gp: [N,k,chi] = [729,2,Mod(82,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.82");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,3,0,9,-3,0,0,6,0,0,12,0,0,-21,0,9,9,0,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 18 \zeta_{18} ζ 1 8 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 729 Z ) × \left(\mathbb{Z}/729\mathbb{Z}\right)^\times ( Z / 7 2 9 Z ) × .
n n n
2 2 2
χ ( n ) \chi(n) χ ( n )
− ζ 18 5 -\zeta_{18}^{5} − ζ 1 8 5
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 729 , [ χ ] ) S_{2}^{\mathrm{new}}(729, [\chi]) S 2 n e w ( 7 2 9 , [ χ ] ) :
T 2 6 − 3 T 2 5 + 3 T 2 3 + 9 T 2 2 + 9 T_{2}^{6} - 3T_{2}^{5} + 3T_{2}^{3} + 9T_{2}^{2} + 9 T 2 6 − 3 T 2 5 + 3 T 2 3 + 9 T 2 2 + 9
T2^6 - 3*T2^5 + 3*T2^3 + 9*T2^2 + 9
T 5 6 + 3 T 5 5 − 30 T 5 3 + 36 T 5 2 + 9 T_{5}^{6} + 3T_{5}^{5} - 30T_{5}^{3} + 36T_{5}^{2} + 9 T 5 6 + 3 T 5 5 − 3 0 T 5 3 + 3 6 T 5 2 + 9
T5^6 + 3*T5^5 - 30*T5^3 + 36*T5^2 + 9
T 7 6 − 10 T 7 3 + 36 T 7 2 − 153 T 7 + 289 T_{7}^{6} - 10T_{7}^{3} + 36T_{7}^{2} - 153T_{7} + 289 T 7 6 − 1 0 T 7 3 + 3 6 T 7 2 − 1 5 3 T 7 + 2 8 9
T7^6 - 10*T7^3 + 36*T7^2 - 153*T7 + 289
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 − 3 T 5 + ⋯ + 9 T^{6} - 3 T^{5} + \cdots + 9 T 6 − 3 T 5 + ⋯ + 9
T^6 - 3*T^5 + 3*T^3 + 9*T^2 + 9
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
T 6 + 3 T 5 + ⋯ + 9 T^{6} + 3 T^{5} + \cdots + 9 T 6 + 3 T 5 + ⋯ + 9
T^6 + 3*T^5 - 30*T^3 + 36*T^2 + 9
7 7 7
T 6 − 10 T 3 + ⋯ + 289 T^{6} - 10 T^{3} + \cdots + 289 T 6 − 1 0 T 3 + ⋯ + 2 8 9
T^6 - 10*T^3 + 36*T^2 - 153*T + 289
11 11 1 1
T 6 − 12 T 5 + ⋯ + 9 T^{6} - 12 T^{5} + \cdots + 9 T 6 − 1 2 T 5 + ⋯ + 9
T^6 - 12*T^5 + 54*T^4 - 132*T^3 + 306*T^2 + 81*T + 9
13 13 1 3
T 6 − 10 T 3 + ⋯ + 289 T^{6} - 10 T^{3} + \cdots + 289 T 6 − 1 0 T 3 + ⋯ + 2 8 9
T^6 - 10*T^3 + 36*T^2 - 153*T + 289
17 17 1 7
( T 2 − 3 T + 9 ) 3 (T^{2} - 3 T + 9)^{3} ( T 2 − 3 T + 9 ) 3
(T^2 - 3*T + 9)^3
19 19 1 9
T 6 − 3 T 5 + ⋯ + 1 T^{6} - 3 T^{5} + \cdots + 1 T 6 − 3 T 5 + ⋯ + 1
T^6 - 3*T^5 + 33*T^4 + 74*T^3 + 573*T^2 + 24*T + 1
23 23 2 3
T 6 + 3 T 5 + ⋯ + 2601 T^{6} + 3 T^{5} + \cdots + 2601 T 6 + 3 T 5 + ⋯ + 2 6 0 1
T^6 + 3*T^5 - 84*T^3 + 387*T^2 - 1377*T + 2601
29 29 2 9
T 6 − 12 T 5 + ⋯ + 3249 T^{6} - 12 T^{5} + \cdots + 3249 T 6 − 1 2 T 5 + ⋯ + 3 2 4 9
T^6 - 12*T^5 + 81*T^4 - 591*T^3 + 2952*T^2 - 4617*T + 3249
31 31 3 1
T 6 − 27 T 4 + ⋯ + 361 T^{6} - 27 T^{4} + \cdots + 361 T 6 − 2 7 T 4 + ⋯ + 3 6 1
T^6 - 27*T^4 - 127*T^3 + 1008*T^2 + 171*T + 361
37 37 3 7
T 6 − 3 T 5 + ⋯ + 1 T^{6} - 3 T^{5} + \cdots + 1 T 6 − 3 T 5 + ⋯ + 1
T^6 - 3*T^5 + 33*T^4 + 74*T^3 + 573*T^2 + 24*T + 1
41 41 4 1
T 6 − 24 T 5 + ⋯ + 47961 T^{6} - 24 T^{5} + \cdots + 47961 T 6 − 2 4 T 5 + ⋯ + 4 7 9 6 1
T^6 - 24*T^5 + 270*T^4 - 1920*T^3 + 9486*T^2 - 29565*T + 47961
43 43 4 3
T 6 − 27 T 4 + ⋯ + 361 T^{6} - 27 T^{4} + \cdots + 361 T 6 − 2 7 T 4 + ⋯ + 3 6 1
T^6 - 27*T^4 - 127*T^3 + 1008*T^2 + 171*T + 361
47 47 4 7
T 6 − 30 T 5 + ⋯ + 71289 T^{6} - 30 T^{5} + \cdots + 71289 T 6 − 3 0 T 5 + ⋯ + 7 1 2 8 9
T^6 - 30*T^5 + 405*T^4 - 2967*T^3 + 12780*T^2 - 36045*T + 71289
53 53 5 3
( T 3 + 18 T 2 + ⋯ + 81 ) 2 (T^{3} + 18 T^{2} + \cdots + 81)^{2} ( T 3 + 1 8 T 2 + ⋯ + 8 1 ) 2
(T^3 + 18*T^2 + 81*T + 81)^2
59 59 5 9
T 6 + 3 T 5 + ⋯ + 103041 T^{6} + 3 T^{5} + \cdots + 103041 T 6 + 3 T 5 + ⋯ + 1 0 3 0 4 1
T^6 + 3*T^5 + 27*T^4 + 456*T^3 - 450*T^2 - 8667*T + 103041
61 61 6 1
T 6 − 9 T 5 + ⋯ + 2809 T^{6} - 9 T^{5} + \cdots + 2809 T 6 − 9 T 5 + ⋯ + 2 8 0 9
T^6 - 9*T^5 + 144*T^4 - 622*T^3 + 216*T^2 + 1908*T + 2809
67 67 6 7
T 6 + 18 T 5 + ⋯ + 11881 T^{6} + 18 T^{5} + \cdots + 11881 T 6 + 1 8 T 5 + ⋯ + 1 1 8 8 1
T^6 + 18*T^5 + 117*T^4 + 431*T^3 + 1620*T^2 - 6867*T + 11881
71 71 7 1
T 6 + 9 T 5 + ⋯ + 998001 T^{6} + 9 T^{5} + \cdots + 998001 T 6 + 9 T 5 + ⋯ + 9 9 8 0 0 1
T^6 + 9*T^5 + 243*T^4 + 540*T^3 + 35235*T^2 + 161838*T + 998001
73 73 7 3
T 6 + 6 T 5 + ⋯ + 157609 T^{6} + 6 T^{5} + \cdots + 157609 T 6 + 6 T 5 + ⋯ + 1 5 7 6 0 9
T^6 + 6*T^5 + 105*T^4 + 380*T^3 + 7143*T^2 + 27393*T + 157609
79 79 7 9
T 6 + 27 T 5 + ⋯ + 2809 T^{6} + 27 T^{5} + \cdots + 2809 T 6 + 2 7 T 5 + ⋯ + 2 8 0 9
T^6 + 27*T^5 + 270*T^4 + 1160*T^3 + 2601*T^2 + 2385*T + 2809
83 83 8 3
T 6 + 6 T 5 + ⋯ + 2601 T^{6} + 6 T^{5} + \cdots + 2601 T 6 + 6 T 5 + ⋯ + 2 6 0 1
T^6 + 6*T^5 + 81*T^4 + 597*T^3 + 2412*T^2 + 4131*T + 2601
89 89 8 9
T 6 + 189 T 4 + ⋯ + 998001 T^{6} + 189 T^{4} + \cdots + 998001 T 6 + 1 8 9 T 4 + ⋯ + 9 9 8 0 0 1
T^6 + 189*T^4 - 1998*T^3 + 35721*T^2 - 188811*T + 998001
97 97 9 7
T 6 + 324 T 4 + ⋯ + 361 T^{6} + 324 T^{4} + \cdots + 361 T 6 + 3 2 4 T 4 + ⋯ + 3 6 1
T^6 + 324*T^4 + 2141*T^3 + 6300*T^2 + 2736*T + 361
show more
show less