Properties

Label 729.2.e.h.163.1
Level $729$
Weight $2$
Character 729.163
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 163.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 729.163
Dual form 729.2.e.h.568.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.37939 - 0.866025i) q^{2} +(3.37939 - 2.83564i) q^{4} +(-0.0812519 - 0.460802i) q^{5} +(-2.47178 - 2.07407i) q^{7} +(3.05303 - 5.28801i) q^{8} +(-0.592396 - 1.02606i) q^{10} +(0.539363 - 3.05888i) q^{11} +(2.05303 + 0.747243i) q^{13} +(-7.67752 - 2.79439i) q^{14} +(1.15270 - 6.53731i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-0.0209445 + 0.0362770i) q^{19} +(-1.58125 - 1.32683i) q^{20} +(-1.36571 - 7.74535i) q^{22} +(-4.67752 + 3.92490i) q^{23} +(4.49273 - 1.63522i) q^{25} +5.53209 q^{26} -14.2344 q^{28} +(6.17752 - 2.24843i) q^{29} +(-4.76991 + 4.00243i) q^{31} +(-0.798133 - 4.52644i) q^{32} +(5.81908 + 4.88279i) q^{34} +(-0.754900 + 1.30753i) q^{35} +(-1.79813 - 3.11446i) q^{37} +(-0.0184183 + 0.104455i) q^{38} +(-2.68479 - 0.977185i) q^{40} +(7.23783 + 2.63435i) q^{41} +(-0.102196 + 0.579585i) q^{43} +(-6.85117 - 11.8666i) q^{44} +(-7.73055 + 13.3897i) q^{46} +(7.40033 + 6.20961i) q^{47} +(0.592396 + 3.35965i) q^{49} +(9.27379 - 7.78163i) q^{50} +(9.05690 - 3.29644i) q^{52} -4.95811 q^{53} -1.45336 q^{55} +(-18.5141 + 6.73859i) q^{56} +(12.7515 - 10.6998i) q^{58} +(1.48158 + 8.40247i) q^{59} +(-0.971782 - 0.815422i) q^{61} +(-7.88326 + 13.6542i) q^{62} +(0.819078 + 1.41868i) q^{64} +(0.177519 - 1.00676i) q^{65} +(-9.40420 - 3.42285i) q^{67} +(12.4363 + 4.52644i) q^{68} +(-0.663848 + 3.76487i) q^{70} +(5.91534 + 10.2457i) q^{71} +(4.11721 - 7.13122i) q^{73} +(-6.97565 - 5.85327i) q^{74} +(0.0320889 + 0.181985i) q^{76} +(-7.67752 + 6.44220i) q^{77} +(-10.3833 + 3.77920i) q^{79} -3.10607 q^{80} +19.5030 q^{82} +(-1.41875 + 0.516382i) q^{83} +(1.07532 - 0.902302i) q^{85} +(0.258770 + 1.46756i) q^{86} +(-14.5287 - 12.1910i) q^{88} +(-7.93629 + 13.7461i) q^{89} +(-3.52481 - 6.10516i) q^{91} +(-4.67752 + 26.5275i) q^{92} +(22.9859 + 8.36619i) q^{94} +(0.0184183 + 0.00670372i) q^{95} +(3.23783 - 18.3626i) q^{97} +(4.31908 + 7.48086i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 9 q^{4} - 3 q^{5} + 6 q^{8} + 12 q^{11} - 21 q^{14} + 9 q^{16} + 9 q^{17} + 3 q^{19} - 12 q^{20} - 18 q^{22} - 3 q^{23} + 9 q^{25} + 24 q^{26} - 24 q^{28} + 12 q^{29} + 9 q^{32} + 18 q^{34}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37939 0.866025i 1.68248 0.612372i 0.688833 0.724920i \(-0.258123\pi\)
0.993646 + 0.112548i \(0.0359011\pi\)
\(3\) 0 0
\(4\) 3.37939 2.83564i 1.68969 1.41782i
\(5\) −0.0812519 0.460802i −0.0363370 0.206077i 0.961234 0.275734i \(-0.0889208\pi\)
−0.997571 + 0.0696565i \(0.977810\pi\)
\(6\) 0 0
\(7\) −2.47178 2.07407i −0.934246 0.783925i 0.0423291 0.999104i \(-0.486522\pi\)
−0.976575 + 0.215179i \(0.930967\pi\)
\(8\) 3.05303 5.28801i 1.07941 1.86959i
\(9\) 0 0
\(10\) −0.592396 1.02606i −0.187332 0.324469i
\(11\) 0.539363 3.05888i 0.162624 0.922287i −0.788856 0.614577i \(-0.789327\pi\)
0.951480 0.307709i \(-0.0995624\pi\)
\(12\) 0 0
\(13\) 2.05303 + 0.747243i 0.569409 + 0.207248i 0.610649 0.791901i \(-0.290909\pi\)
−0.0412400 + 0.999149i \(0.513131\pi\)
\(14\) −7.67752 2.79439i −2.05190 0.746832i
\(15\) 0 0
\(16\) 1.15270 6.53731i 0.288176 1.63433i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −0.0209445 + 0.0362770i −0.00480501 + 0.00832251i −0.868418 0.495833i \(-0.834863\pi\)
0.863613 + 0.504155i \(0.168196\pi\)
\(20\) −1.58125 1.32683i −0.353579 0.296688i
\(21\) 0 0
\(22\) −1.36571 7.74535i −0.291171 1.65131i
\(23\) −4.67752 + 3.92490i −0.975330 + 0.818399i −0.983378 0.181569i \(-0.941883\pi\)
0.00804825 + 0.999968i \(0.497438\pi\)
\(24\) 0 0
\(25\) 4.49273 1.63522i 0.898545 0.327044i
\(26\) 5.53209 1.08493
\(27\) 0 0
\(28\) −14.2344 −2.69005
\(29\) 6.17752 2.24843i 1.14714 0.417524i 0.302651 0.953102i \(-0.402128\pi\)
0.844486 + 0.535578i \(0.179906\pi\)
\(30\) 0 0
\(31\) −4.76991 + 4.00243i −0.856702 + 0.718858i −0.961255 0.275661i \(-0.911103\pi\)
0.104553 + 0.994519i \(0.466659\pi\)
\(32\) −0.798133 4.52644i −0.141091 0.800169i
\(33\) 0 0
\(34\) 5.81908 + 4.88279i 0.997964 + 0.837391i
\(35\) −0.754900 + 1.30753i −0.127601 + 0.221012i
\(36\) 0 0
\(37\) −1.79813 3.11446i −0.295611 0.512014i 0.679516 0.733661i \(-0.262190\pi\)
−0.975127 + 0.221647i \(0.928857\pi\)
\(38\) −0.0184183 + 0.104455i −0.00298784 + 0.0169449i
\(39\) 0 0
\(40\) −2.68479 0.977185i −0.424503 0.154506i
\(41\) 7.23783 + 2.63435i 1.13036 + 0.411417i 0.838422 0.545021i \(-0.183478\pi\)
0.291936 + 0.956438i \(0.405701\pi\)
\(42\) 0 0
\(43\) −0.102196 + 0.579585i −0.0155848 + 0.0883859i −0.991608 0.129280i \(-0.958733\pi\)
0.976023 + 0.217666i \(0.0698444\pi\)
\(44\) −6.85117 11.8666i −1.03285 1.78895i
\(45\) 0 0
\(46\) −7.73055 + 13.3897i −1.13981 + 1.97420i
\(47\) 7.40033 + 6.20961i 1.07945 + 0.905765i 0.995875 0.0907363i \(-0.0289220\pi\)
0.0835741 + 0.996502i \(0.473366\pi\)
\(48\) 0 0
\(49\) 0.592396 + 3.35965i 0.0846280 + 0.479949i
\(50\) 9.27379 7.78163i 1.31151 1.10049i
\(51\) 0 0
\(52\) 9.05690 3.29644i 1.25597 0.457134i
\(53\) −4.95811 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(54\) 0 0
\(55\) −1.45336 −0.195971
\(56\) −18.5141 + 6.73859i −2.47406 + 0.900483i
\(57\) 0 0
\(58\) 12.7515 10.6998i 1.67435 1.40495i
\(59\) 1.48158 + 8.40247i 0.192886 + 1.09391i 0.915398 + 0.402550i \(0.131876\pi\)
−0.722512 + 0.691358i \(0.757013\pi\)
\(60\) 0 0
\(61\) −0.971782 0.815422i −0.124424 0.104404i 0.578452 0.815716i \(-0.303657\pi\)
−0.702876 + 0.711312i \(0.748101\pi\)
\(62\) −7.88326 + 13.6542i −1.00117 + 1.73409i
\(63\) 0 0
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) 0.177519 1.00676i 0.0220185 0.124873i
\(66\) 0 0
\(67\) −9.40420 3.42285i −1.14891 0.418168i −0.303784 0.952741i \(-0.598250\pi\)
−0.845122 + 0.534573i \(0.820472\pi\)
\(68\) 12.4363 + 4.52644i 1.50812 + 0.548911i
\(69\) 0 0
\(70\) −0.663848 + 3.76487i −0.0793450 + 0.449988i
\(71\) 5.91534 + 10.2457i 0.702022 + 1.21594i 0.967755 + 0.251892i \(0.0810526\pi\)
−0.265733 + 0.964047i \(0.585614\pi\)
\(72\) 0 0
\(73\) 4.11721 7.13122i 0.481883 0.834646i −0.517901 0.855441i \(-0.673286\pi\)
0.999784 + 0.0207947i \(0.00661964\pi\)
\(74\) −6.97565 5.85327i −0.810903 0.680428i
\(75\) 0 0
\(76\) 0.0320889 + 0.181985i 0.00368085 + 0.0208751i
\(77\) −7.67752 + 6.44220i −0.874934 + 0.734157i
\(78\) 0 0
\(79\) −10.3833 + 3.77920i −1.16821 + 0.425193i −0.852023 0.523505i \(-0.824624\pi\)
−0.316185 + 0.948698i \(0.602402\pi\)
\(80\) −3.10607 −0.347269
\(81\) 0 0
\(82\) 19.5030 2.15375
\(83\) −1.41875 + 0.516382i −0.155728 + 0.0566803i −0.418708 0.908121i \(-0.637517\pi\)
0.262980 + 0.964801i \(0.415295\pi\)
\(84\) 0 0
\(85\) 1.07532 0.902302i 0.116635 0.0978684i
\(86\) 0.258770 + 1.46756i 0.0279039 + 0.158251i
\(87\) 0 0
\(88\) −14.5287 12.1910i −1.54876 1.29957i
\(89\) −7.93629 + 13.7461i −0.841245 + 1.45708i 0.0475978 + 0.998867i \(0.484843\pi\)
−0.888843 + 0.458212i \(0.848490\pi\)
\(90\) 0 0
\(91\) −3.52481 6.10516i −0.369501 0.639995i
\(92\) −4.67752 + 26.5275i −0.487665 + 2.76569i
\(93\) 0 0
\(94\) 22.9859 + 8.36619i 2.37082 + 0.862907i
\(95\) 0.0184183 + 0.00670372i 0.00188968 + 0.000687787i
\(96\) 0 0
\(97\) 3.23783 18.3626i 0.328751 1.86444i −0.153131 0.988206i \(-0.548936\pi\)
0.481882 0.876236i \(-0.339953\pi\)
\(98\) 4.31908 + 7.48086i 0.436293 + 0.755681i
\(99\) 0 0
\(100\) 10.5458 18.2658i 1.05458 1.82658i
\(101\) −6.96064 5.84067i −0.692609 0.581168i 0.227051 0.973883i \(-0.427092\pi\)
−0.919660 + 0.392715i \(0.871536\pi\)
\(102\) 0 0
\(103\) 0.0452926 + 0.256867i 0.00446282 + 0.0253099i 0.986958 0.160979i \(-0.0514651\pi\)
−0.982495 + 0.186289i \(0.940354\pi\)
\(104\) 10.2194 8.57510i 1.00210 0.840858i
\(105\) 0 0
\(106\) −11.7973 + 4.29385i −1.14585 + 0.417056i
\(107\) −4.04189 −0.390744 −0.195372 0.980729i \(-0.562591\pi\)
−0.195372 + 0.980729i \(0.562591\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) −3.45811 + 1.25865i −0.329718 + 0.120008i
\(111\) 0 0
\(112\) −16.4081 + 13.7680i −1.55042 + 1.30095i
\(113\) −0.240352 1.36310i −0.0226104 0.128230i 0.971413 0.237395i \(-0.0762935\pi\)
−0.994024 + 0.109165i \(0.965182\pi\)
\(114\) 0 0
\(115\) 2.18866 + 1.83651i 0.204094 + 0.171255i
\(116\) 14.5005 25.1155i 1.34633 2.33192i
\(117\) 0 0
\(118\) 10.8020 + 18.7096i 0.994405 + 1.72236i
\(119\) 1.68092 9.53298i 0.154090 0.873887i
\(120\) 0 0
\(121\) 1.27079 + 0.462531i 0.115527 + 0.0420482i
\(122\) −3.01842 1.09861i −0.273275 0.0994639i
\(123\) 0 0
\(124\) −4.76991 + 27.0515i −0.428351 + 2.42930i
\(125\) −2.28833 3.96351i −0.204675 0.354507i
\(126\) 0 0
\(127\) 3.31908 5.74881i 0.294521 0.510125i −0.680353 0.732885i \(-0.738173\pi\)
0.974873 + 0.222760i \(0.0715067\pi\)
\(128\) 10.2194 + 8.57510i 0.903277 + 0.757939i
\(129\) 0 0
\(130\) −0.449493 2.54920i −0.0394231 0.223580i
\(131\) 9.68345 8.12538i 0.846047 0.709918i −0.112869 0.993610i \(-0.536004\pi\)
0.958915 + 0.283692i \(0.0915594\pi\)
\(132\) 0 0
\(133\) 0.127011 0.0462284i 0.0110133 0.00400851i
\(134\) −25.3405 −2.18908
\(135\) 0 0
\(136\) 18.3182 1.57077
\(137\) 9.97565 3.63084i 0.852277 0.310204i 0.121309 0.992615i \(-0.461291\pi\)
0.730969 + 0.682411i \(0.239069\pi\)
\(138\) 0 0
\(139\) −5.71554 + 4.79591i −0.484786 + 0.406783i −0.852153 0.523292i \(-0.824704\pi\)
0.367368 + 0.930076i \(0.380259\pi\)
\(140\) 1.15657 + 6.55926i 0.0977483 + 0.554358i
\(141\) 0 0
\(142\) 22.9479 + 19.2556i 1.92575 + 1.61589i
\(143\) 3.39306 5.87695i 0.283742 0.491455i
\(144\) 0 0
\(145\) −1.53802 2.66393i −0.127725 0.221227i
\(146\) 3.62061 20.5335i 0.299644 1.69937i
\(147\) 0 0
\(148\) −14.9081 5.42609i −1.22544 0.446022i
\(149\) −3.99747 1.45496i −0.327486 0.119195i 0.173045 0.984914i \(-0.444639\pi\)
−0.500531 + 0.865719i \(0.666862\pi\)
\(150\) 0 0
\(151\) 0.0234708 0.133109i 0.00191002 0.0108323i −0.983838 0.179062i \(-0.942694\pi\)
0.985748 + 0.168229i \(0.0538049\pi\)
\(152\) 0.127889 + 0.221510i 0.0103731 + 0.0179668i
\(153\) 0 0
\(154\) −12.6887 + 21.9774i −1.02248 + 1.77099i
\(155\) 2.23190 + 1.87278i 0.179270 + 0.150426i
\(156\) 0 0
\(157\) 2.31403 + 13.1235i 0.184679 + 1.04737i 0.926367 + 0.376623i \(0.122915\pi\)
−0.741687 + 0.670746i \(0.765974\pi\)
\(158\) −21.4329 + 17.9843i −1.70511 + 1.43076i
\(159\) 0 0
\(160\) −2.02094 + 0.735564i −0.159770 + 0.0581514i
\(161\) 19.7023 1.55276
\(162\) 0 0
\(163\) −9.76382 −0.764762 −0.382381 0.924005i \(-0.624896\pi\)
−0.382381 + 0.924005i \(0.624896\pi\)
\(164\) 31.9295 11.6214i 2.49327 0.907477i
\(165\) 0 0
\(166\) −2.92855 + 2.45734i −0.227299 + 0.190727i
\(167\) 0.620615 + 3.51968i 0.0480246 + 0.272361i 0.999359 0.0357994i \(-0.0113977\pi\)
−0.951334 + 0.308160i \(0.900287\pi\)
\(168\) 0 0
\(169\) −6.30200 5.28801i −0.484770 0.406770i
\(170\) 1.77719 3.07818i 0.136304 0.236086i
\(171\) 0 0
\(172\) 1.29813 + 2.24843i 0.0989817 + 0.171441i
\(173\) −3.25877 + 18.4814i −0.247760 + 1.40512i 0.566235 + 0.824244i \(0.308399\pi\)
−0.813995 + 0.580872i \(0.802712\pi\)
\(174\) 0 0
\(175\) −14.4966 5.27633i −1.09584 0.398853i
\(176\) −19.3751 7.05196i −1.46045 0.531562i
\(177\) 0 0
\(178\) −6.97906 + 39.5802i −0.523102 + 2.96666i
\(179\) −2.54189 4.40268i −0.189990 0.329072i 0.755257 0.655429i \(-0.227512\pi\)
−0.945247 + 0.326357i \(0.894179\pi\)
\(180\) 0 0
\(181\) −3.57532 + 6.19264i −0.265752 + 0.460295i −0.967760 0.251873i \(-0.918953\pi\)
0.702009 + 0.712168i \(0.252287\pi\)
\(182\) −13.6741 11.4739i −1.01359 0.850505i
\(183\) 0 0
\(184\) 6.47431 + 36.7176i 0.477292 + 2.70686i
\(185\) −1.28905 + 1.08164i −0.0947727 + 0.0795238i
\(186\) 0 0
\(187\) 8.75624 3.18701i 0.640320 0.233057i
\(188\) 42.6168 3.10815
\(189\) 0 0
\(190\) 0.0496299 0.00360053
\(191\) −9.87598 + 3.59456i −0.714601 + 0.260093i −0.673632 0.739067i \(-0.735267\pi\)
−0.0409690 + 0.999160i \(0.513044\pi\)
\(192\) 0 0
\(193\) −7.76991 + 6.51973i −0.559291 + 0.469301i −0.878073 0.478527i \(-0.841171\pi\)
0.318782 + 0.947828i \(0.396726\pi\)
\(194\) −8.19846 46.4958i −0.588615 3.33820i
\(195\) 0 0
\(196\) 11.5287 + 9.67372i 0.823478 + 0.690980i
\(197\) 7.04189 12.1969i 0.501714 0.868994i −0.498284 0.867014i \(-0.666036\pi\)
0.999998 0.00198008i \(-0.000630281\pi\)
\(198\) 0 0
\(199\) −5.13816 8.89955i −0.364234 0.630872i 0.624419 0.781090i \(-0.285336\pi\)
−0.988653 + 0.150218i \(0.952003\pi\)
\(200\) 5.06939 28.7500i 0.358460 2.03293i
\(201\) 0 0
\(202\) −21.6202 7.86911i −1.52119 0.553669i
\(203\) −19.9329 7.25498i −1.39901 0.509200i
\(204\) 0 0
\(205\) 0.625829 3.54925i 0.0437098 0.247891i
\(206\) 0.330222 + 0.571962i 0.0230077 + 0.0398505i
\(207\) 0 0
\(208\) 7.25150 12.5600i 0.502801 0.870877i
\(209\) 0.0996702 + 0.0836332i 0.00689433 + 0.00578503i
\(210\) 0 0
\(211\) −1.24035 7.03439i −0.0853894 0.484267i −0.997272 0.0738159i \(-0.976482\pi\)
0.911883 0.410451i \(-0.134629\pi\)
\(212\) −16.7554 + 14.0594i −1.15076 + 0.965605i
\(213\) 0 0
\(214\) −9.61721 + 3.50038i −0.657419 + 0.239281i
\(215\) 0.275378 0.0187806
\(216\) 0 0
\(217\) 20.0915 1.36390
\(218\) −12.8576 + 4.67977i −0.870824 + 0.316954i
\(219\) 0 0
\(220\) −4.91147 + 4.12122i −0.331132 + 0.277852i
\(221\) 1.13816 + 6.45480i 0.0765606 + 0.434197i
\(222\) 0 0
\(223\) −7.91740 6.64349i −0.530189 0.444881i 0.337978 0.941154i \(-0.390257\pi\)
−0.868167 + 0.496273i \(0.834702\pi\)
\(224\) −7.41534 + 12.8438i −0.495459 + 0.858159i
\(225\) 0 0
\(226\) −1.75237 3.03520i −0.116566 0.201899i
\(227\) 2.26130 12.8245i 0.150088 0.851189i −0.813053 0.582190i \(-0.802196\pi\)
0.963140 0.268999i \(-0.0866928\pi\)
\(228\) 0 0
\(229\) 26.4047 + 9.61051i 1.74487 + 0.635081i 0.999501 0.0315726i \(-0.0100515\pi\)
0.745368 + 0.666653i \(0.232274\pi\)
\(230\) 6.79813 + 2.47432i 0.448256 + 0.163152i
\(231\) 0 0
\(232\) 6.97044 39.5313i 0.457632 2.59536i
\(233\) −6.95723 12.0503i −0.455784 0.789440i 0.542949 0.839765i \(-0.317308\pi\)
−0.998733 + 0.0503252i \(0.983974\pi\)
\(234\) 0 0
\(235\) 2.26011 3.91463i 0.147434 0.255363i
\(236\) 28.8332 + 24.1939i 1.87688 + 1.57489i
\(237\) 0 0
\(238\) −4.25624 24.1384i −0.275891 1.56466i
\(239\) 11.5057 9.65441i 0.744241 0.624492i −0.189732 0.981836i \(-0.560762\pi\)
0.933973 + 0.357344i \(0.116318\pi\)
\(240\) 0 0
\(241\) 12.1912 4.43723i 0.785304 0.285827i 0.0819212 0.996639i \(-0.473894\pi\)
0.703382 + 0.710812i \(0.251672\pi\)
\(242\) 3.42427 0.220120
\(243\) 0 0
\(244\) −5.59627 −0.358264
\(245\) 1.50000 0.545955i 0.0958315 0.0348798i
\(246\) 0 0
\(247\) −0.0701076 + 0.0588272i −0.00446084 + 0.00374309i
\(248\) 6.60220 + 37.4429i 0.419240 + 2.37763i
\(249\) 0 0
\(250\) −8.87733 7.44896i −0.561451 0.471114i
\(251\) 0.436289 0.755675i 0.0275383 0.0476978i −0.851928 0.523659i \(-0.824567\pi\)
0.879466 + 0.475961i \(0.157900\pi\)
\(252\) 0 0
\(253\) 9.48293 + 16.4249i 0.596186 + 1.03263i
\(254\) 2.91875 16.5530i 0.183139 1.03863i
\(255\) 0 0
\(256\) 28.6634 + 10.4326i 1.79146 + 0.652040i
\(257\) 4.30066 + 1.56531i 0.268268 + 0.0976415i 0.472652 0.881249i \(-0.343297\pi\)
−0.204384 + 0.978891i \(0.565519\pi\)
\(258\) 0 0
\(259\) −2.01501 + 11.4277i −0.125207 + 0.710084i
\(260\) −2.25490 3.90560i −0.139843 0.242215i
\(261\) 0 0
\(262\) 16.0039 27.7195i 0.988722 1.71252i
\(263\) −3.29220 2.76249i −0.203006 0.170342i 0.535617 0.844461i \(-0.320079\pi\)
−0.738623 + 0.674119i \(0.764524\pi\)
\(264\) 0 0
\(265\) 0.402856 + 2.28471i 0.0247472 + 0.140349i
\(266\) 0.262174 0.219990i 0.0160749 0.0134885i
\(267\) 0 0
\(268\) −41.4864 + 15.0998i −2.53418 + 0.922368i
\(269\) −12.1257 −0.739315 −0.369657 0.929168i \(-0.620525\pi\)
−0.369657 + 0.929168i \(0.620525\pi\)
\(270\) 0 0
\(271\) −0.319955 −0.0194359 −0.00971795 0.999953i \(-0.503093\pi\)
−0.00971795 + 0.999953i \(0.503093\pi\)
\(272\) 18.7135 6.81115i 1.13467 0.412987i
\(273\) 0 0
\(274\) 20.5915 17.2783i 1.24398 1.04382i
\(275\) −2.57873 14.6247i −0.155503 0.881901i
\(276\) 0 0
\(277\) −20.5462 17.2403i −1.23450 1.03587i −0.997933 0.0642566i \(-0.979532\pi\)
−0.236570 0.971615i \(-0.576023\pi\)
\(278\) −9.44609 + 16.3611i −0.566539 + 0.981274i
\(279\) 0 0
\(280\) 4.60947 + 7.98384i 0.275469 + 0.477126i
\(281\) −4.63310 + 26.2756i −0.276388 + 1.56747i 0.458131 + 0.888885i \(0.348519\pi\)
−0.734519 + 0.678588i \(0.762592\pi\)
\(282\) 0 0
\(283\) 8.73308 + 3.17858i 0.519128 + 0.188947i 0.588277 0.808659i \(-0.299806\pi\)
−0.0691496 + 0.997606i \(0.522029\pi\)
\(284\) 49.0433 + 17.8503i 2.91018 + 1.05922i
\(285\) 0 0
\(286\) 2.98380 16.9220i 0.176436 1.00062i
\(287\) −12.4265 21.5233i −0.733512 1.27048i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −5.96657 5.00654i −0.350369 0.293994i
\(291\) 0 0
\(292\) −6.30793 35.7741i −0.369144 2.09352i
\(293\) 15.0444 12.6238i 0.878904 0.737488i −0.0870493 0.996204i \(-0.527744\pi\)
0.965953 + 0.258716i \(0.0832993\pi\)
\(294\) 0 0
\(295\) 3.75150 1.36543i 0.218421 0.0794986i
\(296\) −21.9590 −1.27634
\(297\) 0 0
\(298\) −10.7716 −0.623980
\(299\) −12.5360 + 4.56272i −0.724973 + 0.263869i
\(300\) 0 0
\(301\) 1.45471 1.22064i 0.0838479 0.0703568i
\(302\) −0.0594300 0.337044i −0.00341981 0.0193947i
\(303\) 0 0
\(304\) 0.213011 + 0.178737i 0.0122170 + 0.0102513i
\(305\) −0.296789 + 0.514054i −0.0169941 + 0.0294346i
\(306\) 0 0
\(307\) −14.1716 24.5459i −0.808815 1.40091i −0.913685 0.406423i \(-0.866776\pi\)
0.104870 0.994486i \(-0.466557\pi\)
\(308\) −7.67752 + 43.5414i −0.437467 + 2.48100i
\(309\) 0 0
\(310\) 6.93242 + 2.52319i 0.393735 + 0.143308i
\(311\) −1.92127 0.699287i −0.108945 0.0396529i 0.286972 0.957939i \(-0.407351\pi\)
−0.395918 + 0.918286i \(0.629573\pi\)
\(312\) 0 0
\(313\) 1.46064 8.28368i 0.0825601 0.468222i −0.915296 0.402781i \(-0.868044\pi\)
0.997856 0.0654405i \(-0.0208453\pi\)
\(314\) 16.8712 + 29.2218i 0.952099 + 1.64908i
\(315\) 0 0
\(316\) −24.3726 + 42.2145i −1.37106 + 2.37475i
\(317\) −23.8457 20.0089i −1.33931 1.12381i −0.981803 0.189902i \(-0.939183\pi\)
−0.357505 0.933911i \(-0.616373\pi\)
\(318\) 0 0
\(319\) −3.54576 20.1090i −0.198524 1.12589i
\(320\) 0.587182 0.492704i 0.0328245 0.0275430i
\(321\) 0 0
\(322\) 46.8794 17.0627i 2.61249 0.950868i
\(323\) −0.125667 −0.00699231
\(324\) 0 0
\(325\) 10.4456 0.579419
\(326\) −23.2319 + 8.45572i −1.28670 + 0.468319i
\(327\) 0 0
\(328\) 36.0278 30.2309i 1.98930 1.66922i
\(329\) −5.41282 30.6976i −0.298418 1.69241i
\(330\) 0 0
\(331\) 23.7711 + 19.9463i 1.30658 + 1.09635i 0.988968 + 0.148127i \(0.0473245\pi\)
0.317609 + 0.948222i \(0.397120\pi\)
\(332\) −3.33022 + 5.76811i −0.182770 + 0.316566i
\(333\) 0 0
\(334\) 4.52481 + 7.83721i 0.247587 + 0.428833i
\(335\) −0.813148 + 4.61159i −0.0444270 + 0.251958i
\(336\) 0 0
\(337\) −22.2986 8.11603i −1.21468 0.442108i −0.346357 0.938103i \(-0.612581\pi\)
−0.868326 + 0.495995i \(0.834804\pi\)
\(338\) −19.5744 7.12452i −1.06471 0.387523i
\(339\) 0 0
\(340\) 1.07532 6.09845i 0.0583175 0.330735i
\(341\) 9.67024 + 16.7494i 0.523673 + 0.907028i
\(342\) 0 0
\(343\) −5.78952 + 10.0277i −0.312604 + 0.541447i
\(344\) 2.75284 + 2.30991i 0.148423 + 0.124542i
\(345\) 0 0
\(346\) 8.25150 + 46.7966i 0.443603 + 2.51580i
\(347\) 1.38532 1.16242i 0.0743676 0.0624018i −0.604846 0.796342i \(-0.706765\pi\)
0.679214 + 0.733941i \(0.262321\pi\)
\(348\) 0 0
\(349\) −14.3405 + 5.21951i −0.767629 + 0.279394i −0.696004 0.718038i \(-0.745041\pi\)
−0.0716245 + 0.997432i \(0.522818\pi\)
\(350\) −39.0624 −2.08797
\(351\) 0 0
\(352\) −14.2763 −0.760930
\(353\) −30.4295 + 11.0754i −1.61960 + 0.589485i −0.983305 0.181963i \(-0.941755\pi\)
−0.636292 + 0.771448i \(0.719533\pi\)
\(354\) 0 0
\(355\) 4.24060 3.55829i 0.225068 0.188854i
\(356\) 12.1591 + 68.9577i 0.644431 + 3.65475i
\(357\) 0 0
\(358\) −9.86097 8.27433i −0.521168 0.437312i
\(359\) −0.957234 + 1.65798i −0.0505209 + 0.0875047i −0.890180 0.455609i \(-0.849421\pi\)
0.839659 + 0.543114i \(0.182755\pi\)
\(360\) 0 0
\(361\) 9.49912 + 16.4530i 0.499954 + 0.865945i
\(362\) −3.14409 + 17.8310i −0.165249 + 0.937176i
\(363\) 0 0
\(364\) −29.2237 10.6366i −1.53174 0.557508i
\(365\) −3.62061 1.31780i −0.189512 0.0689766i
\(366\) 0 0
\(367\) −4.66503 + 26.4567i −0.243513 + 1.38103i 0.580409 + 0.814325i \(0.302893\pi\)
−0.823922 + 0.566704i \(0.808218\pi\)
\(368\) 20.2665 + 35.1026i 1.05646 + 1.82985i
\(369\) 0 0
\(370\) −2.13041 + 3.68999i −0.110755 + 0.191833i
\(371\) 12.2554 + 10.2835i 0.636267 + 0.533891i
\(372\) 0 0
\(373\) 2.57697 + 14.6147i 0.133431 + 0.756722i 0.975940 + 0.218040i \(0.0699664\pi\)
−0.842509 + 0.538682i \(0.818923\pi\)
\(374\) 18.0744 15.1663i 0.934607 0.784229i
\(375\) 0 0
\(376\) 55.4299 20.1749i 2.85858 1.04044i
\(377\) 14.3628 0.739721
\(378\) 0 0
\(379\) −33.7870 −1.73552 −0.867762 0.496980i \(-0.834442\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(380\) 0.0812519 0.0295733i 0.00416814 0.00151708i
\(381\) 0 0
\(382\) −20.3858 + 17.1057i −1.04303 + 0.875204i
\(383\) 1.61128 + 9.13803i 0.0823326 + 0.466932i 0.997900 + 0.0647678i \(0.0206307\pi\)
−0.915568 + 0.402164i \(0.868258\pi\)
\(384\) 0 0
\(385\) 3.59240 + 3.01438i 0.183085 + 0.153627i
\(386\) −12.8414 + 22.2419i −0.653608 + 1.13208i
\(387\) 0 0
\(388\) −41.1279 71.2357i −2.08796 3.61644i
\(389\) 2.77466 15.7359i 0.140681 0.797841i −0.830053 0.557684i \(-0.811690\pi\)
0.970734 0.240157i \(-0.0771989\pi\)
\(390\) 0 0
\(391\) −17.2135 6.26519i −0.870523 0.316844i
\(392\) 19.5744 + 7.12452i 0.988659 + 0.359842i
\(393\) 0 0
\(394\) 6.19253 35.1196i 0.311975 1.76930i
\(395\) 2.58512 + 4.47756i 0.130072 + 0.225291i
\(396\) 0 0
\(397\) −9.85251 + 17.0650i −0.494483 + 0.856470i −0.999980 0.00635841i \(-0.997976\pi\)
0.505496 + 0.862829i \(0.331309\pi\)
\(398\) −19.9329 16.7257i −0.999145 0.838382i
\(399\) 0 0
\(400\) −5.51114 31.2553i −0.275557 1.56276i
\(401\) −0.879385 + 0.737892i −0.0439144 + 0.0368486i −0.664481 0.747305i \(-0.731347\pi\)
0.620566 + 0.784154i \(0.286903\pi\)
\(402\) 0 0
\(403\) −12.7836 + 4.65284i −0.636796 + 0.231775i
\(404\) −40.0847 −1.99429
\(405\) 0 0
\(406\) −53.7110 −2.66563
\(407\) −10.4966 + 3.82045i −0.520297 + 0.189373i
\(408\) 0 0
\(409\) −2.37551 + 1.99329i −0.117462 + 0.0985620i −0.699627 0.714509i \(-0.746650\pi\)
0.582165 + 0.813071i \(0.302206\pi\)
\(410\) −1.58466 8.98703i −0.0782606 0.443838i
\(411\) 0 0
\(412\) 0.881445 + 0.739620i 0.0434257 + 0.0364385i
\(413\) 13.7652 23.8420i 0.677340 1.17319i
\(414\) 0 0
\(415\) 0.353226 + 0.611806i 0.0173392 + 0.0300324i
\(416\) 1.74376 9.88933i 0.0854947 0.484864i
\(417\) 0 0
\(418\) 0.309582 + 0.112679i 0.0151422 + 0.00551130i
\(419\) 33.3114 + 12.1244i 1.62737 + 0.592314i 0.984766 0.173886i \(-0.0556325\pi\)
0.642602 + 0.766200i \(0.277855\pi\)
\(420\) 0 0
\(421\) 1.60055 9.07716i 0.0780059 0.442394i −0.920642 0.390408i \(-0.872334\pi\)
0.998648 0.0519855i \(-0.0165550\pi\)
\(422\) −9.04323 15.6633i −0.440218 0.762479i
\(423\) 0 0
\(424\) −15.1373 + 26.2185i −0.735131 + 1.27328i
\(425\) 10.9875 + 9.21962i 0.532973 + 0.447217i
\(426\) 0 0
\(427\) 0.710790 + 4.03109i 0.0343975 + 0.195078i
\(428\) −13.6591 + 11.4613i −0.660238 + 0.554005i
\(429\) 0 0
\(430\) 0.655230 0.238484i 0.0315980 0.0115007i
\(431\) −11.5794 −0.557758 −0.278879 0.960326i \(-0.589963\pi\)
−0.278879 + 0.960326i \(0.589963\pi\)
\(432\) 0 0
\(433\) 6.06511 0.291471 0.145735 0.989324i \(-0.453445\pi\)
0.145735 + 0.989324i \(0.453445\pi\)
\(434\) 47.8055 17.3998i 2.29474 0.835215i
\(435\) 0 0
\(436\) −18.2613 + 15.3230i −0.874557 + 0.733841i
\(437\) −0.0444153 0.251892i −0.00212467 0.0120496i
\(438\) 0 0
\(439\) 22.2199 + 18.6447i 1.06050 + 0.889862i 0.994158 0.107935i \(-0.0344238\pi\)
0.0663388 + 0.997797i \(0.478868\pi\)
\(440\) −4.43717 + 7.68540i −0.211534 + 0.366387i
\(441\) 0 0
\(442\) 8.29813 + 14.3728i 0.394702 + 0.683644i
\(443\) −5.36437 + 30.4229i −0.254869 + 1.44543i 0.541540 + 0.840675i \(0.317841\pi\)
−0.796409 + 0.604759i \(0.793270\pi\)
\(444\) 0 0
\(445\) 6.97906 + 2.54017i 0.330839 + 0.120416i
\(446\) −24.5920 8.95075i −1.16446 0.423830i
\(447\) 0 0
\(448\) 0.917871 5.20550i 0.0433653 0.245937i
\(449\) −19.5410 33.8460i −0.922197 1.59729i −0.796008 0.605287i \(-0.793059\pi\)
−0.126190 0.992006i \(-0.540275\pi\)
\(450\) 0 0
\(451\) 11.9620 20.7188i 0.563268 0.975608i
\(452\) −4.67752 3.92490i −0.220012 0.184612i
\(453\) 0 0
\(454\) −5.72580 32.4726i −0.268725 1.52402i
\(455\) −2.52687 + 2.12030i −0.118462 + 0.0994012i
\(456\) 0 0
\(457\) 1.41400 0.514654i 0.0661441 0.0240745i −0.308736 0.951148i \(-0.599906\pi\)
0.374880 + 0.927073i \(0.377684\pi\)
\(458\) 71.1498 3.32461
\(459\) 0 0
\(460\) 12.6040 0.587665
\(461\) 24.6548 8.97362i 1.14829 0.417943i 0.303389 0.952867i \(-0.401882\pi\)
0.844900 + 0.534924i \(0.179660\pi\)
\(462\) 0 0
\(463\) 5.17571 4.34293i 0.240536 0.201833i −0.514549 0.857461i \(-0.672040\pi\)
0.755084 + 0.655628i \(0.227596\pi\)
\(464\) −7.57785 42.9761i −0.351793 1.99512i
\(465\) 0 0
\(466\) −26.9898 22.6471i −1.25028 1.04911i
\(467\) 16.8735 29.2257i 0.780810 1.35240i −0.150660 0.988586i \(-0.548140\pi\)
0.931470 0.363818i \(-0.118527\pi\)
\(468\) 0 0
\(469\) 16.1459 + 27.9655i 0.745548 + 1.29133i
\(470\) 1.98751 11.2717i 0.0916771 0.519926i
\(471\) 0 0
\(472\) 48.9556 + 17.8184i 2.25337 + 0.820158i
\(473\) 1.71776 + 0.625213i 0.0789826 + 0.0287473i
\(474\) 0 0
\(475\) −0.0347772 + 0.197231i −0.00159569 + 0.00904960i
\(476\) −21.3516 36.9821i −0.978651 1.69507i
\(477\) 0 0
\(478\) 19.0155 32.9358i 0.869748 1.50645i
\(479\) −8.52347 7.15204i −0.389447 0.326785i 0.426951 0.904275i \(-0.359588\pi\)
−0.816398 + 0.577490i \(0.804032\pi\)
\(480\) 0 0
\(481\) −1.36437 7.73773i −0.0622099 0.352810i
\(482\) 25.1648 21.1158i 1.14622 0.961796i
\(483\) 0 0
\(484\) 5.60607 2.04044i 0.254821 0.0927473i
\(485\) −8.72462 −0.396165
\(486\) 0 0
\(487\) −4.74691 −0.215103 −0.107552 0.994200i \(-0.534301\pi\)
−0.107552 + 0.994200i \(0.534301\pi\)
\(488\) −7.27884 + 2.64928i −0.329497 + 0.119927i
\(489\) 0 0
\(490\) 3.09627 2.59808i 0.139875 0.117369i
\(491\) −3.87939 22.0011i −0.175074 0.992895i −0.938058 0.346478i \(-0.887378\pi\)
0.762984 0.646417i \(-0.223734\pi\)
\(492\) 0 0
\(493\) 15.1079 + 12.6770i 0.680425 + 0.570944i
\(494\) −0.115867 + 0.200688i −0.00521310 + 0.00902936i
\(495\) 0 0
\(496\) 20.6668 + 35.7960i 0.927969 + 1.60729i
\(497\) 6.62882 37.5939i 0.297343 1.68632i
\(498\) 0 0
\(499\) 9.83022 + 3.57791i 0.440061 + 0.160169i 0.552543 0.833485i \(-0.313658\pi\)
−0.112481 + 0.993654i \(0.535880\pi\)
\(500\) −18.9722 6.90533i −0.848465 0.308816i
\(501\) 0 0
\(502\) 0.383666 2.17588i 0.0171239 0.0971142i
\(503\) 12.5209 + 21.6869i 0.558281 + 0.966972i 0.997640 + 0.0686600i \(0.0218723\pi\)
−0.439359 + 0.898312i \(0.644794\pi\)
\(504\) 0 0
\(505\) −2.12583 + 3.68204i −0.0945982 + 0.163849i
\(506\) 36.7879 + 30.8687i 1.63542 + 1.37228i
\(507\) 0 0
\(508\) −5.08512 28.8392i −0.225616 1.27953i
\(509\) −13.8366 + 11.6103i −0.613297 + 0.514618i −0.895689 0.444682i \(-0.853317\pi\)
0.282391 + 0.959299i \(0.408872\pi\)
\(510\) 0 0
\(511\) −24.9675 + 9.08743i −1.10450 + 0.402004i
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 11.5885 0.511148
\(515\) 0.114685 0.0417419i 0.00505362 0.00183937i
\(516\) 0 0
\(517\) 22.9859 19.2875i 1.01092 0.848262i
\(518\) 5.10220 + 28.9360i 0.224178 + 1.27137i
\(519\) 0 0
\(520\) −4.78177 4.01239i −0.209695 0.175955i
\(521\) −12.9791 + 22.4804i −0.568623 + 0.984883i 0.428080 + 0.903741i \(0.359190\pi\)
−0.996703 + 0.0811425i \(0.974143\pi\)
\(522\) 0 0
\(523\) −12.7973 22.1655i −0.559585 0.969230i −0.997531 0.0702283i \(-0.977627\pi\)
0.437946 0.899001i \(-0.355706\pi\)
\(524\) 9.68345 54.9176i 0.423023 2.39908i
\(525\) 0 0
\(526\) −10.2258 3.72189i −0.445866 0.162282i
\(527\) −17.5535 6.38895i −0.764642 0.278307i
\(528\) 0 0
\(529\) 2.48040 14.0670i 0.107843 0.611611i
\(530\) 2.93717 + 5.08732i 0.127582 + 0.220979i
\(531\) 0 0
\(532\) 0.298133 0.516382i 0.0129257 0.0223880i
\(533\) 12.8910 + 10.8168i 0.558371 + 0.468529i
\(534\) 0 0
\(535\) 0.328411 + 1.86251i 0.0141985 + 0.0805234i
\(536\) −46.8114 + 39.2794i −2.02194 + 1.69661i
\(537\) 0 0
\(538\) −28.8516 + 10.5011i −1.24388 + 0.452736i
\(539\) 10.5963 0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) −0.761297 + 0.277089i −0.0327005 + 0.0119020i
\(543\) 0 0
\(544\) 10.5628 8.86327i 0.452878 0.380010i
\(545\) 0.439064 + 2.49005i 0.0188074 + 0.106662i
\(546\) 0 0
\(547\) −4.52616 3.79790i −0.193525 0.162386i 0.540877 0.841102i \(-0.318093\pi\)
−0.734401 + 0.678715i \(0.762537\pi\)
\(548\) 23.4158 40.5574i 1.00027 1.73253i
\(549\) 0 0
\(550\) −18.8011 32.5645i −0.801683 1.38856i
\(551\) −0.0478189 + 0.271194i −0.00203715 + 0.0115533i
\(552\) 0 0
\(553\) 33.5035 + 12.1943i 1.42471 + 0.518553i
\(554\) −63.8180 23.2278i −2.71136 0.986856i
\(555\) 0 0
\(556\) −5.71554 + 32.4144i −0.242393 + 1.37468i
\(557\) 13.3525 + 23.1272i 0.565764 + 0.979932i 0.996978 + 0.0776824i \(0.0247520\pi\)
−0.431214 + 0.902250i \(0.641915\pi\)
\(558\) 0 0
\(559\) −0.642903 + 1.11354i −0.0271919 + 0.0470978i
\(560\) 7.67752 + 6.44220i 0.324434 + 0.272233i
\(561\) 0 0
\(562\) 11.7314 + 66.5322i 0.494860 + 2.80649i
\(563\) −27.6254 + 23.1805i −1.16427 + 0.976941i −0.999955 0.00946682i \(-0.996987\pi\)
−0.164317 + 0.986408i \(0.552542\pi\)
\(564\) 0 0
\(565\) −0.608593 + 0.221510i −0.0256037 + 0.00931899i
\(566\) 23.5321 0.989127
\(567\) 0 0
\(568\) 72.2390 3.03108
\(569\) −8.50165 + 3.09435i −0.356408 + 0.129722i −0.514018 0.857780i \(-0.671843\pi\)
0.157610 + 0.987501i \(0.449621\pi\)
\(570\) 0 0
\(571\) 23.4249 19.6558i 0.980301 0.822571i −0.00383345 0.999993i \(-0.501220\pi\)
0.984135 + 0.177422i \(0.0567758\pi\)
\(572\) −5.19846 29.4819i −0.217359 1.23270i
\(573\) 0 0
\(574\) −48.2071 40.4506i −2.01213 1.68838i
\(575\) −14.5967 + 25.2823i −0.608726 + 1.05434i
\(576\) 0 0
\(577\) 12.5744 + 21.7796i 0.523481 + 0.906696i 0.999626 + 0.0273292i \(0.00870022\pi\)
−0.476146 + 0.879367i \(0.657966\pi\)
\(578\) 3.51754 19.9490i 0.146310 0.829768i
\(579\) 0 0
\(580\) −12.7515 4.64117i −0.529477 0.192714i
\(581\) 4.57785 + 1.66620i 0.189921 + 0.0691256i
\(582\) 0 0
\(583\) −2.67422 + 15.1663i −0.110755 + 0.628122i
\(584\) −25.1400 43.5437i −1.04030 1.80185i
\(585\) 0 0
\(586\) 24.8640 43.0656i 1.02712 1.77903i
\(587\) −15.9900 13.4172i −0.659979 0.553789i 0.250101 0.968220i \(-0.419536\pi\)
−0.910081 + 0.414431i \(0.863981\pi\)
\(588\) 0 0
\(589\) −0.0452926 0.256867i −0.00186625 0.0105840i
\(590\) 7.74376 6.49778i 0.318805 0.267509i
\(591\) 0 0
\(592\) −22.4329 + 8.16490i −0.921986 + 0.335575i
\(593\) −15.6212 −0.641488 −0.320744 0.947166i \(-0.603933\pi\)
−0.320744 + 0.947166i \(0.603933\pi\)
\(594\) 0 0
\(595\) −4.52940 −0.185687
\(596\) −17.6348 + 6.41852i −0.722348 + 0.262913i
\(597\) 0 0
\(598\) −25.8764 + 21.7129i −1.05817 + 0.887907i
\(599\) 0.0778483 + 0.441500i 0.00318080 + 0.0180392i 0.986357 0.164621i \(-0.0526402\pi\)
−0.983176 + 0.182660i \(0.941529\pi\)
\(600\) 0 0
\(601\) −13.5378 11.3595i −0.552217 0.463365i 0.323474 0.946237i \(-0.395149\pi\)
−0.875691 + 0.482872i \(0.839594\pi\)
\(602\) 2.40420 4.16420i 0.0979879 0.169720i
\(603\) 0 0
\(604\) −0.298133 0.516382i −0.0121309 0.0210113i
\(605\) 0.109881 0.623166i 0.00446729 0.0253353i
\(606\) 0 0
\(607\) −24.6186 8.96042i −0.999236 0.363692i −0.209946 0.977713i \(-0.567329\pi\)
−0.789290 + 0.614021i \(0.789551\pi\)
\(608\) 0.180922 + 0.0658503i 0.00733736 + 0.00267058i
\(609\) 0 0
\(610\) −0.260992 + 1.48016i −0.0105673 + 0.0599299i
\(611\) 10.5530 + 18.2784i 0.426930 + 0.739465i
\(612\) 0 0
\(613\) −7.27719 + 12.6045i −0.293923 + 0.509089i −0.974734 0.223370i \(-0.928294\pi\)
0.680811 + 0.732459i \(0.261628\pi\)
\(614\) −54.9771 46.1312i −2.21869 1.86170i
\(615\) 0 0
\(616\) 10.6267 + 60.2670i 0.428162 + 2.42823i
\(617\) −10.7404 + 9.01223i −0.432390 + 0.362819i −0.832853 0.553495i \(-0.813294\pi\)
0.400462 + 0.916313i \(0.368849\pi\)
\(618\) 0 0
\(619\) 29.7999 10.8463i 1.19776 0.435949i 0.335319 0.942105i \(-0.391156\pi\)
0.862442 + 0.506155i \(0.168934\pi\)
\(620\) 12.8530 0.516188
\(621\) 0 0
\(622\) −5.17705 −0.207581
\(623\) 48.1271 17.5168i 1.92817 0.701797i
\(624\) 0 0
\(625\) 16.6721 13.9895i 0.666882 0.559581i
\(626\) −3.69846 20.9750i −0.147820 0.838331i
\(627\) 0 0
\(628\) 45.0335 + 37.7876i 1.79703 + 1.50789i
\(629\) 5.39440 9.34337i 0.215089 0.372545i
\(630\) 0 0
\(631\) 19.2879 + 33.4077i 0.767840 + 1.32994i 0.938732 + 0.344648i \(0.112002\pi\)
−0.170892 + 0.985290i \(0.554665\pi\)
\(632\) −11.7160 + 66.4448i −0.466038 + 2.64303i
\(633\) 0 0
\(634\) −74.0663 26.9579i −2.94155 1.07064i
\(635\) −2.91875 1.06234i −0.115827 0.0421576i
\(636\) 0 0
\(637\) −1.29426 + 7.34013i −0.0512806 + 0.290827i
\(638\) −25.8516 44.7763i −1.02348 1.77271i
\(639\) 0 0
\(640\) 3.12108 5.40587i 0.123372 0.213686i
\(641\) 23.4538 + 19.6801i 0.926371 + 0.777317i 0.975162 0.221492i \(-0.0710926\pi\)
−0.0487917 + 0.998809i \(0.515537\pi\)
\(642\) 0 0
\(643\) −5.94310 33.7050i −0.234373 1.32919i −0.843930 0.536453i \(-0.819764\pi\)
0.609558 0.792742i \(-0.291347\pi\)
\(644\) 66.5818 55.8687i 2.62369 2.20154i
\(645\) 0 0
\(646\) −0.299011 + 0.108831i −0.0117644 + 0.00428190i
\(647\) 12.8726 0.506073 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) 24.8542 9.04617i 0.974860 0.354820i
\(651\) 0 0
\(652\) −32.9957 + 27.6867i −1.29221 + 1.08429i
\(653\) 1.96555 + 11.1472i 0.0769178 + 0.436223i 0.998810 + 0.0487755i \(0.0155319\pi\)
−0.921892 + 0.387447i \(0.873357\pi\)
\(654\) 0 0
\(655\) −4.53099 3.80195i −0.177041 0.148555i
\(656\) 25.5646 44.2793i 0.998132 1.72881i
\(657\) 0 0
\(658\) −39.4641 68.3538i −1.53847 2.66471i
\(659\) 2.39100 13.5600i 0.0931400 0.528223i −0.902161 0.431399i \(-0.858020\pi\)
0.995301 0.0968246i \(-0.0308686\pi\)
\(660\) 0 0
\(661\) 19.0446 + 6.93166i 0.740748 + 0.269610i 0.684707 0.728818i \(-0.259930\pi\)
0.0560409 + 0.998428i \(0.482152\pi\)
\(662\) 73.8346 + 26.8736i 2.86966 + 1.04447i
\(663\) 0 0
\(664\) −1.60085 + 9.07888i −0.0621251 + 0.352329i
\(665\) −0.0316221 0.0547710i −0.00122625 0.00212393i
\(666\) 0 0
\(667\) −20.0706 + 34.7633i −0.777136 + 1.34604i
\(668\) 12.0778 + 10.1345i 0.467306 + 0.392116i
\(669\) 0 0
\(670\) 2.05896 + 11.6770i 0.0795447 + 0.451120i
\(671\) −3.01842 + 2.53275i −0.116525 + 0.0977759i
\(672\) 0 0
\(673\) 28.7028 10.4470i 1.10641 0.402701i 0.276736 0.960946i \(-0.410747\pi\)
0.829676 + 0.558245i \(0.188525\pi\)
\(674\) −60.0856 −2.31441
\(675\) 0 0
\(676\) −36.2918 −1.39584
\(677\) −3.49495 + 1.27206i −0.134322 + 0.0488891i −0.408306 0.912845i \(-0.633880\pi\)
0.273985 + 0.961734i \(0.411658\pi\)
\(678\) 0 0
\(679\) −46.0886 + 38.6729i −1.76872 + 1.48413i
\(680\) −1.48839 8.44107i −0.0570771 0.323700i
\(681\) 0 0
\(682\) 37.5146 + 31.4785i 1.43651 + 1.20537i
\(683\) −10.8735 + 18.8334i −0.416061 + 0.720639i −0.995539 0.0943487i \(-0.969923\pi\)
0.579478 + 0.814988i \(0.303256\pi\)
\(684\) 0 0
\(685\) −2.48364 4.30179i −0.0948950 0.164363i
\(686\) −5.09121 + 28.8737i −0.194383 + 1.10240i
\(687\) 0 0
\(688\) 3.67112 + 1.33618i 0.139960 + 0.0509414i
\(689\) −10.1792 3.70491i −0.387795 0.141146i
\(690\) 0 0
\(691\) −6.52827 + 37.0237i −0.248347 + 1.40845i 0.564241 + 0.825610i \(0.309169\pi\)
−0.812589 + 0.582838i \(0.801942\pi\)
\(692\) 41.3940 + 71.6965i 1.57356 + 2.72549i
\(693\) 0 0
\(694\) 2.28952 3.96556i 0.0869088 0.150530i
\(695\) 2.67436 + 2.24406i 0.101444 + 0.0851219i
\(696\) 0 0
\(697\) 4.01249 + 22.7560i 0.151984 + 0.861943i
\(698\) −29.6013 + 24.8385i −1.12043 + 0.940149i
\(699\) 0 0
\(700\) −63.9514 + 23.2764i −2.41713 + 0.879765i
\(701\) −23.3351 −0.881355 −0.440678 0.897665i \(-0.645262\pi\)
−0.440678 + 0.897665i \(0.645262\pi\)
\(702\) 0 0
\(703\) 0.150644 0.00568166
\(704\) 4.78136 1.74027i 0.180204 0.0655890i
\(705\) 0 0
\(706\) −62.8119 + 52.7054i −2.36396 + 1.98359i
\(707\) 5.09121 + 28.8737i 0.191475 + 1.08591i
\(708\) 0 0
\(709\) 5.03983 + 4.22892i 0.189275 + 0.158820i 0.732501 0.680766i \(-0.238353\pi\)
−0.543226 + 0.839586i \(0.682797\pi\)
\(710\) 7.00846 12.1390i 0.263023 0.455569i
\(711\) 0 0
\(712\) 48.4595 + 83.9343i 1.81610 + 3.14557i
\(713\) 6.60220 37.4429i 0.247254 1.40225i
\(714\) 0 0
\(715\) −2.98380 1.08602i −0.111588 0.0406147i
\(716\) −21.0744 7.67047i −0.787589 0.286659i
\(717\) 0 0
\(718\) −0.841777 + 4.77396i −0.0314148 + 0.178162i
\(719\) −8.41622 14.5773i −0.313872 0.543642i 0.665325 0.746554i \(-0.268293\pi\)
−0.979197 + 0.202911i \(0.934960\pi\)
\(720\) 0 0
\(721\) 0.420807 0.728860i 0.0156717 0.0271442i
\(722\) 36.8508 + 30.9215i 1.37144 + 1.15078i
\(723\) 0 0
\(724\) 5.47771 + 31.0656i 0.203578 + 1.15455i
\(725\) 24.0772 20.2032i 0.894205 0.750327i
\(726\) 0 0
\(727\) −24.0205 + 8.74276i −0.890872 + 0.324251i −0.746589 0.665285i \(-0.768310\pi\)
−0.144283 + 0.989536i \(0.546088\pi\)
\(728\) −43.0455 −1.59537
\(729\) 0 0
\(730\) −9.75608 −0.361089
\(731\) −1.65910 + 0.603863i −0.0613640 + 0.0223347i
\(732\) 0 0
\(733\) −11.3359 + 9.51195i −0.418701 + 0.351332i −0.827669 0.561217i \(-0.810333\pi\)
0.408968 + 0.912549i \(0.365889\pi\)
\(734\) 11.8123 + 66.9907i 0.435999 + 2.47267i
\(735\) 0 0
\(736\) 21.4991 + 18.0399i 0.792468 + 0.664960i
\(737\) −15.5424 + 26.9202i −0.572510 + 0.991616i
\(738\) 0 0
\(739\) −4.59539 7.95945i −0.169044 0.292793i 0.769040 0.639201i \(-0.220735\pi\)
−0.938084 + 0.346408i \(0.887401\pi\)
\(740\) −1.28905 + 7.31056i −0.0473864 + 0.268741i
\(741\) 0 0
\(742\) 38.0660 + 13.8549i 1.39745 + 0.508629i
\(743\) 41.7686 + 15.2025i 1.53234 + 0.557727i 0.964194 0.265199i \(-0.0854377\pi\)
0.568149 + 0.822926i \(0.307660\pi\)
\(744\) 0 0
\(745\) −0.345647 + 1.96026i −0.0126635 + 0.0718185i
\(746\) 18.7883 + 32.5423i 0.687890 + 1.19146i
\(747\) 0 0
\(748\) 20.5535 35.5997i 0.751510 1.30165i
\(749\) 9.99067 + 8.38316i 0.365051 + 0.306314i
\(750\) 0 0
\(751\) −6.21765 35.2621i −0.226885 1.28673i −0.859048 0.511895i \(-0.828944\pi\)
0.632163 0.774836i \(-0.282167\pi\)
\(752\) 49.1245 41.2204i 1.79139 1.50315i
\(753\) 0 0
\(754\) 34.1746 12.4385i 1.24456 0.452985i
\(755\) −0.0632441 −0.00230169
\(756\) 0 0
\(757\) −45.8976 −1.66818 −0.834088 0.551632i \(-0.814005\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(758\) −80.3924 + 29.2604i −2.91998 + 1.06279i
\(759\) 0 0
\(760\) 0.0916810 0.0769295i 0.00332562 0.00279053i
\(761\) 6.45888 + 36.6301i 0.234134 + 1.32784i 0.844429 + 0.535667i \(0.179940\pi\)
−0.610295 + 0.792174i \(0.708949\pi\)
\(762\) 0 0
\(763\) 13.3568 + 11.2077i 0.483550 + 0.405747i
\(764\) −23.1819 + 40.1522i −0.838690 + 1.45265i
\(765\) 0 0
\(766\) 11.7476 + 20.3475i 0.424459 + 0.735185i
\(767\) −3.23695 + 18.3576i −0.116879 + 0.662856i
\(768\) 0 0
\(769\) 36.0219 + 13.1109i 1.29898 + 0.472791i 0.896665 0.442710i \(-0.145983\pi\)
0.402317 + 0.915500i \(0.368205\pi\)
\(770\) 11.1582 + 4.06126i 0.402114 + 0.146358i
\(771\) 0 0
\(772\) −7.76991 + 44.0654i −0.279645 + 1.58595i
\(773\) 26.4136 + 45.7497i 0.950031 + 1.64550i 0.745351 + 0.666673i \(0.232282\pi\)
0.204680 + 0.978829i \(0.434385\pi\)
\(774\) 0 0
\(775\) −14.8851 + 25.7817i −0.534687 + 0.926106i
\(776\) −87.2165 73.1834i −3.13089 2.62713i
\(777\) 0 0
\(778\) −7.02569 39.8447i −0.251883 1.42850i
\(779\) −0.247159 + 0.207391i −0.00885540 + 0.00743056i
\(780\) 0 0