Properties

Label 729.2.e.m.406.2
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.2
Root \(-0.342020 + 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.m.325.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.984808 + 0.826352i) q^{2} +(-0.0603074 - 0.342020i) q^{4} +(-0.419550 - 0.152704i) q^{5} +(-0.613341 + 3.47843i) q^{7} +(1.50881 - 2.61334i) q^{8} +O(q^{10})\) \(q+(0.984808 + 0.826352i) q^{2} +(-0.0603074 - 0.342020i) q^{4} +(-0.419550 - 0.152704i) q^{5} +(-0.613341 + 3.47843i) q^{7} +(1.50881 - 2.61334i) q^{8} +(-0.286989 - 0.497079i) q^{10} +(2.61240 - 0.950837i) q^{11} +(2.52094 - 2.11532i) q^{13} +(-3.47843 + 2.91875i) q^{14} +(2.99273 - 1.08926i) q^{16} +(3.51968 + 6.09627i) q^{17} +(2.59240 - 4.49016i) q^{19} +(-0.0269258 + 0.152704i) q^{20} +(3.35844 + 1.22237i) q^{22} +(1.26363 + 7.16637i) q^{23} +(-3.67752 - 3.08580i) q^{25} +4.23065 q^{26} +1.22668 q^{28} +(2.77244 + 2.32635i) q^{29} +(-0.336152 - 1.90641i) q^{31} +(-1.82391 - 0.663848i) q^{32} +(-1.57145 + 8.91215i) q^{34} +(0.788496 - 1.36571i) q^{35} +(1.61334 + 2.79439i) q^{37} +(6.26347 - 2.27972i) q^{38} +(-1.03209 + 0.866025i) q^{40} +(-3.72362 + 3.12449i) q^{41} +(5.41147 - 1.96962i) q^{43} +(-0.482753 - 0.836152i) q^{44} +(-4.67752 + 8.10170i) q^{46} +(0.524005 - 2.97178i) q^{47} +(-5.14543 - 1.87278i) q^{49} +(-1.07169 - 6.07785i) q^{50} +(-0.875515 - 0.734644i) q^{52} +8.77141 q^{53} -1.24123 q^{55} +(8.16490 + 6.85117i) q^{56} +(0.807934 + 4.58202i) q^{58} +(-2.78504 - 1.01367i) q^{59} +(1.36959 - 7.76730i) q^{61} +(1.24432 - 2.15523i) q^{62} +(-4.43242 - 7.67717i) q^{64} +(-1.38068 + 0.502526i) q^{65} +(-7.23055 + 6.06715i) q^{67} +(1.87278 - 1.57145i) q^{68} +(1.90508 - 0.693392i) q^{70} +(-2.65366 - 4.59627i) q^{71} +(0.777189 - 1.34613i) q^{73} +(-0.720317 + 4.08512i) q^{74} +(-1.69207 - 0.615862i) q^{76} +(1.70513 + 9.67024i) q^{77} +(-9.11721 - 7.65025i) q^{79} -1.42193 q^{80} -6.24897 q^{82} +(-12.4538 - 10.4500i) q^{83} +(-0.545759 - 3.09516i) q^{85} +(6.95686 + 2.53209i) q^{86} +(1.45677 - 8.26173i) q^{88} +(-9.21291 + 15.9572i) q^{89} +(5.81180 + 10.0663i) q^{91} +(2.37484 - 0.864370i) q^{92} +(2.97178 - 2.49362i) q^{94} +(-1.77330 + 1.48798i) q^{95} +(-9.50387 + 3.45913i) q^{97} +(-3.51968 - 6.09627i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{4} + 6 q^{7} + 12 q^{10} + 24 q^{13} + 24 q^{19} + 24 q^{22} + 6 q^{25} - 12 q^{28} - 12 q^{31} - 18 q^{34} + 6 q^{37} + 6 q^{40} + 24 q^{43} - 6 q^{46} - 30 q^{49} - 36 q^{52} - 60 q^{55} - 12 q^{58} - 12 q^{61} - 6 q^{64} - 12 q^{67} + 60 q^{70} - 12 q^{73} - 42 q^{76} - 48 q^{79} - 24 q^{82} + 54 q^{85} + 48 q^{88} + 6 q^{94} - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984808 + 0.826352i 0.696364 + 0.584319i 0.920737 0.390184i \(-0.127589\pi\)
−0.224372 + 0.974503i \(0.572033\pi\)
\(3\) 0 0
\(4\) −0.0603074 0.342020i −0.0301537 0.171010i
\(5\) −0.419550 0.152704i −0.187628 0.0682911i 0.246497 0.969143i \(-0.420720\pi\)
−0.434126 + 0.900852i \(0.642943\pi\)
\(6\) 0 0
\(7\) −0.613341 + 3.47843i −0.231821 + 1.31472i 0.617385 + 0.786661i \(0.288192\pi\)
−0.849206 + 0.528061i \(0.822919\pi\)
\(8\) 1.50881 2.61334i 0.533446 0.923956i
\(9\) 0 0
\(10\) −0.286989 0.497079i −0.0907539 0.157190i
\(11\) 2.61240 0.950837i 0.787669 0.286688i 0.0833024 0.996524i \(-0.473453\pi\)
0.704367 + 0.709836i \(0.251231\pi\)
\(12\) 0 0
\(13\) 2.52094 2.11532i 0.699184 0.586685i −0.222357 0.974965i \(-0.571375\pi\)
0.921541 + 0.388280i \(0.126931\pi\)
\(14\) −3.47843 + 2.91875i −0.929649 + 0.780068i
\(15\) 0 0
\(16\) 2.99273 1.08926i 0.748182 0.272316i
\(17\) 3.51968 + 6.09627i 0.853648 + 1.47856i 0.877894 + 0.478856i \(0.158948\pi\)
−0.0242455 + 0.999706i \(0.507718\pi\)
\(18\) 0 0
\(19\) 2.59240 4.49016i 0.594736 1.03011i −0.398848 0.917017i \(-0.630590\pi\)
0.993584 0.113097i \(-0.0360769\pi\)
\(20\) −0.0269258 + 0.152704i −0.00602079 + 0.0341456i
\(21\) 0 0
\(22\) 3.35844 + 1.22237i 0.716022 + 0.260611i
\(23\) 1.26363 + 7.16637i 0.263484 + 1.49429i 0.773317 + 0.634019i \(0.218596\pi\)
−0.509833 + 0.860273i \(0.670293\pi\)
\(24\) 0 0
\(25\) −3.67752 3.08580i −0.735504 0.617161i
\(26\) 4.23065 0.829698
\(27\) 0 0
\(28\) 1.22668 0.231821
\(29\) 2.77244 + 2.32635i 0.514829 + 0.431993i 0.862825 0.505503i \(-0.168693\pi\)
−0.347996 + 0.937496i \(0.613138\pi\)
\(30\) 0 0
\(31\) −0.336152 1.90641i −0.0603747 0.342402i −1.00000 0.000196783i \(-0.999937\pi\)
0.939625 0.342205i \(-0.111174\pi\)
\(32\) −1.82391 0.663848i −0.322424 0.117353i
\(33\) 0 0
\(34\) −1.57145 + 8.91215i −0.269502 + 1.52842i
\(35\) 0.788496 1.36571i 0.133280 0.230848i
\(36\) 0 0
\(37\) 1.61334 + 2.79439i 0.265232 + 0.459395i 0.967624 0.252395i \(-0.0812183\pi\)
−0.702393 + 0.711790i \(0.747885\pi\)
\(38\) 6.26347 2.27972i 1.01607 0.369819i
\(39\) 0 0
\(40\) −1.03209 + 0.866025i −0.163188 + 0.136931i
\(41\) −3.72362 + 3.12449i −0.581531 + 0.487963i −0.885450 0.464735i \(-0.846149\pi\)
0.303918 + 0.952698i \(0.401705\pi\)
\(42\) 0 0
\(43\) 5.41147 1.96962i 0.825242 0.300364i 0.105337 0.994437i \(-0.466408\pi\)
0.719905 + 0.694073i \(0.244186\pi\)
\(44\) −0.482753 0.836152i −0.0727777 0.126055i
\(45\) 0 0
\(46\) −4.67752 + 8.10170i −0.689662 + 1.19453i
\(47\) 0.524005 2.97178i 0.0764340 0.433479i −0.922444 0.386130i \(-0.873812\pi\)
0.998878 0.0473489i \(-0.0150773\pi\)
\(48\) 0 0
\(49\) −5.14543 1.87278i −0.735061 0.267540i
\(50\) −1.07169 6.07785i −0.151560 0.859538i
\(51\) 0 0
\(52\) −0.875515 0.734644i −0.121412 0.101877i
\(53\) 8.77141 1.20485 0.602423 0.798177i \(-0.294202\pi\)
0.602423 + 0.798177i \(0.294202\pi\)
\(54\) 0 0
\(55\) −1.24123 −0.167367
\(56\) 8.16490 + 6.85117i 1.09108 + 0.915526i
\(57\) 0 0
\(58\) 0.807934 + 4.58202i 0.106087 + 0.601649i
\(59\) −2.78504 1.01367i −0.362581 0.131969i 0.154304 0.988023i \(-0.450686\pi\)
−0.516885 + 0.856055i \(0.672909\pi\)
\(60\) 0 0
\(61\) 1.36959 7.76730i 0.175357 0.994501i −0.762373 0.647138i \(-0.775966\pi\)
0.937731 0.347364i \(-0.112923\pi\)
\(62\) 1.24432 2.15523i 0.158029 0.273714i
\(63\) 0 0
\(64\) −4.43242 7.67717i −0.554052 0.959647i
\(65\) −1.38068 + 0.502526i −0.171252 + 0.0623307i
\(66\) 0 0
\(67\) −7.23055 + 6.06715i −0.883353 + 0.741221i −0.966866 0.255286i \(-0.917830\pi\)
0.0835131 + 0.996507i \(0.473386\pi\)
\(68\) 1.87278 1.57145i 0.227108 0.190567i
\(69\) 0 0
\(70\) 1.90508 0.693392i 0.227700 0.0828761i
\(71\) −2.65366 4.59627i −0.314931 0.545476i 0.664492 0.747296i \(-0.268648\pi\)
−0.979423 + 0.201819i \(0.935315\pi\)
\(72\) 0 0
\(73\) 0.777189 1.34613i 0.0909631 0.157553i −0.816954 0.576703i \(-0.804339\pi\)
0.907917 + 0.419151i \(0.137672\pi\)
\(74\) −0.720317 + 4.08512i −0.0837352 + 0.474886i
\(75\) 0 0
\(76\) −1.69207 0.615862i −0.194093 0.0706442i
\(77\) 1.70513 + 9.67024i 0.194317 + 1.10203i
\(78\) 0 0
\(79\) −9.11721 7.65025i −1.02577 0.860720i −0.0354253 0.999372i \(-0.511279\pi\)
−0.990341 + 0.138652i \(0.955723\pi\)
\(80\) −1.42193 −0.158977
\(81\) 0 0
\(82\) −6.24897 −0.690083
\(83\) −12.4538 10.4500i −1.36698 1.14703i −0.973757 0.227589i \(-0.926916\pi\)
−0.393222 0.919443i \(-0.628640\pi\)
\(84\) 0 0
\(85\) −0.545759 3.09516i −0.0591959 0.335717i
\(86\) 6.95686 + 2.53209i 0.750177 + 0.273042i
\(87\) 0 0
\(88\) 1.45677 8.26173i 0.155292 0.880704i
\(89\) −9.21291 + 15.9572i −0.976567 + 1.69146i −0.301902 + 0.953339i \(0.597622\pi\)
−0.674665 + 0.738125i \(0.735712\pi\)
\(90\) 0 0
\(91\) 5.81180 + 10.0663i 0.609243 + 1.05524i
\(92\) 2.37484 0.864370i 0.247594 0.0901169i
\(93\) 0 0
\(94\) 2.97178 2.49362i 0.306516 0.257197i
\(95\) −1.77330 + 1.48798i −0.181937 + 0.152663i
\(96\) 0 0
\(97\) −9.50387 + 3.45913i −0.964972 + 0.351221i −0.775980 0.630758i \(-0.782744\pi\)
−0.188992 + 0.981979i \(0.560522\pi\)
\(98\) −3.51968 6.09627i −0.355541 0.615816i
\(99\) 0 0
\(100\) −0.833626 + 1.44388i −0.0833626 + 0.144388i
\(101\) −0.361323 + 2.04916i −0.0359530 + 0.203899i −0.997493 0.0707655i \(-0.977456\pi\)
0.961540 + 0.274665i \(0.0885669\pi\)
\(102\) 0 0
\(103\) 1.36097 + 0.495351i 0.134100 + 0.0488084i 0.408198 0.912893i \(-0.366157\pi\)
−0.274098 + 0.961702i \(0.588379\pi\)
\(104\) −1.72443 9.77972i −0.169094 0.958980i
\(105\) 0 0
\(106\) 8.63816 + 7.24827i 0.839012 + 0.704015i
\(107\) −2.23583 −0.216146 −0.108073 0.994143i \(-0.534468\pi\)
−0.108073 + 0.994143i \(0.534468\pi\)
\(108\) 0 0
\(109\) −11.5030 −1.10179 −0.550893 0.834576i \(-0.685713\pi\)
−0.550893 + 0.834576i \(0.685713\pi\)
\(110\) −1.22237 1.02569i −0.116549 0.0977959i
\(111\) 0 0
\(112\) 1.95336 + 11.0781i 0.184575 + 1.04678i
\(113\) −1.58634 0.577382i −0.149231 0.0543155i 0.266325 0.963883i \(-0.414191\pi\)
−0.415556 + 0.909568i \(0.636413\pi\)
\(114\) 0 0
\(115\) 0.564178 3.19961i 0.0526098 0.298365i
\(116\) 0.628461 1.08853i 0.0583511 0.101067i
\(117\) 0 0
\(118\) −1.90508 3.29969i −0.175377 0.303761i
\(119\) −23.3642 + 8.50387i −2.14179 + 0.779549i
\(120\) 0 0
\(121\) −2.50593 + 2.10272i −0.227812 + 0.191157i
\(122\) 7.76730 6.51754i 0.703219 0.590070i
\(123\) 0 0
\(124\) −0.631759 + 0.229942i −0.0567336 + 0.0206494i
\(125\) 2.18788 + 3.78952i 0.195690 + 0.338945i
\(126\) 0 0
\(127\) 1.33615 2.31428i 0.118564 0.205359i −0.800635 0.599153i \(-0.795504\pi\)
0.919199 + 0.393793i \(0.128837\pi\)
\(128\) 1.30488 7.40033i 0.115336 0.654103i
\(129\) 0 0
\(130\) −1.77497 0.646035i −0.155675 0.0566610i
\(131\) −0.507031 2.87551i −0.0442995 0.251235i 0.954614 0.297847i \(-0.0962686\pi\)
−0.998913 + 0.0466123i \(0.985157\pi\)
\(132\) 0 0
\(133\) 14.0287 + 11.7715i 1.21644 + 1.02072i
\(134\) −12.1343 −1.04824
\(135\) 0 0
\(136\) 21.2422 1.82150
\(137\) −3.56764 2.99360i −0.304804 0.255761i 0.477537 0.878612i \(-0.341530\pi\)
−0.782340 + 0.622851i \(0.785974\pi\)
\(138\) 0 0
\(139\) −1.38965 7.88111i −0.117869 0.668467i −0.985290 0.170892i \(-0.945335\pi\)
0.867421 0.497575i \(-0.165776\pi\)
\(140\) −0.514654 0.187319i −0.0434962 0.0158313i
\(141\) 0 0
\(142\) 1.18479 6.71929i 0.0994256 0.563870i
\(143\) 4.57440 7.92309i 0.382530 0.662562i
\(144\) 0 0
\(145\) −0.807934 1.39938i −0.0670952 0.116212i
\(146\) 1.87776 0.683448i 0.155404 0.0565626i
\(147\) 0 0
\(148\) 0.858441 0.720317i 0.0705634 0.0592097i
\(149\) 15.4831 12.9918i 1.26842 1.06433i 0.273692 0.961817i \(-0.411755\pi\)
0.994731 0.102516i \(-0.0326894\pi\)
\(150\) 0 0
\(151\) −6.29813 + 2.29233i −0.512535 + 0.186547i −0.585323 0.810800i \(-0.699032\pi\)
0.0727885 + 0.997347i \(0.476810\pi\)
\(152\) −7.82288 13.5496i −0.634520 1.09902i
\(153\) 0 0
\(154\) −6.31180 + 10.9324i −0.508620 + 0.880955i
\(155\) −0.150084 + 0.851167i −0.0120550 + 0.0683674i
\(156\) 0 0
\(157\) −5.00387 1.82126i −0.399352 0.145352i 0.134533 0.990909i \(-0.457046\pi\)
−0.533886 + 0.845557i \(0.679269\pi\)
\(158\) −2.65690 15.0680i −0.211372 1.19875i
\(159\) 0 0
\(160\) 0.663848 + 0.557035i 0.0524818 + 0.0440375i
\(161\) −25.7028 −2.02566
\(162\) 0 0
\(163\) 3.81521 0.298830 0.149415 0.988775i \(-0.452261\pi\)
0.149415 + 0.988775i \(0.452261\pi\)
\(164\) 1.29320 + 1.08512i 0.100982 + 0.0847338i
\(165\) 0 0
\(166\) −3.62923 20.5824i −0.281683 1.59750i
\(167\) 8.58445 + 3.12449i 0.664285 + 0.241780i 0.652085 0.758146i \(-0.273894\pi\)
0.0121996 + 0.999926i \(0.496117\pi\)
\(168\) 0 0
\(169\) −0.376859 + 2.13727i −0.0289892 + 0.164406i
\(170\) 2.02022 3.49912i 0.154944 0.268370i
\(171\) 0 0
\(172\) −1.00000 1.73205i −0.0762493 0.132068i
\(173\) 5.70756 2.07738i 0.433938 0.157940i −0.115810 0.993271i \(-0.536946\pi\)
0.549747 + 0.835331i \(0.314724\pi\)
\(174\) 0 0
\(175\) 12.9893 10.8993i 0.981900 0.823912i
\(176\) 6.78250 5.69119i 0.511250 0.428990i
\(177\) 0 0
\(178\) −22.2592 + 8.10170i −1.66840 + 0.607248i
\(179\) 5.14057 + 8.90373i 0.384224 + 0.665496i 0.991661 0.128872i \(-0.0411355\pi\)
−0.607437 + 0.794368i \(0.707802\pi\)
\(180\) 0 0
\(181\) 11.5706 20.0408i 0.860034 1.48962i −0.0118609 0.999930i \(-0.503776\pi\)
0.871895 0.489693i \(-0.162891\pi\)
\(182\) −2.59483 + 14.7160i −0.192341 + 1.09082i
\(183\) 0 0
\(184\) 20.6348 + 7.51044i 1.52121 + 0.553677i
\(185\) −0.250164 1.41875i −0.0183924 0.104308i
\(186\) 0 0
\(187\) 14.9914 + 12.5793i 1.09628 + 0.919887i
\(188\) −1.04801 −0.0764340
\(189\) 0 0
\(190\) −2.97596 −0.215899
\(191\) −11.2381 9.42989i −0.813161 0.682323i 0.138199 0.990404i \(-0.455869\pi\)
−0.951360 + 0.308081i \(0.900313\pi\)
\(192\) 0 0
\(193\) 4.07057 + 23.0854i 0.293006 + 1.66172i 0.675196 + 0.737638i \(0.264059\pi\)
−0.382190 + 0.924084i \(0.624830\pi\)
\(194\) −12.2179 4.44697i −0.877197 0.319274i
\(195\) 0 0
\(196\) −0.330222 + 1.87278i −0.0235873 + 0.133770i
\(197\) −4.51384 + 7.81820i −0.321598 + 0.557024i −0.980818 0.194926i \(-0.937553\pi\)
0.659220 + 0.751950i \(0.270887\pi\)
\(198\) 0 0
\(199\) −1.30200 2.25514i −0.0922966 0.159862i 0.816181 0.577797i \(-0.196087\pi\)
−0.908477 + 0.417935i \(0.862754\pi\)
\(200\) −13.6129 + 4.95471i −0.962581 + 0.350351i
\(201\) 0 0
\(202\) −2.04916 + 1.71945i −0.144179 + 0.120980i
\(203\) −9.79250 + 8.21688i −0.687299 + 0.576712i
\(204\) 0 0
\(205\) 2.03936 0.742267i 0.142435 0.0518422i
\(206\) 0.930956 + 1.61246i 0.0648628 + 0.112346i
\(207\) 0 0
\(208\) 5.24035 9.07656i 0.363353 0.629346i
\(209\) 2.50297 14.1951i 0.173134 0.981893i
\(210\) 0 0
\(211\) 15.3687 + 5.59375i 1.05803 + 0.385090i 0.811686 0.584094i \(-0.198550\pi\)
0.246339 + 0.969184i \(0.420772\pi\)
\(212\) −0.528981 3.00000i −0.0363306 0.206041i
\(213\) 0 0
\(214\) −2.20187 1.84759i −0.150517 0.126298i
\(215\) −2.57115 −0.175351
\(216\) 0 0
\(217\) 6.83750 0.464159
\(218\) −11.3282 9.50552i −0.767245 0.643795i
\(219\) 0 0
\(220\) 0.0748553 + 0.424525i 0.00504674 + 0.0286215i
\(221\) 21.7685 + 7.92309i 1.46431 + 0.532964i
\(222\) 0 0
\(223\) 0.642903 3.64609i 0.0430520 0.244160i −0.955686 0.294389i \(-0.904884\pi\)
0.998738 + 0.0502288i \(0.0159950\pi\)
\(224\) 3.42782 5.93717i 0.229031 0.396694i
\(225\) 0 0
\(226\) −1.08512 1.87949i −0.0721813 0.125022i
\(227\) −9.92388 + 3.61200i −0.658671 + 0.239737i −0.649662 0.760223i \(-0.725090\pi\)
−0.00900853 + 0.999959i \(0.502868\pi\)
\(228\) 0 0
\(229\) 10.3610 8.69388i 0.684672 0.574508i −0.232695 0.972550i \(-0.574755\pi\)
0.917367 + 0.398042i \(0.130310\pi\)
\(230\) 3.19961 2.68479i 0.210976 0.177030i
\(231\) 0 0
\(232\) 10.2626 3.73530i 0.673775 0.245234i
\(233\) 6.35035 + 10.9991i 0.416025 + 0.720576i 0.995535 0.0943883i \(-0.0300895\pi\)
−0.579510 + 0.814965i \(0.696756\pi\)
\(234\) 0 0
\(235\) −0.673648 + 1.16679i −0.0439440 + 0.0761132i
\(236\) −0.178737 + 1.01367i −0.0116348 + 0.0659843i
\(237\) 0 0
\(238\) −30.0364 10.9324i −1.94697 0.708640i
\(239\) 1.01611 + 5.76264i 0.0657266 + 0.372754i 0.999874 + 0.0158670i \(0.00505085\pi\)
−0.934147 + 0.356887i \(0.883838\pi\)
\(240\) 0 0
\(241\) −6.54189 5.48930i −0.421400 0.353597i 0.407295 0.913297i \(-0.366472\pi\)
−0.828695 + 0.559700i \(0.810916\pi\)
\(242\) −4.20545 −0.270337
\(243\) 0 0
\(244\) −2.73917 −0.175357
\(245\) 1.87278 + 1.57145i 0.119648 + 0.100396i
\(246\) 0 0
\(247\) −2.96286 16.8032i −0.188522 1.06916i
\(248\) −5.48930 1.99794i −0.348571 0.126869i
\(249\) 0 0
\(250\) −0.976834 + 5.53990i −0.0617804 + 0.350374i
\(251\) −3.37895 + 5.85251i −0.213277 + 0.369407i −0.952738 0.303792i \(-0.901747\pi\)
0.739461 + 0.673199i \(0.235080\pi\)
\(252\) 0 0
\(253\) 10.1152 + 17.5200i 0.635934 + 1.10147i
\(254\) 3.22826 1.17499i 0.202559 0.0737256i
\(255\) 0 0
\(256\) −6.18139 + 5.18680i −0.386337 + 0.324175i
\(257\) −2.82131 + 2.36736i −0.175989 + 0.147672i −0.726527 0.687138i \(-0.758867\pi\)
0.550538 + 0.834810i \(0.314422\pi\)
\(258\) 0 0
\(259\) −10.7096 + 3.89798i −0.665463 + 0.242209i
\(260\) 0.255139 + 0.441914i 0.0158231 + 0.0274064i
\(261\) 0 0
\(262\) 1.87686 3.25082i 0.115953 0.200836i
\(263\) −0.631708 + 3.58260i −0.0389528 + 0.220912i −0.998070 0.0620963i \(-0.980221\pi\)
0.959117 + 0.283009i \(0.0913325\pi\)
\(264\) 0 0
\(265\) −3.68004 1.33943i −0.226063 0.0822803i
\(266\) 4.08819 + 23.1853i 0.250663 + 1.42158i
\(267\) 0 0
\(268\) 2.51114 + 2.10710i 0.153393 + 0.128712i
\(269\) 7.08672 0.432085 0.216042 0.976384i \(-0.430685\pi\)
0.216042 + 0.976384i \(0.430685\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 17.1739 + 14.4106i 1.04132 + 0.873771i
\(273\) 0 0
\(274\) −1.03967 5.89625i −0.0628086 0.356205i
\(275\) −12.5413 4.56464i −0.756266 0.275258i
\(276\) 0 0
\(277\) −2.41235 + 13.6811i −0.144944 + 0.822019i 0.822468 + 0.568812i \(0.192597\pi\)
−0.967412 + 0.253208i \(0.918514\pi\)
\(278\) 5.14403 8.90972i 0.308518 0.534369i
\(279\) 0 0
\(280\) −2.37939 4.12122i −0.142195 0.246290i
\(281\) 20.7930 7.56805i 1.24041 0.451472i 0.363259 0.931688i \(-0.381664\pi\)
0.877150 + 0.480216i \(0.159442\pi\)
\(282\) 0 0
\(283\) −18.1800 + 15.2549i −1.08069 + 0.906808i −0.995978 0.0895975i \(-0.971442\pi\)
−0.0847134 + 0.996405i \(0.526997\pi\)
\(284\) −1.41198 + 1.18479i −0.0837856 + 0.0703045i
\(285\) 0 0
\(286\) 11.0522 4.02266i 0.653528 0.237865i
\(287\) −8.58445 14.8687i −0.506724 0.877672i
\(288\) 0 0
\(289\) −16.2763 + 28.1914i −0.957430 + 1.65832i
\(290\) 0.360723 2.04576i 0.0211824 0.120131i
\(291\) 0 0
\(292\) −0.507274 0.184633i −0.0296860 0.0108048i
\(293\) −3.23091 18.3234i −0.188752 1.07047i −0.921039 0.389470i \(-0.872658\pi\)
0.732287 0.680996i \(-0.238453\pi\)
\(294\) 0 0
\(295\) 1.01367 + 0.850571i 0.0590182 + 0.0495221i
\(296\) 9.73692 0.565947
\(297\) 0 0
\(298\) 25.9837 1.50520
\(299\) 18.3447 + 15.3931i 1.06090 + 0.890203i
\(300\) 0 0
\(301\) 3.53209 + 20.0315i 0.203586 + 1.15459i
\(302\) −8.09672 2.94697i −0.465914 0.169579i
\(303\) 0 0
\(304\) 2.86736 16.2616i 0.164455 0.932668i
\(305\) −1.76070 + 3.04963i −0.100818 + 0.174621i
\(306\) 0 0
\(307\) −10.3735 17.9674i −0.592044 1.02545i −0.993957 0.109773i \(-0.964988\pi\)
0.401912 0.915678i \(-0.368346\pi\)
\(308\) 3.20459 1.16637i 0.182598 0.0664603i
\(309\) 0 0
\(310\) −0.851167 + 0.714214i −0.0483430 + 0.0405646i
\(311\) −15.6162 + 13.1035i −0.885513 + 0.743034i −0.967305 0.253616i \(-0.918380\pi\)
0.0817920 + 0.996649i \(0.473936\pi\)
\(312\) 0 0
\(313\) 28.0412 10.2062i 1.58498 0.576886i 0.608701 0.793400i \(-0.291691\pi\)
0.976280 + 0.216514i \(0.0694686\pi\)
\(314\) −3.42285 5.92855i −0.193163 0.334567i
\(315\) 0 0
\(316\) −2.06670 + 3.57964i −0.116261 + 0.201370i
\(317\) −0.749571 + 4.25103i −0.0421001 + 0.238762i −0.998595 0.0529868i \(-0.983126\pi\)
0.956495 + 0.291748i \(0.0942370\pi\)
\(318\) 0 0
\(319\) 9.45471 + 3.44123i 0.529362 + 0.192672i
\(320\) 0.687288 + 3.89780i 0.0384206 + 0.217894i
\(321\) 0 0
\(322\) −25.3123 21.2395i −1.41060 1.18363i
\(323\) 36.4976 2.03078
\(324\) 0 0
\(325\) −15.7983 −0.876332
\(326\) 3.75725 + 3.15270i 0.208095 + 0.174612i
\(327\) 0 0
\(328\) 2.54710 + 14.4453i 0.140640 + 0.797611i
\(329\) 10.0157 + 3.64543i 0.552185 + 0.200979i
\(330\) 0 0
\(331\) −0.506863 + 2.87457i −0.0278597 + 0.158000i −0.995564 0.0940884i \(-0.970006\pi\)
0.967704 + 0.252089i \(0.0811175\pi\)
\(332\) −2.82304 + 4.88965i −0.154935 + 0.268355i
\(333\) 0 0
\(334\) 5.87211 + 10.1708i 0.321308 + 0.556521i
\(335\) 3.96005 1.44134i 0.216361 0.0787489i
\(336\) 0 0
\(337\) 11.0628 9.28282i 0.602631 0.505667i −0.289659 0.957130i \(-0.593542\pi\)
0.892290 + 0.451462i \(0.149098\pi\)
\(338\) −2.13727 + 1.79339i −0.116252 + 0.0975473i
\(339\) 0 0
\(340\) −1.02569 + 0.373321i −0.0556260 + 0.0202462i
\(341\) −2.69085 4.66069i −0.145718 0.252391i
\(342\) 0 0
\(343\) −2.69207 + 4.66280i −0.145358 + 0.251767i
\(344\) 3.01763 17.1138i 0.162699 0.922715i
\(345\) 0 0
\(346\) 7.33750 + 2.67063i 0.394466 + 0.143574i
\(347\) 0.252492 + 1.43195i 0.0135545 + 0.0768712i 0.990835 0.135080i \(-0.0431292\pi\)
−0.977280 + 0.211951i \(0.932018\pi\)
\(348\) 0 0
\(349\) −21.1288 17.7292i −1.13100 0.949022i −0.131893 0.991264i \(-0.542105\pi\)
−0.999107 + 0.0422424i \(0.986550\pi\)
\(350\) 21.7987 1.16519
\(351\) 0 0
\(352\) −5.39599 −0.287607
\(353\) −8.06807 6.76991i −0.429420 0.360326i 0.402313 0.915502i \(-0.368206\pi\)
−0.831733 + 0.555176i \(0.812651\pi\)
\(354\) 0 0
\(355\) 0.411474 + 2.33359i 0.0218388 + 0.123854i
\(356\) 6.01330 + 2.18866i 0.318704 + 0.115999i
\(357\) 0 0
\(358\) −2.29514 + 13.0164i −0.121302 + 0.687937i
\(359\) 7.35273 12.7353i 0.388062 0.672143i −0.604127 0.796888i \(-0.706478\pi\)
0.992189 + 0.124745i \(0.0398112\pi\)
\(360\) 0 0
\(361\) −3.94104 6.82608i −0.207423 0.359267i
\(362\) 27.9556 10.1750i 1.46931 0.534786i
\(363\) 0 0
\(364\) 3.09240 2.59483i 0.162086 0.136006i
\(365\) −0.531628 + 0.446089i −0.0278267 + 0.0233494i
\(366\) 0 0
\(367\) 20.0744 7.30650i 1.04788 0.381396i 0.240016 0.970769i \(-0.422847\pi\)
0.807861 + 0.589373i \(0.200625\pi\)
\(368\) 11.5878 + 20.0706i 0.604053 + 1.04625i
\(369\) 0 0
\(370\) 0.926022 1.60392i 0.0481416 0.0833837i
\(371\) −5.37987 + 30.5107i −0.279309 + 1.58404i
\(372\) 0 0
\(373\) −21.2601 7.73805i −1.10081 0.400661i −0.273193 0.961959i \(-0.588080\pi\)
−0.827614 + 0.561298i \(0.810302\pi\)
\(374\) 4.36873 + 24.7763i 0.225902 + 1.28115i
\(375\) 0 0
\(376\) −6.97565 5.85327i −0.359742 0.301859i
\(377\) 11.9101 0.613404
\(378\) 0 0
\(379\) −17.0743 −0.877047 −0.438523 0.898720i \(-0.644498\pi\)
−0.438523 + 0.898720i \(0.644498\pi\)
\(380\) 0.615862 + 0.516769i 0.0315930 + 0.0265097i
\(381\) 0 0
\(382\) −3.27497 18.5733i −0.167562 0.950291i
\(383\) −36.6401 13.3359i −1.87222 0.681433i −0.965945 0.258747i \(-0.916690\pi\)
−0.906276 0.422686i \(-0.861087\pi\)
\(384\) 0 0
\(385\) 0.761297 4.31753i 0.0387993 0.220042i
\(386\) −15.0679 + 26.0984i −0.766936 + 1.32837i
\(387\) 0 0
\(388\) 1.75624 + 3.04190i 0.0891598 + 0.154429i
\(389\) 9.59619 3.49273i 0.486546 0.177088i −0.0870870 0.996201i \(-0.527756\pi\)
0.573633 + 0.819112i \(0.305534\pi\)
\(390\) 0 0
\(391\) −39.2406 + 32.9267i −1.98448 + 1.66518i
\(392\) −12.6577 + 10.6211i −0.639311 + 0.536446i
\(393\) 0 0
\(394\) −10.9058 + 3.96940i −0.549429 + 0.199976i
\(395\) 2.65690 + 4.60189i 0.133683 + 0.231546i
\(396\) 0 0
\(397\) 0.571452 0.989783i 0.0286803 0.0496758i −0.851329 0.524632i \(-0.824203\pi\)
0.880009 + 0.474956i \(0.157536\pi\)
\(398\) 0.581313 3.29679i 0.0291386 0.165253i
\(399\) 0 0
\(400\) −14.3671 5.22918i −0.718353 0.261459i
\(401\) 3.56916 + 20.2417i 0.178235 + 1.01082i 0.934343 + 0.356375i \(0.115987\pi\)
−0.756108 + 0.654447i \(0.772901\pi\)
\(402\) 0 0
\(403\) −4.88010 4.09489i −0.243095 0.203981i
\(404\) 0.722645 0.0359530
\(405\) 0 0
\(406\) −16.4338 −0.815594
\(407\) 6.87170 + 5.76604i 0.340618 + 0.285812i
\(408\) 0 0
\(409\) −1.41147 8.00487i −0.0697929 0.395815i −0.999613 0.0278020i \(-0.991149\pi\)
0.929821 0.368013i \(-0.119962\pi\)
\(410\) 2.62175 + 0.954241i 0.129479 + 0.0471266i
\(411\) 0 0
\(412\) 0.0873438 0.495351i 0.00430312 0.0244042i
\(413\) 5.23416 9.06583i 0.257556 0.446100i
\(414\) 0 0
\(415\) 3.62923 + 6.28602i 0.178152 + 0.308568i
\(416\) −6.00222 + 2.18463i −0.294283 + 0.107110i
\(417\) 0 0
\(418\) 14.1951 11.9111i 0.694303 0.582589i
\(419\) −27.4079 + 22.9979i −1.33896 + 1.12352i −0.357071 + 0.934077i \(0.616225\pi\)
−0.981891 + 0.189446i \(0.939331\pi\)
\(420\) 0 0
\(421\) 12.3277 4.48691i 0.600815 0.218679i −0.0236644 0.999720i \(-0.507533\pi\)
0.624480 + 0.781041i \(0.285311\pi\)
\(422\) 10.5128 + 18.2087i 0.511756 + 0.886387i
\(423\) 0 0
\(424\) 13.2344 22.9227i 0.642720 1.11322i
\(425\) 5.86819 33.2802i 0.284649 1.61433i
\(426\) 0 0
\(427\) 26.1780 + 9.52801i 1.26684 + 0.461093i
\(428\) 0.134837 + 0.764700i 0.00651761 + 0.0369632i
\(429\) 0 0
\(430\) −2.53209 2.12467i −0.122108 0.102461i
\(431\) −9.48411 −0.456833 −0.228417 0.973563i \(-0.573355\pi\)
−0.228417 + 0.973563i \(0.573355\pi\)
\(432\) 0 0
\(433\) 17.6628 0.848820 0.424410 0.905470i \(-0.360481\pi\)
0.424410 + 0.905470i \(0.360481\pi\)
\(434\) 6.73362 + 5.65018i 0.323224 + 0.271217i
\(435\) 0 0
\(436\) 0.693715 + 3.93426i 0.0332229 + 0.188417i
\(437\) 35.4540 + 12.9042i 1.69599 + 0.617292i
\(438\) 0 0
\(439\) −3.06758 + 17.3971i −0.146408 + 0.830319i 0.819818 + 0.572624i \(0.194074\pi\)
−0.966226 + 0.257696i \(0.917037\pi\)
\(440\) −1.87278 + 3.24376i −0.0892814 + 0.154640i
\(441\) 0 0
\(442\) 14.8905 + 25.7912i 0.708270 + 1.22676i
\(443\) −12.2086 + 4.44356i −0.580048 + 0.211120i −0.615346 0.788257i \(-0.710984\pi\)
0.0352989 + 0.999377i \(0.488762\pi\)
\(444\) 0 0
\(445\) 6.30200 5.28801i 0.298744 0.250676i
\(446\) 3.64609 3.05943i 0.172647 0.144868i
\(447\) 0 0
\(448\) 29.4231 10.7091i 1.39011 0.505959i
\(449\) −2.31428 4.00846i −0.109218 0.189171i 0.806236 0.591594i \(-0.201501\pi\)
−0.915454 + 0.402424i \(0.868168\pi\)
\(450\) 0 0
\(451\) −6.75671 + 11.7030i −0.318161 + 0.551071i
\(452\) −0.101808 + 0.577382i −0.00478864 + 0.0271577i
\(453\) 0 0
\(454\) −12.7579 4.64349i −0.598758 0.217930i
\(455\) −0.901175 5.11081i −0.0422477 0.239599i
\(456\) 0 0
\(457\) 15.7554 + 13.2203i 0.737005 + 0.618421i 0.932031 0.362377i \(-0.118035\pi\)
−0.195026 + 0.980798i \(0.562479\pi\)
\(458\) 17.3878 0.812477
\(459\) 0 0
\(460\) −1.12836 −0.0526098
\(461\) 25.7180 + 21.5800i 1.19781 + 1.00508i 0.999690 + 0.0249007i \(0.00792696\pi\)
0.198117 + 0.980178i \(0.436517\pi\)
\(462\) 0 0
\(463\) 2.28018 + 12.9316i 0.105969 + 0.600980i 0.990829 + 0.135123i \(0.0431429\pi\)
−0.884860 + 0.465857i \(0.845746\pi\)
\(464\) 10.8312 + 3.94222i 0.502824 + 0.183013i
\(465\) 0 0
\(466\) −2.83527 + 16.0796i −0.131342 + 0.744875i
\(467\) 11.8154 20.4648i 0.546750 0.946999i −0.451745 0.892147i \(-0.649198\pi\)
0.998495 0.0548513i \(-0.0174685\pi\)
\(468\) 0 0
\(469\) −16.6694 28.8722i −0.769720 1.33319i
\(470\) −1.62760 + 0.592396i −0.0750754 + 0.0273252i
\(471\) 0 0
\(472\) −6.85117 + 5.74881i −0.315351 + 0.264610i
\(473\) 12.2642 10.2909i 0.563907 0.473174i
\(474\) 0 0
\(475\) −23.3893 + 8.51303i −1.07318 + 0.390604i
\(476\) 4.31753 + 7.47818i 0.197894 + 0.342762i
\(477\) 0 0
\(478\) −3.76130 + 6.51476i −0.172038 + 0.297978i
\(479\) 1.02108 5.79086i 0.0466546 0.264591i −0.952554 0.304370i \(-0.901554\pi\)
0.999209 + 0.0397786i \(0.0126653\pi\)
\(480\) 0 0
\(481\) 9.97818 + 3.63176i 0.454966 + 0.165594i
\(482\) −1.90641 10.8118i −0.0868347 0.492464i
\(483\) 0 0
\(484\) 0.870300 + 0.730269i 0.0395591 + 0.0331940i
\(485\) 4.51557 0.205041
\(486\) 0 0
\(487\) 38.7965 1.75804 0.879020 0.476786i \(-0.158198\pi\)
0.879020 + 0.476786i \(0.158198\pi\)
\(488\) −18.2322 15.2986i −0.825331 0.692535i
\(489\) 0 0
\(490\) 0.545759 + 3.09516i 0.0246549 + 0.139825i
\(491\) −35.3176 12.8546i −1.59386 0.580119i −0.615704 0.787978i \(-0.711128\pi\)
−0.978159 + 0.207859i \(0.933351\pi\)
\(492\) 0 0
\(493\) −4.42396 + 25.0895i −0.199245 + 1.12998i
\(494\) 10.9675 18.9963i 0.493452 0.854684i
\(495\) 0 0
\(496\) −3.08260 5.33921i −0.138413 0.239738i
\(497\) 17.6154 6.41147i 0.790158 0.287594i
\(498\) 0 0
\(499\) 25.8555 21.6953i 1.15745 0.971217i 0.157584 0.987506i \(-0.449630\pi\)
0.999867 + 0.0162886i \(0.00518506\pi\)
\(500\) 1.16415 0.976834i 0.0520622 0.0436853i
\(501\) 0 0
\(502\) −8.16385 + 2.97140i −0.364370 + 0.132620i
\(503\) −9.35597 16.2050i −0.417162 0.722546i 0.578491 0.815689i \(-0.303642\pi\)
−0.995653 + 0.0931429i \(0.970309\pi\)
\(504\) 0 0
\(505\) 0.464508 0.804551i 0.0206703 0.0358020i
\(506\) −4.51617 + 25.6125i −0.200768 + 1.13861i
\(507\) 0 0
\(508\) −0.872111 0.317423i −0.0386937 0.0140833i
\(509\) −3.78000 21.4375i −0.167546 0.950199i −0.946401 0.322995i \(-0.895310\pi\)
0.778855 0.627204i \(-0.215801\pi\)
\(510\) 0 0
\(511\) 4.20574 + 3.52903i 0.186051 + 0.156115i
\(512\) −25.4026 −1.12265
\(513\) 0 0
\(514\) −4.73473 −0.208840
\(515\) −0.495351 0.415649i −0.0218278 0.0183157i
\(516\) 0 0
\(517\) −1.45677 8.26173i −0.0640685 0.363351i
\(518\) −13.7680 5.01114i −0.604931 0.220177i
\(519\) 0 0
\(520\) −0.769915 + 4.36640i −0.0337630 + 0.191479i
\(521\) −3.23822 + 5.60876i −0.141869 + 0.245724i −0.928200 0.372081i \(-0.878644\pi\)
0.786332 + 0.617805i \(0.211978\pi\)
\(522\) 0 0
\(523\) 5.43629 + 9.41593i 0.237712 + 0.411730i 0.960057 0.279803i \(-0.0902691\pi\)
−0.722345 + 0.691533i \(0.756936\pi\)
\(524\) −0.952906 + 0.346830i −0.0416279 + 0.0151513i
\(525\) 0 0
\(526\) −3.58260 + 3.00616i −0.156209 + 0.131075i
\(527\) 10.4389 8.75924i 0.454724 0.381558i
\(528\) 0 0
\(529\) −28.1472 + 10.2448i −1.22379 + 0.445424i
\(530\) −2.51730 4.36009i −0.109344 0.189390i
\(531\) 0 0
\(532\) 3.18004 5.50800i 0.137872 0.238802i
\(533\) −2.77773 + 15.7533i −0.120317 + 0.682351i
\(534\) 0 0
\(535\) 0.938044 + 0.341420i 0.0405552 + 0.0147609i
\(536\) 4.94599 + 28.0501i 0.213634 + 1.21158i
\(537\) 0 0
\(538\) 6.97906 + 5.85612i 0.300888 + 0.252475i
\(539\) −15.2226 −0.655686
\(540\) 0 0
\(541\) 24.6459 1.05961 0.529805 0.848120i \(-0.322265\pi\)
0.529805 + 0.848120i \(0.322265\pi\)
\(542\) −18.7113 15.7007i −0.803721 0.674402i
\(543\) 0 0
\(544\) −2.37258 13.4556i −0.101723 0.576902i
\(545\) 4.82608 + 1.75655i 0.206726 + 0.0752423i
\(546\) 0 0
\(547\) 5.37046 30.4574i 0.229624 1.30226i −0.624020 0.781408i \(-0.714502\pi\)
0.853644 0.520856i \(-0.174387\pi\)
\(548\) −0.808718 + 1.40074i −0.0345467 + 0.0598367i
\(549\) 0 0
\(550\) −8.57873 14.8588i −0.365798 0.633581i
\(551\) 17.6330 6.41787i 0.751189 0.273410i
\(552\) 0 0
\(553\) 32.2028 27.0214i 1.36940 1.14907i
\(554\) −13.6811 + 11.4798i −0.581255 + 0.487731i
\(555\) 0 0
\(556\) −2.61169 + 0.950578i −0.110760 + 0.0403135i
\(557\) 11.6813 + 20.2327i 0.494954 + 0.857286i 0.999983 0.00581674i \(-0.00185154\pi\)
−0.505029 + 0.863102i \(0.668518\pi\)
\(558\) 0 0
\(559\) 9.47565 16.4123i 0.400777 0.694167i
\(560\) 0.872129 4.94609i 0.0368542 0.209010i
\(561\) 0 0
\(562\) 26.7310 + 9.72930i 1.12758 + 0.410406i
\(563\) −5.84981 33.1759i −0.246540 1.39820i −0.816888 0.576796i \(-0.804303\pi\)
0.570348 0.821403i \(-0.306808\pi\)
\(564\) 0 0
\(565\) 0.577382 + 0.484481i 0.0242906 + 0.0203823i
\(566\) −30.5097 −1.28242
\(567\) 0 0
\(568\) −16.0155 −0.671995
\(569\) 23.5910 + 19.7952i 0.988986 + 0.829858i 0.985421 0.170136i \(-0.0544206\pi\)
0.00356541 + 0.999994i \(0.498865\pi\)
\(570\) 0 0
\(571\) −5.18779 29.4214i −0.217102 1.23125i −0.877221 0.480086i \(-0.840605\pi\)
0.660119 0.751161i \(-0.270506\pi\)
\(572\) −2.98572 1.08671i −0.124839 0.0454378i
\(573\) 0 0
\(574\) 3.83275 21.7366i 0.159976 0.907268i
\(575\) 17.4670 30.2538i 0.728425 1.26167i
\(576\) 0 0
\(577\) −2.40373 4.16339i −0.100069 0.173324i 0.811644 0.584152i \(-0.198573\pi\)
−0.911713 + 0.410828i \(0.865240\pi\)
\(578\) −39.3251 + 14.3131i −1.63571 + 0.595348i
\(579\) 0 0
\(580\) −0.429892 + 0.360723i −0.0178503 + 0.0149782i
\(581\) 43.9878 36.9102i 1.82492 1.53129i
\(582\) 0 0
\(583\) 22.9145 8.34018i 0.949020 0.345415i
\(584\) −2.34527 4.06212i −0.0970478 0.168092i
\(585\) 0 0
\(586\) 11.9598 20.7149i 0.494053 0.855725i
\(587\) −1.37835 + 7.81702i −0.0568906 + 0.322643i −0.999950 0.00998108i \(-0.996823\pi\)
0.943060 + 0.332624i \(0.107934\pi\)
\(588\) 0 0
\(589\) −9.43154 3.43280i −0.388620 0.141446i
\(590\) 0.295400 + 1.67530i 0.0121614 + 0.0689709i
\(591\) 0 0
\(592\) 7.87211 + 6.60549i 0.323542 + 0.271484i
\(593\) −36.2753 −1.48965 −0.744824 0.667261i \(-0.767467\pi\)
−0.744824 + 0.667261i \(0.767467\pi\)
\(594\) 0 0
\(595\) 11.1010 0.455097
\(596\) −5.37722 4.51202i −0.220259 0.184820i
\(597\) 0 0
\(598\) 5.34595 + 30.3184i 0.218612 + 1.23981i
\(599\) 31.6160 + 11.5073i 1.29179 + 0.470174i 0.894315 0.447437i \(-0.147663\pi\)
0.397478 + 0.917612i \(0.369885\pi\)
\(600\) 0 0
\(601\) −0.517074 + 2.93247i −0.0210919 + 0.119618i −0.993536 0.113519i \(-0.963788\pi\)
0.972444 + 0.233137i \(0.0748990\pi\)
\(602\) −13.0746 + 22.6459i −0.532882 + 0.922978i
\(603\) 0 0
\(604\) 1.16385 + 2.01584i 0.0473563 + 0.0820235i
\(605\) 1.37246 0.499533i 0.0557983 0.0203089i
\(606\) 0 0
\(607\) −11.9875 + 10.0587i −0.486558 + 0.408271i −0.852791 0.522253i \(-0.825092\pi\)
0.366233 + 0.930523i \(0.380647\pi\)
\(608\) −7.70908 + 6.46868i −0.312644 + 0.262340i
\(609\) 0 0
\(610\) −4.25402 + 1.54834i −0.172240 + 0.0626904i
\(611\) −4.96529 8.60014i −0.200874 0.347924i
\(612\) 0 0
\(613\) 0.533433 0.923933i 0.0215452 0.0373173i −0.855052 0.518543i \(-0.826475\pi\)
0.876597 + 0.481225i \(0.159808\pi\)
\(614\) 4.63149 26.2665i 0.186912 1.06003i
\(615\) 0 0
\(616\) 27.8444 + 10.1345i 1.12188 + 0.408331i
\(617\) 2.26957 + 12.8714i 0.0913696 + 0.518183i 0.995800 + 0.0915606i \(0.0291855\pi\)
−0.904430 + 0.426622i \(0.859703\pi\)
\(618\) 0 0
\(619\) 15.7173 + 13.1884i 0.631734 + 0.530087i 0.901467 0.432848i \(-0.142491\pi\)
−0.269734 + 0.962935i \(0.586936\pi\)
\(620\) 0.300167 0.0120550
\(621\) 0 0
\(622\) −26.2071 −1.05081
\(623\) −49.8554 41.8337i −1.99742 1.67603i
\(624\) 0 0
\(625\) 3.82888 + 21.7146i 0.153155 + 0.868586i
\(626\) 36.0490 + 13.1208i 1.44081 + 0.524412i
\(627\) 0 0
\(628\) −0.321137 + 1.82126i −0.0128148 + 0.0726762i
\(629\) −11.3569 + 19.6707i −0.452829 + 0.784323i
\(630\) 0 0
\(631\) 5.15611 + 8.93064i 0.205261 + 0.355523i 0.950216 0.311592i \(-0.100862\pi\)
−0.744955 + 0.667115i \(0.767529\pi\)
\(632\) −33.7489 + 12.2836i −1.34246 + 0.488615i
\(633\) 0 0
\(634\) −4.25103 + 3.56704i −0.168830 + 0.141665i
\(635\) −0.913982 + 0.766922i −0.0362703 + 0.0304344i
\(636\) 0 0
\(637\) −16.9329 + 6.16307i −0.670905 + 0.244190i
\(638\) 6.46740 + 11.2019i 0.256047 + 0.443486i
\(639\) 0 0
\(640\) −1.67752 + 2.90555i −0.0663097 + 0.114852i
\(641\) −0.608839 + 3.45290i −0.0240477 + 0.136381i −0.994468 0.105041i \(-0.966503\pi\)
0.970420 + 0.241422i \(0.0776138\pi\)
\(642\) 0 0
\(643\) −29.6489 10.7913i −1.16924 0.425568i −0.316849 0.948476i \(-0.602625\pi\)
−0.852389 + 0.522908i \(0.824847\pi\)
\(644\) 1.55007 + 8.79086i 0.0610811 + 0.346408i
\(645\) 0 0
\(646\) 35.9432 + 30.1599i 1.41416 + 1.18662i
\(647\) 3.04628 0.119762 0.0598808 0.998206i \(-0.480928\pi\)
0.0598808 + 0.998206i \(0.480928\pi\)
\(648\) 0 0
\(649\) −8.23947 −0.323428
\(650\) −15.5583 13.0550i −0.610246 0.512057i
\(651\) 0 0
\(652\) −0.230085 1.30488i −0.00901083 0.0511030i
\(653\) −28.8837 10.5128i −1.13031 0.411397i −0.291902 0.956448i \(-0.594288\pi\)
−0.838403 + 0.545051i \(0.816510\pi\)
\(654\) 0 0
\(655\) −0.226377 + 1.28385i −0.00884528 + 0.0501641i
\(656\) −7.74038 + 13.4067i −0.302211 + 0.523445i
\(657\) 0 0
\(658\) 6.85117 + 11.8666i 0.267086 + 0.462607i
\(659\) −31.1827 + 11.3496i −1.21471 + 0.442117i −0.868334 0.495981i \(-0.834809\pi\)
−0.346372 + 0.938097i \(0.612586\pi\)
\(660\) 0 0
\(661\) −11.4199 + 9.58246i −0.444184 + 0.372714i −0.837272 0.546786i \(-0.815851\pi\)
0.393088 + 0.919501i \(0.371407\pi\)
\(662\) −2.87457 + 2.41205i −0.111723 + 0.0937469i
\(663\) 0 0
\(664\) −46.0997 + 16.7789i −1.78902 + 0.651149i
\(665\) −4.08819 7.08095i −0.158533 0.274587i
\(666\) 0 0
\(667\) −13.1682 + 22.8080i −0.509874 + 0.883128i
\(668\) 0.550931 3.12449i 0.0213162 0.120890i
\(669\) 0 0
\(670\) 5.09095 + 1.85295i 0.196680 + 0.0715858i
\(671\) −3.80753 21.5936i −0.146988 0.833611i
\(672\) 0 0
\(673\) 5.27719 + 4.42809i 0.203421 + 0.170690i 0.738807 0.673917i \(-0.235390\pi\)
−0.535386 + 0.844607i \(0.679834\pi\)
\(674\) 18.5656 0.715122
\(675\) 0 0
\(676\) 0.753718 0.0289892
\(677\) 10.1035 + 8.47787i 0.388310 + 0.325831i 0.815955 0.578116i \(-0.196212\pi\)
−0.427644 + 0.903947i \(0.640656\pi\)
\(678\) 0 0
\(679\) −6.20321 35.1802i −0.238057 1.35009i
\(680\) −8.91215 3.24376i −0.341765 0.124392i
\(681\) 0 0
\(682\) 1.20140 6.81348i 0.0460040 0.260902i
\(683\) −1.68907 + 2.92556i −0.0646305 + 0.111943i −0.896530 0.442983i \(-0.853920\pi\)
0.831900 + 0.554926i \(0.187254\pi\)
\(684\) 0 0
\(685\) 1.03967 + 1.80076i 0.0397237 + 0.0688034i
\(686\) −6.50428 + 2.36736i −0.248334 + 0.0903864i
\(687\) 0 0
\(688\) 14.0496 11.7890i 0.535637 0.449453i
\(689\) 22.1122 18.5544i 0.842409 0.706865i
\(690\) 0 0
\(691\) −22.0030 + 8.00843i −0.837033 + 0.304655i −0.724742 0.689020i \(-0.758041\pi\)
−0.112291 + 0.993675i \(0.535819\pi\)
\(692\) −1.05471 1.82682i −0.0400942 0.0694452i
\(693\) 0 0
\(694\) −0.934640 + 1.61884i −0.0354785 + 0.0614505i
\(695\) −0.620446 + 3.51872i −0.0235349 + 0.133473i
\(696\) 0 0
\(697\) −32.1536 11.7030i −1.21791 0.443281i
\(698\) −6.15728 34.9197i −0.233057 1.32173i
\(699\) 0 0
\(700\) −4.51114 3.78530i −0.170505 0.143071i
\(701\) −45.5001 −1.71852 −0.859258 0.511543i \(-0.829074\pi\)
−0.859258 + 0.511543i \(0.829074\pi\)
\(702\) 0 0
\(703\) 16.7297 0.630972
\(704\) −18.8790 15.8414i −0.711529 0.597044i
\(705\) 0 0
\(706\) −2.35117 13.3341i −0.0884873 0.501837i
\(707\) −6.90625 2.51367i −0.259736 0.0945363i
\(708\) 0 0
\(709\) 6.70574 38.0301i 0.251839 1.42825i −0.552218 0.833700i \(-0.686218\pi\)
0.804057 0.594552i \(-0.202670\pi\)
\(710\) −1.52314 + 2.63816i −0.0571624 + 0.0990082i
\(711\) 0 0
\(712\) 27.8011 + 48.1530i 1.04189 + 1.80461i
\(713\) 13.2373 4.81798i 0.495741 0.180435i
\(714\) 0 0
\(715\) −3.12907 + 2.62560i −0.117021 + 0.0981920i
\(716\) 2.73524 2.29514i 0.102221 0.0857734i
\(717\) 0 0
\(718\) 17.7649 6.46588i 0.662979 0.241305i
\(719\) −24.6591 42.7108i −0.919630 1.59285i −0.799978 0.600030i \(-0.795155\pi\)
−0.119652 0.992816i \(-0.538178\pi\)
\(720\) 0 0
\(721\) −2.55778 + 4.43021i −0.0952567 + 0.164990i
\(722\) 1.75958 9.97906i 0.0654847 0.371382i
\(723\) 0 0
\(724\) −7.55216 2.74876i −0.280674 0.102157i
\(725\) −3.01703 17.1104i −0.112050 0.635464i
\(726\) 0 0
\(727\) −24.7390 20.7585i −0.917519 0.769890i 0.0560155 0.998430i \(-0.482160\pi\)
−0.973535 + 0.228540i \(0.926605\pi\)
\(728\) 35.0757 1.29999
\(729\) 0 0
\(730\) −0.892178 −0.0330210
\(731\) 31.0540 + 26.0574i 1.14857 + 0.963767i
\(732\) 0 0
\(733\) 6.85323 + 38.8666i 0.253130 + 1.43557i 0.800828 + 0.598894i \(0.204393\pi\)
−0.547699 + 0.836676i \(0.684496\pi\)
\(734\) 25.8072 + 9.39306i 0.952561 + 0.346704i
\(735\) 0 0
\(736\) 2.45265 13.9097i 0.0904058 0.512717i
\(737\) −13.1202 + 22.7249i −0.483290 + 0.837083i
\(738\) 0 0
\(739\) −17.6545 30.5785i −0.649432 1.12485i −0.983259 0.182215i \(-0.941673\pi\)
0.333827 0.942634i \(-0.391660\pi\)
\(740\) −0.470154 + 0.171122i −0.0172832 + 0.00629057i
\(741\) 0 0
\(742\) −30.5107 + 25.6015i −1.12008 + 0.939862i
\(743\) 36.3186 30.4749i 1.33240 1.11802i 0.348891 0.937163i \(-0.386558\pi\)
0.983510 0.180854i \(-0.0578860\pi\)
\(744\) 0 0
\(745\) −8.47983 + 3.08640i −0.310677 + 0.113077i
\(746\) −14.5428 25.1888i −0.532449 0.922228i
\(747\) 0 0
\(748\) 3.39827 5.88598i 0.124253 0.215213i
\(749\) 1.37133 7.77719i 0.0501072 0.284172i
\(750\) 0 0
\(751\) 8.38965 + 3.05358i 0.306143 + 0.111427i 0.490523 0.871428i \(-0.336806\pi\)
−0.184381 + 0.982855i \(0.559028\pi\)
\(752\) −1.66885 9.46451i −0.0608566 0.345135i
\(753\) 0 0
\(754\) 11.7292 + 9.84197i 0.427153 + 0.358424i
\(755\) 2.99243 0.108906
\(756\) 0 0
\(757\) −3.63816 −0.132231 −0.0661155 0.997812i \(-0.521061\pi\)
−0.0661155 + 0.997812i \(0.521061\pi\)
\(758\) −16.8149 14.1094i −0.610744 0.512475i
\(759\) 0 0
\(760\) 1.21301 + 6.87933i 0.0440005 + 0.249539i
\(761\) −6.28542 2.28770i −0.227846 0.0829292i 0.225574 0.974226i \(-0.427574\pi\)
−0.453420 + 0.891297i \(0.649796\pi\)
\(762\) 0 0
\(763\) 7.05525 40.0123i 0.255417 1.44854i
\(764\) −2.54747 + 4.41235i −0.0921643 + 0.159633i
\(765\) 0 0
\(766\) −25.0633 43.4109i −0.905574 1.56850i
\(767\) −9.16517 + 3.33585i −0.330935 + 0.120450i
\(768\) 0 0
\(769\) −16.4479 + 13.8014i −0.593126 + 0.497692i −0.889228 0.457464i \(-0.848758\pi\)
0.296102 + 0.955156i \(0.404313\pi\)
\(770\) 4.31753 3.62284i 0.155593 0.130558i
\(771\) 0 0
\(772\) 7.65018 2.78444i 0.275336 0.100214i
\(773\) −5.12208 8.87170i −0.184228 0.319093i 0.759088 0.650988i \(-0.225645\pi\)
−0.943316 + 0.331895i \(0.892312\pi\)
\(774\) 0 0
\(775\) −4.64661 + 8.04817i −0.166911 + 0.289099i
\(776\) −5.29969 + 30.0560i −0.190248 + 1.07895i
\(777\) 0 0
\(778\) 12.3366 + 4.49016i 0.442289 + 0.160980i
\(779\) 4.37636 + 24.8195i 0.156799 + 0.889252i
\(780\)