Properties

Label 729.2.e.g.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.g.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.673648 + 0.565258i) q^{2} +(-0.213011 - 1.20805i) q^{4} +(3.64543 + 1.32683i) q^{5} +(-0.379385 + 2.15160i) q^{7} +(1.41875 - 2.45734i) q^{8} +O(q^{10})\) \(q+(0.673648 + 0.565258i) q^{2} +(-0.213011 - 1.20805i) q^{4} +(3.64543 + 1.32683i) q^{5} +(-0.379385 + 2.15160i) q^{7} +(1.41875 - 2.45734i) q^{8} +(1.70574 + 2.95442i) q^{10} +(0.152704 - 0.0555796i) q^{11} +(1.84730 - 1.55007i) q^{13} +(-1.47178 + 1.23497i) q^{14} +(0.0393628 - 0.0143269i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-1.79813 + 3.11446i) q^{19} +(0.826352 - 4.68647i) q^{20} +(0.134285 + 0.0488759i) q^{22} +(-0.492726 - 2.79439i) q^{23} +(7.69846 + 6.45978i) q^{25} +2.12061 q^{26} +2.68004 q^{28} +(-5.14543 - 4.31753i) q^{29} +(-0.900330 - 5.10602i) q^{31} +(-5.29813 - 1.92836i) q^{32} +(-0.458111 + 2.59808i) q^{34} +(-4.23783 + 7.34013i) q^{35} +(3.31908 + 5.74881i) q^{37} +(-2.97178 + 1.08164i) q^{38} +(8.43242 - 7.07564i) q^{40} +(4.44356 - 3.72859i) q^{41} +(5.85117 - 2.12965i) q^{43} +(-0.0996702 - 0.172634i) q^{44} +(1.24763 - 2.16095i) q^{46} +(-1.28446 + 7.28455i) q^{47} +(2.09240 + 0.761570i) q^{49} +(1.53462 + 8.70323i) q^{50} +(-2.26604 - 1.90144i) q^{52} -1.40373 q^{53} +0.630415 q^{55} +(4.74897 + 3.98486i) q^{56} +(-1.02569 - 5.81699i) q^{58} +(-4.81180 - 1.75135i) q^{59} +(-0.656574 + 3.72362i) q^{61} +(2.27972 - 3.94858i) q^{62} +(-2.52094 - 4.36640i) q^{64} +(8.79086 - 3.19961i) q^{65} +(-4.49273 + 3.76984i) q^{67} +(2.81908 - 2.36549i) q^{68} +(-7.00387 + 2.54920i) q^{70} +(-7.65910 - 13.2660i) q^{71} +(-4.34002 + 7.51714i) q^{73} +(-1.01367 + 5.74881i) q^{74} +(4.14543 + 1.50881i) q^{76} +(0.0616516 + 0.349643i) q^{77} +(-0.971782 - 0.815422i) q^{79} +0.162504 q^{80} +5.10101 q^{82} +(6.49273 + 5.44804i) q^{83} +(2.02094 + 11.4613i) q^{85} +(5.14543 + 1.87278i) q^{86} +(0.0800699 - 0.454099i) q^{88} +(3.86097 - 6.68739i) q^{89} +(2.63429 + 4.56272i) q^{91} +(-3.27079 + 1.19047i) q^{92} +(-4.98293 + 4.18117i) q^{94} +(-10.6873 + 8.96773i) q^{95} +(3.67112 - 1.33618i) q^{97} +(0.979055 + 1.69577i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 9 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 9 q^{7} + 6 q^{8} + 3 q^{11} + 9 q^{13} + 6 q^{14} + 9 q^{16} + 9 q^{17} + 3 q^{19} + 6 q^{20} - 9 q^{22} + 15 q^{23} + 18 q^{25} + 24 q^{26} - 24 q^{28} - 15 q^{29} + 9 q^{31} - 18 q^{32} - 9 q^{34} - 6 q^{35} + 3 q^{37} - 3 q^{38} + 27 q^{40} - 3 q^{41} + 9 q^{43} - 15 q^{44} - 9 q^{46} - 15 q^{47} + 9 q^{49} - 15 q^{50} - 9 q^{52} - 36 q^{53} + 18 q^{55} + 3 q^{56} - 36 q^{58} + 6 q^{59} + 18 q^{61} - 12 q^{62} - 12 q^{64} + 21 q^{65} - 9 q^{67} - 18 q^{70} - 9 q^{71} - 6 q^{73} + 15 q^{74} + 9 q^{76} - 3 q^{77} + 9 q^{79} + 6 q^{80} + 36 q^{82} + 21 q^{83} + 9 q^{85} + 15 q^{86} + 9 q^{88} + 6 q^{91} - 48 q^{92} - 9 q^{94} - 42 q^{95} + 36 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.673648 + 0.565258i 0.476341 + 0.399698i 0.849101 0.528230i \(-0.177144\pi\)
−0.372760 + 0.927928i \(0.621589\pi\)
\(3\) 0 0
\(4\) −0.213011 1.20805i −0.106506 0.604023i
\(5\) 3.64543 + 1.32683i 1.63029 + 0.593375i 0.985302 0.170821i \(-0.0546420\pi\)
0.644984 + 0.764196i \(0.276864\pi\)
\(6\) 0 0
\(7\) −0.379385 + 2.15160i −0.143394 + 0.813229i 0.825248 + 0.564770i \(0.191035\pi\)
−0.968643 + 0.248459i \(0.920076\pi\)
\(8\) 1.41875 2.45734i 0.501603 0.868802i
\(9\) 0 0
\(10\) 1.70574 + 2.95442i 0.539401 + 0.934271i
\(11\) 0.152704 0.0555796i 0.0460419 0.0167579i −0.318897 0.947790i \(-0.603312\pi\)
0.364938 + 0.931032i \(0.381090\pi\)
\(12\) 0 0
\(13\) 1.84730 1.55007i 0.512348 0.429911i −0.349607 0.936897i \(-0.613685\pi\)
0.861954 + 0.506986i \(0.169240\pi\)
\(14\) −1.47178 + 1.23497i −0.393350 + 0.330060i
\(15\) 0 0
\(16\) 0.0393628 0.0143269i 0.00984071 0.00358173i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −1.79813 + 3.11446i −0.412520 + 0.714506i −0.995165 0.0982214i \(-0.968685\pi\)
0.582645 + 0.812727i \(0.302018\pi\)
\(20\) 0.826352 4.68647i 0.184778 1.04793i
\(21\) 0 0
\(22\) 0.134285 + 0.0488759i 0.0286297 + 0.0104204i
\(23\) −0.492726 2.79439i −0.102740 0.582670i −0.992099 0.125459i \(-0.959960\pi\)
0.889358 0.457211i \(-0.151152\pi\)
\(24\) 0 0
\(25\) 7.69846 + 6.45978i 1.53969 + 1.29196i
\(26\) 2.12061 0.415887
\(27\) 0 0
\(28\) 2.68004 0.506481
\(29\) −5.14543 4.31753i −0.955482 0.801745i 0.0247300 0.999694i \(-0.492127\pi\)
−0.980212 + 0.197949i \(0.936572\pi\)
\(30\) 0 0
\(31\) −0.900330 5.10602i −0.161704 0.917069i −0.952398 0.304857i \(-0.901391\pi\)
0.790694 0.612212i \(-0.209720\pi\)
\(32\) −5.29813 1.92836i −0.936587 0.340890i
\(33\) 0 0
\(34\) −0.458111 + 2.59808i −0.0785654 + 0.445566i
\(35\) −4.23783 + 7.34013i −0.716323 + 1.24071i
\(36\) 0 0
\(37\) 3.31908 + 5.74881i 0.545653 + 0.945099i 0.998566 + 0.0535438i \(0.0170517\pi\)
−0.452912 + 0.891555i \(0.649615\pi\)
\(38\) −2.97178 + 1.08164i −0.482087 + 0.175465i
\(39\) 0 0
\(40\) 8.43242 7.07564i 1.33328 1.11876i
\(41\) 4.44356 3.72859i 0.693968 0.582308i −0.226082 0.974108i \(-0.572592\pi\)
0.920050 + 0.391800i \(0.128147\pi\)
\(42\) 0 0
\(43\) 5.85117 2.12965i 0.892295 0.324769i 0.145134 0.989412i \(-0.453639\pi\)
0.747161 + 0.664643i \(0.231417\pi\)
\(44\) −0.0996702 0.172634i −0.0150259 0.0260255i
\(45\) 0 0
\(46\) 1.24763 2.16095i 0.183952 0.318615i
\(47\) −1.28446 + 7.28455i −0.187358 + 1.06256i 0.735530 + 0.677492i \(0.236933\pi\)
−0.922888 + 0.385069i \(0.874178\pi\)
\(48\) 0 0
\(49\) 2.09240 + 0.761570i 0.298914 + 0.108796i
\(50\) 1.53462 + 8.70323i 0.217027 + 1.23082i
\(51\) 0 0
\(52\) −2.26604 1.90144i −0.314244 0.263682i
\(53\) −1.40373 −0.192818 −0.0964088 0.995342i \(-0.530736\pi\)
−0.0964088 + 0.995342i \(0.530736\pi\)
\(54\) 0 0
\(55\) 0.630415 0.0850051
\(56\) 4.74897 + 3.98486i 0.634608 + 0.532499i
\(57\) 0 0
\(58\) −1.02569 5.81699i −0.134680 0.763808i
\(59\) −4.81180 1.75135i −0.626444 0.228007i 0.00923910 0.999957i \(-0.497059\pi\)
−0.635683 + 0.771951i \(0.719281\pi\)
\(60\) 0 0
\(61\) −0.656574 + 3.72362i −0.0840657 + 0.476760i 0.913489 + 0.406864i \(0.133378\pi\)
−0.997554 + 0.0698959i \(0.977733\pi\)
\(62\) 2.27972 3.94858i 0.289524 0.501470i
\(63\) 0 0
\(64\) −2.52094 4.36640i −0.315118 0.545801i
\(65\) 8.79086 3.19961i 1.09037 0.396863i
\(66\) 0 0
\(67\) −4.49273 + 3.76984i −0.548874 + 0.460560i −0.874559 0.484918i \(-0.838849\pi\)
0.325686 + 0.945478i \(0.394405\pi\)
\(68\) 2.81908 2.36549i 0.341863 0.286857i
\(69\) 0 0
\(70\) −7.00387 + 2.54920i −0.837123 + 0.304688i
\(71\) −7.65910 13.2660i −0.908968 1.57438i −0.815500 0.578756i \(-0.803538\pi\)
−0.0934675 0.995622i \(-0.529795\pi\)
\(72\) 0 0
\(73\) −4.34002 + 7.51714i −0.507961 + 0.879815i 0.491996 + 0.870597i \(0.336267\pi\)
−0.999958 + 0.00921733i \(0.997066\pi\)
\(74\) −1.01367 + 5.74881i −0.117837 + 0.668286i
\(75\) 0 0
\(76\) 4.14543 + 1.50881i 0.475513 + 0.173073i
\(77\) 0.0616516 + 0.349643i 0.00702585 + 0.0398456i
\(78\) 0 0
\(79\) −0.971782 0.815422i −0.109334 0.0917421i 0.586482 0.809962i \(-0.300513\pi\)
−0.695816 + 0.718220i \(0.744957\pi\)
\(80\) 0.162504 0.0181685
\(81\) 0 0
\(82\) 5.10101 0.563313
\(83\) 6.49273 + 5.44804i 0.712669 + 0.598001i 0.925347 0.379122i \(-0.123774\pi\)
−0.212677 + 0.977122i \(0.568218\pi\)
\(84\) 0 0
\(85\) 2.02094 + 11.4613i 0.219202 + 1.24316i
\(86\) 5.14543 + 1.87278i 0.554846 + 0.201947i
\(87\) 0 0
\(88\) 0.0800699 0.454099i 0.00853548 0.0484071i
\(89\) 3.86097 6.68739i 0.409262 0.708862i −0.585546 0.810640i \(-0.699120\pi\)
0.994807 + 0.101778i \(0.0324530\pi\)
\(90\) 0 0
\(91\) 2.63429 + 4.56272i 0.276148 + 0.478303i
\(92\) −3.27079 + 1.19047i −0.341004 + 0.124115i
\(93\) 0 0
\(94\) −4.98293 + 4.18117i −0.513950 + 0.431255i
\(95\) −10.6873 + 8.96773i −1.09650 + 0.920069i
\(96\) 0 0
\(97\) 3.67112 1.33618i 0.372746 0.135668i −0.148853 0.988859i \(-0.547558\pi\)
0.521599 + 0.853191i \(0.325336\pi\)
\(98\) 0.979055 + 1.69577i 0.0988995 + 0.171299i
\(99\) 0 0
\(100\) 6.16385 10.6761i 0.616385 1.06761i
\(101\) 1.40895 7.99054i 0.140196 0.795089i −0.830904 0.556415i \(-0.812176\pi\)
0.971100 0.238673i \(-0.0767125\pi\)
\(102\) 0 0
\(103\) −17.5214 6.37727i −1.72644 0.628371i −0.728069 0.685503i \(-0.759582\pi\)
−0.998367 + 0.0571322i \(0.981804\pi\)
\(104\) −1.18820 6.73859i −0.116512 0.660774i
\(105\) 0 0
\(106\) −0.945622 0.793471i −0.0918470 0.0770688i
\(107\) −7.59627 −0.734359 −0.367179 0.930150i \(-0.619676\pi\)
−0.367179 + 0.930150i \(0.619676\pi\)
\(108\) 0 0
\(109\) −15.6382 −1.49786 −0.748932 0.662647i \(-0.769433\pi\)
−0.748932 + 0.662647i \(0.769433\pi\)
\(110\) 0.424678 + 0.356347i 0.0404914 + 0.0339764i
\(111\) 0 0
\(112\) 0.0158921 + 0.0901285i 0.00150166 + 0.00851635i
\(113\) −2.17365 0.791143i −0.204480 0.0744245i 0.237750 0.971326i \(-0.423590\pi\)
−0.442230 + 0.896902i \(0.645812\pi\)
\(114\) 0 0
\(115\) 1.91147 10.8405i 0.178246 1.01088i
\(116\) −4.11974 + 7.13559i −0.382508 + 0.662523i
\(117\) 0 0
\(118\) −2.25150 3.89971i −0.207267 0.358997i
\(119\) −6.15910 + 2.24173i −0.564604 + 0.205499i
\(120\) 0 0
\(121\) −8.40626 + 7.05369i −0.764205 + 0.641244i
\(122\) −2.54710 + 2.13727i −0.230604 + 0.193500i
\(123\) 0 0
\(124\) −5.97653 + 2.17528i −0.536708 + 0.195346i
\(125\) 9.79473 + 16.9650i 0.876067 + 1.51739i
\(126\) 0 0
\(127\) −0.0209445 + 0.0362770i −0.00185853 + 0.00321906i −0.866953 0.498390i \(-0.833925\pi\)
0.865095 + 0.501609i \(0.167258\pi\)
\(128\) −1.18820 + 6.73859i −0.105023 + 0.595613i
\(129\) 0 0
\(130\) 7.73055 + 2.81369i 0.678014 + 0.246777i
\(131\) −3.18614 18.0695i −0.278374 1.57874i −0.728036 0.685539i \(-0.759567\pi\)
0.449662 0.893199i \(-0.351544\pi\)
\(132\) 0 0
\(133\) −6.01889 5.05044i −0.521904 0.437929i
\(134\) −5.15745 −0.445536
\(135\) 0 0
\(136\) 8.51249 0.729940
\(137\) −10.9645 9.20031i −0.936761 0.786036i 0.0402576 0.999189i \(-0.487182\pi\)
−0.977019 + 0.213153i \(0.931627\pi\)
\(138\) 0 0
\(139\) 1.82248 + 10.3358i 0.154581 + 0.876672i 0.959168 + 0.282837i \(0.0912755\pi\)
−0.804587 + 0.593835i \(0.797613\pi\)
\(140\) 9.76991 + 3.55596i 0.825709 + 0.300533i
\(141\) 0 0
\(142\) 2.33915 13.2660i 0.196297 1.11325i
\(143\) 0.195937 0.339373i 0.0163851 0.0283798i
\(144\) 0 0
\(145\) −13.0287 22.5663i −1.08197 1.87403i
\(146\) −7.17277 + 2.61068i −0.593623 + 0.216061i
\(147\) 0 0
\(148\) 6.23783 5.23416i 0.512746 0.430245i
\(149\) 0.973841 0.817150i 0.0797802 0.0669435i −0.602025 0.798477i \(-0.705639\pi\)
0.681806 + 0.731533i \(0.261195\pi\)
\(150\) 0 0
\(151\) −7.38326 + 2.68729i −0.600841 + 0.218688i −0.624491 0.781032i \(-0.714693\pi\)
0.0236500 + 0.999720i \(0.492471\pi\)
\(152\) 5.10220 + 8.83726i 0.413843 + 0.716797i
\(153\) 0 0
\(154\) −0.156107 + 0.270386i −0.0125795 + 0.0217883i
\(155\) 3.49273 19.8082i 0.280543 1.59104i
\(156\) 0 0
\(157\) 11.6074 + 4.22475i 0.926372 + 0.337172i 0.760771 0.649021i \(-0.224821\pi\)
0.165602 + 0.986193i \(0.447043\pi\)
\(158\) −0.193715 1.09861i −0.0154112 0.0874011i
\(159\) 0 0
\(160\) −16.7554 14.0594i −1.32463 1.11149i
\(161\) 6.19934 0.488576
\(162\) 0 0
\(163\) −13.7469 −1.07674 −0.538371 0.842708i \(-0.680960\pi\)
−0.538371 + 0.842708i \(0.680960\pi\)
\(164\) −5.45084 4.57380i −0.425639 0.357153i
\(165\) 0 0
\(166\) 1.29426 + 7.34013i 0.100454 + 0.569705i
\(167\) −3.49273 1.27125i −0.270275 0.0983721i 0.203327 0.979111i \(-0.434824\pi\)
−0.473603 + 0.880739i \(0.657047\pi\)
\(168\) 0 0
\(169\) −1.24763 + 7.07564i −0.0959712 + 0.544280i
\(170\) −5.11721 + 8.86327i −0.392472 + 0.679782i
\(171\) 0 0
\(172\) −3.81908 6.61484i −0.291202 0.504377i
\(173\) −1.46538 + 0.533356i −0.111411 + 0.0405503i −0.397124 0.917765i \(-0.629992\pi\)
0.285713 + 0.958315i \(0.407770\pi\)
\(174\) 0 0
\(175\) −16.8195 + 14.1133i −1.27144 + 1.06686i
\(176\) 0.00521457 0.00437554i 0.000393063 0.000329819i
\(177\) 0 0
\(178\) 6.38103 2.32251i 0.478279 0.174079i
\(179\) −6.09627 10.5590i −0.455656 0.789220i 0.543069 0.839688i \(-0.317262\pi\)
−0.998726 + 0.0504679i \(0.983929\pi\)
\(180\) 0 0
\(181\) 8.43629 14.6121i 0.627064 1.08611i −0.361073 0.932537i \(-0.617590\pi\)
0.988138 0.153570i \(-0.0490771\pi\)
\(182\) −0.804530 + 4.56272i −0.0596357 + 0.338211i
\(183\) 0 0
\(184\) −7.56583 2.75374i −0.557760 0.203008i
\(185\) 4.47178 + 25.3607i 0.328772 + 1.86456i
\(186\) 0 0
\(187\) 0.373455 + 0.313366i 0.0273098 + 0.0229156i
\(188\) 9.07367 0.661766
\(189\) 0 0
\(190\) −12.2686 −0.890056
\(191\) 13.3871 + 11.2331i 0.968658 + 0.812801i 0.982340 0.187105i \(-0.0599106\pi\)
−0.0136814 + 0.999906i \(0.504355\pi\)
\(192\) 0 0
\(193\) −0.345952 1.96199i −0.0249022 0.141227i 0.969822 0.243815i \(-0.0783989\pi\)
−0.994724 + 0.102588i \(0.967288\pi\)
\(194\) 3.22833 + 1.17502i 0.231781 + 0.0843612i
\(195\) 0 0
\(196\) 0.474308 2.68993i 0.0338791 0.192138i
\(197\) 10.5963 18.3533i 0.754953 1.30762i −0.190445 0.981698i \(-0.560993\pi\)
0.945398 0.325919i \(-0.105674\pi\)
\(198\) 0 0
\(199\) 1.54189 + 2.67063i 0.109302 + 0.189316i 0.915488 0.402346i \(-0.131805\pi\)
−0.806186 + 0.591662i \(0.798472\pi\)
\(200\) 26.7961 9.75297i 1.89477 0.689639i
\(201\) 0 0
\(202\) 5.46585 4.58639i 0.384576 0.322698i
\(203\) 11.2417 9.43290i 0.789012 0.662060i
\(204\) 0 0
\(205\) 21.1459 7.69648i 1.47689 0.537545i
\(206\) −8.19846 14.2002i −0.571214 0.989372i
\(207\) 0 0
\(208\) 0.0505072 0.0874810i 0.00350204 0.00606572i
\(209\) −0.101481 + 0.575529i −0.00701960 + 0.0398101i
\(210\) 0 0
\(211\) −0.946967 0.344668i −0.0651919 0.0237279i 0.309218 0.950991i \(-0.399933\pi\)
−0.374410 + 0.927263i \(0.622155\pi\)
\(212\) 0.299011 + 1.69577i 0.0205361 + 0.116466i
\(213\) 0 0
\(214\) −5.11721 4.29385i −0.349805 0.293522i
\(215\) 24.1557 1.64740
\(216\) 0 0
\(217\) 11.3277 0.768974
\(218\) −10.5346 8.83959i −0.713494 0.598693i
\(219\) 0 0
\(220\) −0.134285 0.761570i −0.00905352 0.0513450i
\(221\) 6.79813 + 2.47432i 0.457292 + 0.166441i
\(222\) 0 0
\(223\) 3.17499 18.0063i 0.212613 1.20579i −0.672387 0.740199i \(-0.734731\pi\)
0.885001 0.465590i \(-0.154158\pi\)
\(224\) 6.15910 10.6679i 0.411522 0.712777i
\(225\) 0 0
\(226\) −1.01707 1.76162i −0.0676548 0.117181i
\(227\) −2.48545 + 0.904631i −0.164965 + 0.0600424i −0.423183 0.906044i \(-0.639087\pi\)
0.258217 + 0.966087i \(0.416865\pi\)
\(228\) 0 0
\(229\) −2.65270 + 2.22588i −0.175296 + 0.147090i −0.726214 0.687469i \(-0.758722\pi\)
0.550919 + 0.834559i \(0.314277\pi\)
\(230\) 7.41534 6.22221i 0.488953 0.410281i
\(231\) 0 0
\(232\) −17.9097 + 6.51860i −1.17583 + 0.427967i
\(233\) 3.06283 + 5.30498i 0.200653 + 0.347541i 0.948739 0.316061i \(-0.102360\pi\)
−0.748086 + 0.663602i \(0.769027\pi\)
\(234\) 0 0
\(235\) −14.3478 + 24.8511i −0.935945 + 1.62110i
\(236\) −1.09075 + 6.18594i −0.0710016 + 0.402670i
\(237\) 0 0
\(238\) −5.41622 1.97134i −0.351082 0.127783i
\(239\) 5.02734 + 28.5115i 0.325192 + 1.84425i 0.508325 + 0.861165i \(0.330265\pi\)
−0.183133 + 0.983088i \(0.558624\pi\)
\(240\) 0 0
\(241\) 17.1027 + 14.3508i 1.10168 + 0.924419i 0.997537 0.0701436i \(-0.0223458\pi\)
0.104142 + 0.994562i \(0.466790\pi\)
\(242\) −9.65002 −0.620326
\(243\) 0 0
\(244\) 4.63816 0.296927
\(245\) 6.61721 + 5.55250i 0.422758 + 0.354736i
\(246\) 0 0
\(247\) 1.50593 + 8.54055i 0.0958200 + 0.543422i
\(248\) −13.8246 5.03174i −0.877863 0.319516i
\(249\) 0 0
\(250\) −2.99138 + 16.9650i −0.189192 + 1.07296i
\(251\) −11.3610 + 19.6778i −0.717098 + 1.24205i 0.245047 + 0.969511i \(0.421197\pi\)
−0.962145 + 0.272539i \(0.912137\pi\)
\(252\) 0 0
\(253\) −0.230552 0.399328i −0.0144947 0.0251055i
\(254\) −0.0346151 + 0.0125989i −0.00217194 + 0.000790523i
\(255\) 0 0
\(256\) −12.3341 + 10.3495i −0.770881 + 0.646846i
\(257\) 15.0064 12.5919i 0.936073 0.785459i −0.0408244 0.999166i \(-0.512998\pi\)
0.976898 + 0.213708i \(0.0685540\pi\)
\(258\) 0 0
\(259\) −13.6284 + 4.96032i −0.846825 + 0.308219i
\(260\) −5.73783 9.93821i −0.355845 0.616341i
\(261\) 0 0
\(262\) 8.06758 13.9735i 0.498417 0.863283i
\(263\) −3.09105 + 17.5302i −0.190602 + 1.08096i 0.727941 + 0.685640i \(0.240477\pi\)
−0.918543 + 0.395320i \(0.870634\pi\)
\(264\) 0 0
\(265\) −5.11721 1.86251i −0.314348 0.114413i
\(266\) −1.19981 6.80445i −0.0735649 0.417207i
\(267\) 0 0
\(268\) 5.51114 + 4.62440i 0.336647 + 0.282480i
\(269\) −22.7888 −1.38946 −0.694729 0.719272i \(-0.744476\pi\)
−0.694729 + 0.719272i \(0.744476\pi\)
\(270\) 0 0
\(271\) −3.44562 −0.209307 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(272\) 0.0962667 + 0.0807773i 0.00583702 + 0.00489784i
\(273\) 0 0
\(274\) −2.18567 12.3955i −0.132041 0.748843i
\(275\) 1.53462 + 0.558554i 0.0925408 + 0.0336821i
\(276\) 0 0
\(277\) −0.453830 + 2.57380i −0.0272680 + 0.154645i −0.995402 0.0957898i \(-0.969462\pi\)
0.968134 + 0.250434i \(0.0805734\pi\)
\(278\) −4.61468 + 7.99287i −0.276770 + 0.479380i
\(279\) 0 0
\(280\) 12.0248 + 20.8276i 0.718620 + 1.24469i
\(281\) −12.8598 + 4.68058i −0.767150 + 0.279220i −0.695804 0.718232i \(-0.744952\pi\)
−0.0713464 + 0.997452i \(0.522730\pi\)
\(282\) 0 0
\(283\) 17.5273 14.7072i 1.04189 0.874251i 0.0496744 0.998765i \(-0.484182\pi\)
0.992218 + 0.124514i \(0.0397372\pi\)
\(284\) −14.3944 + 12.0783i −0.854150 + 0.716717i
\(285\) 0 0
\(286\) 0.323826 0.117863i 0.0191482 0.00696938i
\(287\) 6.33662 + 10.9753i 0.374039 + 0.647854i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 3.97906 22.5663i 0.233658 1.32514i
\(291\) 0 0
\(292\) 10.0055 + 3.64171i 0.585529 + 0.213115i
\(293\) −4.21641 23.9125i −0.246326 1.39698i −0.817394 0.576079i \(-0.804582\pi\)
0.571068 0.820903i \(-0.306529\pi\)
\(294\) 0 0
\(295\) −15.2173 12.7689i −0.885988 0.743432i
\(296\) 18.8357 1.09481
\(297\) 0 0
\(298\) 1.11793 0.0647597
\(299\) −5.24170 4.39831i −0.303135 0.254361i
\(300\) 0 0
\(301\) 2.36231 + 13.3973i 0.136161 + 0.772209i
\(302\) −6.49273 2.36316i −0.373614 0.135985i
\(303\) 0 0
\(304\) −0.0261591 + 0.148356i −0.00150033 + 0.00850878i
\(305\) −7.33409 + 12.7030i −0.419949 + 0.727373i
\(306\) 0 0
\(307\) 8.07444 + 13.9853i 0.460833 + 0.798186i 0.999003 0.0446505i \(-0.0142174\pi\)
−0.538170 + 0.842836i \(0.680884\pi\)
\(308\) 0.409253 0.148956i 0.0233193 0.00848754i
\(309\) 0 0
\(310\) 13.5496 11.3695i 0.769567 0.645744i
\(311\) −14.3327 + 12.0266i −0.812736 + 0.681966i −0.951259 0.308393i \(-0.900209\pi\)
0.138523 + 0.990359i \(0.455764\pi\)
\(312\) 0 0
\(313\) −2.60607 + 0.948531i −0.147304 + 0.0536141i −0.414620 0.909995i \(-0.636085\pi\)
0.267316 + 0.963609i \(0.413863\pi\)
\(314\) 5.43124 + 9.40718i 0.306502 + 0.530878i
\(315\) 0 0
\(316\) −0.778066 + 1.34765i −0.0437696 + 0.0758112i
\(317\) −3.03580 + 17.2169i −0.170507 + 0.966995i 0.772695 + 0.634777i \(0.218908\pi\)
−0.943203 + 0.332218i \(0.892203\pi\)
\(318\) 0 0
\(319\) −1.02569 0.373321i −0.0574277 0.0209020i
\(320\) −3.39646 19.2623i −0.189868 1.07679i
\(321\) 0 0
\(322\) 4.17617 + 3.50423i 0.232729 + 0.195283i
\(323\) −10.7888 −0.600305
\(324\) 0 0
\(325\) 24.2344 1.34428
\(326\) −9.26058 7.77055i −0.512896 0.430371i
\(327\) 0 0
\(328\) −2.85814 16.2093i −0.157814 0.895009i
\(329\) −15.1861 5.52730i −0.837239 0.304730i
\(330\) 0 0
\(331\) −5.63651 + 31.9662i −0.309810 + 1.75702i 0.290139 + 0.956984i \(0.406298\pi\)
−0.599950 + 0.800038i \(0.704813\pi\)
\(332\) 5.19846 9.00400i 0.285303 0.494159i
\(333\) 0 0
\(334\) −1.63429 2.83067i −0.0894241 0.154887i
\(335\) −21.3799 + 7.78163i −1.16811 + 0.425156i
\(336\) 0 0
\(337\) 6.34730 5.32601i 0.345759 0.290126i −0.453325 0.891345i \(-0.649762\pi\)
0.799085 + 0.601219i \(0.205318\pi\)
\(338\) −4.84002 + 4.06126i −0.263263 + 0.220903i
\(339\) 0 0
\(340\) 13.4153 4.88279i 0.727549 0.264806i
\(341\) −0.421274 0.729669i −0.0228133 0.0395138i
\(342\) 0 0
\(343\) −10.0792 + 17.4577i −0.544225 + 0.942626i
\(344\) 3.06805 17.3998i 0.165418 0.938132i
\(345\) 0 0
\(346\) −1.28864 0.469026i −0.0692776 0.0252150i
\(347\) −2.59833 14.7358i −0.139485 0.791061i −0.971631 0.236503i \(-0.923999\pi\)
0.832145 0.554558i \(-0.187113\pi\)
\(348\) 0 0
\(349\) 25.7743 + 21.6272i 1.37966 + 1.15768i 0.969336 + 0.245737i \(0.0790301\pi\)
0.410328 + 0.911938i \(0.365414\pi\)
\(350\) −19.3081 −1.03206
\(351\) 0 0
\(352\) −0.916222 −0.0488348
\(353\) 12.0680 + 10.1263i 0.642317 + 0.538968i 0.904729 0.425988i \(-0.140073\pi\)
−0.262412 + 0.964956i \(0.584518\pi\)
\(354\) 0 0
\(355\) −10.3191 58.5224i −0.547680 3.10605i
\(356\) −8.90110 3.23974i −0.471757 0.171706i
\(357\) 0 0
\(358\) 1.86184 10.5590i 0.0984015 0.558063i
\(359\) 9.06283 15.6973i 0.478318 0.828471i −0.521373 0.853329i \(-0.674580\pi\)
0.999691 + 0.0248577i \(0.00791328\pi\)
\(360\) 0 0
\(361\) 3.03343 + 5.25406i 0.159654 + 0.276529i
\(362\) 13.9427 5.07472i 0.732811 0.266721i
\(363\) 0 0
\(364\) 4.95084 4.15425i 0.259494 0.217742i
\(365\) −25.7952 + 21.6447i −1.35018 + 1.13294i
\(366\) 0 0
\(367\) 17.9884 6.54726i 0.938989 0.341764i 0.173223 0.984883i \(-0.444582\pi\)
0.765767 + 0.643119i \(0.222360\pi\)
\(368\) −0.0594300 0.102936i −0.00309800 0.00536590i
\(369\) 0 0
\(370\) −11.3229 + 19.6119i −0.588652 + 1.01958i
\(371\) 0.532556 3.02027i 0.0276489 0.156805i
\(372\) 0 0
\(373\) 14.3302 + 5.21577i 0.741991 + 0.270063i 0.685231 0.728325i \(-0.259701\pi\)
0.0567593 + 0.998388i \(0.481923\pi\)
\(374\) 0.0744448 + 0.422197i 0.00384945 + 0.0218313i
\(375\) 0 0
\(376\) 16.0783 + 13.4913i 0.829176 + 0.695761i
\(377\) −16.1976 −0.834218
\(378\) 0 0
\(379\) 9.84760 0.505837 0.252919 0.967488i \(-0.418610\pi\)
0.252919 + 0.967488i \(0.418610\pi\)
\(380\) 13.1099 + 11.0005i 0.672526 + 0.564316i
\(381\) 0 0
\(382\) 2.66860 + 15.1344i 0.136537 + 0.774341i
\(383\) 26.6780 + 9.70999i 1.36318 + 0.496157i 0.917036 0.398803i \(-0.130574\pi\)
0.446145 + 0.894961i \(0.352797\pi\)
\(384\) 0 0
\(385\) −0.239170 + 1.35640i −0.0121892 + 0.0691286i
\(386\) 0.875982 1.51724i 0.0445863 0.0772257i
\(387\) 0 0
\(388\) −2.39615 4.15026i −0.121646 0.210698i
\(389\) 10.2280 3.72270i 0.518581 0.188748i −0.0694513 0.997585i \(-0.522125\pi\)
0.588033 + 0.808837i \(0.299903\pi\)
\(390\) 0 0
\(391\) 6.52094 5.47172i 0.329778 0.276717i
\(392\) 4.84002 4.06126i 0.244458 0.205125i
\(393\) 0 0
\(394\) 17.5125 6.37402i 0.882266 0.321119i
\(395\) −2.46064 4.26195i −0.123808 0.214442i
\(396\) 0 0
\(397\) 9.05350 15.6811i 0.454382 0.787013i −0.544270 0.838910i \(-0.683193\pi\)
0.998652 + 0.0518969i \(0.0165267\pi\)
\(398\) −0.470904 + 2.67063i −0.0236043 + 0.133867i
\(399\) 0 0
\(400\) 0.395582 + 0.143980i 0.0197791 + 0.00719900i
\(401\) −0.248970 1.41198i −0.0124330 0.0705110i 0.977960 0.208792i \(-0.0669533\pi\)
−0.990393 + 0.138281i \(0.955842\pi\)
\(402\) 0 0
\(403\) −9.57785 8.03677i −0.477107 0.400340i
\(404\) −9.95306 −0.495183
\(405\) 0 0
\(406\) 12.9050 0.640463
\(407\) 0.826352 + 0.693392i 0.0409607 + 0.0343701i
\(408\) 0 0
\(409\) 1.49407 + 8.47329i 0.0738770 + 0.418977i 0.999207 + 0.0398148i \(0.0126768\pi\)
−0.925330 + 0.379163i \(0.876212\pi\)
\(410\) 18.5954 + 6.76817i 0.918361 + 0.334256i
\(411\) 0 0
\(412\) −3.97178 + 22.5251i −0.195676 + 1.10973i
\(413\) 5.59374 9.68864i 0.275250 0.476747i
\(414\) 0 0
\(415\) 16.4402 + 28.4752i 0.807016 + 1.39779i
\(416\) −12.7763 + 4.65020i −0.626410 + 0.227995i
\(417\) 0 0
\(418\) −0.393685 + 0.330341i −0.0192558 + 0.0161575i
\(419\) 9.43107 7.91361i 0.460738 0.386605i −0.382664 0.923887i \(-0.624993\pi\)
0.843403 + 0.537282i \(0.180549\pi\)
\(420\) 0 0
\(421\) −10.4461 + 3.80207i −0.509111 + 0.185301i −0.583788 0.811906i \(-0.698430\pi\)
0.0746763 + 0.997208i \(0.476208\pi\)
\(422\) −0.443096 0.767465i −0.0215696 0.0373596i
\(423\) 0 0
\(424\) −1.99154 + 3.44946i −0.0967179 + 0.167520i
\(425\) −5.23530 + 29.6909i −0.253949 + 1.44022i
\(426\) 0 0
\(427\) −7.76264 2.82537i −0.375661 0.136729i
\(428\) 1.61809 + 9.17664i 0.0782133 + 0.443569i
\(429\) 0 0
\(430\) 16.2724 + 13.6542i 0.784727 + 0.658464i
\(431\) 36.8958 1.77721 0.888604 0.458675i \(-0.151676\pi\)
0.888604 + 0.458675i \(0.151676\pi\)
\(432\) 0 0
\(433\) −37.9982 −1.82608 −0.913040 0.407871i \(-0.866271\pi\)
−0.913040 + 0.407871i \(0.866271\pi\)
\(434\) 7.63088 + 6.40307i 0.366294 + 0.307357i
\(435\) 0 0
\(436\) 3.33110 + 18.8916i 0.159531 + 0.904744i
\(437\) 9.58899 + 3.49011i 0.458704 + 0.166955i
\(438\) 0 0
\(439\) 0.0350819 0.198960i 0.00167437 0.00949582i −0.983959 0.178394i \(-0.942910\pi\)
0.985633 + 0.168898i \(0.0540209\pi\)
\(440\) 0.894400 1.54915i 0.0426388 0.0738526i
\(441\) 0 0
\(442\) 3.18092 + 5.50952i 0.151301 + 0.262061i
\(443\) 19.9491 7.26087i 0.947810 0.344974i 0.178564 0.983928i \(-0.442855\pi\)
0.769245 + 0.638954i \(0.220632\pi\)
\(444\) 0 0
\(445\) 22.9479 19.2556i 1.08783 0.912802i
\(446\) 12.3170 10.3352i 0.583228 0.489386i
\(447\) 0 0
\(448\) 10.3512 3.76752i 0.489047 0.177998i
\(449\) −16.6297 28.8035i −0.784804 1.35932i −0.929116 0.369788i \(-0.879430\pi\)
0.144312 0.989532i \(-0.453903\pi\)
\(450\) 0 0
\(451\) 0.471315 0.816341i 0.0221933 0.0384400i
\(452\) −0.492726 + 2.79439i −0.0231759 + 0.131437i
\(453\) 0 0
\(454\) −2.18567 0.795519i −0.102579 0.0373355i
\(455\) 3.54916 + 20.1283i 0.166387 + 0.943629i
\(456\) 0 0
\(457\) −0.0261591 0.0219501i −0.00122367 0.00102678i 0.642176 0.766558i \(-0.278032\pi\)
−0.643399 + 0.765531i \(0.722476\pi\)
\(458\) −3.04519 −0.142292
\(459\) 0 0
\(460\) −13.5030 −0.629580
\(461\) 11.4802 + 9.63306i 0.534688 + 0.448656i 0.869717 0.493551i \(-0.164302\pi\)
−0.335029 + 0.942208i \(0.608746\pi\)
\(462\) 0 0
\(463\) −5.28627 29.9799i −0.245674 1.39329i −0.818922 0.573905i \(-0.805428\pi\)
0.573248 0.819382i \(-0.305683\pi\)
\(464\) −0.264396 0.0962321i −0.0122743 0.00446746i
\(465\) 0 0
\(466\) −0.935412 + 5.30498i −0.0433321 + 0.245749i
\(467\) −0.255367 + 0.442308i −0.0118170 + 0.0204676i −0.871873 0.489731i \(-0.837095\pi\)
0.860056 + 0.510199i \(0.170428\pi\)
\(468\) 0 0
\(469\) −6.40673 11.0968i −0.295835 0.512401i
\(470\) −23.7126 + 8.63068i −1.09378 + 0.398104i
\(471\) 0 0
\(472\) −11.1304 + 9.33953i −0.512319 + 0.429887i
\(473\) 0.775129 0.650411i 0.0356405 0.0299059i
\(474\) 0 0
\(475\) −33.9616 + 12.3610i −1.55826 + 0.567162i
\(476\) 4.02007 + 6.96296i 0.184259 + 0.319147i
\(477\) 0 0
\(478\) −12.7297 + 22.0484i −0.582242 + 1.00847i
\(479\) 2.68298 15.2159i 0.122589 0.695234i −0.860122 0.510088i \(-0.829613\pi\)
0.982711 0.185147i \(-0.0592760\pi\)
\(480\) 0 0
\(481\) 15.0424 + 5.47497i 0.685872 + 0.249637i
\(482\) 3.40925 + 19.3348i 0.155287 + 0.880677i
\(483\) 0 0
\(484\) 10.3118 + 8.65263i 0.468718 + 0.393301i
\(485\) 15.1557 0.688185
\(486\) 0 0
\(487\) 29.5107 1.33726 0.668629 0.743596i \(-0.266881\pi\)
0.668629 + 0.743596i \(0.266881\pi\)
\(488\) 8.21869 + 6.89630i 0.372043 + 0.312181i
\(489\) 0 0
\(490\) 1.31908 + 7.48086i 0.0595899 + 0.337951i
\(491\) 2.02734 + 0.737892i 0.0914926 + 0.0333006i 0.387361 0.921928i \(-0.373387\pi\)
−0.295868 + 0.955229i \(0.595609\pi\)
\(492\) 0 0
\(493\) 3.49912 19.8445i 0.157593 0.893752i
\(494\) −3.81315 + 6.60457i −0.171562 + 0.297153i
\(495\) 0 0
\(496\) −0.108593 0.188089i −0.00487597 0.00844543i
\(497\) 31.4488 11.4464i 1.41067 0.513442i
\(498\) 0 0
\(499\) 5.74170 4.81786i 0.257034 0.215677i −0.505160 0.863025i \(-0.668567\pi\)
0.762194 + 0.647349i \(0.224122\pi\)
\(500\) 18.4081 15.4462i 0.823234 0.690775i
\(501\) 0 0
\(502\) −18.7763 + 6.83402i −0.838028 + 0.305017i
\(503\) 14.2981 + 24.7651i 0.637522 + 1.10422i 0.985975 + 0.166894i \(0.0533739\pi\)
−0.348453 + 0.937326i \(0.613293\pi\)
\(504\) 0 0
\(505\) 15.7383 27.2595i 0.700345 1.21303i
\(506\) 0.0704123 0.399328i 0.00313021 0.0177523i
\(507\) 0 0
\(508\) 0.0482857 + 0.0175745i 0.00214233 + 0.000779745i
\(509\) 0.293796 + 1.66620i 0.0130223 + 0.0738530i 0.990626 0.136600i \(-0.0436174\pi\)
−0.977604 + 0.210453i \(0.932506\pi\)
\(510\) 0 0
\(511\) −14.5273 12.1899i −0.642652 0.539249i
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) 17.2267 0.759836
\(515\) −55.4115 46.4958i −2.44172 2.04885i
\(516\) 0 0
\(517\) 0.208730 + 1.18377i 0.00917994 + 0.0520620i
\(518\) −11.9846 4.36203i −0.526572 0.191657i
\(519\) 0 0
\(520\) 4.60947 26.1416i 0.202139 1.14639i
\(521\) −11.2019 + 19.4022i −0.490763 + 0.850026i −0.999943 0.0106337i \(-0.996615\pi\)
0.509181 + 0.860660i \(0.329948\pi\)
\(522\) 0 0
\(523\) −1.21436 2.10332i −0.0531000 0.0919720i 0.838254 0.545281i \(-0.183577\pi\)
−0.891354 + 0.453309i \(0.850244\pi\)
\(524\) −21.1501 + 7.69800i −0.923945 + 0.336289i
\(525\) 0 0
\(526\) −11.9914 + 10.0620i −0.522849 + 0.438722i
\(527\) 11.9153 9.99816i 0.519041 0.435527i
\(528\) 0 0
\(529\) 14.0471 5.11273i 0.610744 0.222293i
\(530\) −2.39440 4.14722i −0.104006 0.180144i
\(531\) 0 0
\(532\) −4.81908 + 8.34689i −0.208934 + 0.361883i
\(533\) 2.42902 13.7756i 0.105212 0.596689i
\(534\) 0 0
\(535\) −27.6917 10.0789i −1.19721 0.435751i
\(536\) 2.88976 + 16.3886i 0.124819 + 0.707881i
\(537\) 0 0
\(538\) −15.3516 12.8816i −0.661856 0.555363i
\(539\) 0.361844 0.0155857
\(540\) 0 0
\(541\) 38.9394 1.67414 0.837069 0.547098i \(-0.184267\pi\)
0.837069 + 0.547098i \(0.184267\pi\)
\(542\) −2.32114 1.94767i −0.0997014 0.0836594i
\(543\) 0 0
\(544\) −2.93717 16.6575i −0.125930 0.714184i
\(545\) −57.0078 20.7491i −2.44195 0.888796i
\(546\) 0 0
\(547\) −2.54782 + 14.4494i −0.108937 + 0.617812i 0.880638 + 0.473790i \(0.157115\pi\)
−0.989575 + 0.144021i \(0.953997\pi\)
\(548\) −8.77884 + 15.2054i −0.375013 + 0.649542i
\(549\) 0 0
\(550\) 0.718063 + 1.24372i 0.0306183 + 0.0530325i
\(551\) 22.6989 8.26173i 0.967007 0.351962i
\(552\) 0 0
\(553\) 2.12314 1.78153i 0.0902851 0.0757582i
\(554\) −1.76058 + 1.47730i −0.0747999 + 0.0627646i
\(555\) 0 0
\(556\) 12.0979 4.40328i 0.513066 0.186741i
\(557\) −5.55350 9.61894i −0.235309 0.407568i 0.724053 0.689744i \(-0.242277\pi\)
−0.959363 + 0.282176i \(0.908944\pi\)
\(558\) 0 0
\(559\) 7.50774 13.0038i 0.317544 0.550002i
\(560\) −0.0616516 + 0.349643i −0.00260525 + 0.0147751i
\(561\) 0 0
\(562\) −11.3087 4.11603i −0.477029 0.173624i
\(563\) −2.83187 16.0603i −0.119349 0.676863i −0.984505 0.175359i \(-0.943891\pi\)
0.865155 0.501504i \(-0.167220\pi\)
\(564\) 0 0
\(565\) −6.87417 5.76811i −0.289199 0.242666i
\(566\) 20.1206 0.845733
\(567\) 0 0
\(568\) −43.4653 −1.82376
\(569\) −27.5902 23.1509i −1.15664 0.970536i −0.156786 0.987633i \(-0.550113\pi\)
−0.999854 + 0.0170961i \(0.994558\pi\)
\(570\) 0 0
\(571\) 6.79978 + 38.5635i 0.284562 + 1.61383i 0.706846 + 0.707368i \(0.250117\pi\)
−0.422284 + 0.906464i \(0.638771\pi\)
\(572\) −0.451714 0.164411i −0.0188871 0.00687435i
\(573\) 0 0
\(574\) −1.93525 + 10.9753i −0.0807758 + 0.458102i
\(575\) 14.2579 24.6954i 0.594595 1.02987i
\(576\) 0 0
\(577\) −5.90286 10.2240i −0.245739 0.425633i 0.716600 0.697484i \(-0.245697\pi\)
−0.962339 + 0.271852i \(0.912364\pi\)
\(578\) 6.61081 2.40614i 0.274974 0.100082i
\(579\) 0 0
\(580\) −24.4859 + 20.5461i −1.01672 + 0.853131i
\(581\) −14.1853 + 11.9028i −0.588504 + 0.493813i
\(582\) 0 0
\(583\) −0.214355 + 0.0780189i −0.00887769 + 0.00323121i
\(584\) 12.3148 + 21.3299i 0.509590 + 0.882636i
\(585\) 0 0
\(586\) 10.6763 18.4920i 0.441035 0.763896i
\(587\) 6.93923 39.3543i 0.286413 1.62433i −0.413783 0.910375i \(-0.635793\pi\)
0.700196 0.713951i \(-0.253096\pi\)
\(588\) 0 0
\(589\) 17.5214 + 6.37727i 0.721957 + 0.262771i
\(590\) −3.03343 17.2035i −0.124884 0.708255i
\(591\) 0 0
\(592\) 0.213011 + 0.178737i 0.00875470 + 0.00734606i
\(593\) 29.2995 1.20319 0.601594 0.798802i \(-0.294533\pi\)
0.601594 + 0.798802i \(0.294533\pi\)
\(594\) 0 0
\(595\) −25.4270 −1.04240
\(596\) −1.19459 1.00238i −0.0489324 0.0410592i
\(597\) 0 0
\(598\) −1.04488 5.92582i −0.0427284 0.242325i
\(599\) 9.46451 + 3.44480i 0.386709 + 0.140751i 0.528056 0.849209i \(-0.322921\pi\)
−0.141347 + 0.989960i \(0.545143\pi\)
\(600\) 0 0
\(601\) −5.28224 + 29.9571i −0.215467 + 1.22197i 0.664627 + 0.747175i \(0.268590\pi\)
−0.880094 + 0.474799i \(0.842521\pi\)
\(602\) −5.98158 + 10.3604i −0.243791 + 0.422259i
\(603\) 0 0
\(604\) 4.81908 + 8.34689i 0.196085 + 0.339630i
\(605\) −40.0035 + 14.5601i −1.62637 + 0.591951i
\(606\) 0 0
\(607\) −17.6759 + 14.8319i −0.717444 + 0.602007i −0.926677 0.375859i \(-0.877348\pi\)
0.209233 + 0.977866i \(0.432903\pi\)
\(608\) 15.5326 13.0334i 0.629928 0.528573i
\(609\) 0 0
\(610\) −12.1211 + 4.41171i −0.490768 + 0.178625i
\(611\) 8.91875 + 15.4477i 0.360814 + 0.624948i
\(612\) 0 0
\(613\) −0.382789 + 0.663010i −0.0154607 + 0.0267787i −0.873652 0.486551i \(-0.838255\pi\)
0.858192 + 0.513330i \(0.171588\pi\)
\(614\) −2.46599 + 13.9853i −0.0995194 + 0.564403i
\(615\) 0 0
\(616\) 0.946662 + 0.344557i 0.0381421 + 0.0138826i
\(617\) 1.61287 + 9.14706i 0.0649319 + 0.368247i 0.999908 + 0.0135372i \(0.00430917\pi\)
−0.934977 + 0.354710i \(0.884580\pi\)
\(618\) 0 0
\(619\) −26.8746 22.5505i −1.08018 0.906381i −0.0842469 0.996445i \(-0.526848\pi\)
−0.995936 + 0.0900639i \(0.971293\pi\)
\(620\) −24.6732 −0.990901
\(621\) 0 0
\(622\) −16.4534 −0.659720
\(623\) 12.9238 + 10.8444i 0.517781 + 0.434470i
\(624\) 0 0
\(625\) 4.47090 + 25.3558i 0.178836 + 1.01423i
\(626\) −2.29174 0.834124i −0.0915962 0.0333383i
\(627\) 0 0
\(628\) 2.63119 14.9222i 0.104996 0.595461i
\(629\) −9.95723 + 17.2464i −0.397021 + 0.687660i
\(630\) 0 0
\(631\) −17.8810 30.9709i −0.711833 1.23293i −0.964168 0.265291i \(-0.914532\pi\)
0.252336 0.967640i \(-0.418801\pi\)
\(632\) −3.38248 + 1.23112i −0.134548 + 0.0489715i
\(633\) 0 0
\(634\) −11.7770 + 9.88210i −0.467725 + 0.392468i
\(635\) −0.124485 + 0.104455i −0.00494004 + 0.00414519i
\(636\) 0 0
\(637\) 5.04576 1.83651i 0.199920 0.0727650i
\(638\) −0.479933 0.831268i −0.0190007 0.0329102i
\(639\) 0 0
\(640\) −13.2724 + 22.9885i −0.524639 + 0.908702i
\(641\) −0.508151 + 2.88187i −0.0200708 + 0.113827i −0.993197 0.116444i \(-0.962850\pi\)
0.973126 + 0.230271i \(0.0739614\pi\)
\(642\) 0 0
\(643\) 19.0303 + 6.92648i 0.750483 + 0.273154i 0.688809 0.724943i \(-0.258134\pi\)
0.0616741 + 0.998096i \(0.480356\pi\)
\(644\) −1.32053 7.48909i −0.0520361 0.295111i
\(645\) 0 0
\(646\) −7.26786 6.09845i −0.285950 0.239940i
\(647\) −10.7219 −0.421523 −0.210761 0.977538i \(-0.567594\pi\)
−0.210761 + 0.977538i \(0.567594\pi\)
\(648\) 0 0
\(649\) −0.832119 −0.0326635
\(650\) 16.3255 + 13.6987i 0.640338 + 0.537307i
\(651\) 0 0
\(652\) 2.92824 + 16.6069i 0.114679 + 0.650376i
\(653\) 33.5724 + 12.2193i 1.31379 + 0.478180i 0.901463 0.432856i \(-0.142494\pi\)
0.412326 + 0.911036i \(0.364716\pi\)
\(654\) 0 0
\(655\) 12.3603 70.0985i 0.482955 2.73897i
\(656\) 0.121492 0.210430i 0.00474347 0.00821593i
\(657\) 0 0
\(658\) −7.10576 12.3075i −0.277011 0.479798i
\(659\) 29.0043 10.5567i 1.12985 0.411231i 0.291611 0.956537i \(-0.405809\pi\)
0.838237 + 0.545306i \(0.183586\pi\)
\(660\) 0 0
\(661\) −7.54395 + 6.33012i −0.293426 + 0.246213i −0.777602 0.628757i \(-0.783564\pi\)
0.484176 + 0.874971i \(0.339119\pi\)
\(662\) −21.8662 + 18.3479i −0.849853 + 0.713112i
\(663\) 0 0
\(664\) 22.5993 8.22546i 0.877021 0.319210i
\(665\) −15.2404 26.3971i −0.590996 1.02363i
\(666\) 0 0
\(667\) −9.52956 + 16.5057i −0.368986 + 0.639103i
\(668\) −0.791737 + 4.49016i −0.0306332 + 0.173730i
\(669\) 0 0
\(670\) −18.8011 6.84305i −0.726351 0.264370i
\(671\) 0.106696 + 0.605102i 0.00411895 + 0.0233597i
\(672\) 0 0
\(673\) −15.0890 12.6612i −0.581638 0.488052i 0.303847 0.952721i \(-0.401729\pi\)
−0.885485 + 0.464669i \(0.846173\pi\)
\(674\) 7.28642 0.280662
\(675\) 0 0
\(676\) 8.81345 0.338979
\(677\) 21.7993 + 18.2918i 0.837816 + 0.703011i 0.957071 0.289853i \(-0.0936063\pi\)
−0.119256 + 0.992864i \(0.538051\pi\)
\(678\) 0 0
\(679\) 1.48215 + 8.40571i 0.0568799 + 0.322582i
\(680\) 31.0317 + 11.2946i 1.19001 + 0.433128i
\(681\) 0 0
\(682\) 0.128660 0.729669i 0.00492666 0.0279405i
\(683\) 6.25537 10.8346i 0.239355 0.414575i −0.721174 0.692754i \(-0.756397\pi\)
0.960529 + 0.278179i \(0.0897307\pi\)
\(684\) 0 0
\(685\) −27.7631 48.0871i −1.06077 1.83731i
\(686\) −16.6579 + 6.06299i −0.636002 + 0.231486i
\(687\) 0 0
\(688\) 0.199807 0.167658i 0.00761758 0.00639191i
\(689\) −2.59311 + 2.17588i −0.0987897 + 0.0828944i
\(690\) 0 0
\(691\) −40.0548 + 14.5788i −1.52376 + 0.554603i −0.962083 0.272756i \(-0.912065\pi\)
−0.561675 + 0.827358i \(0.689843\pi\)
\(692\) 0.956462 + 1.65664i 0.0363592 + 0.0629760i
\(693\) 0 0
\(694\) 6.57919 11.3955i 0.249743 0.432567i
\(695\) −7.07011 + 40.0966i −0.268184 + 1.52095i
\(696\) 0 0
\(697\) 16.3525 + 5.95183i 0.619396 + 0.225442i
\(698\) 5.13785 + 29.1382i 0.194471 + 1.10290i
\(699\) 0 0
\(700\) 20.6322 + 17.3125i 0.779825 + 0.654351i
\(701\) −51.7701 −1.95533 −0.977665 0.210167i \(-0.932599\pi\)
−0.977665 + 0.210167i \(0.932599\pi\)
\(702\) 0 0
\(703\) −23.8726 −0.900371
\(704\) −0.627640 0.526653i −0.0236551 0.0198490i
\(705\) 0 0
\(706\) 2.40565 + 13.6431i 0.0905378 + 0.513466i
\(707\) 16.6579 + 6.06299i 0.626485 + 0.228022i
\(708\) 0 0
\(709\) 2.63223 14.9281i 0.0988553 0.560636i −0.894642 0.446783i \(-0.852570\pi\)
0.993498 0.113853i \(-0.0363194\pi\)
\(710\) 26.1288 45.2564i 0.980597 1.69844i
\(711\) 0 0
\(712\) −10.9555 18.9754i −0.410574 0.711135i
\(713\) −13.8246 + 5.03174i −0.517735 + 0.188440i
\(714\) 0 0
\(715\) 1.16456 0.977185i 0.0435522 0.0365446i
\(716\) −11.4572 + 9.61376i −0.428177 + 0.359283i
\(717\) 0 0
\(718\) 14.9782 5.45161i 0.558981 0.203452i
\(719\) −1.30747 2.26460i −0.0487603 0.0844553i 0.840615 0.541633i \(-0.182194\pi\)
−0.889375 + 0.457178i \(0.848860\pi\)
\(720\) 0 0
\(721\) 20.3687 35.2796i 0.758570 1.31388i
\(722\) −0.926433 + 5.25406i −0.0344783 + 0.195536i
\(723\) 0 0
\(724\) −19.4491 7.07889i −0.722819 0.263085i
\(725\) −11.7216 66.4767i −0.435330 2.46888i
\(726\) 0 0
\(727\) −3.14022 2.63495i −0.116464 0.0977250i 0.582696 0.812690i \(-0.301998\pi\)
−0.699160 + 0.714965i \(0.746442\pi\)
\(728\) 14.9495 0.554067
\(729\) 0 0
\(730\) −29.6117 −1.09598
\(731\) 14.3097 + 12.0073i 0.529265 + 0.444106i
\(732\) 0 0
\(733\) −6.63475 37.6275i −0.245060 1.38981i −0.820353 0.571858i \(-0.806223\pi\)
0.575293 0.817948i \(-0.304888\pi\)
\(734\) 15.8188 + 5.75756i 0.583882 + 0.212516i
\(735\) 0 0
\(736\) −2.77807 + 15.7552i −0.102401 + 0.580744i
\(737\) −0.476529 + 0.825373i −0.0175532 + 0.0304030i
\(738\) 0 0
\(739\) 12.1047 + 20.9660i 0.445279 + 0.771247i 0.998072 0.0620725i \(-0.0197710\pi\)
−0.552792 + 0.833319i \(0.686438\pi\)
\(740\) 29.6844 10.8042i 1.09122 0.397171i
\(741\) 0 0
\(742\) 2.06599 1.73357i 0.0758448 0.0636414i
\(743\) 2.53667 2.12852i 0.0930616 0.0780879i −0.595070 0.803674i \(-0.702876\pi\)
0.688131 + 0.725586i \(0.258431\pi\)
\(744\) 0 0
\(745\) 4.63429 1.68674i 0.169787 0.0617974i
\(746\) 6.70527 + 11.6139i 0.245497 + 0.425214i
\(747\) 0 0
\(748\) 0.299011 0.517902i 0.0109329 0.0189364i
\(749\) 2.88191 16.3441i 0.105303 0.597202i
\(750\) 0 0
\(751\) −12.8841 4.68944i −0.470149 0.171120i 0.0960710 0.995374i \(-0.469372\pi\)
−0.566220 + 0.824254i \(0.691595\pi\)
\(752\) 0.0538049 + 0.305143i 0.00196206 + 0.0111274i
\(753\) 0 0
\(754\) −10.9115 9.15581i −0.397372 0.333435i
\(755\) −30.4807 −1.10931
\(756\) 0 0
\(757\) 12.3833 0.450079 0.225040 0.974350i \(-0.427749\pi\)
0.225040 + 0.974350i \(0.427749\pi\)
\(758\) 6.63382 + 5.56643i 0.240951 + 0.202182i
\(759\) 0 0
\(760\) 6.87417 + 38.9854i 0.249352 + 1.41415i
\(761\) 7.12536 + 2.59342i 0.258294 + 0.0940114i 0.467922 0.883770i \(-0.345003\pi\)
−0.209628 + 0.977781i \(0.567225\pi\)
\(762\) 0 0
\(763\) 5.93289 33.6471i 0.214785 1.21811i
\(764\) 10.7185 18.5650i 0.387783 0.671660i
\(765\) 0 0
\(766\) 12.4829 + 21.6211i 0.451026 + 0.781201i
\(767\) −11.6035 + 4.22334i −0.418980 + 0.152496i
\(768\) 0 0
\(769\) 2.46451 2.06797i 0.0888724 0.0745728i −0.597269 0.802041i \(-0.703748\pi\)
0.686141 + 0.727468i \(0.259303\pi\)
\(770\) −0.927833 + 0.778544i −0.0334368 + 0.0280568i
\(771\) 0 0
\(772\) −2.29648 + 0.835852i −0.0826523 + 0.0300830i
\(773\) −0.0922341 0.159754i −0.00331743 0.00574596i 0.864362 0.502870i \(-0.167723\pi\)
−0.867679 + 0.497124i \(0.834389\pi\)
\(774\) 0 0
\(775\) 26.0526 45.1245i 0.935838 1.62092i
\(776\) 1.92495 10.9169i 0.0691015 0.391894i
\(777\) 0 0
\(778\) 8.99437 + 3.27368i 0.322464 + 0.117367i