\) 0 0
\(199\) 9.50000 + 16.4545i 0.673437 + 1.16643i 0.976923 + 0.213591i \(0.0685161\pi\)
−0.303486 + 0.952836i \(0.598151\pi\)
\(200\) −11.3932 + 4.14677i −0.805619 + 0.293221i
\(201\) 0 0
\(202\) −18.3851 + 15.4269i −1.29357 + 1.08543i
\(203\) −2.65366 + 2.22668i −0.186250 + 0.156282i
\(204\) 0 0
\(205\) −11.2763 + 4.10424i −0.787572 + 0.286653i
\(206\) 6.92820 + 12.0000i 0.482711 + 0.836080i
\(207\) 0 0
\(208\) 12.5000 21.6506i 0.866719 1.50120i
\(209\) −0.601535 + 3.41147i −0.0416090 + 0.235977i
\(210\) 0 0
\(211\) −4.69846 1.71010i −0.323456 0.117728i 0.175189 0.984535i \(-0.443946\pi\)
−0.498644 + 0.866807i \(0.666169\pi\)
\(212\) 1.80460 + 10.2344i 0.123941 + 0.702903i
\(213\) 0 0
\(214\) 13.7888 + 11.5702i 0.942583 + 0.790921i
\(215\) 3.46410 0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) −22.5561 18.9268i −1.52769 1.28188i
\(219\) 0 0
\(220\) −2.08378 11.8177i −0.140488 0.796749i
\(221\) 0 0
\(222\) 0 0
\(223\) −3.29932 + 18.7113i −0.220938 + 1.25300i 0.649360 + 0.760481i \(0.275037\pi\)
−0.870299 + 0.492524i \(0.836074\pi\)
\(224\) 2.59808 4.50000i 0.173591 0.300669i
\(225\) 0 0
\(226\) 15.0000 + 25.9808i 0.997785 + 1.72821i
\(227\) −13.0208 + 4.73917i −0.864218 + 0.314550i −0.735824 0.677173i \(-0.763205\pi\)
−0.128395 + 0.991723i \(0.540982\pi\)
\(228\) 0 0
\(229\) 3.83022 3.21394i 0.253108 0.212383i −0.507401 0.861710i \(-0.669394\pi\)
0.760509 + 0.649327i \(0.224949\pi\)
\(230\) 31.8439 26.7202i 2.09972 1.76188i
\(231\) 0 0
\(232\) −5.63816 + 2.05212i −0.370163 + 0.134728i
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 6.00000 10.3923i 0.391397 0.677919i
\(236\) −0.601535 + 3.41147i −0.0391566 + 0.222068i
\(237\) 0 0
\(238\) 0 0
\(239\) 1.20307 + 6.82295i 0.0778201 + 0.441340i 0.998676 + 0.0514372i \(0.0163802\pi\)
−0.920856 + 0.389903i \(0.872509\pi\)
\(240\) 0 0
\(241\) −14.5548 12.2130i −0.937560 0.786706i 0.0395991 0.999216i \(-0.487392\pi\)
−0.977159 + 0.212509i \(0.931836\pi\)
\(242\) −1.73205 −0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 15.9219 + 13.3601i 1.01722 + 0.853545i
\(246\) 0 0
\(247\) −0.868241 4.92404i −0.0552448 0.313309i
\(248\) −8.13798 2.96198i −0.516762 0.188086i
\(249\) 0 0
\(250\) 2.08378 11.8177i 0.131790 0.747417i
\(251\) 10.3923 18.0000i 0.655956 1.13615i −0.325697 0.945474i \(-0.605599\pi\)
0.981653 0.190676i \(-0.0610679\pi\)
\(252\) 0 0
\(253\) −12.0000 20.7846i −0.754434 1.30672i
\(254\) 27.6691 10.0707i 1.73612 0.631894i
\(255\) 0 0
\(256\) 14.5548 12.2130i 0.909678 0.763310i
\(257\) −2.65366 + 2.22668i −0.165531 + 0.138897i −0.721790 0.692112i \(-0.756680\pi\)
0.556260 + 0.831009i \(0.312236\pi\)
\(258\) 0 0
\(259\) −0.939693 + 0.342020i −0.0583897 + 0.0212521i
\(260\) 8.66025 + 15.0000i 0.537086 + 0.930261i
\(261\) 0 0
\(262\) −3.00000 + 5.19615i −0.185341 + 0.321019i
\(263\) 2.40614 13.6459i 0.148369 0.841442i −0.816231 0.577725i \(-0.803940\pi\)
0.964600 0.263717i \(-0.0849484\pi\)
\(264\) 0 0
\(265\) 33.8289 + 12.3127i 2.07809 + 0.756365i
\(266\) −0.300767 1.70574i −0.0184412 0.104585i
\(267\) 0 0
\(268\) 6.12836 + 5.14230i 0.374349 + 0.314116i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.08378 + 11.8177i 0.125886 + 0.713933i
\(275\) −22.7863 8.29355i −1.37407 0.500120i
\(276\) 0 0
\(277\) 2.95202 16.7417i 0.177370 1.00591i −0.758003 0.652251i \(-0.773825\pi\)
0.935373 0.353663i \(-0.115064\pi\)
\(278\) −11.2583 + 19.5000i −0.675230 + 1.16953i
\(279\) 0 0
\(280\) −3.00000 5.19615i −0.179284 0.310530i
\(281\) −13.0208 + 4.73917i −0.776754 + 0.282715i −0.699818 0.714321i \(-0.746736\pi\)
−0.0769353 + 0.997036i \(0.524513\pi\)
\(282\) 0 0
\(283\) −9.95858 + 8.35624i −0.591976 + 0.496727i −0.888855 0.458188i \(-0.848499\pi\)
0.296879 + 0.954915i \(0.404054\pi\)
\(284\) −7.96097 + 6.68004i −0.472397 + 0.396388i
\(285\) 0 0
\(286\) 28.1908 10.2606i 1.66696 0.606722i
\(287\) −1.73205 3.00000i −0.102240 0.177084i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 3.60921 20.4688i 0.211940 1.20197i
\(291\) 0 0
\(292\) −1.87939 0.684040i −0.109983 0.0400304i
\(293\) −2.40614 13.6459i −0.140568 0.797202i −0.970819 0.239812i \(-0.922914\pi\)
0.830251 0.557390i \(-0.188197\pi\)
\(294\) 0 0
\(295\) 9.19253 + 7.71345i 0.535210 + 0.449094i
\(296\) −1.73205 −0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) 26.5366 + 22.2668i 1.53465 + 1.28772i
\(300\) 0 0
\(301\) 0.173648 + 0.984808i 0.0100089 + 0.0567634i
\(302\) −26.0415 9.47834i −1.49852 0.545417i
\(303\) 0 0
\(304\) 0.868241 4.92404i 0.0497970 0.282413i
\(305\) 3.46410 6.00000i 0.198354 0.343559i
\(306\) 0 0
\(307\) −10.0000 17.3205i −0.570730 0.988534i −0.996491 0.0836980i \(-0.973327\pi\)
0.425761 0.904836i \(-0.360006\pi\)
\(308\) 3.25519 1.18479i 0.185482 0.0675098i
\(309\) 0 0
\(310\) 22.9813 19.2836i 1.30525 1.09524i
\(311\) −10.6146 + 8.90673i −0.601900 + 0.505054i −0.892056 0.451925i \(-0.850737\pi\)
0.290156 + 0.956979i \(0.406293\pi\)
\(312\) 0 0
\(313\) 0.939693 0.342020i 0.0531146 0.0193321i −0.315326 0.948983i \(-0.602114\pi\)
0.368441 + 0.929651i \(0.379892\pi\)
\(314\) −11.2583 19.5000i −0.635344 1.10045i
\(315\) 0 0
\(316\) 0.500000 0.866025i 0.0281272 0.0487177i
\(317\) −4.81228 + 27.2918i −0.270285 + 1.53286i 0.483268 + 0.875472i \(0.339450\pi\)
−0.753553 + 0.657387i \(0.771662\pi\)
\(318\) 0 0
\(319\) −11.2763 4.10424i −0.631352 0.229793i
\(320\) −0.601535 3.41147i −0.0336268 0.190707i
\(321\) 0 0
\(322\) 9.19253 + 7.71345i 0.512280 + 0.429854i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) 1.32683 + 1.11334i 0.0734862 + 0.0616622i
\(327\) 0 0
\(328\) −1.04189 5.90885i −0.0575287 0.326261i
\(329\) 3.25519 + 1.18479i 0.179464 + 0.0653197i
\(330\) 0 0
\(331\) −3.29932 + 18.7113i −0.181347 + 1.02847i 0.749213 + 0.662329i \(0.230432\pi\)
−0.930560 + 0.366140i \(0.880679\pi\)
\(332\) 3.46410 6.00000i 0.190117 0.329293i
\(333\) 0 0
\(334\) −21.0000 36.3731i −1.14907 1.99025i
\(335\) 26.0415 9.47834i 1.42280 0.517857i
\(336\) 0 0
\(337\) 3.83022 3.21394i 0.208645 0.175074i −0.532476 0.846445i \(-0.678738\pi\)
0.741122 + 0.671370i \(0.234294\pi\)
\(338\) −15.9219 + 13.3601i −0.866039 + 0.726693i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.66025 15.0000i −0.468979 0.812296i
\(342\) 0 0
\(343\) −6.50000 + 11.2583i −0.350967 + 0.607893i
\(344\) −0.300767 + 1.70574i −0.0162163 + 0.0919672i
\(345\) 0 0
\(346\) 22.5526 + 8.20848i 1.21244 + 0.441291i
\(347\) −4.21074 23.8803i −0.226045 1.28196i −0.860678 0.509149i \(-0.829960\pi\)
0.634634 0.772813i \(-0.281151\pi\)
\(348\) 0 0
\(349\) −0.766044 0.642788i −0.0410054 0.0344076i 0.622055 0.782974i \(-0.286298\pi\)
−0.663060 + 0.748566i \(0.730743\pi\)
\(350\) 12.1244 0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) −13.2683 11.1334i −0.706199 0.592572i 0.217331 0.976098i \(-0.430265\pi\)
−0.923530 + 0.383527i \(0.874709\pi\)
\(354\) 0 0
\(355\) 6.25133 + 35.4531i 0.331786 + 1.88165i
\(356\) 9.76557 + 3.55438i 0.517574 + 0.188382i
\(357\) 0 0
\(358\) −6.25133 + 35.4531i −0.330393 + 1.87375i
\(359\) 15.5885 27.0000i 0.822727 1.42501i −0.0809166 0.996721i \(-0.525785\pi\)
0.903644 0.428285i \(-0.140882\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 27.6691 10.0707i 1.45426 0.529306i
\(363\) 0 0
\(364\) −3.83022 + 3.21394i −0.200758 + 0.168456i
\(365\) −5.30731 + 4.45336i −0.277797 + 0.233100i
\(366\) 0 0
\(367\) 15.0351 5.47232i 0.784825 0.285653i 0.0816418 0.996662i \(-0.473984\pi\)
0.703183 + 0.711009i \(0.251761\pi\)
\(368\) 17.3205 + 30.0000i 0.902894 + 1.56386i
\(369\) 0 0
\(370\) 3.00000 5.19615i 0.155963 0.270135i
\(371\) −1.80460 + 10.2344i −0.0936904 + 0.531345i
\(372\) 0 0
\(373\) −21.6129 7.86646i −1.11908 0.407310i −0.284761 0.958599i \(-0.591914\pi\)
−0.834315 + 0.551289i \(0.814136\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.59627 + 3.85673i 0.237034 + 0.198895i
\(377\) 17.3205 0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 2.65366 + 2.22668i 0.136130 + 0.114226i
\(381\) 0 0
\(382\) 2.08378 + 11.8177i 0.106615 + 0.604646i
\(383\) −16.2760 5.92396i −0.831662 0.302700i −0.109121 0.994028i \(-0.534804\pi\)
−0.722541 + 0.691328i \(0.757026\pi\)
\(384\) 0 0
\(385\) 2.08378 11.8177i 0.106199 0.602285i
\(386\) −8.66025 + 15.0000i −0.440795 + 0.763480i
\(387\) 0 0
\(388\) −8.50000 14.7224i −0.431522 0.747418i
\(389\) 6.51038 2.36959i 0.330089 0.120143i −0.171659 0.985156i \(-0.554913\pi\)
0.501748 + 0.865014i \(0.332690\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −7.96097 + 6.68004i −0.402090 + 0.337393i
\(393\) 0 0
\(394\) 16.9145 6.15636i 0.852139 0.310153i
\(395\) −1.73205 3.00000i −0.0871489 0.150946i
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) 5.71458 32.4090i 0.286446 1.62452i
\(399\) 0 0
\(400\) 32.8892 + 11.9707i 1.64446 + 0.598535i
\(401\) −0.601535 3.41147i −0.0300392 0.170361i 0.966097 0.258178i \(-0.0831221\pi\)
−0.996137 + 0.0878170i \(0.972011\pi\)
\(402\) 0 0
\(403\) 19.1511 + 16.0697i 0.953985 + 0.800488i
\(404\) 13.8564 0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) −2.65366 2.22668i −0.131537 0.110373i
\(408\) 0 0
\(409\) 0.868241 + 4.92404i 0.0429317 + 0.243478i 0.998720 0.0505773i \(-0.0161061\pi\)
−0.955788 + 0.294055i \(0.904995\pi\)
\(410\) 19.5311 + 7.10876i 0.964574 + 0.351076i
\(411\) 0 0
\(412\) 1.38919 7.87846i 0.0684403 0.388144i
\(413\) −1.73205 + 3.00000i −0.0852286 + 0.147620i
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) −24.4139 + 8.88594i −1.19699 + 0.435669i
\(417\) 0 0
\(418\) 4.59627 3.85673i 0.224811 0.188639i
\(419\) 29.1902 24.4935i 1.42604 1.19659i 0.478025 0.878346i \(-0.341353\pi\)
0.948010 0.318239i \(-0.103092\pi\)
\(420\) 0 0
\(421\) 17.8542 6.49838i 0.870159 0.316712i 0.131927 0.991259i \(-0.457883\pi\)
0.738231 + 0.674548i \(0.235661\pi\)
\(422\) 4.33013 + 7.50000i 0.210787 + 0.365094i
\(423\) 0 0
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) 0 0
\(426\) 0 0
\(427\) 1.87939 + 0.684040i 0.0909498 + 0.0331030i
\(428\) −1.80460 10.2344i −0.0872289 0.494699i
\(429\) 0 0
\(430\) −4.59627 3.85673i −0.221652 0.185988i
\(431\) 20.7846 1.00116 0.500580 0.865690i \(-0.333120\pi\)
0.500580 + 0.865690i \(0.333120\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 6.63414 + 5.56670i 0.318449 + 0.267210i
\(435\) 0 0
\(436\) 2.95202 + 16.7417i 0.141376 + 0.801784i
\(437\) 6.51038 + 2.36959i 0.311434 + 0.113353i
\(438\) 0 0
\(439\) 3.47296 19.6962i 0.165756 0.940046i −0.782527 0.622617i \(-0.786069\pi\)
0.948282 0.317429i \(-0.102820\pi\)
\(440\) 10.3923 18.0000i 0.495434 0.858116i
\(441\) 0 0
\(442\) 0 0
\(443\) −13.0208 + 4.73917i −0.618635 + 0.225165i −0.632277 0.774742i \(-0.717880\pi\)
0.0136422 + 0.999907i \(0.495657\pi\)
\(444\) 0 0
\(445\) 27.5776 23.1404i 1.30730 1.09696i
\(446\) 25.2097 21.1535i 1.19372 1.00165i
\(447\) 0 0
\(448\) 0.939693 0.342020i 0.0443963 0.0161589i
\(449\) −5.19615 9.00000i −0.245222 0.424736i 0.716972 0.697102i \(-0.245527\pi\)
−0.962194 + 0.272365i \(0.912194\pi\)
\(450\) 0 0
\(451\) 6.00000 10.3923i 0.282529 0.489355i
\(452\) 3.00767 17.0574i 0.141469 0.802311i
\(453\) 0 0
\(454\) 22.5526 + 8.20848i 1.05845 + 0.385243i
\(455\) 3.00767 + 17.0574i 0.141002 + 0.799662i
\(456\) 0 0
\(457\) 13.0228 + 10.9274i 0.609179 + 0.511162i 0.894381 0.447306i \(-0.147616\pi\)
−0.285202 + 0.958467i \(0.592061\pi\)
\(458\) −8.66025 −0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) −21.2292 17.8135i −0.988745 0.829655i −0.00335908 0.999994i \(-0.501069\pi\)
−0.985385 + 0.170339i \(0.945514\pi\)
\(462\) 0 0
\(463\) −5.38309 30.5290i −0.250174 1.41880i −0.808164 0.588957i \(-0.799539\pi\)
0.557990 0.829847i \(-0.311573\pi\)
\(464\) 16.2760 + 5.92396i 0.755592 + 0.275013i
\(465\) 0 0
\(466\) 0 0
\(467\) −5.19615 + 9.00000i −0.240449 + 0.416470i −0.960842 0.277096i \(-0.910628\pi\)
0.720393 + 0.693566i \(0.243961\pi\)
\(468\) 0 0
\(469\) 4.00000 + 6.92820i 0.184703 + 0.319915i
\(470\) −19.5311 + 7.10876i −0.900905 + 0.327902i
\(471\) 0 0
\(472\) −4.59627 + 3.85673i −0.211560 + 0.177520i
\(473\) −2.65366 + 2.22668i −0.122015 + 0.102383i
\(474\) 0 0
\(475\) 6.57785 2.39414i 0.301812 0.109851i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) 2.40614 13.6459i 0.109939 0.623497i −0.879193 0.476466i \(-0.841917\pi\)
0.989132 0.147030i \(-0.0469715\pi\)
\(480\) 0 0
\(481\) 4.69846 + 1.71010i 0.214231 + 0.0779739i
\(482\) 5.71458 + 32.4090i 0.260292 + 1.47619i
\(483\) 0 0
\(484\) 0.766044 + 0.642788i 0.0348202 + 0.0292176i
\(485\) −58.8897 −2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 2.65366 + 2.22668i 0.120125 + 0.100797i
\(489\) 0 0
\(490\) −6.25133 35.4531i −0.282407 1.60161i
\(491\) −35.8071 13.0327i −1.61595 0.588158i −0.633347 0.773868i \(-0.718319\pi\)
−0.982605 + 0.185710i \(0.940542\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.33013 + 7.50000i −0.194822 + 0.337441i
\(495\) 0 0
\(496\) 12.5000 + 21.6506i 0.561267 + 0.972142i
\(497\) −9.76557 + 3.55438i −0.438046 + 0.159436i
\(498\) 0 0
\(499\) −21.4492 + 17.9981i −0.960200 + 0.805704i −0.980986 0.194080i \(-0.937828\pi\)
0.0207856 + 0.999784i \(0.493383\pi\)
\(500\) −5.30731 + 4.45336i −0.237350 + 0.199160i
\(501\) 0 0
\(502\) −33.8289 + 12.3127i −1.50986 + 0.549544i
\(503\) 20.7846 + 36.0000i 0.926740 + 1.60516i 0.788739 + 0.614729i \(0.210734\pi\)
0.138001 + 0.990432i \(0.455932\pi\)
\(504\) 0 0
\(505\) 24.0000 41.5692i 1.06799 1.84981i
\(506\) −7.21842 + 40.9377i −0.320898 + 1.81990i
\(507\) 0 0
\(508\) −15.9748 5.81434i −0.708766 0.257970i
\(509\) 4.81228 + 27.2918i 0.213301 + 1.20969i 0.883831 + 0.467806i \(0.154955\pi\)
−0.670531 + 0.741882i \(0.733934\pi\)
\(510\) 0 0
\(511\) −1.53209 1.28558i −0.0677756 0.0568705i
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −21.2292 17.8135i −0.935472 0.784955i
\(516\) 0 0
\(517\) 2.08378 + 11.8177i 0.0916445 + 0.519742i
\(518\) 1.62760 + 0.592396i 0.0715124 + 0.0260284i
\(519\) 0 0
\(520\) −5.20945 + 29.5442i −0.228449 + 1.29560i
\(521\) −10.3923 + 18.0000i −0.455295 + 0.788594i −0.998705 0.0508731i \(-0.983800\pi\)
0.543410 + 0.839467i \(0.317133\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 3.25519 1.18479i 0.142204 0.0517579i
\(525\) 0 0
\(526\) −18.3851 + 15.4269i −0.801627 + 0.672645i
\(527\) 0 0
\(528\) 0 0
\(529\) −23.4923 + 8.55050i −1.02141 + 0.371761i
\(530\) −31.1769 54.0000i −1.35424 2.34561i
\(531\) 0 0
\(532\) −0.500000 + 0.866025i −0.0216777 + 0.0375470i
\(533\) −3.00767 + 17.0574i −0.130277 + 0.738837i
\(534\) 0 0
\(535\) −33.8289 12.3127i −1.46255 0.532326i
\(536\) 2.40614 + 13.6459i 0.103929 + 0.589413i
\(537\) 0 0
\(538\) 0 0
\(539\) −20.7846 −0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 21.2292 + 17.8135i 0.911874 + 0.765153i
\(543\) 0 0
\(544\) 0 0
\(545\) 55.3382 + 20.1415i 2.37043 + 0.862766i
\(546\) 0 0
\(547\) 3.47296 19.6962i 0.148493 0.842147i −0.816003 0.578048i \(-0.803815\pi\)
0.964496 0.264098i \(-0.0850744\pi\)
\(548\) 3.46410 6.00000i 0.147979 0.256307i
\(549\) 0 0
\(550\) 21.0000 + 36.3731i 0.895443 + 1.55095i
\(551\) 3.25519 1.18479i 0.138676 0.0504739i
\(552\) 0 0
\(553\) 0.766044 0.642788i 0.0325755 0.0273341i
\(554\) −22.5561 + 18.9268i −0.958316 + 0.804122i
\(555\) 0 0
\(556\) 12.2160 4.44626i 0.518074 0.188564i
\(557\) 5.19615 + 9.00000i 0.220168 + 0.381342i 0.954859 0.297060i \(-0.0960061\pi\)
−0.734691 + 0.678402i \(0.762673\pi\)
\(558\) 0 0
\(559\) 2.50000 4.33013i 0.105739 0.183145i
\(560\) −3.00767 + 17.0574i −0.127097 + 0.720805i
\(561\) 0 0
\(562\) 22.5526 + 8.20848i 0.951325 + 0.346254i
\(563\) −6.01535 34.1147i −0.253517 1.43776i −0.799851 0.600198i \(-0.795088\pi\)
0.546335 0.837567i \(-0.316023\pi\)
\(564\) 0 0
\(565\) −45.9627 38.5673i −1.93366 1.62254i
\(566\) 22.5167 0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) 18.5756 + 15.5868i 0.778729 + 0.653431i 0.942928 0.332996i \(-0.108059\pi\)
−0.164199 + 0.986427i \(0.552504\pi\)
\(570\) 0 0
\(571\) 7.11958 + 40.3771i 0.297945 + 1.68973i 0.654986 + 0.755641i \(0.272675\pi\)
−0.357041 + 0.934089i \(0.616214\pi\)
\(572\) −16.2760 5.92396i −0.680532 0.247693i
\(573\) 0 0
\(574\) −1.04189 + 5.90885i −0.0434876 + 0.246630i
\(575\) −24.2487 + 42.0000i −1.01124 + 1.75152i
\(576\) 0 0
\(577\) 17.0000 + 29.4449i 0.707719 + 1.22581i 0.965701 + 0.259656i \(0.0836092\pi\)
−0.257982 + 0.966150i \(0.583058\pi\)
\(578\) −27.6691 + 10.0707i −1.15088 + 0.418887i
\(579\) 0 0
\(580\) −9.19253 + 7.71345i −0.381699 + 0.320284i
\(581\) 5.30731 4.45336i 0.220184 0.184757i
\(582\) 0 0
\(583\) −33.8289 + 12.3127i −1.40105 + 0.509941i
\(584\) −1.73205 3.00000i −0.0716728 0.124141i
\(585\) 0 0
\(586\) −12.0000 + 20.7846i −0.495715 + 0.858604i
\(587\) −1.20307 + 6.82295i −0.0496560 + 0.281613i −0.999518 0.0310575i \(-0.990113\pi\)
0.949862 + 0.312671i \(0.101224\pi\)
\(588\) 0 0
\(589\) 4.69846 + 1.71010i 0.193597 + 0.0704635i
\(590\) −3.60921 20.4688i −0.148589 0.842689i
\(591\) 0 0
\(592\) 3.83022 + 3.21394i 0.157421 + 0.132092i
\(593\) −20.7846 −0.853522 −0.426761 0.904365i \(-0.640345\pi\)
−0.426761 + 0.904365i \(0.640345\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.30731 + 4.45336i 0.217396 + 0.182417i
\(597\) 0 0
\(598\) −10.4189 59.0885i −0.426060 2.41631i
\(599\) 22.7863 + 8.29355i 0.931024 + 0.338865i 0.762616 0.646852i \(-0.223915\pi\)
0.168409 + 0.985717i \(0.446137\pi\)
\(600\) 0 0
\(601\) 6.07769 34.4683i 0.247914 1.40599i −0.565713 0.824602i \(-0.691399\pi\)
0.813627 0.581388i \(-0.197490\pi\)
\(602\) 0.866025 1.50000i 0.0352966 0.0611354i
\(603\) 0 0
\(604\) 8.00000 + 13.8564i 0.325515 + 0.563809i
\(605\) 3.25519 1.18479i 0.132342 0.0481687i
\(606\) 0 0
\(607\) −9.95858 + 8.35624i −0.404206 + 0.339169i −0.822117 0.569319i \(-0.807207\pi\)
0.417911 + 0.908488i \(0.362763\pi\)
\(608\) −3.98048 + 3.34002i −0.161430 + 0.135456i
\(609\) 0 0
\(610\) −11.2763 + 4.10424i −0.456565 + 0.166176i
\(611\) −8.66025 15.0000i −0.350356 0.606835i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) −6.01535 + 34.1147i −0.242760 + 1.37676i
\(615\) 0 0
\(616\) 5.63816 + 2.05212i 0.227168 + 0.0826823i
\(617\) 1.20307 + 6.82295i 0.0484338 + 0.274682i 0.999401 0.0346105i \(-0.0110191\pi\)
−0.950967 + 0.309292i \(0.899908\pi\)
\(618\) 0 0
\(619\) 15.3209 + 12.8558i 0.615799 + 0.516716i 0.896480 0.443085i \(-0.146116\pi\)
−0.280681 + 0.959801i \(0.590560\pi\)
\(620\) −17.3205 −0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 7.96097 + 6.68004i 0.318949 + 0.267630i
\(624\) 0 0
\(625\) −1.91013 10.8329i −0.0764052 0.433315i
\(626\) −1.62760 0.592396i −0.0650518 0.0236769i
\(627\) 0 0
\(628\) −2.25743 + 12.8025i −0.0900811 + 0.510875i
\(629\) 0 0
\(630\) 0 0
\(631\) −8.50000 14.7224i −0.338380 0.586091i 0.645748 0.763550i \(-0.276545\pi\)
−0.984128 + 0.177459i \(0.943212\pi\)
\(632\) 1.62760 0.592396i 0.0647423 0.0235643i
\(633\) 0 0
\(634\) 36.7701 30.8538i 1.46033 1.22536i
\(635\) −45.1121 + 37.8536i −1.79022 + 1.50217i
\(636\) 0 0
\(637\) 28.1908 10.2606i 1.11696 0.406540i
\(638\) 10.3923 + 18.0000i 0.411435 + 0.712627i
\(639\) 0 0
\(640\) −21.0000 + 36.3731i −0.830098 + 1.43777i
\(641\) 7.81995 44.3492i 0.308870 1.75169i −0.295837 0.955238i \(-0.595599\pi\)
0.604707 0.796448i \(-0.293290\pi\)
\(642\) 0 0
\(643\) −41.3465 15.0489i −1.63055 0.593470i −0.645196 0.764017i \(-0.723224\pi\)
−0.985350 + 0.170547i \(0.945447\pi\)
\(644\) −1.20307 6.82295i −0.0474076 0.268862i
\(645\) 0 0
\(646\) 0 0
\(647\) 20.7846 0.817127 0.408564 0.912730i \(-0.366030\pi\)
0.408564 + 0.912730i \(0.366030\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) −46.4390 38.9669i −1.82149 1.52841i
\(651\) 0 0
\(652\) −0.173648 0.984808i −0.00680059 0.0385680i
\(653\) −16.2760 5.92396i −0.636927 0.231823i 0.00331633 0.999995i \(-0.498944\pi\)
−0.640244 + 0.768172i \(0.721167\pi\)
\(654\) 0 0
\(655\) 2.08378 11.8177i 0.0814199 0.461755i
\(656\) −8.66025 + 15.0000i −0.338126 + 0.585652i
\(657\) 0 0
\(658\) −3.00000 5.19615i −0.116952 0.202567i
\(659\) 26.0415 9.47834i 1.01443 0.369224i 0.219300 0.975658i \(-0.429623\pi\)
0.795134 + 0.606434i \(0.207400\pi\)
\(660\) 0 0
\(661\) −7.66044 + 6.42788i −0.297957 + 0.250015i −0.779493 0.626411i \(-0.784523\pi\)
0.481536 + 0.876426i \(0.340079\pi\)
\(662\) 25.2097 21.1535i 0.979804 0.822153i
\(663\) 0 0
\(664\) 11.2763 4.10424i 0.437606 0.159275i
\(665\) 1.73205 + 3.00000i 0.0671660 + 0.116335i
\(666\) 0 0
\(667\) −12.0000 + 20.7846i −0.464642 + 0.804783i
\(668\) −4.21074 + 23.8803i −0.162919 + 0.923957i
\(669\) 0 0
\(670\) −45.1052 16.4170i −1.74257 0.634243i
\(671\) 1.20307 + 6.82295i 0.0464440 + 0.263397i
\(672\) 0 0
\(673\) −28.3436 23.7831i −1.09257 0.916773i −0.0956642 0.995414i \(-0.530497\pi\)
−0.996903 + 0.0786409i \(0.974942\pi\)
\(674\) −8.66025 −0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −13.2683 11.1334i −0.509941 0.427892i 0.351167 0.936313i \(-0.385785\pi\)
−0.861109 + 0.508421i \(0.830229\pi\)
\(678\) 0 0
\(679\) −2.95202 16.7417i −0.113288 0.642489i
\(680\) 0 0
\(681\) 0 0
\(682\) −5.20945 + 29.5442i −0.199480 + 1.13131i
\(683\) 20.7846 36.0000i 0.795301 1.37750i −0.127347 0.991858i \(-0.540646\pi\)
0.922648 0.385643i \(-0.126021\pi\)
\(684\) 0 0
\(685\) −12.0000 20.7846i −0.458496 0.794139i
\(686\) 21.1587 7.70115i 0.807844 0.294031i
\(687\) 0 0
\(688\) 3.83022 3.21394i 0.146026 0.122530i
\(689\) 39.8048 33.4002i 1.51644 1.27245i
\(690\) 0 0
\(691\) −15.9748 + 5.81434i −0.607709 + 0.221188i −0.627501 0.778616i \(-0.715922\pi\)
0.0197915 + 0.999804i \(0.493700\pi\)
\(692\) −6.92820 12.0000i −0.263371 0.456172i
\(693\) 0 0
\(694\) −21.0000 + 36.3731i −0.797149 + 1.38070i
\(695\) 7.81995 44.3492i 0.296628 1.68226i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.300767 + 1.70574i 0.0113842 + 0.0645631i
\(699\) 0 0
\(700\) −5.36231 4.49951i −0.202676 0.170066i
\(701\) 41.5692 1.57005 0.785024 0.619466i \(-0.212651\pi\)
0.785024 + 0.619466i \(0.212651\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) 2.65366 + 2.22668i 0.100013 + 0.0839212i
\(705\) 0 0
\(706\) 5.20945 + 29.5442i 0.196060 + 1.11191i
\(707\) 13.0208 + 4.73917i 0.489696 + 0.178235i
\(708\) 0 0
\(709\) −3.29932 + 18.7113i −0.123908 + 0.702719i 0.858042 + 0.513580i \(0.171681\pi\)
−0.981950 + 0.189140i \(0.939430\pi\)
\(710\) 31.1769 54.0000i 1.17005 2.02658i
\(711\) 0 0
\(712\) 9.00000 + 15.5885i 0.337289 + 0.584202i
\(713\) −32.5519 + 11.8479i −1.21908 + 0.443708i
\(714\) 0 0
\(715\) −45.9627 + 38.5673i −1.71891 + 1.44233i
\(716\) 15.9219 13.3601i 0.595031 0.499290i
\(717\) 0 0
\(718\) −50.7434 + 18.4691i −1.89373 + 0.689260i
\(719\) 5.19615 + 9.00000i 0.193784 + 0.335643i 0.946501 0.322700i \(-0.104591\pi\)
−0.752717 + 0.658344i \(0.771257\pi\)
\(720\) 0 0
\(721\) 4.00000 6.92820i 0.148968 0.258020i
\(722\) 5.41381 30.7033i 0.201481 1.14266i
\(723\) 0 0
\(724\) −15.9748 5.81434i −0.593698 0.216088i
\(725\) 4.21074 + 23.8803i 0.156383 + 0.886893i
\(726\) 0 0
\(727\) −12.2567 10.2846i −0.454576 0.381435i 0.386555 0.922267i \(-0.373665\pi\)
−0.841131 + 0.540832i \(0.818110\pi\)
\(728\) −8.66025 −0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) 7.11958 + 40.3771i 0.262968 + 1.49136i 0.774761 + 0.632254i \(0.217870\pi\)
−0.511793 + 0.859109i \(0.671019\pi\)
\(734\) −26.0415 9.47834i −0.961210 0.349852i
\(735\) 0 0
\(736\) 6.25133 35.4531i 0.230427 1.30682i
\(737\) −13.8564 + 24.0000i −0.510407 + 0.884051i
\(738\) 0 0
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) −3.25519 + 1.18479i −0.119663 + 0.0435538i
\(741\) 0 0
\(742\) 13.7888 11.5702i 0.506203 0.424755i
\(743\) 5.30731 4.45336i 0.194706 0.163378i −0.540223 0.841522i \(-0.681660\pi\)
0.734929 + 0.678144i \(0.237215\pi\)
\(744\) 0 0
\(745\) 22.5526 8.20848i 0.826264 0.300736i
\(746\) 19.9186 + 34.5000i 0.729271 + 1.26313i
\(747\) 0 0
\(748\) 0 0
\(749\) 1.80460 10.2344i 0.0659388 0.373958i
\(750\) 0 0
\(751\) −4.69846 1.71010i −0.171449 0.0624025i 0.254869 0.966976i \(-0.417968\pi\)
−0.426319 + 0.904573i \(0.640190\pi\)
\(752\) −3.00767 17.0574i −0.109679 0.622018i
\(753\) 0 0
\(754\) −22.9813 19.2836i −0.836931 0.702268i
\(755\) 55.4256 2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 25.2097 + 21.1535i 0.915659 + 0.768329i
\(759\) 0 0
\(760\) 1.04189 + 5.90885i 0.0377933 + 0.214336i
\(761\) −26.0415 9.47834i −0.944005 0.343590i −0.176259 0.984344i \(-0.556399\pi\)
−0.767746 + 0.640754i \(0.778622\pi\)
\(762\) 0 0
\(763\) −2.95202 + 16.7417i −0.106870 + 0.606091i
\(764\) 3.46410 6.00000i 0.125327 0.217072i
\(765\) 0 0
\(766\) 15.0000 + 25.9808i 0.541972 + 0.938723i
\(767\) 16.2760 5.92396i 0.587691 0.213902i
\(768\) 0 0
\(769\) −9.95858 + 8.35624i −0.359115 + 0.301334i −0.804438 0.594037i \(-0.797533\pi\)
0.445323 + 0.895370i \(0.353089\pi\)
\(770\) −15.9219 + 13.3601i −0.573787 + 0.481464i
\(771\) 0 0
\(772\) 9.39693 3.42020i 0.338203 0.123096i
\(773\) 10.3923 + 18.0000i 0.373785 + 0.647415i 0.990144 0.140050i \(-0.0447264\pi\)
−0.616359 + 0.787465i \(0.711393\pi\)
\(774\) 0 0
\(775\) −17.5000 + 30.3109i −0.628619 + 1.08880i
\(776\) 5.11305 28.9975i 0.183548 1.04095i
\(777\) 0 0
\(778\) −11.2763 4.10424i −0.404275 0.147144i
\(779\) 0.601535 + 3.41147i 0.0215522 + 0.122229i
\(780\) 0 0
\(781\) −27.5776 23.1404i −0.986804 0.828027i
\(782\) 0 0
\(783\) 0 0