Properties

Label 729.2.e.h
Level 729729
Weight 22
Character orbit 729.e
Analytic conductor 5.8215.821
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [729,2,Mod(82,729)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(729, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("729.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 729=36 729 = 3^{6}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 729.e (of order 99, degree 66, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,0,9,-3,0,0,6,0,0,12,0,0,-21,0,9,9,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.821094307355.82109430735
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ18)\Q(\zeta_{18})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ18\zeta_{18}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ184+ζ183+ζ18)q2+(ζ185+ζ184++1)q4+(2ζ185++2ζ182)q5+(ζ185ζ184+1)q7++(3ζ185+3ζ184++3)q98+O(q100) q + (\zeta_{18}^{4} + \zeta_{18}^{3} + \cdots - \zeta_{18}) q^{2} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \cdots + 1) q^{4} + ( - 2 \zeta_{18}^{5} + \cdots + 2 \zeta_{18}^{2}) q^{5} + (\zeta_{18}^{5} - \zeta_{18}^{4} + \cdots - 1) q^{7}+ \cdots + (3 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + \cdots + 3) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q2+9q43q5+6q8+12q1121q14+9q16+9q17+3q1912q2018q223q23+9q25+24q2624q28+12q29+9q32+18q34++9q98+O(q100) 6 q + 3 q^{2} + 9 q^{4} - 3 q^{5} + 6 q^{8} + 12 q^{11} - 21 q^{14} + 9 q^{16} + 9 q^{17} + 3 q^{19} - 12 q^{20} - 18 q^{22} - 3 q^{23} + 9 q^{25} + 24 q^{26} - 24 q^{28} + 12 q^{29} + 9 q^{32} + 18 q^{34}+ \cdots + 9 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/729Z)×\left(\mathbb{Z}/729\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) ζ185-\zeta_{18}^{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
82.1
−0.766044 + 0.642788i
−0.173648 + 0.984808i
0.939693 + 0.342020i
0.939693 0.342020i
−0.173648 0.984808i
−0.766044 0.642788i
0.152704 + 0.866025i 0 1.15270 0.419550i −2.97178 2.49362i 0 2.05303 + 0.747243i 1.41875 + 2.45734i 0 1.70574 2.95442i
163.1 2.37939 0.866025i 0 3.37939 2.83564i −0.0812519 0.460802i 0 −2.47178 2.07407i 3.05303 5.28801i 0 −0.592396 1.02606i
325.1 −1.03209 + 0.866025i 0 −0.0320889 + 0.181985i 1.55303 0.565258i 0 0.418748 + 2.37484i −1.47178 2.54920i 0 −1.11334 + 1.92836i
406.1 −1.03209 0.866025i 0 −0.0320889 0.181985i 1.55303 + 0.565258i 0 0.418748 2.37484i −1.47178 + 2.54920i 0 −1.11334 1.92836i
568.1 2.37939 + 0.866025i 0 3.37939 + 2.83564i −0.0812519 + 0.460802i 0 −2.47178 + 2.07407i 3.05303 + 5.28801i 0 −0.592396 + 1.02606i
649.1 0.152704 0.866025i 0 1.15270 + 0.419550i −2.97178 + 2.49362i 0 2.05303 0.747243i 1.41875 2.45734i 0 1.70574 + 2.95442i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 729.2.e.h 6
3.b odd 2 1 729.2.e.c 6
9.c even 3 1 729.2.e.a 6
9.c even 3 1 729.2.e.g 6
9.d odd 6 1 729.2.e.b 6
9.d odd 6 1 729.2.e.i 6
27.e even 9 1 243.2.a.e 3
27.e even 9 2 243.2.c.f 6
27.e even 9 1 729.2.e.a 6
27.e even 9 1 729.2.e.g 6
27.e even 9 1 inner 729.2.e.h 6
27.f odd 18 1 243.2.a.f yes 3
27.f odd 18 2 243.2.c.e 6
27.f odd 18 1 729.2.e.b 6
27.f odd 18 1 729.2.e.c 6
27.f odd 18 1 729.2.e.i 6
108.j odd 18 1 3888.2.a.bd 3
108.l even 18 1 3888.2.a.bk 3
135.n odd 18 1 6075.2.a.bq 3
135.p even 18 1 6075.2.a.bv 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.2.a.e 3 27.e even 9 1
243.2.a.f yes 3 27.f odd 18 1
243.2.c.e 6 27.f odd 18 2
243.2.c.f 6 27.e even 9 2
729.2.e.a 6 9.c even 3 1
729.2.e.a 6 27.e even 9 1
729.2.e.b 6 9.d odd 6 1
729.2.e.b 6 27.f odd 18 1
729.2.e.c 6 3.b odd 2 1
729.2.e.c 6 27.f odd 18 1
729.2.e.g 6 9.c even 3 1
729.2.e.g 6 27.e even 9 1
729.2.e.h 6 1.a even 1 1 trivial
729.2.e.h 6 27.e even 9 1 inner
729.2.e.i 6 9.d odd 6 1
729.2.e.i 6 27.f odd 18 1
3888.2.a.bd 3 108.j odd 18 1
3888.2.a.bk 3 108.l even 18 1
6075.2.a.bq 3 135.n odd 18 1
6075.2.a.bv 3 135.p even 18 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(729,[χ])S_{2}^{\mathrm{new}}(729, [\chi]):

T263T25+3T23+9T22+9 T_{2}^{6} - 3T_{2}^{5} + 3T_{2}^{3} + 9T_{2}^{2} + 9 Copy content Toggle raw display
T56+3T5530T53+36T52+9 T_{5}^{6} + 3T_{5}^{5} - 30T_{5}^{3} + 36T_{5}^{2} + 9 Copy content Toggle raw display
T7610T73+36T72153T7+289 T_{7}^{6} - 10T_{7}^{3} + 36T_{7}^{2} - 153T_{7} + 289 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T63T5++9 T^{6} - 3 T^{5} + \cdots + 9 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6+3T5++9 T^{6} + 3 T^{5} + \cdots + 9 Copy content Toggle raw display
77 T610T3++289 T^{6} - 10 T^{3} + \cdots + 289 Copy content Toggle raw display
1111 T612T5++9 T^{6} - 12 T^{5} + \cdots + 9 Copy content Toggle raw display
1313 T610T3++289 T^{6} - 10 T^{3} + \cdots + 289 Copy content Toggle raw display
1717 (T23T+9)3 (T^{2} - 3 T + 9)^{3} Copy content Toggle raw display
1919 T63T5++1 T^{6} - 3 T^{5} + \cdots + 1 Copy content Toggle raw display
2323 T6+3T5++2601 T^{6} + 3 T^{5} + \cdots + 2601 Copy content Toggle raw display
2929 T612T5++3249 T^{6} - 12 T^{5} + \cdots + 3249 Copy content Toggle raw display
3131 T627T4++361 T^{6} - 27 T^{4} + \cdots + 361 Copy content Toggle raw display
3737 T63T5++1 T^{6} - 3 T^{5} + \cdots + 1 Copy content Toggle raw display
4141 T624T5++47961 T^{6} - 24 T^{5} + \cdots + 47961 Copy content Toggle raw display
4343 T627T4++361 T^{6} - 27 T^{4} + \cdots + 361 Copy content Toggle raw display
4747 T630T5++71289 T^{6} - 30 T^{5} + \cdots + 71289 Copy content Toggle raw display
5353 (T3+18T2++81)2 (T^{3} + 18 T^{2} + \cdots + 81)^{2} Copy content Toggle raw display
5959 T6+3T5++103041 T^{6} + 3 T^{5} + \cdots + 103041 Copy content Toggle raw display
6161 T69T5++2809 T^{6} - 9 T^{5} + \cdots + 2809 Copy content Toggle raw display
6767 T6+18T5++11881 T^{6} + 18 T^{5} + \cdots + 11881 Copy content Toggle raw display
7171 T6+9T5++998001 T^{6} + 9 T^{5} + \cdots + 998001 Copy content Toggle raw display
7373 T6+6T5++157609 T^{6} + 6 T^{5} + \cdots + 157609 Copy content Toggle raw display
7979 T6+27T5++2809 T^{6} + 27 T^{5} + \cdots + 2809 Copy content Toggle raw display
8383 T6+6T5++2601 T^{6} + 6 T^{5} + \cdots + 2601 Copy content Toggle raw display
8989 T6+189T4++998001 T^{6} + 189 T^{4} + \cdots + 998001 Copy content Toggle raw display
9797 T6+324T4++361 T^{6} + 324 T^{4} + \cdots + 361 Copy content Toggle raw display
show more
show less