Properties

Label 729.2.e.n.163.1
Level $729$
Weight $2$
Character 729.163
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 163.1
Root \(0.342020 - 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 729.163
Dual form 729.2.e.n.568.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62760 + 0.592396i) q^{2} +(0.766044 - 0.642788i) q^{4} +(0.601535 + 3.41147i) q^{5} +(-0.766044 - 0.642788i) q^{7} +(0.866025 - 1.50000i) q^{8} +(-3.00000 - 5.19615i) q^{10} +(-0.601535 + 3.41147i) q^{11} +(-4.69846 - 1.71010i) q^{13} +(1.62760 + 0.592396i) q^{14} +(-0.868241 + 4.92404i) q^{16} +(0.500000 - 0.866025i) q^{19} +(2.65366 + 2.22668i) q^{20} +(-1.04189 - 5.90885i) q^{22} +(-5.30731 + 4.45336i) q^{23} +(-6.57785 + 2.39414i) q^{25} +8.66025 q^{26} -1.00000 q^{28} +(3.25519 - 1.18479i) q^{29} +(3.83022 - 3.21394i) q^{31} +(-0.902302 - 5.11721i) q^{32} +(1.73205 - 3.00000i) q^{35} +(0.500000 + 0.866025i) q^{37} +(-0.300767 + 1.70574i) q^{38} +(5.63816 + 2.05212i) q^{40} +(-3.25519 - 1.18479i) q^{41} +(-0.173648 + 0.984808i) q^{43} +(1.73205 + 3.00000i) q^{44} +(6.00000 - 10.3923i) q^{46} +(-2.65366 - 2.22668i) q^{47} +(-1.04189 - 5.90885i) q^{49} +(9.28780 - 7.79339i) q^{50} +(-4.69846 + 1.71010i) q^{52} -10.3923 q^{53} -12.0000 q^{55} +(-1.62760 + 0.592396i) q^{56} +(-4.59627 + 3.85673i) q^{58} +(0.601535 + 3.41147i) q^{59} +(1.53209 + 1.28558i) q^{61} +(-4.33013 + 7.50000i) q^{62} +(-0.500000 - 0.866025i) q^{64} +(3.00767 - 17.0574i) q^{65} +(-7.51754 - 2.73616i) q^{67} +(-1.04189 + 5.90885i) q^{70} +(-5.19615 - 9.00000i) q^{71} +(-1.00000 + 1.73205i) q^{73} +(-1.32683 - 1.11334i) q^{74} +(-0.173648 - 0.984808i) q^{76} +(2.65366 - 2.22668i) q^{77} +(0.939693 - 0.342020i) q^{79} -17.3205 q^{80} +6.00000 q^{82} +(-6.51038 + 2.36959i) q^{83} +(-0.300767 - 1.70574i) q^{86} +(4.59627 + 3.85673i) q^{88} +(-5.19615 + 9.00000i) q^{89} +(2.50000 + 4.33013i) q^{91} +(-1.20307 + 6.82295i) q^{92} +(5.63816 + 2.05212i) q^{94} +(3.25519 + 1.18479i) q^{95} +(2.95202 - 16.7417i) q^{97} +(5.19615 + 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 36 q^{10} + 6 q^{19} - 12 q^{28} + 6 q^{37} + 72 q^{46} - 144 q^{55} - 6 q^{64} - 12 q^{73} + 72 q^{82} + 30 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62760 + 0.592396i −1.15088 + 0.418887i −0.845833 0.533449i \(-0.820896\pi\)
−0.305051 + 0.952336i \(0.598674\pi\)
\(3\) 0 0
\(4\) 0.766044 0.642788i 0.383022 0.321394i
\(5\) 0.601535 + 3.41147i 0.269015 + 1.52566i 0.757354 + 0.653004i \(0.226492\pi\)
−0.488340 + 0.872654i \(0.662397\pi\)
\(6\) 0 0
\(7\) −0.766044 0.642788i −0.289538 0.242951i 0.486436 0.873716i \(-0.338297\pi\)
−0.775974 + 0.630765i \(0.782741\pi\)
\(8\) 0.866025 1.50000i 0.306186 0.530330i
\(9\) 0 0
\(10\) −3.00000 5.19615i −0.948683 1.64317i
\(11\) −0.601535 + 3.41147i −0.181370 + 1.02860i 0.749162 + 0.662387i \(0.230456\pi\)
−0.930532 + 0.366211i \(0.880655\pi\)
\(12\) 0 0
\(13\) −4.69846 1.71010i −1.30312 0.474297i −0.405108 0.914269i \(-0.632766\pi\)
−0.898011 + 0.439972i \(0.854988\pi\)
\(14\) 1.62760 + 0.592396i 0.434993 + 0.158325i
\(15\) 0 0
\(16\) −0.868241 + 4.92404i −0.217060 + 1.23101i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 2.65366 + 2.22668i 0.593375 + 0.497901i
\(21\) 0 0
\(22\) −1.04189 5.90885i −0.222131 1.25977i
\(23\) −5.30731 + 4.45336i −1.10665 + 0.928590i −0.997854 0.0654736i \(-0.979144\pi\)
−0.108797 + 0.994064i \(0.534700\pi\)
\(24\) 0 0
\(25\) −6.57785 + 2.39414i −1.31557 + 0.478828i
\(26\) 8.66025 1.69842
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 3.25519 1.18479i 0.604474 0.220010i −0.0216097 0.999766i \(-0.506879\pi\)
0.626083 + 0.779756i \(0.284657\pi\)
\(30\) 0 0
\(31\) 3.83022 3.21394i 0.687928 0.577240i −0.230383 0.973100i \(-0.573998\pi\)
0.918311 + 0.395860i \(0.129553\pi\)
\(32\) −0.902302 5.11721i −0.159506 0.904604i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.73205 3.00000i 0.292770 0.507093i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −0.300767 + 1.70574i −0.0487909 + 0.276707i
\(39\) 0 0
\(40\) 5.63816 + 2.05212i 0.891471 + 0.324469i
\(41\) −3.25519 1.18479i −0.508375 0.185034i 0.0750818 0.997177i \(-0.476078\pi\)
−0.583457 + 0.812144i \(0.698300\pi\)
\(42\) 0 0
\(43\) −0.173648 + 0.984808i −0.0264811 + 0.150182i −0.995181 0.0980518i \(-0.968739\pi\)
0.968700 + 0.248234i \(0.0798500\pi\)
\(44\) 1.73205 + 3.00000i 0.261116 + 0.452267i
\(45\) 0 0
\(46\) 6.00000 10.3923i 0.884652 1.53226i
\(47\) −2.65366 2.22668i −0.387075 0.324795i 0.428397 0.903591i \(-0.359078\pi\)
−0.815473 + 0.578796i \(0.803523\pi\)
\(48\) 0 0
\(49\) −1.04189 5.90885i −0.148841 0.844121i
\(50\) 9.28780 7.79339i 1.31349 1.10215i
\(51\) 0 0
\(52\) −4.69846 + 1.71010i −0.651560 + 0.237148i
\(53\) −10.3923 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) −1.62760 + 0.592396i −0.217497 + 0.0791623i
\(57\) 0 0
\(58\) −4.59627 + 3.85673i −0.603519 + 0.506413i
\(59\) 0.601535 + 3.41147i 0.0783132 + 0.444136i 0.998600 + 0.0528923i \(0.0168440\pi\)
−0.920287 + 0.391244i \(0.872045\pi\)
\(60\) 0 0
\(61\) 1.53209 + 1.28558i 0.196164 + 0.164601i 0.735579 0.677439i \(-0.236910\pi\)
−0.539415 + 0.842040i \(0.681355\pi\)
\(62\) −4.33013 + 7.50000i −0.549927 + 0.952501i
\(63\) 0 0
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 3.00767 17.0574i 0.373056 2.11571i
\(66\) 0 0
\(67\) −7.51754 2.73616i −0.918414 0.334275i −0.160807 0.986986i \(-0.551410\pi\)
−0.757607 + 0.652711i \(0.773632\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −1.04189 + 5.90885i −0.124530 + 0.706242i
\(71\) −5.19615 9.00000i −0.616670 1.06810i −0.990089 0.140441i \(-0.955148\pi\)
0.373419 0.927663i \(-0.378185\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) −1.32683 1.11334i −0.154241 0.129423i
\(75\) 0 0
\(76\) −0.173648 0.984808i −0.0199188 0.112965i
\(77\) 2.65366 2.22668i 0.302412 0.253754i
\(78\) 0 0
\(79\) 0.939693 0.342020i 0.105724 0.0384803i −0.288617 0.957445i \(-0.593195\pi\)
0.394340 + 0.918964i \(0.370973\pi\)
\(80\) −17.3205 −1.93649
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −6.51038 + 2.36959i −0.714607 + 0.260096i −0.673635 0.739065i \(-0.735268\pi\)
−0.0409726 + 0.999160i \(0.513046\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.300767 1.70574i −0.0324326 0.183934i
\(87\) 0 0
\(88\) 4.59627 + 3.85673i 0.489964 + 0.411128i
\(89\) −5.19615 + 9.00000i −0.550791 + 0.953998i 0.447427 + 0.894321i \(0.352341\pi\)
−0.998218 + 0.0596775i \(0.980993\pi\)
\(90\) 0 0
\(91\) 2.50000 + 4.33013i 0.262071 + 0.453921i
\(92\) −1.20307 + 6.82295i −0.125429 + 0.711342i
\(93\) 0 0
\(94\) 5.63816 + 2.05212i 0.581531 + 0.211660i
\(95\) 3.25519 + 1.18479i 0.333976 + 0.121557i
\(96\) 0 0
\(97\) 2.95202 16.7417i 0.299732 1.69987i −0.347588 0.937647i \(-0.612999\pi\)
0.647320 0.762218i \(-0.275890\pi\)
\(98\) 5.19615 + 9.00000i 0.524891 + 0.909137i
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) −10.6146 8.90673i −1.05619 0.886252i −0.0624632 0.998047i \(-0.519896\pi\)
−0.993731 + 0.111795i \(0.964340\pi\)
\(102\) 0 0
\(103\) 1.38919 + 7.87846i 0.136881 + 0.776288i 0.973532 + 0.228552i \(0.0733991\pi\)
−0.836651 + 0.547736i \(0.815490\pi\)
\(104\) −6.63414 + 5.56670i −0.650531 + 0.545860i
\(105\) 0 0
\(106\) 16.9145 6.15636i 1.64288 0.597959i
\(107\) 10.3923 1.00466 0.502331 0.864675i \(-0.332476\pi\)
0.502331 + 0.864675i \(0.332476\pi\)
\(108\) 0 0
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 19.5311 7.10876i 1.86222 0.677793i
\(111\) 0 0
\(112\) 3.83022 3.21394i 0.361922 0.303689i
\(113\) −3.00767 17.0574i −0.282938 1.60462i −0.712558 0.701613i \(-0.752464\pi\)
0.429620 0.903010i \(-0.358647\pi\)
\(114\) 0 0
\(115\) −18.3851 15.4269i −1.71442 1.43857i
\(116\) 1.73205 3.00000i 0.160817 0.278543i
\(117\) 0 0
\(118\) −3.00000 5.19615i −0.276172 0.478345i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.939693 0.342020i −0.0854266 0.0310927i
\(122\) −3.25519 1.18479i −0.294711 0.107266i
\(123\) 0 0
\(124\) 0.868241 4.92404i 0.0779703 0.442192i
\(125\) −3.46410 6.00000i −0.309839 0.536656i
\(126\) 0 0
\(127\) −8.50000 + 14.7224i −0.754253 + 1.30640i 0.191492 + 0.981494i \(0.438667\pi\)
−0.945745 + 0.324910i \(0.894666\pi\)
\(128\) 9.28780 + 7.79339i 0.820933 + 0.688844i
\(129\) 0 0
\(130\) 5.20945 + 29.5442i 0.456899 + 2.59120i
\(131\) 2.65366 2.22668i 0.231851 0.194546i −0.519459 0.854495i \(-0.673867\pi\)
0.751310 + 0.659949i \(0.229422\pi\)
\(132\) 0 0
\(133\) −0.939693 + 0.342020i −0.0814817 + 0.0296569i
\(134\) 13.8564 1.19701
\(135\) 0 0
\(136\) 0 0
\(137\) −6.51038 + 2.36959i −0.556219 + 0.202447i −0.604808 0.796372i \(-0.706750\pi\)
0.0485882 + 0.998819i \(0.484528\pi\)
\(138\) 0 0
\(139\) −9.95858 + 8.35624i −0.844676 + 0.708767i −0.958610 0.284721i \(-0.908099\pi\)
0.113935 + 0.993488i \(0.463655\pi\)
\(140\) −0.601535 3.41147i −0.0508390 0.288322i
\(141\) 0 0
\(142\) 13.7888 + 11.5702i 1.15713 + 0.970948i
\(143\) 8.66025 15.0000i 0.724207 1.25436i
\(144\) 0 0
\(145\) 6.00000 + 10.3923i 0.498273 + 0.863034i
\(146\) 0.601535 3.41147i 0.0497834 0.282336i
\(147\) 0 0
\(148\) 0.939693 + 0.342020i 0.0772423 + 0.0281139i
\(149\) 6.51038 + 2.36959i 0.533351 + 0.194124i 0.594634 0.803996i \(-0.297297\pi\)
−0.0612828 + 0.998120i \(0.519519\pi\)
\(150\) 0 0
\(151\) −2.77837 + 15.7569i −0.226101 + 1.28228i 0.634469 + 0.772948i \(0.281219\pi\)
−0.860570 + 0.509332i \(0.829892\pi\)
\(152\) −0.866025 1.50000i −0.0702439 0.121666i
\(153\) 0 0
\(154\) −3.00000 + 5.19615i −0.241747 + 0.418718i
\(155\) 13.2683 + 11.1334i 1.06573 + 0.894257i
\(156\) 0 0
\(157\) −2.25743 12.8025i −0.180162 1.02175i −0.932015 0.362420i \(-0.881951\pi\)
0.751853 0.659331i \(-0.229160\pi\)
\(158\) −1.32683 + 1.11334i −0.105557 + 0.0885726i
\(159\) 0 0
\(160\) 16.9145 6.15636i 1.33721 0.486703i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) −1.00000 −0.0783260 −0.0391630 0.999233i \(-0.512469\pi\)
−0.0391630 + 0.999233i \(0.512469\pi\)
\(164\) −3.25519 + 1.18479i −0.254188 + 0.0925168i
\(165\) 0 0
\(166\) 9.19253 7.71345i 0.713479 0.598680i
\(167\) 4.21074 + 23.8803i 0.325837 + 1.84791i 0.503725 + 0.863864i \(0.331962\pi\)
−0.177888 + 0.984051i \(0.556927\pi\)
\(168\) 0 0
\(169\) 9.19253 + 7.71345i 0.707118 + 0.593342i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.500000 + 0.866025i 0.0381246 + 0.0660338i
\(173\) −2.40614 + 13.6459i −0.182935 + 1.03748i 0.745644 + 0.666345i \(0.232142\pi\)
−0.928579 + 0.371134i \(0.878969\pi\)
\(174\) 0 0
\(175\) 6.57785 + 2.39414i 0.497239 + 0.180980i
\(176\) −16.2760 5.92396i −1.22685 0.446535i
\(177\) 0 0
\(178\) 3.12567 17.7265i 0.234279 1.32866i
\(179\) 10.3923 + 18.0000i 0.776757 + 1.34538i 0.933801 + 0.357792i \(0.116470\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(180\) 0 0
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) −6.63414 5.56670i −0.491755 0.412632i
\(183\) 0 0
\(184\) 2.08378 + 11.8177i 0.153618 + 0.871212i
\(185\) −2.65366 + 2.22668i −0.195101 + 0.163709i
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 −0.252646
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) −6.51038 + 2.36959i −0.471075 + 0.171457i −0.566639 0.823966i \(-0.691757\pi\)
0.0955644 + 0.995423i \(0.469534\pi\)
\(192\) 0 0
\(193\) −7.66044 + 6.42788i −0.551411 + 0.462689i −0.875418 0.483366i \(-0.839414\pi\)
0.324008 + 0.946054i \(0.394970\pi\)
\(194\) 5.11305 + 28.9975i 0.367095 + 2.08190i
\(195\) 0 0
\(196\) −4.59627 3.85673i −0.328305 0.275480i
\(197\) 5.19615 9.00000i 0.370211 0.641223i −0.619387 0.785086i \(-0.712619\pi\)
0.989598 + 0.143862i \(0.0459522\pi\)
\(198\) 0 0
\(199\) 9.50000 + 16.4545i 0.673437 + 1.16643i 0.976923 + 0.213591i \(0.0685161\pi\)
−0.303486 + 0.952836i \(0.598151\pi\)
\(200\) −2.10537 + 11.9402i −0.148872 + 0.844297i
\(201\) 0 0
\(202\) 22.5526 + 8.20848i 1.58680 + 0.577547i
\(203\) −3.25519 1.18479i −0.228470 0.0831561i
\(204\) 0 0
\(205\) 2.08378 11.8177i 0.145537 0.825383i
\(206\) −6.92820 12.0000i −0.482711 0.836080i
\(207\) 0 0
\(208\) 12.5000 21.6506i 0.866719 1.50120i
\(209\) 2.65366 + 2.22668i 0.183557 + 0.154023i
\(210\) 0 0
\(211\) 0.868241 + 4.92404i 0.0597722 + 0.338985i 0.999999 0.00156464i \(-0.000498040\pi\)
−0.940227 + 0.340549i \(0.889387\pi\)
\(212\) −7.96097 + 6.68004i −0.546761 + 0.458787i
\(213\) 0 0
\(214\) −16.9145 + 6.15636i −1.15625 + 0.420840i
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) −5.00000 −0.339422
\(218\) −27.6691 + 10.0707i −1.87399 + 0.682076i
\(219\) 0 0
\(220\) −9.19253 + 7.71345i −0.619760 + 0.520041i
\(221\) 0 0
\(222\) 0 0
\(223\) −14.5548 12.2130i −0.974664 0.817841i 0.00861141 0.999963i \(-0.497259\pi\)
−0.983276 + 0.182122i \(0.941703\pi\)
\(224\) −2.59808 + 4.50000i −0.173591 + 0.300669i
\(225\) 0 0
\(226\) 15.0000 + 25.9808i 0.997785 + 1.72821i
\(227\) −2.40614 + 13.6459i −0.159701 + 0.905710i 0.794660 + 0.607055i \(0.207649\pi\)
−0.954361 + 0.298655i \(0.903462\pi\)
\(228\) 0 0
\(229\) −4.69846 1.71010i −0.310483 0.113007i 0.182079 0.983284i \(-0.441717\pi\)
−0.492562 + 0.870277i \(0.663940\pi\)
\(230\) 39.0623 + 14.2175i 2.57569 + 0.937475i
\(231\) 0 0
\(232\) 1.04189 5.90885i 0.0684034 0.387935i
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 6.00000 10.3923i 0.391397 0.677919i
\(236\) 2.65366 + 2.22668i 0.172738 + 0.144945i
\(237\) 0 0
\(238\) 0 0
\(239\) −5.30731 + 4.45336i −0.343301 + 0.288064i −0.798094 0.602533i \(-0.794158\pi\)
0.454792 + 0.890598i \(0.349714\pi\)
\(240\) 0 0
\(241\) 17.8542 6.49838i 1.15009 0.418598i 0.304541 0.952499i \(-0.401497\pi\)
0.845547 + 0.533902i \(0.179275\pi\)
\(242\) 1.73205 0.111340
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 19.5311 7.10876i 1.24780 0.454162i
\(246\) 0 0
\(247\) −3.83022 + 3.21394i −0.243711 + 0.204498i
\(248\) −1.50384 8.52869i −0.0954938 0.541572i
\(249\) 0 0
\(250\) 9.19253 + 7.71345i 0.581387 + 0.487841i
\(251\) −10.3923 + 18.0000i −0.655956 + 1.13615i 0.325697 + 0.945474i \(0.394401\pi\)
−0.981653 + 0.190676i \(0.938932\pi\)
\(252\) 0 0
\(253\) −12.0000 20.7846i −0.754434 1.30672i
\(254\) 5.11305 28.9975i 0.320821 1.81947i
\(255\) 0 0
\(256\) −17.8542 6.49838i −1.11588 0.406149i
\(257\) −3.25519 1.18479i −0.203053 0.0739053i 0.238491 0.971145i \(-0.423347\pi\)
−0.441545 + 0.897239i \(0.645569\pi\)
\(258\) 0 0
\(259\) 0.173648 0.984808i 0.0107900 0.0611930i
\(260\) −8.66025 15.0000i −0.537086 0.930261i
\(261\) 0 0
\(262\) −3.00000 + 5.19615i −0.185341 + 0.321019i
\(263\) −10.6146 8.90673i −0.654526 0.549212i 0.253915 0.967227i \(-0.418282\pi\)
−0.908440 + 0.418014i \(0.862726\pi\)
\(264\) 0 0
\(265\) −6.25133 35.4531i −0.384016 2.17787i
\(266\) 1.32683 1.11334i 0.0813530 0.0682633i
\(267\) 0 0
\(268\) −7.51754 + 2.73616i −0.459207 + 0.167138i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 9.19253 7.71345i 0.555341 0.465987i
\(275\) −4.21074 23.8803i −0.253917 1.44004i
\(276\) 0 0
\(277\) 13.0228 + 10.9274i 0.782462 + 0.656563i 0.943867 0.330325i \(-0.107158\pi\)
−0.161406 + 0.986888i \(0.551603\pi\)
\(278\) 11.2583 19.5000i 0.675230 1.16953i
\(279\) 0 0
\(280\) −3.00000 5.19615i −0.179284 0.310530i
\(281\) −2.40614 + 13.6459i −0.143538 + 0.814046i 0.824991 + 0.565146i \(0.191180\pi\)
−0.968529 + 0.248900i \(0.919931\pi\)
\(282\) 0 0
\(283\) 12.2160 + 4.44626i 0.726166 + 0.264303i 0.678541 0.734562i \(-0.262613\pi\)
0.0476250 + 0.998865i \(0.484835\pi\)
\(284\) −9.76557 3.55438i −0.579480 0.210914i
\(285\) 0 0
\(286\) −5.20945 + 29.5442i −0.308041 + 1.74699i
\(287\) 1.73205 + 3.00000i 0.102240 + 0.177084i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) −15.9219 13.3601i −0.934968 0.784531i
\(291\) 0 0
\(292\) 0.347296 + 1.96962i 0.0203240 + 0.115263i
\(293\) 10.6146 8.90673i 0.620113 0.520337i −0.277726 0.960660i \(-0.589581\pi\)
0.897839 + 0.440324i \(0.145136\pi\)
\(294\) 0 0
\(295\) −11.2763 + 4.10424i −0.656532 + 0.238958i
\(296\) 1.73205 0.100673
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) 32.5519 11.8479i 1.88253 0.685183i
\(300\) 0 0
\(301\) 0.766044 0.642788i 0.0441541 0.0370497i
\(302\) −4.81228 27.2918i −0.276916 1.57047i
\(303\) 0 0
\(304\) 3.83022 + 3.21394i 0.219678 + 0.184332i
\(305\) −3.46410 + 6.00000i −0.198354 + 0.343559i
\(306\) 0 0
\(307\) −10.0000 17.3205i −0.570730 0.988534i −0.996491 0.0836980i \(-0.973327\pi\)
0.425761 0.904836i \(-0.360006\pi\)
\(308\) 0.601535 3.41147i 0.0342756 0.194387i
\(309\) 0 0
\(310\) −28.1908 10.2606i −1.60113 0.582763i
\(311\) −13.0208 4.73917i −0.738340 0.268734i −0.0546491 0.998506i \(-0.517404\pi\)
−0.683691 + 0.729772i \(0.739626\pi\)
\(312\) 0 0
\(313\) −0.173648 + 0.984808i −0.00981518 + 0.0556646i −0.989322 0.145747i \(-0.953442\pi\)
0.979507 + 0.201411i \(0.0645527\pi\)
\(314\) 11.2583 + 19.5000i 0.635344 + 1.10045i
\(315\) 0 0
\(316\) 0.500000 0.866025i 0.0281272 0.0487177i
\(317\) 21.2292 + 17.8135i 1.19235 + 1.00050i 0.999815 + 0.0192136i \(0.00611627\pi\)
0.192538 + 0.981290i \(0.438328\pi\)
\(318\) 0 0
\(319\) 2.08378 + 11.8177i 0.116669 + 0.661664i
\(320\) 2.65366 2.22668i 0.148344 0.124475i
\(321\) 0 0
\(322\) −11.2763 + 4.10424i −0.628404 + 0.228720i
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) 1.62760 0.592396i 0.0901442 0.0328098i
\(327\) 0 0
\(328\) −4.59627 + 3.85673i −0.253786 + 0.212952i
\(329\) 0.601535 + 3.41147i 0.0331637 + 0.188081i
\(330\) 0 0
\(331\) −14.5548 12.2130i −0.800007 0.671285i 0.148194 0.988958i \(-0.452654\pi\)
−0.948200 + 0.317673i \(0.897099\pi\)
\(332\) −3.46410 + 6.00000i −0.190117 + 0.329293i
\(333\) 0 0
\(334\) −21.0000 36.3731i −1.14907 1.99025i
\(335\) 4.81228 27.2918i 0.262923 1.49111i
\(336\) 0 0
\(337\) −4.69846 1.71010i −0.255942 0.0931551i 0.210863 0.977516i \(-0.432373\pi\)
−0.466805 + 0.884361i \(0.654595\pi\)
\(338\) −19.5311 7.10876i −1.06235 0.386665i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.66025 + 15.0000i 0.468979 + 0.812296i
\(342\) 0 0
\(343\) −6.50000 + 11.2583i −0.350967 + 0.607893i
\(344\) 1.32683 + 1.11334i 0.0715378 + 0.0600273i
\(345\) 0 0
\(346\) −4.16756 23.6354i −0.224049 1.27065i
\(347\) 18.5756 15.5868i 0.997190 0.836742i 0.0105973 0.999944i \(-0.496627\pi\)
0.986593 + 0.163202i \(0.0521823\pi\)
\(348\) 0 0
\(349\) 0.939693 0.342020i 0.0503006 0.0183079i −0.316747 0.948510i \(-0.602591\pi\)
0.367048 + 0.930202i \(0.380369\pi\)
\(350\) −12.1244 −0.648074
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) −16.2760 + 5.92396i −0.866282 + 0.315301i −0.736660 0.676263i \(-0.763598\pi\)
−0.129621 + 0.991564i \(0.541376\pi\)
\(354\) 0 0
\(355\) 27.5776 23.1404i 1.46367 1.22816i
\(356\) 1.80460 + 10.2344i 0.0956439 + 0.542423i
\(357\) 0 0
\(358\) −27.5776 23.1404i −1.45752 1.22301i
\(359\) −15.5885 + 27.0000i −0.822727 + 1.42501i 0.0809166 + 0.996721i \(0.474215\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 5.11305 28.9975i 0.268736 1.52408i
\(363\) 0 0
\(364\) 4.69846 + 1.71010i 0.246266 + 0.0896336i
\(365\) −6.51038 2.36959i −0.340769 0.124030i
\(366\) 0 0
\(367\) −2.77837 + 15.7569i −0.145030 + 0.822505i 0.822313 + 0.569035i \(0.192683\pi\)
−0.967343 + 0.253470i \(0.918428\pi\)
\(368\) −17.3205 30.0000i −0.902894 1.56386i
\(369\) 0 0
\(370\) 3.00000 5.19615i 0.155963 0.270135i
\(371\) 7.96097 + 6.68004i 0.413313 + 0.346811i
\(372\) 0 0
\(373\) 3.99391 + 22.6506i 0.206797 + 1.17280i 0.894587 + 0.446893i \(0.147470\pi\)
−0.687791 + 0.725909i \(0.741419\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.63816 + 2.05212i −0.290766 + 0.105830i
\(377\) −17.3205 −0.892052
\(378\) 0 0
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 3.25519 1.18479i 0.166988 0.0607786i
\(381\) 0 0
\(382\) 9.19253 7.71345i 0.470331 0.394655i
\(383\) −3.00767 17.0574i −0.153685 0.871591i −0.959978 0.280075i \(-0.909641\pi\)
0.806293 0.591516i \(-0.201470\pi\)
\(384\) 0 0
\(385\) 9.19253 + 7.71345i 0.468495 + 0.393114i
\(386\) 8.66025 15.0000i 0.440795 0.763480i
\(387\) 0 0
\(388\) −8.50000 14.7224i −0.431522 0.747418i
\(389\) 1.20307 6.82295i 0.0609981 0.345937i −0.939000 0.343917i \(-0.888246\pi\)
0.999998 0.00201979i \(-0.000642918\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −9.76557 3.55438i −0.493236 0.179523i
\(393\) 0 0
\(394\) −3.12567 + 17.7265i −0.157469 + 0.893050i
\(395\) 1.73205 + 3.00000i 0.0871489 + 0.150946i
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) −25.2097 21.1535i −1.26365 1.06033i
\(399\) 0 0
\(400\) −6.07769 34.4683i −0.303884 1.72341i
\(401\) 2.65366 2.22668i 0.132517 0.111195i −0.574120 0.818771i \(-0.694656\pi\)
0.706637 + 0.707576i \(0.250211\pi\)
\(402\) 0 0
\(403\) −23.4923 + 8.55050i −1.17024 + 0.425931i
\(404\) −13.8564 −0.689382
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) −3.25519 + 1.18479i −0.161354 + 0.0587280i
\(408\) 0 0
\(409\) 3.83022 3.21394i 0.189392 0.158919i −0.543161 0.839628i \(-0.682773\pi\)
0.732554 + 0.680709i \(0.238328\pi\)
\(410\) 3.60921 + 20.4688i 0.178246 + 1.01088i
\(411\) 0 0
\(412\) 6.12836 + 5.14230i 0.301922 + 0.253343i
\(413\) 1.73205 3.00000i 0.0852286 0.147620i
\(414\) 0 0
\(415\) −12.0000 20.7846i −0.589057 1.02028i
\(416\) −4.51151 + 25.5861i −0.221195 + 1.25446i
\(417\) 0 0
\(418\) −5.63816 2.05212i −0.275771 0.100373i
\(419\) 35.8071 + 13.0327i 1.74929 + 0.636690i 0.999683 0.0251915i \(-0.00801955\pi\)
0.749609 + 0.661881i \(0.230242\pi\)
\(420\) 0 0
\(421\) −3.29932 + 18.7113i −0.160799 + 0.911935i 0.792492 + 0.609882i \(0.208783\pi\)
−0.953291 + 0.302053i \(0.902328\pi\)
\(422\) −4.33013 7.50000i −0.210787 0.365094i
\(423\) 0 0
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) 0 0
\(426\) 0 0
\(427\) −0.347296 1.96962i −0.0168068 0.0953164i
\(428\) 7.96097 6.68004i 0.384808 0.322892i
\(429\) 0 0
\(430\) 5.63816 2.05212i 0.271896 0.0989621i
\(431\) −20.7846 −1.00116 −0.500580 0.865690i \(-0.666880\pi\)
−0.500580 + 0.865690i \(0.666880\pi\)
\(432\) 0 0
\(433\) −1.00000 −0.0480569 −0.0240285 0.999711i \(-0.507649\pi\)
−0.0240285 + 0.999711i \(0.507649\pi\)
\(434\) 8.13798 2.96198i 0.390635 0.142180i
\(435\) 0 0
\(436\) 13.0228 10.9274i 0.623677 0.523327i
\(437\) 1.20307 + 6.82295i 0.0575506 + 0.326386i
\(438\) 0 0
\(439\) 15.3209 + 12.8558i 0.731226 + 0.613572i 0.930466 0.366379i \(-0.119403\pi\)
−0.199239 + 0.979951i \(0.563847\pi\)
\(440\) −10.3923 + 18.0000i −0.495434 + 0.858116i
\(441\) 0 0
\(442\) 0 0
\(443\) −2.40614 + 13.6459i −0.114319 + 0.648336i 0.872766 + 0.488139i \(0.162324\pi\)
−0.987085 + 0.160197i \(0.948787\pi\)
\(444\) 0 0
\(445\) −33.8289 12.3127i −1.60365 0.583679i
\(446\) 30.9243 + 11.2555i 1.46431 + 0.532965i
\(447\) 0 0
\(448\) −0.173648 + 0.984808i −0.00820411 + 0.0465278i
\(449\) 5.19615 + 9.00000i 0.245222 + 0.424736i 0.962194 0.272365i \(-0.0878059\pi\)
−0.716972 + 0.697102i \(0.754473\pi\)
\(450\) 0 0
\(451\) 6.00000 10.3923i 0.282529 0.489355i
\(452\) −13.2683 11.1334i −0.624087 0.523671i
\(453\) 0 0
\(454\) −4.16756 23.6354i −0.195593 1.10926i
\(455\) −13.2683 + 11.1334i −0.622027 + 0.521942i
\(456\) 0 0
\(457\) −15.9748 + 5.81434i −0.747268 + 0.271983i −0.687456 0.726226i \(-0.741273\pi\)
−0.0598126 + 0.998210i \(0.519050\pi\)
\(458\) 8.66025 0.404667
\(459\) 0 0
\(460\) −24.0000 −1.11901
\(461\) −26.0415 + 9.47834i −1.21287 + 0.441450i −0.867700 0.497088i \(-0.834403\pi\)
−0.345175 + 0.938538i \(0.612180\pi\)
\(462\) 0 0
\(463\) −23.7474 + 19.9264i −1.10363 + 0.926059i −0.997664 0.0683102i \(-0.978239\pi\)
−0.105970 + 0.994369i \(0.533795\pi\)
\(464\) 3.00767 + 17.0574i 0.139628 + 0.791869i
\(465\) 0 0
\(466\) 0 0
\(467\) 5.19615 9.00000i 0.240449 0.416470i −0.720393 0.693566i \(-0.756039\pi\)
0.960842 + 0.277096i \(0.0893719\pi\)
\(468\) 0 0
\(469\) 4.00000 + 6.92820i 0.184703 + 0.319915i
\(470\) −3.60921 + 20.4688i −0.166480 + 0.944157i
\(471\) 0 0
\(472\) 5.63816 + 2.05212i 0.259517 + 0.0944565i
\(473\) −3.25519 1.18479i −0.149674 0.0544768i
\(474\) 0 0
\(475\) −1.21554 + 6.89365i −0.0557727 + 0.316303i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) −10.6146 8.90673i −0.484995 0.406959i 0.367234 0.930129i \(-0.380305\pi\)
−0.852228 + 0.523170i \(0.824749\pi\)
\(480\) 0 0
\(481\) −0.868241 4.92404i −0.0395884 0.224517i
\(482\) −25.2097 + 21.1535i −1.14827 + 0.963514i
\(483\) 0 0
\(484\) −0.939693 + 0.342020i −0.0427133 + 0.0155464i
\(485\) 58.8897 2.67404
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 3.25519 1.18479i 0.147356 0.0536330i
\(489\) 0 0
\(490\) −27.5776 + 23.1404i −1.24583 + 1.04537i
\(491\) −6.61688 37.5262i −0.298616 1.69353i −0.652132 0.758106i \(-0.726125\pi\)
0.353516 0.935429i \(-0.384986\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 4.33013 7.50000i 0.194822 0.337441i
\(495\) 0 0
\(496\) 12.5000 + 21.6506i 0.561267 + 0.972142i
\(497\) −1.80460 + 10.2344i −0.0809476 + 0.459077i
\(498\) 0 0
\(499\) 26.3114 + 9.57656i 1.17786 + 0.428706i 0.855446 0.517893i \(-0.173283\pi\)
0.322414 + 0.946599i \(0.395506\pi\)
\(500\) −6.51038 2.36959i −0.291153 0.105971i
\(501\) 0 0
\(502\) 6.25133 35.4531i 0.279011 1.58235i
\(503\) −20.7846 36.0000i −0.926740 1.60516i −0.788739 0.614729i \(-0.789266\pi\)
−0.138001 0.990432i \(-0.544068\pi\)
\(504\) 0 0
\(505\) 24.0000 41.5692i 1.06799 1.84981i
\(506\) 31.8439 + 26.7202i 1.41563 + 1.18786i
\(507\) 0 0
\(508\) 2.95202 + 16.7417i 0.130975 + 0.742794i
\(509\) −21.2292 + 17.8135i −0.940970 + 0.789567i −0.977754 0.209756i \(-0.932733\pi\)
0.0367840 + 0.999323i \(0.488289\pi\)
\(510\) 0 0
\(511\) 1.87939 0.684040i 0.0831391 0.0302602i
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −26.0415 + 9.47834i −1.14753 + 0.417666i
\(516\) 0 0
\(517\) 9.19253 7.71345i 0.404287 0.339237i
\(518\) 0.300767 + 1.70574i 0.0132150 + 0.0749458i
\(519\) 0 0
\(520\) −22.9813 19.2836i −1.00780 0.845643i
\(521\) 10.3923 18.0000i 0.455295 0.788594i −0.543410 0.839467i \(-0.682867\pi\)
0.998705 + 0.0508731i \(0.0162004\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 0.601535 3.41147i 0.0262782 0.149031i
\(525\) 0 0
\(526\) 22.5526 + 8.20848i 0.983341 + 0.357907i
\(527\) 0 0
\(528\) 0 0
\(529\) 4.34120 24.6202i 0.188748 1.07044i
\(530\) 31.1769 + 54.0000i 1.35424 + 2.34561i
\(531\) 0 0
\(532\) −0.500000 + 0.866025i −0.0216777 + 0.0375470i
\(533\) 13.2683 + 11.1334i 0.574713 + 0.482241i
\(534\) 0 0
\(535\) 6.25133 + 35.4531i 0.270269 + 1.53277i
\(536\) −10.6146 + 8.90673i −0.458482 + 0.384712i
\(537\) 0 0
\(538\) 0 0
\(539\) 20.7846 0.895257
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 26.0415 9.47834i 1.11858 0.407130i
\(543\) 0 0
\(544\) 0 0
\(545\) 10.2261 + 57.9951i 0.438038 + 2.48424i
\(546\) 0 0
\(547\) 15.3209 + 12.8558i 0.655074 + 0.549672i 0.908606 0.417655i \(-0.137148\pi\)
−0.253532 + 0.967327i \(0.581592\pi\)
\(548\) −3.46410 + 6.00000i −0.147979 + 0.256307i
\(549\) 0 0
\(550\) 21.0000 + 36.3731i 0.895443 + 1.55095i
\(551\) 0.601535 3.41147i 0.0256262 0.145334i
\(552\) 0 0
\(553\) −0.939693 0.342020i −0.0399598 0.0145442i
\(554\) −27.6691 10.0707i −1.17555 0.427865i
\(555\) 0 0
\(556\) −2.25743 + 12.8025i −0.0957362 + 0.542947i
\(557\) −5.19615 9.00000i −0.220168 0.381342i 0.734691 0.678402i \(-0.237327\pi\)
−0.954859 + 0.297060i \(0.903994\pi\)
\(558\) 0 0
\(559\) 2.50000 4.33013i 0.105739 0.183145i
\(560\) 13.2683 + 11.1334i 0.560687 + 0.470472i
\(561\) 0 0
\(562\) −4.16756 23.6354i −0.175798 0.996999i
\(563\) 26.5366 22.2668i 1.11838 0.938434i 0.119861 0.992791i \(-0.461755\pi\)
0.998522 + 0.0543563i \(0.0173107\pi\)
\(564\) 0 0
\(565\) 56.3816 20.5212i 2.37199 0.863334i
\(566\) −22.5167 −0.946446
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) 22.7863 8.29355i 0.955253 0.347684i 0.183081 0.983098i \(-0.441393\pi\)
0.772172 + 0.635414i \(0.219171\pi\)
\(570\) 0 0
\(571\) 31.4078 26.3543i 1.31438 1.10289i 0.326911 0.945055i \(-0.393992\pi\)
0.987465 0.157838i \(-0.0504523\pi\)
\(572\) −3.00767 17.0574i −0.125757 0.713204i
\(573\) 0 0
\(574\) −4.59627 3.85673i −0.191844 0.160977i
\(575\) 24.2487 42.0000i 1.01124 1.75152i
\(576\) 0 0
\(577\) 17.0000 + 29.4449i 0.707719 + 1.22581i 0.965701 + 0.259656i \(0.0836092\pi\)
−0.257982 + 0.966150i \(0.583058\pi\)
\(578\) −5.11305 + 28.9975i −0.212675 + 1.20614i
\(579\) 0 0
\(580\) 11.2763 + 4.10424i 0.468223 + 0.170419i
\(581\) 6.51038 + 2.36959i 0.270096 + 0.0983070i
\(582\) 0 0
\(583\) 6.25133 35.4531i 0.258904 1.46832i
\(584\) 1.73205 + 3.00000i 0.0716728 + 0.124141i
\(585\) 0 0
\(586\) −12.0000 + 20.7846i −0.495715 + 0.858604i
\(587\) 5.30731 + 4.45336i 0.219056 + 0.183810i 0.745712 0.666269i \(-0.232110\pi\)
−0.526655 + 0.850079i \(0.676554\pi\)
\(588\) 0 0
\(589\) −0.868241 4.92404i −0.0357752 0.202891i
\(590\) 15.9219 13.3601i 0.655496 0.550026i
\(591\) 0 0
\(592\) −4.69846 + 1.71010i −0.193106 + 0.0702847i
\(593\) 20.7846 0.853522 0.426761 0.904365i \(-0.359655\pi\)
0.426761 + 0.904365i \(0.359655\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.51038 2.36959i 0.266676 0.0970620i
\(597\) 0 0
\(598\) −45.9627 + 38.5673i −1.87955 + 1.57713i
\(599\) 4.21074 + 23.8803i 0.172046 + 0.975723i 0.941498 + 0.337018i \(0.109418\pi\)
−0.769452 + 0.638705i \(0.779470\pi\)
\(600\) 0 0
\(601\) 26.8116 + 22.4976i 1.09367 + 0.917695i 0.996983 0.0776203i \(-0.0247322\pi\)
0.0966832 + 0.995315i \(0.469177\pi\)
\(602\) −0.866025 + 1.50000i −0.0352966 + 0.0611354i
\(603\) 0 0
\(604\) 8.00000 + 13.8564i 0.325515 + 0.563809i
\(605\) 0.601535 3.41147i 0.0244559 0.138696i
\(606\) 0 0
\(607\) 12.2160 + 4.44626i 0.495832 + 0.180468i 0.577819 0.816165i \(-0.303904\pi\)
−0.0819862 + 0.996633i \(0.526126\pi\)
\(608\) −4.88279 1.77719i −0.198023 0.0720745i
\(609\) 0 0
\(610\) 2.08378 11.8177i 0.0843697 0.478484i
\(611\) 8.66025 + 15.0000i 0.350356 + 0.606835i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) 26.5366 + 22.2668i 1.07093 + 0.898616i
\(615\) 0 0
\(616\) −1.04189 5.90885i −0.0419789 0.238074i
\(617\) −5.30731 + 4.45336i −0.213664 + 0.179286i −0.743338 0.668916i \(-0.766759\pi\)
0.529674 + 0.848201i \(0.322314\pi\)
\(618\) 0 0
\(619\) −18.7939 + 6.84040i −0.755389 + 0.274939i −0.690871 0.722978i \(-0.742773\pi\)
−0.0645172 + 0.997917i \(0.520551\pi\)
\(620\) 17.3205 0.695608
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 9.76557 3.55438i 0.391249 0.142403i
\(624\) 0 0
\(625\) −8.42649 + 7.07066i −0.337060 + 0.282827i
\(626\) −0.300767 1.70574i −0.0120211 0.0681750i
\(627\) 0 0
\(628\) −9.95858 8.35624i −0.397391 0.333450i
\(629\) 0 0
\(630\) 0 0
\(631\) −8.50000 14.7224i −0.338380 0.586091i 0.645748 0.763550i \(-0.276545\pi\)
−0.984128 + 0.177459i \(0.943212\pi\)
\(632\) 0.300767 1.70574i 0.0119639 0.0678506i
\(633\) 0 0
\(634\) −45.1052 16.4170i −1.79136 0.652001i
\(635\) −55.3382 20.1415i −2.19603 0.799290i
\(636\) 0 0
\(637\) −5.20945 + 29.5442i −0.206406 + 1.17059i
\(638\) −10.3923 18.0000i −0.411435 0.712627i
\(639\) 0 0
\(640\) −21.0000 + 36.3731i −0.830098 + 1.43777i
\(641\) −34.4975 28.9469i −1.36257 1.14333i −0.975179 0.221417i \(-0.928932\pi\)
−0.387391 0.921915i \(-0.626624\pi\)
\(642\) 0 0
\(643\) 7.64052 + 43.3315i 0.301313 + 1.70883i 0.640373 + 0.768064i \(0.278780\pi\)
−0.339060 + 0.940765i \(0.610109\pi\)
\(644\) 5.30731 4.45336i 0.209137 0.175487i
\(645\) 0 0
\(646\) 0 0
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) −56.9658 + 20.7339i −2.23438 + 0.813249i
\(651\) 0 0
\(652\) −0.766044 + 0.642788i −0.0300006 + 0.0251735i
\(653\) −3.00767 17.0574i −0.117699 0.667506i −0.985378 0.170381i \(-0.945500\pi\)
0.867679 0.497125i \(-0.165611\pi\)
\(654\) 0 0
\(655\) 9.19253 + 7.71345i 0.359182 + 0.301389i
\(656\) 8.66025 15.0000i 0.338126 0.585652i
\(657\) 0 0
\(658\) −3.00000 5.19615i −0.116952 0.202567i
\(659\) 4.81228 27.2918i 0.187460 1.06314i −0.735294 0.677748i \(-0.762956\pi\)
0.922754 0.385389i \(-0.125933\pi\)
\(660\) 0 0
\(661\) 9.39693 + 3.42020i 0.365498 + 0.133030i 0.518239 0.855236i \(-0.326588\pi\)
−0.152741 + 0.988266i \(0.548810\pi\)
\(662\) 30.9243 + 11.2555i 1.20191 + 0.437459i
\(663\) 0 0
\(664\) −2.08378 + 11.8177i −0.0808663 + 0.458615i
\(665\) −1.73205 3.00000i −0.0671660 0.116335i
\(666\) 0 0
\(667\) −12.0000 + 20.7846i −0.464642 + 0.804783i
\(668\) 18.5756 + 15.5868i 0.718711 + 0.603070i
\(669\) 0 0
\(670\) 8.33511 + 47.2708i 0.322013 + 1.82623i
\(671\) −5.30731 + 4.45336i −0.204886 + 0.171920i
\(672\) 0 0
\(673\) 34.7686 12.6547i 1.34023 0.487805i 0.430346 0.902664i \(-0.358391\pi\)
0.909886 + 0.414859i \(0.136169\pi\)
\(674\) 8.66025 0.333581
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −16.2760 + 5.92396i −0.625536 + 0.227676i −0.635287 0.772276i \(-0.719118\pi\)
0.00975136 + 0.999952i \(0.496896\pi\)
\(678\) 0 0
\(679\) −13.0228 + 10.9274i −0.499767 + 0.419355i
\(680\) 0 0
\(681\) 0 0
\(682\) −22.9813 19.2836i −0.880001 0.738408i
\(683\) −20.7846 + 36.0000i −0.795301 + 1.37750i 0.127347 + 0.991858i \(0.459354\pi\)
−0.922648 + 0.385643i \(0.873979\pi\)
\(684\) 0 0
\(685\) −12.0000 20.7846i −0.458496 0.794139i
\(686\) 3.90998 22.1746i 0.149284 0.846629i
\(687\) 0 0
\(688\) −4.69846 1.71010i −0.179127 0.0651970i
\(689\) 48.8279 + 17.7719i 1.86019 + 0.677055i
\(690\) 0 0
\(691\) 2.95202 16.7417i 0.112300 0.636885i −0.875752 0.482762i \(-0.839634\pi\)
0.988052 0.154123i \(-0.0492553\pi\)
\(692\) 6.92820 + 12.0000i 0.263371 + 0.456172i
\(693\) 0 0
\(694\) −21.0000 + 36.3731i −0.797149 + 1.38070i
\(695\) −34.4975 28.9469i −1.30857 1.09802i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.32683 + 1.11334i −0.0502212 + 0.0421406i
\(699\) 0 0
\(700\) 6.57785 2.39414i 0.248619 0.0904900i
\(701\) −41.5692 −1.57005 −0.785024 0.619466i \(-0.787349\pi\)
−0.785024 + 0.619466i \(0.787349\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) 3.25519 1.18479i 0.122685 0.0446535i
\(705\) 0 0
\(706\) 22.9813 19.2836i 0.864914 0.725749i
\(707\) 2.40614 + 13.6459i 0.0904922 + 0.513207i
\(708\) 0 0
\(709\) −14.5548 12.2130i −0.546619 0.458668i 0.327175 0.944964i \(-0.393903\pi\)
−0.873794 + 0.486296i \(0.838348\pi\)
\(710\) −31.1769 + 54.0000i −1.17005 + 2.02658i
\(711\) 0 0
\(712\) 9.00000 + 15.5885i 0.337289 + 0.584202i
\(713\) −6.01535 + 34.1147i −0.225277 + 1.27761i
\(714\) 0 0
\(715\) 56.3816 + 20.5212i 2.10855 + 0.767450i
\(716\) 19.5311 + 7.10876i 0.729913 + 0.265667i
\(717\) 0 0
\(718\) 9.37700 53.1796i 0.349947 1.98465i
\(719\) −5.19615 9.00000i −0.193784 0.335643i 0.752717 0.658344i \(-0.228743\pi\)
−0.946501 + 0.322700i \(0.895409\pi\)
\(720\) 0 0
\(721\) 4.00000 6.92820i 0.148968 0.258020i
\(722\) −23.8829 20.0401i −0.888830 0.745817i
\(723\) 0 0
\(724\) 2.95202 + 16.7417i 0.109711 + 0.622202i
\(725\) −18.5756 + 15.5868i −0.689880 + 0.578878i
\(726\) 0 0
\(727\) 15.0351 5.47232i 0.557620 0.202957i −0.0478087 0.998857i \(-0.515224\pi\)
0.605429 + 0.795899i \(0.293002\pi\)
\(728\) 8.66025 0.320970
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 0 0
\(732\) 0 0
\(733\) 31.4078 26.3543i 1.16007 0.973418i 0.160168 0.987090i \(-0.448796\pi\)
0.999907 + 0.0136718i \(0.00435201\pi\)
\(734\) −4.81228 27.2918i −0.177624 1.00736i
\(735\) 0 0
\(736\) 27.5776 + 23.1404i 1.01652 + 0.852965i
\(737\) 13.8564 24.0000i 0.510407 0.884051i
\(738\) 0 0
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) −0.601535 + 3.41147i −0.0221129 + 0.125408i
\(741\) 0 0
\(742\) −16.9145 6.15636i −0.620950 0.226007i
\(743\) 6.51038 + 2.36959i 0.238843 + 0.0869316i 0.458668 0.888608i \(-0.348327\pi\)
−0.219826 + 0.975539i \(0.570549\pi\)
\(744\) 0 0
\(745\) −4.16756 + 23.6354i −0.152687 + 0.865934i
\(746\) −19.9186 34.5000i −0.729271 1.26313i
\(747\) 0 0
\(748\) 0 0
\(749\) −7.96097 6.68004i −0.290887 0.244084i
\(750\) 0 0
\(751\) 0.868241 + 4.92404i 0.0316826 + 0.179681i 0.996543 0.0830837i \(-0.0264769\pi\)
−0.964860 + 0.262764i \(0.915366\pi\)
\(752\) 13.2683 11.1334i 0.483844 0.405994i
\(753\) 0 0
\(754\) 28.1908 10.2606i 1.02665 0.373669i
\(755\) −55.4256 −2.01715
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 30.9243 11.2555i 1.12322 0.408819i
\(759\) 0 0
\(760\) 4.59627 3.85673i 0.166724 0.139898i
\(761\) −4.81228 27.2918i −0.174445 0.989327i −0.938783 0.344510i \(-0.888045\pi\)
0.764338 0.644816i \(-0.223066\pi\)
\(762\) 0 0
\(763\) −13.0228 10.9274i −0.471455 0.395598i
\(764\) −3.46410 + 6.00000i −0.125327 + 0.217072i
\(765\) 0 0
\(766\) 15.0000 + 25.9808i 0.541972 + 0.938723i
\(767\) 3.00767 17.0574i 0.108601 0.615906i
\(768\) 0 0
\(769\) 12.2160 + 4.44626i 0.440520 + 0.160336i 0.552752 0.833346i \(-0.313578\pi\)
−0.112232 + 0.993682i \(0.535800\pi\)
\(770\) −19.5311 7.10876i −0.703854 0.256182i
\(771\) 0 0
\(772\) −1.73648 + 9.84808i −0.0624973 + 0.354440i
\(773\) −10.3923 18.0000i −0.373785 0.647415i 0.616359 0.787465i \(-0.288607\pi\)
−0.990144 + 0.140050i \(0.955274\pi\)
\(774\) 0 0
\(775\) −17.5000 + 30.3109i −0.628619 + 1.08880i
\(776\) −22.5561 18.9268i −0.809716 0.679432i
\(777\) 0 0
\(778\) 2.08378 + 11.8177i 0.0747071 + 0.423685i
\(779\) −2.65366 + 2.22668i −0.0950771 + 0.0797791i
\(780\) 0 0
\(781\) 33.8289 12.3127i 1.21049 0.440584i
\(782\) 0 0
\(783\) 0 0