Properties

Label 729.2.e.m.325.2
Level $729$
Weight $2$
Character 729.325
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 325.2
Root \(-0.342020 - 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 729.325
Dual form 729.2.e.m.406.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.984808 - 0.826352i) q^{2} +(-0.0603074 + 0.342020i) q^{4} +(-0.419550 + 0.152704i) q^{5} +(-0.613341 - 3.47843i) q^{7} +(1.50881 + 2.61334i) q^{8} +O(q^{10})\) \(q+(0.984808 - 0.826352i) q^{2} +(-0.0603074 + 0.342020i) q^{4} +(-0.419550 + 0.152704i) q^{5} +(-0.613341 - 3.47843i) q^{7} +(1.50881 + 2.61334i) q^{8} +(-0.286989 + 0.497079i) q^{10} +(2.61240 + 0.950837i) q^{11} +(2.52094 + 2.11532i) q^{13} +(-3.47843 - 2.91875i) q^{14} +(2.99273 + 1.08926i) q^{16} +(3.51968 - 6.09627i) q^{17} +(2.59240 + 4.49016i) q^{19} +(-0.0269258 - 0.152704i) q^{20} +(3.35844 - 1.22237i) q^{22} +(1.26363 - 7.16637i) q^{23} +(-3.67752 + 3.08580i) q^{25} +4.23065 q^{26} +1.22668 q^{28} +(2.77244 - 2.32635i) q^{29} +(-0.336152 + 1.90641i) q^{31} +(-1.82391 + 0.663848i) q^{32} +(-1.57145 - 8.91215i) q^{34} +(0.788496 + 1.36571i) q^{35} +(1.61334 - 2.79439i) q^{37} +(6.26347 + 2.27972i) q^{38} +(-1.03209 - 0.866025i) q^{40} +(-3.72362 - 3.12449i) q^{41} +(5.41147 + 1.96962i) q^{43} +(-0.482753 + 0.836152i) q^{44} +(-4.67752 - 8.10170i) q^{46} +(0.524005 + 2.97178i) q^{47} +(-5.14543 + 1.87278i) q^{49} +(-1.07169 + 6.07785i) q^{50} +(-0.875515 + 0.734644i) q^{52} +8.77141 q^{53} -1.24123 q^{55} +(8.16490 - 6.85117i) q^{56} +(0.807934 - 4.58202i) q^{58} +(-2.78504 + 1.01367i) q^{59} +(1.36959 + 7.76730i) q^{61} +(1.24432 + 2.15523i) q^{62} +(-4.43242 + 7.67717i) q^{64} +(-1.38068 - 0.502526i) q^{65} +(-7.23055 - 6.06715i) q^{67} +(1.87278 + 1.57145i) q^{68} +(1.90508 + 0.693392i) q^{70} +(-2.65366 + 4.59627i) q^{71} +(0.777189 + 1.34613i) q^{73} +(-0.720317 - 4.08512i) q^{74} +(-1.69207 + 0.615862i) q^{76} +(1.70513 - 9.67024i) q^{77} +(-9.11721 + 7.65025i) q^{79} -1.42193 q^{80} -6.24897 q^{82} +(-12.4538 + 10.4500i) q^{83} +(-0.545759 + 3.09516i) q^{85} +(6.95686 - 2.53209i) q^{86} +(1.45677 + 8.26173i) q^{88} +(-9.21291 - 15.9572i) q^{89} +(5.81180 - 10.0663i) q^{91} +(2.37484 + 0.864370i) q^{92} +(2.97178 + 2.49362i) q^{94} +(-1.77330 - 1.48798i) q^{95} +(-9.50387 - 3.45913i) q^{97} +(-3.51968 + 6.09627i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} + 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{4} + 6 q^{7} + 12 q^{10} + 24 q^{13} + 24 q^{19} + 24 q^{22} + 6 q^{25} - 12 q^{28} - 12 q^{31} - 18 q^{34} + 6 q^{37} + 6 q^{40} + 24 q^{43} - 6 q^{46} - 30 q^{49} - 36 q^{52} - 60 q^{55} - 12 q^{58} - 12 q^{61} - 6 q^{64} - 12 q^{67} + 60 q^{70} - 12 q^{73} - 42 q^{76} - 48 q^{79} - 24 q^{82} + 54 q^{85} + 48 q^{88} + 6 q^{94} - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984808 0.826352i 0.696364 0.584319i −0.224372 0.974503i \(-0.572033\pi\)
0.920737 + 0.390184i \(0.127589\pi\)
\(3\) 0 0
\(4\) −0.0603074 + 0.342020i −0.0301537 + 0.171010i
\(5\) −0.419550 + 0.152704i −0.187628 + 0.0682911i −0.434126 0.900852i \(-0.642943\pi\)
0.246497 + 0.969143i \(0.420720\pi\)
\(6\) 0 0
\(7\) −0.613341 3.47843i −0.231821 1.31472i −0.849206 0.528061i \(-0.822919\pi\)
0.617385 0.786661i \(-0.288192\pi\)
\(8\) 1.50881 + 2.61334i 0.533446 + 0.923956i
\(9\) 0 0
\(10\) −0.286989 + 0.497079i −0.0907539 + 0.157190i
\(11\) 2.61240 + 0.950837i 0.787669 + 0.286688i 0.704367 0.709836i \(-0.251231\pi\)
0.0833024 + 0.996524i \(0.473453\pi\)
\(12\) 0 0
\(13\) 2.52094 + 2.11532i 0.699184 + 0.586685i 0.921541 0.388280i \(-0.126931\pi\)
−0.222357 + 0.974965i \(0.571375\pi\)
\(14\) −3.47843 2.91875i −0.929649 0.780068i
\(15\) 0 0
\(16\) 2.99273 + 1.08926i 0.748182 + 0.272316i
\(17\) 3.51968 6.09627i 0.853648 1.47856i −0.0242455 0.999706i \(-0.507718\pi\)
0.877894 0.478856i \(-0.158948\pi\)
\(18\) 0 0
\(19\) 2.59240 + 4.49016i 0.594736 + 1.03011i 0.993584 + 0.113097i \(0.0360769\pi\)
−0.398848 + 0.917017i \(0.630590\pi\)
\(20\) −0.0269258 0.152704i −0.00602079 0.0341456i
\(21\) 0 0
\(22\) 3.35844 1.22237i 0.716022 0.260611i
\(23\) 1.26363 7.16637i 0.263484 1.49429i −0.509833 0.860273i \(-0.670293\pi\)
0.773317 0.634019i \(-0.218596\pi\)
\(24\) 0 0
\(25\) −3.67752 + 3.08580i −0.735504 + 0.617161i
\(26\) 4.23065 0.829698
\(27\) 0 0
\(28\) 1.22668 0.231821
\(29\) 2.77244 2.32635i 0.514829 0.431993i −0.347996 0.937496i \(-0.613138\pi\)
0.862825 + 0.505503i \(0.168693\pi\)
\(30\) 0 0
\(31\) −0.336152 + 1.90641i −0.0603747 + 0.342402i 0.939625 + 0.342205i \(0.111174\pi\)
−1.00000 0.000196783i \(0.999937\pi\)
\(32\) −1.82391 + 0.663848i −0.322424 + 0.117353i
\(33\) 0 0
\(34\) −1.57145 8.91215i −0.269502 1.52842i
\(35\) 0.788496 + 1.36571i 0.133280 + 0.230848i
\(36\) 0 0
\(37\) 1.61334 2.79439i 0.265232 0.459395i −0.702393 0.711790i \(-0.747885\pi\)
0.967624 + 0.252395i \(0.0812183\pi\)
\(38\) 6.26347 + 2.27972i 1.01607 + 0.369819i
\(39\) 0 0
\(40\) −1.03209 0.866025i −0.163188 0.136931i
\(41\) −3.72362 3.12449i −0.581531 0.487963i 0.303918 0.952698i \(-0.401705\pi\)
−0.885450 + 0.464735i \(0.846149\pi\)
\(42\) 0 0
\(43\) 5.41147 + 1.96962i 0.825242 + 0.300364i 0.719905 0.694073i \(-0.244186\pi\)
0.105337 + 0.994437i \(0.466408\pi\)
\(44\) −0.482753 + 0.836152i −0.0727777 + 0.126055i
\(45\) 0 0
\(46\) −4.67752 8.10170i −0.689662 1.19453i
\(47\) 0.524005 + 2.97178i 0.0764340 + 0.433479i 0.998878 + 0.0473489i \(0.0150773\pi\)
−0.922444 + 0.386130i \(0.873812\pi\)
\(48\) 0 0
\(49\) −5.14543 + 1.87278i −0.735061 + 0.267540i
\(50\) −1.07169 + 6.07785i −0.151560 + 0.859538i
\(51\) 0 0
\(52\) −0.875515 + 0.734644i −0.121412 + 0.101877i
\(53\) 8.77141 1.20485 0.602423 0.798177i \(-0.294202\pi\)
0.602423 + 0.798177i \(0.294202\pi\)
\(54\) 0 0
\(55\) −1.24123 −0.167367
\(56\) 8.16490 6.85117i 1.09108 0.915526i
\(57\) 0 0
\(58\) 0.807934 4.58202i 0.106087 0.601649i
\(59\) −2.78504 + 1.01367i −0.362581 + 0.131969i −0.516885 0.856055i \(-0.672909\pi\)
0.154304 + 0.988023i \(0.450686\pi\)
\(60\) 0 0
\(61\) 1.36959 + 7.76730i 0.175357 + 0.994501i 0.937731 + 0.347364i \(0.112923\pi\)
−0.762373 + 0.647138i \(0.775966\pi\)
\(62\) 1.24432 + 2.15523i 0.158029 + 0.273714i
\(63\) 0 0
\(64\) −4.43242 + 7.67717i −0.554052 + 0.959647i
\(65\) −1.38068 0.502526i −0.171252 0.0623307i
\(66\) 0 0
\(67\) −7.23055 6.06715i −0.883353 0.741221i 0.0835131 0.996507i \(-0.473386\pi\)
−0.966866 + 0.255286i \(0.917830\pi\)
\(68\) 1.87278 + 1.57145i 0.227108 + 0.190567i
\(69\) 0 0
\(70\) 1.90508 + 0.693392i 0.227700 + 0.0828761i
\(71\) −2.65366 + 4.59627i −0.314931 + 0.545476i −0.979423 0.201819i \(-0.935315\pi\)
0.664492 + 0.747296i \(0.268648\pi\)
\(72\) 0 0
\(73\) 0.777189 + 1.34613i 0.0909631 + 0.157553i 0.907917 0.419151i \(-0.137672\pi\)
−0.816954 + 0.576703i \(0.804339\pi\)
\(74\) −0.720317 4.08512i −0.0837352 0.474886i
\(75\) 0 0
\(76\) −1.69207 + 0.615862i −0.194093 + 0.0706442i
\(77\) 1.70513 9.67024i 0.194317 1.10203i
\(78\) 0 0
\(79\) −9.11721 + 7.65025i −1.02577 + 0.860720i −0.990341 0.138652i \(-0.955723\pi\)
−0.0354253 + 0.999372i \(0.511279\pi\)
\(80\) −1.42193 −0.158977
\(81\) 0 0
\(82\) −6.24897 −0.690083
\(83\) −12.4538 + 10.4500i −1.36698 + 1.14703i −0.393222 + 0.919443i \(0.628640\pi\)
−0.973757 + 0.227589i \(0.926916\pi\)
\(84\) 0 0
\(85\) −0.545759 + 3.09516i −0.0591959 + 0.335717i
\(86\) 6.95686 2.53209i 0.750177 0.273042i
\(87\) 0 0
\(88\) 1.45677 + 8.26173i 0.155292 + 0.880704i
\(89\) −9.21291 15.9572i −0.976567 1.69146i −0.674665 0.738125i \(-0.735712\pi\)
−0.301902 0.953339i \(-0.597622\pi\)
\(90\) 0 0
\(91\) 5.81180 10.0663i 0.609243 1.05524i
\(92\) 2.37484 + 0.864370i 0.247594 + 0.0901169i
\(93\) 0 0
\(94\) 2.97178 + 2.49362i 0.306516 + 0.257197i
\(95\) −1.77330 1.48798i −0.181937 0.152663i
\(96\) 0 0
\(97\) −9.50387 3.45913i −0.964972 0.351221i −0.188992 0.981979i \(-0.560522\pi\)
−0.775980 + 0.630758i \(0.782744\pi\)
\(98\) −3.51968 + 6.09627i −0.355541 + 0.615816i
\(99\) 0 0
\(100\) −0.833626 1.44388i −0.0833626 0.144388i
\(101\) −0.361323 2.04916i −0.0359530 0.203899i 0.961540 0.274665i \(-0.0885669\pi\)
−0.997493 + 0.0707655i \(0.977456\pi\)
\(102\) 0 0
\(103\) 1.36097 0.495351i 0.134100 0.0488084i −0.274098 0.961702i \(-0.588379\pi\)
0.408198 + 0.912893i \(0.366157\pi\)
\(104\) −1.72443 + 9.77972i −0.169094 + 0.958980i
\(105\) 0 0
\(106\) 8.63816 7.24827i 0.839012 0.704015i
\(107\) −2.23583 −0.216146 −0.108073 0.994143i \(-0.534468\pi\)
−0.108073 + 0.994143i \(0.534468\pi\)
\(108\) 0 0
\(109\) −11.5030 −1.10179 −0.550893 0.834576i \(-0.685713\pi\)
−0.550893 + 0.834576i \(0.685713\pi\)
\(110\) −1.22237 + 1.02569i −0.116549 + 0.0977959i
\(111\) 0 0
\(112\) 1.95336 11.0781i 0.184575 1.04678i
\(113\) −1.58634 + 0.577382i −0.149231 + 0.0543155i −0.415556 0.909568i \(-0.636413\pi\)
0.266325 + 0.963883i \(0.414191\pi\)
\(114\) 0 0
\(115\) 0.564178 + 3.19961i 0.0526098 + 0.298365i
\(116\) 0.628461 + 1.08853i 0.0583511 + 0.101067i
\(117\) 0 0
\(118\) −1.90508 + 3.29969i −0.175377 + 0.303761i
\(119\) −23.3642 8.50387i −2.14179 0.779549i
\(120\) 0 0
\(121\) −2.50593 2.10272i −0.227812 0.191157i
\(122\) 7.76730 + 6.51754i 0.703219 + 0.590070i
\(123\) 0 0
\(124\) −0.631759 0.229942i −0.0567336 0.0206494i
\(125\) 2.18788 3.78952i 0.195690 0.338945i
\(126\) 0 0
\(127\) 1.33615 + 2.31428i 0.118564 + 0.205359i 0.919199 0.393793i \(-0.128837\pi\)
−0.800635 + 0.599153i \(0.795504\pi\)
\(128\) 1.30488 + 7.40033i 0.115336 + 0.654103i
\(129\) 0 0
\(130\) −1.77497 + 0.646035i −0.155675 + 0.0566610i
\(131\) −0.507031 + 2.87551i −0.0442995 + 0.251235i −0.998913 0.0466123i \(-0.985157\pi\)
0.954614 + 0.297847i \(0.0962686\pi\)
\(132\) 0 0
\(133\) 14.0287 11.7715i 1.21644 1.02072i
\(134\) −12.1343 −1.04824
\(135\) 0 0
\(136\) 21.2422 1.82150
\(137\) −3.56764 + 2.99360i −0.304804 + 0.255761i −0.782340 0.622851i \(-0.785974\pi\)
0.477537 + 0.878612i \(0.341530\pi\)
\(138\) 0 0
\(139\) −1.38965 + 7.88111i −0.117869 + 0.668467i 0.867421 + 0.497575i \(0.165776\pi\)
−0.985290 + 0.170892i \(0.945335\pi\)
\(140\) −0.514654 + 0.187319i −0.0434962 + 0.0158313i
\(141\) 0 0
\(142\) 1.18479 + 6.71929i 0.0994256 + 0.563870i
\(143\) 4.57440 + 7.92309i 0.382530 + 0.662562i
\(144\) 0 0
\(145\) −0.807934 + 1.39938i −0.0670952 + 0.116212i
\(146\) 1.87776 + 0.683448i 0.155404 + 0.0565626i
\(147\) 0 0
\(148\) 0.858441 + 0.720317i 0.0705634 + 0.0592097i
\(149\) 15.4831 + 12.9918i 1.26842 + 1.06433i 0.994731 + 0.102516i \(0.0326894\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(150\) 0 0
\(151\) −6.29813 2.29233i −0.512535 0.186547i 0.0727885 0.997347i \(-0.476810\pi\)
−0.585323 + 0.810800i \(0.699032\pi\)
\(152\) −7.82288 + 13.5496i −0.634520 + 1.09902i
\(153\) 0 0
\(154\) −6.31180 10.9324i −0.508620 0.880955i
\(155\) −0.150084 0.851167i −0.0120550 0.0683674i
\(156\) 0 0
\(157\) −5.00387 + 1.82126i −0.399352 + 0.145352i −0.533886 0.845557i \(-0.679269\pi\)
0.134533 + 0.990909i \(0.457046\pi\)
\(158\) −2.65690 + 15.0680i −0.211372 + 1.19875i
\(159\) 0 0
\(160\) 0.663848 0.557035i 0.0524818 0.0440375i
\(161\) −25.7028 −2.02566
\(162\) 0 0
\(163\) 3.81521 0.298830 0.149415 0.988775i \(-0.452261\pi\)
0.149415 + 0.988775i \(0.452261\pi\)
\(164\) 1.29320 1.08512i 0.100982 0.0847338i
\(165\) 0 0
\(166\) −3.62923 + 20.5824i −0.281683 + 1.59750i
\(167\) 8.58445 3.12449i 0.664285 0.241780i 0.0121996 0.999926i \(-0.496117\pi\)
0.652085 + 0.758146i \(0.273894\pi\)
\(168\) 0 0
\(169\) −0.376859 2.13727i −0.0289892 0.164406i
\(170\) 2.02022 + 3.49912i 0.154944 + 0.268370i
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 5.70756 + 2.07738i 0.433938 + 0.157940i 0.549747 0.835331i \(-0.314724\pi\)
−0.115810 + 0.993271i \(0.536946\pi\)
\(174\) 0 0
\(175\) 12.9893 + 10.8993i 0.981900 + 0.823912i
\(176\) 6.78250 + 5.69119i 0.511250 + 0.428990i
\(177\) 0 0
\(178\) −22.2592 8.10170i −1.66840 0.607248i
\(179\) 5.14057 8.90373i 0.384224 0.665496i −0.607437 0.794368i \(-0.707802\pi\)
0.991661 + 0.128872i \(0.0411355\pi\)
\(180\) 0 0
\(181\) 11.5706 + 20.0408i 0.860034 + 1.48962i 0.871895 + 0.489693i \(0.162891\pi\)
−0.0118609 + 0.999930i \(0.503776\pi\)
\(182\) −2.59483 14.7160i −0.192341 1.09082i
\(183\) 0 0
\(184\) 20.6348 7.51044i 1.52121 0.553677i
\(185\) −0.250164 + 1.41875i −0.0183924 + 0.104308i
\(186\) 0 0
\(187\) 14.9914 12.5793i 1.09628 0.919887i
\(188\) −1.04801 −0.0764340
\(189\) 0 0
\(190\) −2.97596 −0.215899
\(191\) −11.2381 + 9.42989i −0.813161 + 0.682323i −0.951360 0.308081i \(-0.900313\pi\)
0.138199 + 0.990404i \(0.455869\pi\)
\(192\) 0 0
\(193\) 4.07057 23.0854i 0.293006 1.66172i −0.382190 0.924084i \(-0.624830\pi\)
0.675196 0.737638i \(-0.264059\pi\)
\(194\) −12.2179 + 4.44697i −0.877197 + 0.319274i
\(195\) 0 0
\(196\) −0.330222 1.87278i −0.0235873 0.133770i
\(197\) −4.51384 7.81820i −0.321598 0.557024i 0.659220 0.751950i \(-0.270887\pi\)
−0.980818 + 0.194926i \(0.937553\pi\)
\(198\) 0 0
\(199\) −1.30200 + 2.25514i −0.0922966 + 0.159862i −0.908477 0.417935i \(-0.862754\pi\)
0.816181 + 0.577797i \(0.196087\pi\)
\(200\) −13.6129 4.95471i −0.962581 0.350351i
\(201\) 0 0
\(202\) −2.04916 1.71945i −0.144179 0.120980i
\(203\) −9.79250 8.21688i −0.687299 0.576712i
\(204\) 0 0
\(205\) 2.03936 + 0.742267i 0.142435 + 0.0518422i
\(206\) 0.930956 1.61246i 0.0648628 0.112346i
\(207\) 0 0
\(208\) 5.24035 + 9.07656i 0.363353 + 0.629346i
\(209\) 2.50297 + 14.1951i 0.173134 + 0.981893i
\(210\) 0 0
\(211\) 15.3687 5.59375i 1.05803 0.385090i 0.246339 0.969184i \(-0.420772\pi\)
0.811686 + 0.584094i \(0.198550\pi\)
\(212\) −0.528981 + 3.00000i −0.0363306 + 0.206041i
\(213\) 0 0
\(214\) −2.20187 + 1.84759i −0.150517 + 0.126298i
\(215\) −2.57115 −0.175351
\(216\) 0 0
\(217\) 6.83750 0.464159
\(218\) −11.3282 + 9.50552i −0.767245 + 0.643795i
\(219\) 0 0
\(220\) 0.0748553 0.424525i 0.00504674 0.0286215i
\(221\) 21.7685 7.92309i 1.46431 0.532964i
\(222\) 0 0
\(223\) 0.642903 + 3.64609i 0.0430520 + 0.244160i 0.998738 0.0502288i \(-0.0159950\pi\)
−0.955686 + 0.294389i \(0.904884\pi\)
\(224\) 3.42782 + 5.93717i 0.229031 + 0.396694i
\(225\) 0 0
\(226\) −1.08512 + 1.87949i −0.0721813 + 0.125022i
\(227\) −9.92388 3.61200i −0.658671 0.239737i −0.00900853 0.999959i \(-0.502868\pi\)
−0.649662 + 0.760223i \(0.725090\pi\)
\(228\) 0 0
\(229\) 10.3610 + 8.69388i 0.684672 + 0.574508i 0.917367 0.398042i \(-0.130310\pi\)
−0.232695 + 0.972550i \(0.574755\pi\)
\(230\) 3.19961 + 2.68479i 0.210976 + 0.177030i
\(231\) 0 0
\(232\) 10.2626 + 3.73530i 0.673775 + 0.245234i
\(233\) 6.35035 10.9991i 0.416025 0.720576i −0.579510 0.814965i \(-0.696756\pi\)
0.995535 + 0.0943883i \(0.0300895\pi\)
\(234\) 0 0
\(235\) −0.673648 1.16679i −0.0439440 0.0761132i
\(236\) −0.178737 1.01367i −0.0116348 0.0659843i
\(237\) 0 0
\(238\) −30.0364 + 10.9324i −1.94697 + 0.708640i
\(239\) 1.01611 5.76264i 0.0657266 0.372754i −0.934147 0.356887i \(-0.883838\pi\)
0.999874 0.0158670i \(-0.00505085\pi\)
\(240\) 0 0
\(241\) −6.54189 + 5.48930i −0.421400 + 0.353597i −0.828695 0.559700i \(-0.810916\pi\)
0.407295 + 0.913297i \(0.366472\pi\)
\(242\) −4.20545 −0.270337
\(243\) 0 0
\(244\) −2.73917 −0.175357
\(245\) 1.87278 1.57145i 0.119648 0.100396i
\(246\) 0 0
\(247\) −2.96286 + 16.8032i −0.188522 + 1.06916i
\(248\) −5.48930 + 1.99794i −0.348571 + 0.126869i
\(249\) 0 0
\(250\) −0.976834 5.53990i −0.0617804 0.350374i
\(251\) −3.37895 5.85251i −0.213277 0.369407i 0.739461 0.673199i \(-0.235080\pi\)
−0.952738 + 0.303792i \(0.901747\pi\)
\(252\) 0 0
\(253\) 10.1152 17.5200i 0.635934 1.10147i
\(254\) 3.22826 + 1.17499i 0.202559 + 0.0737256i
\(255\) 0 0
\(256\) −6.18139 5.18680i −0.386337 0.324175i
\(257\) −2.82131 2.36736i −0.175989 0.147672i 0.550538 0.834810i \(-0.314422\pi\)
−0.726527 + 0.687138i \(0.758867\pi\)
\(258\) 0 0
\(259\) −10.7096 3.89798i −0.665463 0.242209i
\(260\) 0.255139 0.441914i 0.0158231 0.0274064i
\(261\) 0 0
\(262\) 1.87686 + 3.25082i 0.115953 + 0.200836i
\(263\) −0.631708 3.58260i −0.0389528 0.220912i 0.959117 0.283009i \(-0.0913325\pi\)
−0.998070 + 0.0620963i \(0.980221\pi\)
\(264\) 0 0
\(265\) −3.68004 + 1.33943i −0.226063 + 0.0822803i
\(266\) 4.08819 23.1853i 0.250663 1.42158i
\(267\) 0 0
\(268\) 2.51114 2.10710i 0.153393 0.128712i
\(269\) 7.08672 0.432085 0.216042 0.976384i \(-0.430685\pi\)
0.216042 + 0.976384i \(0.430685\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 17.1739 14.4106i 1.04132 0.873771i
\(273\) 0 0
\(274\) −1.03967 + 5.89625i −0.0628086 + 0.356205i
\(275\) −12.5413 + 4.56464i −0.756266 + 0.275258i
\(276\) 0 0
\(277\) −2.41235 13.6811i −0.144944 0.822019i −0.967412 0.253208i \(-0.918514\pi\)
0.822468 0.568812i \(-0.192597\pi\)
\(278\) 5.14403 + 8.90972i 0.308518 + 0.534369i
\(279\) 0 0
\(280\) −2.37939 + 4.12122i −0.142195 + 0.246290i
\(281\) 20.7930 + 7.56805i 1.24041 + 0.451472i 0.877150 0.480216i \(-0.159442\pi\)
0.363259 + 0.931688i \(0.381664\pi\)
\(282\) 0 0
\(283\) −18.1800 15.2549i −1.08069 0.906808i −0.0847134 0.996405i \(-0.526997\pi\)
−0.995978 + 0.0895975i \(0.971442\pi\)
\(284\) −1.41198 1.18479i −0.0837856 0.0703045i
\(285\) 0 0
\(286\) 11.0522 + 4.02266i 0.653528 + 0.237865i
\(287\) −8.58445 + 14.8687i −0.506724 + 0.877672i
\(288\) 0 0
\(289\) −16.2763 28.1914i −0.957430 1.65832i
\(290\) 0.360723 + 2.04576i 0.0211824 + 0.120131i
\(291\) 0 0
\(292\) −0.507274 + 0.184633i −0.0296860 + 0.0108048i
\(293\) −3.23091 + 18.3234i −0.188752 + 1.07047i 0.732287 + 0.680996i \(0.238453\pi\)
−0.921039 + 0.389470i \(0.872658\pi\)
\(294\) 0 0
\(295\) 1.01367 0.850571i 0.0590182 0.0495221i
\(296\) 9.73692 0.565947
\(297\) 0 0
\(298\) 25.9837 1.50520
\(299\) 18.3447 15.3931i 1.06090 0.890203i
\(300\) 0 0
\(301\) 3.53209 20.0315i 0.203586 1.15459i
\(302\) −8.09672 + 2.94697i −0.465914 + 0.169579i
\(303\) 0 0
\(304\) 2.86736 + 16.2616i 0.164455 + 0.932668i
\(305\) −1.76070 3.04963i −0.100818 0.174621i
\(306\) 0 0
\(307\) −10.3735 + 17.9674i −0.592044 + 1.02545i 0.401912 + 0.915678i \(0.368346\pi\)
−0.993957 + 0.109773i \(0.964988\pi\)
\(308\) 3.20459 + 1.16637i 0.182598 + 0.0664603i
\(309\) 0 0
\(310\) −0.851167 0.714214i −0.0483430 0.0405646i
\(311\) −15.6162 13.1035i −0.885513 0.743034i 0.0817920 0.996649i \(-0.473936\pi\)
−0.967305 + 0.253616i \(0.918380\pi\)
\(312\) 0 0
\(313\) 28.0412 + 10.2062i 1.58498 + 0.576886i 0.976280 0.216514i \(-0.0694686\pi\)
0.608701 + 0.793400i \(0.291691\pi\)
\(314\) −3.42285 + 5.92855i −0.193163 + 0.334567i
\(315\) 0 0
\(316\) −2.06670 3.57964i −0.116261 0.201370i
\(317\) −0.749571 4.25103i −0.0421001 0.238762i 0.956495 0.291748i \(-0.0942370\pi\)
−0.998595 + 0.0529868i \(0.983126\pi\)
\(318\) 0 0
\(319\) 9.45471 3.44123i 0.529362 0.192672i
\(320\) 0.687288 3.89780i 0.0384206 0.217894i
\(321\) 0 0
\(322\) −25.3123 + 21.2395i −1.41060 + 1.18363i
\(323\) 36.4976 2.03078
\(324\) 0 0
\(325\) −15.7983 −0.876332
\(326\) 3.75725 3.15270i 0.208095 0.174612i
\(327\) 0 0
\(328\) 2.54710 14.4453i 0.140640 0.797611i
\(329\) 10.0157 3.64543i 0.552185 0.200979i
\(330\) 0 0
\(331\) −0.506863 2.87457i −0.0278597 0.158000i 0.967704 0.252089i \(-0.0811175\pi\)
−0.995564 + 0.0940884i \(0.970006\pi\)
\(332\) −2.82304 4.88965i −0.154935 0.268355i
\(333\) 0 0
\(334\) 5.87211 10.1708i 0.321308 0.556521i
\(335\) 3.96005 + 1.44134i 0.216361 + 0.0787489i
\(336\) 0 0
\(337\) 11.0628 + 9.28282i 0.602631 + 0.505667i 0.892290 0.451462i \(-0.149098\pi\)
−0.289659 + 0.957130i \(0.593542\pi\)
\(338\) −2.13727 1.79339i −0.116252 0.0975473i
\(339\) 0 0
\(340\) −1.02569 0.373321i −0.0556260 0.0202462i
\(341\) −2.69085 + 4.66069i −0.145718 + 0.252391i
\(342\) 0 0
\(343\) −2.69207 4.66280i −0.145358 0.251767i
\(344\) 3.01763 + 17.1138i 0.162699 + 0.922715i
\(345\) 0 0
\(346\) 7.33750 2.67063i 0.394466 0.143574i
\(347\) 0.252492 1.43195i 0.0135545 0.0768712i −0.977280 0.211951i \(-0.932018\pi\)
0.990835 + 0.135080i \(0.0431292\pi\)
\(348\) 0 0
\(349\) −21.1288 + 17.7292i −1.13100 + 0.949022i −0.999107 0.0422424i \(-0.986550\pi\)
−0.131893 + 0.991264i \(0.542105\pi\)
\(350\) 21.7987 1.16519
\(351\) 0 0
\(352\) −5.39599 −0.287607
\(353\) −8.06807 + 6.76991i −0.429420 + 0.360326i −0.831733 0.555176i \(-0.812651\pi\)
0.402313 + 0.915502i \(0.368206\pi\)
\(354\) 0 0
\(355\) 0.411474 2.33359i 0.0218388 0.123854i
\(356\) 6.01330 2.18866i 0.318704 0.115999i
\(357\) 0 0
\(358\) −2.29514 13.0164i −0.121302 0.687937i
\(359\) 7.35273 + 12.7353i 0.388062 + 0.672143i 0.992189 0.124745i \(-0.0398112\pi\)
−0.604127 + 0.796888i \(0.706478\pi\)
\(360\) 0 0
\(361\) −3.94104 + 6.82608i −0.207423 + 0.359267i
\(362\) 27.9556 + 10.1750i 1.46931 + 0.534786i
\(363\) 0 0
\(364\) 3.09240 + 2.59483i 0.162086 + 0.136006i
\(365\) −0.531628 0.446089i −0.0278267 0.0233494i
\(366\) 0 0
\(367\) 20.0744 + 7.30650i 1.04788 + 0.381396i 0.807861 0.589373i \(-0.200625\pi\)
0.240016 + 0.970769i \(0.422847\pi\)
\(368\) 11.5878 20.0706i 0.604053 1.04625i
\(369\) 0 0
\(370\) 0.926022 + 1.60392i 0.0481416 + 0.0833837i
\(371\) −5.37987 30.5107i −0.279309 1.58404i
\(372\) 0 0
\(373\) −21.2601 + 7.73805i −1.10081 + 0.400661i −0.827614 0.561298i \(-0.810302\pi\)
−0.273193 + 0.961959i \(0.588080\pi\)
\(374\) 4.36873 24.7763i 0.225902 1.28115i
\(375\) 0 0
\(376\) −6.97565 + 5.85327i −0.359742 + 0.301859i
\(377\) 11.9101 0.613404
\(378\) 0 0
\(379\) −17.0743 −0.877047 −0.438523 0.898720i \(-0.644498\pi\)
−0.438523 + 0.898720i \(0.644498\pi\)
\(380\) 0.615862 0.516769i 0.0315930 0.0265097i
\(381\) 0 0
\(382\) −3.27497 + 18.5733i −0.167562 + 0.950291i
\(383\) −36.6401 + 13.3359i −1.87222 + 0.681433i −0.906276 + 0.422686i \(0.861087\pi\)
−0.965945 + 0.258747i \(0.916690\pi\)
\(384\) 0 0
\(385\) 0.761297 + 4.31753i 0.0387993 + 0.220042i
\(386\) −15.0679 26.0984i −0.766936 1.32837i
\(387\) 0 0
\(388\) 1.75624 3.04190i 0.0891598 0.154429i
\(389\) 9.59619 + 3.49273i 0.486546 + 0.177088i 0.573633 0.819112i \(-0.305534\pi\)
−0.0870870 + 0.996201i \(0.527756\pi\)
\(390\) 0 0
\(391\) −39.2406 32.9267i −1.98448 1.66518i
\(392\) −12.6577 10.6211i −0.639311 0.536446i
\(393\) 0 0
\(394\) −10.9058 3.96940i −0.549429 0.199976i
\(395\) 2.65690 4.60189i 0.133683 0.231546i
\(396\) 0 0
\(397\) 0.571452 + 0.989783i 0.0286803 + 0.0496758i 0.880009 0.474956i \(-0.157536\pi\)
−0.851329 + 0.524632i \(0.824203\pi\)
\(398\) 0.581313 + 3.29679i 0.0291386 + 0.165253i
\(399\) 0 0
\(400\) −14.3671 + 5.22918i −0.718353 + 0.261459i
\(401\) 3.56916 20.2417i 0.178235 1.01082i −0.756108 0.654447i \(-0.772901\pi\)
0.934343 0.356375i \(-0.115987\pi\)
\(402\) 0 0
\(403\) −4.88010 + 4.09489i −0.243095 + 0.203981i
\(404\) 0.722645 0.0359530
\(405\) 0 0
\(406\) −16.4338 −0.815594
\(407\) 6.87170 5.76604i 0.340618 0.285812i
\(408\) 0 0
\(409\) −1.41147 + 8.00487i −0.0697929 + 0.395815i 0.929821 + 0.368013i \(0.119962\pi\)
−0.999613 + 0.0278020i \(0.991149\pi\)
\(410\) 2.62175 0.954241i 0.129479 0.0471266i
\(411\) 0 0
\(412\) 0.0873438 + 0.495351i 0.00430312 + 0.0244042i
\(413\) 5.23416 + 9.06583i 0.257556 + 0.446100i
\(414\) 0 0
\(415\) 3.62923 6.28602i 0.178152 0.308568i
\(416\) −6.00222 2.18463i −0.294283 0.107110i
\(417\) 0 0
\(418\) 14.1951 + 11.9111i 0.694303 + 0.582589i
\(419\) −27.4079 22.9979i −1.33896 1.12352i −0.981891 0.189446i \(-0.939331\pi\)
−0.357071 0.934077i \(-0.616225\pi\)
\(420\) 0 0
\(421\) 12.3277 + 4.48691i 0.600815 + 0.218679i 0.624480 0.781041i \(-0.285311\pi\)
−0.0236644 + 0.999720i \(0.507533\pi\)
\(422\) 10.5128 18.2087i 0.511756 0.886387i
\(423\) 0 0
\(424\) 13.2344 + 22.9227i 0.642720 + 1.11322i
\(425\) 5.86819 + 33.2802i 0.284649 + 1.61433i
\(426\) 0 0
\(427\) 26.1780 9.52801i 1.26684 0.461093i
\(428\) 0.134837 0.764700i 0.00651761 0.0369632i
\(429\) 0 0
\(430\) −2.53209 + 2.12467i −0.122108 + 0.102461i
\(431\) −9.48411 −0.456833 −0.228417 0.973563i \(-0.573355\pi\)
−0.228417 + 0.973563i \(0.573355\pi\)
\(432\) 0 0
\(433\) 17.6628 0.848820 0.424410 0.905470i \(-0.360481\pi\)
0.424410 + 0.905470i \(0.360481\pi\)
\(434\) 6.73362 5.65018i 0.323224 0.271217i
\(435\) 0 0
\(436\) 0.693715 3.93426i 0.0332229 0.188417i
\(437\) 35.4540 12.9042i 1.69599 0.617292i
\(438\) 0 0
\(439\) −3.06758 17.3971i −0.146408 0.830319i −0.966226 0.257696i \(-0.917037\pi\)
0.819818 0.572624i \(-0.194074\pi\)
\(440\) −1.87278 3.24376i −0.0892814 0.154640i
\(441\) 0 0
\(442\) 14.8905 25.7912i 0.708270 1.22676i
\(443\) −12.2086 4.44356i −0.580048 0.211120i 0.0352989 0.999377i \(-0.488762\pi\)
−0.615346 + 0.788257i \(0.710984\pi\)
\(444\) 0 0
\(445\) 6.30200 + 5.28801i 0.298744 + 0.250676i
\(446\) 3.64609 + 3.05943i 0.172647 + 0.144868i
\(447\) 0 0
\(448\) 29.4231 + 10.7091i 1.39011 + 0.505959i
\(449\) −2.31428 + 4.00846i −0.109218 + 0.189171i −0.915454 0.402424i \(-0.868168\pi\)
0.806236 + 0.591594i \(0.201501\pi\)
\(450\) 0 0
\(451\) −6.75671 11.7030i −0.318161 0.551071i
\(452\) −0.101808 0.577382i −0.00478864 0.0271577i
\(453\) 0 0
\(454\) −12.7579 + 4.64349i −0.598758 + 0.217930i
\(455\) −0.901175 + 5.11081i −0.0422477 + 0.239599i
\(456\) 0 0
\(457\) 15.7554 13.2203i 0.737005 0.618421i −0.195026 0.980798i \(-0.562479\pi\)
0.932031 + 0.362377i \(0.118035\pi\)
\(458\) 17.3878 0.812477
\(459\) 0 0
\(460\) −1.12836 −0.0526098
\(461\) 25.7180 21.5800i 1.19781 1.00508i 0.198117 0.980178i \(-0.436517\pi\)
0.999690 0.0249007i \(-0.00792696\pi\)
\(462\) 0 0
\(463\) 2.28018 12.9316i 0.105969 0.600980i −0.884860 0.465857i \(-0.845746\pi\)
0.990829 0.135123i \(-0.0431429\pi\)
\(464\) 10.8312 3.94222i 0.502824 0.183013i
\(465\) 0 0
\(466\) −2.83527 16.0796i −0.131342 0.744875i
\(467\) 11.8154 + 20.4648i 0.546750 + 0.946999i 0.998495 + 0.0548513i \(0.0174685\pi\)
−0.451745 + 0.892147i \(0.649198\pi\)
\(468\) 0 0
\(469\) −16.6694 + 28.8722i −0.769720 + 1.33319i
\(470\) −1.62760 0.592396i −0.0750754 0.0273252i
\(471\) 0 0
\(472\) −6.85117 5.74881i −0.315351 0.264610i
\(473\) 12.2642 + 10.2909i 0.563907 + 0.473174i
\(474\) 0 0
\(475\) −23.3893 8.51303i −1.07318 0.390604i
\(476\) 4.31753 7.47818i 0.197894 0.342762i
\(477\) 0 0
\(478\) −3.76130 6.51476i −0.172038 0.297978i
\(479\) 1.02108 + 5.79086i 0.0466546 + 0.264591i 0.999209 0.0397786i \(-0.0126653\pi\)
−0.952554 + 0.304370i \(0.901554\pi\)
\(480\) 0 0
\(481\) 9.97818 3.63176i 0.454966 0.165594i
\(482\) −1.90641 + 10.8118i −0.0868347 + 0.492464i
\(483\) 0 0
\(484\) 0.870300 0.730269i 0.0395591 0.0331940i
\(485\) 4.51557 0.205041
\(486\) 0 0
\(487\) 38.7965 1.75804 0.879020 0.476786i \(-0.158198\pi\)
0.879020 + 0.476786i \(0.158198\pi\)
\(488\) −18.2322 + 15.2986i −0.825331 + 0.692535i
\(489\) 0 0
\(490\) 0.545759 3.09516i 0.0246549 0.139825i
\(491\) −35.3176 + 12.8546i −1.59386 + 0.580119i −0.978159 0.207859i \(-0.933351\pi\)
−0.615704 + 0.787978i \(0.711128\pi\)
\(492\) 0 0
\(493\) −4.42396 25.0895i −0.199245 1.12998i
\(494\) 10.9675 + 18.9963i 0.493452 + 0.854684i
\(495\) 0 0
\(496\) −3.08260 + 5.33921i −0.138413 + 0.239738i
\(497\) 17.6154 + 6.41147i 0.790158 + 0.287594i
\(498\) 0 0
\(499\) 25.8555 + 21.6953i 1.15745 + 0.971217i 0.999867 0.0162886i \(-0.00518506\pi\)
0.157584 + 0.987506i \(0.449630\pi\)
\(500\) 1.16415 + 0.976834i 0.0520622 + 0.0436853i
\(501\) 0 0
\(502\) −8.16385 2.97140i −0.364370 0.132620i
\(503\) −9.35597 + 16.2050i −0.417162 + 0.722546i −0.995653 0.0931429i \(-0.970309\pi\)
0.578491 + 0.815689i \(0.303642\pi\)
\(504\) 0 0
\(505\) 0.464508 + 0.804551i 0.0206703 + 0.0358020i
\(506\) −4.51617 25.6125i −0.200768 1.13861i
\(507\) 0 0
\(508\) −0.872111 + 0.317423i −0.0386937 + 0.0140833i
\(509\) −3.78000 + 21.4375i −0.167546 + 0.950199i 0.778855 + 0.627204i \(0.215801\pi\)
−0.946401 + 0.322995i \(0.895310\pi\)
\(510\) 0 0
\(511\) 4.20574 3.52903i 0.186051 0.156115i
\(512\) −25.4026 −1.12265
\(513\) 0 0
\(514\) −4.73473 −0.208840
\(515\) −0.495351 + 0.415649i −0.0218278 + 0.0183157i
\(516\) 0 0
\(517\) −1.45677 + 8.26173i −0.0640685 + 0.363351i
\(518\) −13.7680 + 5.01114i −0.604931 + 0.220177i
\(519\) 0 0
\(520\) −0.769915 4.36640i −0.0337630 0.191479i
\(521\) −3.23822 5.60876i −0.141869 0.245724i 0.786332 0.617805i \(-0.211978\pi\)
−0.928200 + 0.372081i \(0.878644\pi\)
\(522\) 0 0
\(523\) 5.43629 9.41593i 0.237712 0.411730i −0.722345 0.691533i \(-0.756936\pi\)
0.960057 + 0.279803i \(0.0902691\pi\)
\(524\) −0.952906 0.346830i −0.0416279 0.0151513i
\(525\) 0 0
\(526\) −3.58260 3.00616i −0.156209 0.131075i
\(527\) 10.4389 + 8.75924i 0.454724 + 0.381558i
\(528\) 0 0
\(529\) −28.1472 10.2448i −1.22379 0.445424i
\(530\) −2.51730 + 4.36009i −0.109344 + 0.189390i
\(531\) 0 0
\(532\) 3.18004 + 5.50800i 0.137872 + 0.238802i
\(533\) −2.77773 15.7533i −0.120317 0.682351i
\(534\) 0 0
\(535\) 0.938044 0.341420i 0.0405552 0.0147609i
\(536\) 4.94599 28.0501i 0.213634 1.21158i
\(537\) 0 0
\(538\) 6.97906 5.85612i 0.300888 0.252475i
\(539\) −15.2226 −0.655686
\(540\) 0 0
\(541\) 24.6459 1.05961 0.529805 0.848120i \(-0.322265\pi\)
0.529805 + 0.848120i \(0.322265\pi\)
\(542\) −18.7113 + 15.7007i −0.803721 + 0.674402i
\(543\) 0 0
\(544\) −2.37258 + 13.4556i −0.101723 + 0.576902i
\(545\) 4.82608 1.75655i 0.206726 0.0752423i
\(546\) 0 0
\(547\) 5.37046 + 30.4574i 0.229624 + 1.30226i 0.853644 + 0.520856i \(0.174387\pi\)
−0.624020 + 0.781408i \(0.714502\pi\)
\(548\) −0.808718 1.40074i −0.0345467 0.0598367i
\(549\) 0 0
\(550\) −8.57873 + 14.8588i −0.365798 + 0.633581i
\(551\) 17.6330 + 6.41787i 0.751189 + 0.273410i
\(552\) 0 0
\(553\) 32.2028 + 27.0214i 1.36940 + 1.14907i
\(554\) −13.6811 11.4798i −0.581255 0.487731i
\(555\) 0 0
\(556\) −2.61169 0.950578i −0.110760 0.0403135i
\(557\) 11.6813 20.2327i 0.494954 0.857286i −0.505029 0.863102i \(-0.668518\pi\)
0.999983 + 0.00581674i \(0.00185154\pi\)
\(558\) 0 0
\(559\) 9.47565 + 16.4123i 0.400777 + 0.694167i
\(560\) 0.872129 + 4.94609i 0.0368542 + 0.209010i
\(561\) 0 0
\(562\) 26.7310 9.72930i 1.12758 0.410406i
\(563\) −5.84981 + 33.1759i −0.246540 + 1.39820i 0.570348 + 0.821403i \(0.306808\pi\)
−0.816888 + 0.576796i \(0.804303\pi\)
\(564\) 0 0
\(565\) 0.577382 0.484481i 0.0242906 0.0203823i
\(566\) −30.5097 −1.28242
\(567\) 0 0
\(568\) −16.0155 −0.671995
\(569\) 23.5910 19.7952i 0.988986 0.829858i 0.00356541 0.999994i \(-0.498865\pi\)
0.985421 + 0.170136i \(0.0544206\pi\)
\(570\) 0 0
\(571\) −5.18779 + 29.4214i −0.217102 + 1.23125i 0.660119 + 0.751161i \(0.270506\pi\)
−0.877221 + 0.480086i \(0.840605\pi\)
\(572\) −2.98572 + 1.08671i −0.124839 + 0.0454378i
\(573\) 0 0
\(574\) 3.83275 + 21.7366i 0.159976 + 0.907268i
\(575\) 17.4670 + 30.2538i 0.728425 + 1.26167i
\(576\) 0 0
\(577\) −2.40373 + 4.16339i −0.100069 + 0.173324i −0.911713 0.410828i \(-0.865240\pi\)
0.811644 + 0.584152i \(0.198573\pi\)
\(578\) −39.3251 14.3131i −1.63571 0.595348i
\(579\) 0 0
\(580\) −0.429892 0.360723i −0.0178503 0.0149782i
\(581\) 43.9878 + 36.9102i 1.82492 + 1.53129i
\(582\) 0 0
\(583\) 22.9145 + 8.34018i 0.949020 + 0.345415i
\(584\) −2.34527 + 4.06212i −0.0970478 + 0.168092i
\(585\) 0 0
\(586\) 11.9598 + 20.7149i 0.494053 + 0.855725i
\(587\) −1.37835 7.81702i −0.0568906 0.322643i 0.943060 0.332624i \(-0.107934\pi\)
−0.999950 + 0.00998108i \(0.996823\pi\)
\(588\) 0 0
\(589\) −9.43154 + 3.43280i −0.388620 + 0.141446i
\(590\) 0.295400 1.67530i 0.0121614 0.0689709i
\(591\) 0 0
\(592\) 7.87211 6.60549i 0.323542 0.271484i
\(593\) −36.2753 −1.48965 −0.744824 0.667261i \(-0.767467\pi\)
−0.744824 + 0.667261i \(0.767467\pi\)
\(594\) 0 0
\(595\) 11.1010 0.455097
\(596\) −5.37722 + 4.51202i −0.220259 + 0.184820i
\(597\) 0 0
\(598\) 5.34595 30.3184i 0.218612 1.23981i
\(599\) 31.6160 11.5073i 1.29179 0.470174i 0.397478 0.917612i \(-0.369885\pi\)
0.894315 + 0.447437i \(0.147663\pi\)
\(600\) 0 0
\(601\) −0.517074 2.93247i −0.0210919 0.119618i 0.972444 0.233137i \(-0.0748990\pi\)
−0.993536 + 0.113519i \(0.963788\pi\)
\(602\) −13.0746 22.6459i −0.532882 0.922978i
\(603\) 0 0
\(604\) 1.16385 2.01584i 0.0473563 0.0820235i
\(605\) 1.37246 + 0.499533i 0.0557983 + 0.0203089i
\(606\) 0 0
\(607\) −11.9875 10.0587i −0.486558 0.408271i 0.366233 0.930523i \(-0.380647\pi\)
−0.852791 + 0.522253i \(0.825092\pi\)
\(608\) −7.70908 6.46868i −0.312644 0.262340i
\(609\) 0 0
\(610\) −4.25402 1.54834i −0.172240 0.0626904i
\(611\) −4.96529 + 8.60014i −0.200874 + 0.347924i
\(612\) 0 0
\(613\) 0.533433 + 0.923933i 0.0215452 + 0.0373173i 0.876597 0.481225i \(-0.159808\pi\)
−0.855052 + 0.518543i \(0.826475\pi\)
\(614\) 4.63149 + 26.2665i 0.186912 + 1.06003i
\(615\) 0 0
\(616\) 27.8444 10.1345i 1.12188 0.408331i
\(617\) 2.26957 12.8714i 0.0913696 0.518183i −0.904430 0.426622i \(-0.859703\pi\)
0.995800 0.0915606i \(-0.0291855\pi\)
\(618\) 0 0
\(619\) 15.7173 13.1884i 0.631734 0.530087i −0.269734 0.962935i \(-0.586936\pi\)
0.901467 + 0.432848i \(0.142491\pi\)
\(620\) 0.300167 0.0120550
\(621\) 0 0
\(622\) −26.2071 −1.05081
\(623\) −49.8554 + 41.8337i −1.99742 + 1.67603i
\(624\) 0 0
\(625\) 3.82888 21.7146i 0.153155 0.868586i
\(626\) 36.0490 13.1208i 1.44081 0.524412i
\(627\) 0 0
\(628\) −0.321137 1.82126i −0.0128148 0.0726762i
\(629\) −11.3569 19.6707i −0.452829 0.784323i
\(630\) 0 0
\(631\) 5.15611 8.93064i 0.205261 0.355523i −0.744955 0.667115i \(-0.767529\pi\)
0.950216 + 0.311592i \(0.100862\pi\)
\(632\) −33.7489 12.2836i −1.34246 0.488615i
\(633\) 0 0
\(634\) −4.25103 3.56704i −0.168830 0.141665i
\(635\) −0.913982 0.766922i −0.0362703 0.0304344i
\(636\) 0 0
\(637\) −16.9329 6.16307i −0.670905 0.244190i
\(638\) 6.46740 11.2019i 0.256047 0.443486i
\(639\) 0 0
\(640\) −1.67752 2.90555i −0.0663097 0.114852i
\(641\) −0.608839 3.45290i −0.0240477 0.136381i 0.970420 0.241422i \(-0.0776138\pi\)
−0.994468 + 0.105041i \(0.966503\pi\)
\(642\) 0 0
\(643\) −29.6489 + 10.7913i −1.16924 + 0.425568i −0.852389 0.522908i \(-0.824847\pi\)
−0.316849 + 0.948476i \(0.602625\pi\)
\(644\) 1.55007 8.79086i 0.0610811 0.346408i
\(645\) 0 0
\(646\) 35.9432 30.1599i 1.41416 1.18662i
\(647\) 3.04628 0.119762 0.0598808 0.998206i \(-0.480928\pi\)
0.0598808 + 0.998206i \(0.480928\pi\)
\(648\) 0 0
\(649\) −8.23947 −0.323428
\(650\) −15.5583 + 13.0550i −0.610246 + 0.512057i
\(651\) 0 0
\(652\) −0.230085 + 1.30488i −0.00901083 + 0.0511030i
\(653\) −28.8837 + 10.5128i −1.13031 + 0.411397i −0.838403 0.545051i \(-0.816510\pi\)
−0.291902 + 0.956448i \(0.594288\pi\)
\(654\) 0 0
\(655\) −0.226377 1.28385i −0.00884528 0.0501641i
\(656\) −7.74038 13.4067i −0.302211 0.523445i
\(657\) 0 0
\(658\) 6.85117 11.8666i 0.267086 0.462607i
\(659\) −31.1827 11.3496i −1.21471 0.442117i −0.346372 0.938097i \(-0.612586\pi\)
−0.868334 + 0.495981i \(0.834809\pi\)
\(660\) 0 0
\(661\) −11.4199 9.58246i −0.444184 0.372714i 0.393088 0.919501i \(-0.371407\pi\)
−0.837272 + 0.546786i \(0.815851\pi\)
\(662\) −2.87457 2.41205i −0.111723 0.0937469i
\(663\) 0 0
\(664\) −46.0997 16.7789i −1.78902 0.651149i
\(665\) −4.08819 + 7.08095i −0.158533 + 0.274587i
\(666\) 0 0
\(667\) −13.1682 22.8080i −0.509874 0.883128i
\(668\) 0.550931 + 3.12449i 0.0213162 + 0.120890i
\(669\) 0 0
\(670\) 5.09095 1.85295i 0.196680 0.0715858i
\(671\) −3.80753 + 21.5936i −0.146988 + 0.833611i
\(672\) 0 0
\(673\) 5.27719 4.42809i 0.203421 0.170690i −0.535386 0.844607i \(-0.679834\pi\)
0.738807 + 0.673917i \(0.235390\pi\)
\(674\) 18.5656 0.715122
\(675\) 0 0
\(676\) 0.753718 0.0289892
\(677\) 10.1035 8.47787i 0.388310 0.325831i −0.427644 0.903947i \(-0.640656\pi\)
0.815955 + 0.578116i \(0.196212\pi\)
\(678\) 0 0
\(679\) −6.20321 + 35.1802i −0.238057 + 1.35009i
\(680\) −8.91215 + 3.24376i −0.341765 + 0.124392i
\(681\) 0 0
\(682\) 1.20140 + 6.81348i 0.0460040 + 0.260902i
\(683\) −1.68907 2.92556i −0.0646305 0.111943i 0.831900 0.554926i \(-0.187254\pi\)
−0.896530 + 0.442983i \(0.853920\pi\)
\(684\) 0 0
\(685\) 1.03967 1.80076i 0.0397237 0.0688034i
\(686\) −6.50428 2.36736i −0.248334 0.0903864i
\(687\) 0 0
\(688\) 14.0496 + 11.7890i 0.535637 + 0.449453i
\(689\) 22.1122 + 18.5544i 0.842409 + 0.706865i
\(690\) 0 0
\(691\) −22.0030 8.00843i −0.837033 0.304655i −0.112291 0.993675i \(-0.535819\pi\)
−0.724742 + 0.689020i \(0.758041\pi\)
\(692\) −1.05471 + 1.82682i −0.0400942 + 0.0694452i
\(693\) 0 0
\(694\) −0.934640 1.61884i −0.0354785 0.0614505i
\(695\) −0.620446 3.51872i −0.0235349 0.133473i
\(696\) 0 0
\(697\) −32.1536 + 11.7030i −1.21791 + 0.443281i
\(698\) −6.15728 + 34.9197i −0.233057 + 1.32173i
\(699\) 0 0
\(700\) −4.51114 + 3.78530i −0.170505 + 0.143071i
\(701\) −45.5001 −1.71852 −0.859258 0.511543i \(-0.829074\pi\)
−0.859258 + 0.511543i \(0.829074\pi\)
\(702\) 0 0
\(703\) 16.7297 0.630972
\(704\) −18.8790 + 15.8414i −0.711529 + 0.597044i
\(705\) 0 0
\(706\) −2.35117 + 13.3341i −0.0884873 + 0.501837i
\(707\) −6.90625 + 2.51367i −0.259736 + 0.0945363i
\(708\) 0 0
\(709\) 6.70574 + 38.0301i 0.251839 + 1.42825i 0.804057 + 0.594552i \(0.202670\pi\)
−0.552218 + 0.833700i \(0.686218\pi\)
\(710\) −1.52314 2.63816i −0.0571624 0.0990082i
\(711\) 0 0
\(712\) 27.8011 48.1530i 1.04189 1.80461i
\(713\) 13.2373 + 4.81798i 0.495741 + 0.180435i
\(714\) 0 0
\(715\) −3.12907 2.62560i −0.117021 0.0981920i
\(716\) 2.73524 + 2.29514i 0.102221 + 0.0857734i
\(717\) 0 0
\(718\) 17.7649 + 6.46588i 0.662979 + 0.241305i
\(719\) −24.6591 + 42.7108i −0.919630 + 1.59285i −0.119652 + 0.992816i \(0.538178\pi\)
−0.799978 + 0.600030i \(0.795155\pi\)
\(720\) 0 0
\(721\) −2.55778 4.43021i −0.0952567 0.164990i
\(722\) 1.75958 + 9.97906i 0.0654847 + 0.371382i
\(723\) 0 0
\(724\) −7.55216 + 2.74876i −0.280674 + 0.102157i
\(725\) −3.01703 + 17.1104i −0.112050 + 0.635464i
\(726\) 0 0
\(727\) −24.7390 + 20.7585i −0.917519 + 0.769890i −0.973535 0.228540i \(-0.926605\pi\)
0.0560155 + 0.998430i \(0.482160\pi\)
\(728\) 35.0757 1.29999
\(729\) 0 0
\(730\) −0.892178 −0.0330210
\(731\) 31.0540 26.0574i 1.14857 0.963767i
\(732\) 0 0
\(733\) 6.85323 38.8666i 0.253130 1.43557i −0.547699 0.836676i \(-0.684496\pi\)
0.800828 0.598894i \(-0.204393\pi\)
\(734\) 25.8072 9.39306i 0.952561 0.346704i
\(735\) 0 0
\(736\) 2.45265 + 13.9097i 0.0904058 + 0.512717i
\(737\) −13.1202 22.7249i −0.483290 0.837083i
\(738\) 0 0
\(739\) −17.6545 + 30.5785i −0.649432 + 1.12485i 0.333827 + 0.942634i \(0.391660\pi\)
−0.983259 + 0.182215i \(0.941673\pi\)
\(740\) −0.470154 0.171122i −0.0172832 0.00629057i
\(741\) 0 0
\(742\) −30.5107 25.6015i −1.12008 0.939862i
\(743\) 36.3186 + 30.4749i 1.33240 + 1.11802i 0.983510 + 0.180854i \(0.0578860\pi\)
0.348891 + 0.937163i \(0.386558\pi\)
\(744\) 0 0
\(745\) −8.47983 3.08640i −0.310677 0.113077i
\(746\) −14.5428 + 25.1888i −0.532449 + 0.922228i
\(747\) 0 0
\(748\) 3.39827 + 5.88598i 0.124253 + 0.215213i
\(749\) 1.37133 + 7.77719i 0.0501072 + 0.284172i
\(750\) 0 0
\(751\) 8.38965 3.05358i 0.306143 0.111427i −0.184381 0.982855i \(-0.559028\pi\)
0.490523 + 0.871428i \(0.336806\pi\)
\(752\) −1.66885 + 9.46451i −0.0608566 + 0.345135i
\(753\) 0 0
\(754\) 11.7292 9.84197i 0.427153 0.358424i
\(755\) 2.99243 0.108906
\(756\) 0 0
\(757\) −3.63816 −0.132231 −0.0661155 0.997812i \(-0.521061\pi\)
−0.0661155 + 0.997812i \(0.521061\pi\)
\(758\) −16.8149 + 14.1094i −0.610744 + 0.512475i
\(759\) 0 0
\(760\) 1.21301 6.87933i 0.0440005 0.249539i
\(761\) −6.28542 + 2.28770i −0.227846 + 0.0829292i −0.453420 0.891297i \(-0.649796\pi\)
0.225574 + 0.974226i \(0.427574\pi\)
\(762\) 0 0
\(763\) 7.05525 + 40.0123i 0.255417 + 1.44854i
\(764\) −2.54747 4.41235i −0.0921643 0.159633i
\(765\) 0 0
\(766\) −25.0633 + 43.4109i −0.905574 + 1.56850i
\(767\) −9.16517 3.33585i −0.330935 0.120450i
\(768\) 0 0
\(769\) −16.4479 13.8014i −0.593126 0.497692i 0.296102 0.955156i \(-0.404313\pi\)
−0.889228 + 0.457464i \(0.848758\pi\)
\(770\) 4.31753 + 3.62284i 0.155593 + 0.130558i
\(771\) 0 0
\(772\) 7.65018 + 2.78444i 0.275336 + 0.100214i
\(773\) −5.12208 + 8.87170i −0.184228 + 0.319093i −0.943316 0.331895i \(-0.892312\pi\)
0.759088 + 0.650988i \(0.225645\pi\)
\(774\) 0 0
\(775\) −4.64661 8.04817i −0.166911 0.289099i
\(776\) −5.29969 30.0560i −0.190248 1.07895i
\(777\) 0 0
\(778\) 12.3366 4.49016i 0.442289 0.160980i
\(779\) 4.37636 24.8195i 0.156799 0.889252i
\(780\) 0