Properties

Label 729.2.e.g.163.1
Level $729$
Weight $2$
Character 729.163
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 163.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 729.163
Dual form 729.2.e.g.568.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26604 - 0.460802i) q^{2} +(-0.141559 + 0.118782i) q^{4} +(-0.286989 - 1.62760i) q^{5} +(1.84730 + 1.55007i) q^{7} +(-1.47178 + 2.54920i) q^{8} +(-1.11334 - 1.92836i) q^{10} +(-1.03209 + 5.85327i) q^{11} +(3.03209 + 1.10359i) q^{13} +(3.05303 + 1.11121i) q^{14} +(-0.624485 + 3.54163i) q^{16} +(1.50000 + 2.59808i) q^{17} +(3.31908 - 5.74881i) q^{19} +(0.233956 + 0.196312i) q^{20} +(1.39053 + 7.88609i) q^{22} +(2.25490 - 1.89209i) q^{23} +(2.13176 - 0.775897i) q^{25} +4.34730 q^{26} -0.445622 q^{28} +(-1.21301 + 0.441500i) q^{29} +(-0.450837 + 0.378297i) q^{31} +(-0.180922 - 1.02606i) q^{32} +(3.09627 + 2.59808i) q^{34} +(1.99273 - 3.45150i) q^{35} +(-0.0209445 - 0.0362770i) q^{37} +(1.55303 - 8.80769i) q^{38} +(4.57145 + 1.66387i) q^{40} +(-4.60607 - 1.67647i) q^{41} +(-0.900330 + 5.10602i) q^{43} +(-0.549163 - 0.951178i) q^{44} +(1.98293 - 3.43453i) q^{46} +(2.86231 + 2.40176i) q^{47} +(-0.205737 - 1.16679i) q^{49} +(2.34137 - 1.96464i) q^{50} +(-0.560307 + 0.203935i) q^{52} -11.6382 q^{53} +9.82295 q^{55} +(-6.67024 + 2.42777i) q^{56} +(-1.33228 + 1.11792i) q^{58} +(1.27584 + 7.23567i) q^{59} +(8.46451 + 7.10257i) q^{61} +(-0.396459 + 0.686688i) q^{62} +(-4.29813 - 7.44459i) q^{64} +(0.926022 - 5.25173i) q^{65} +(-1.74510 - 0.635164i) q^{67} +(-0.520945 - 0.189608i) q^{68} +(0.932419 - 5.28801i) q^{70} +(-2.75624 - 4.77396i) q^{71} +(-2.77719 + 4.81023i) q^{73} +(-0.0432332 - 0.0362770i) q^{74} +(0.213011 + 1.20805i) q^{76} +(-10.9795 + 9.21291i) q^{77} +(3.55303 - 1.29320i) q^{79} +5.94356 q^{80} -6.60401 q^{82} +(3.74510 - 1.36310i) q^{83} +(3.79813 - 3.18701i) q^{85} +(1.21301 + 6.87933i) q^{86} +(-13.4021 - 11.2457i) q^{88} +(4.07532 - 7.05866i) q^{89} +(3.89053 + 6.73859i) q^{91} +(-0.0944557 + 0.535685i) q^{92} +(4.73055 + 1.72178i) q^{94} +(-10.3093 - 3.75227i) q^{95} +(0.0452926 - 0.256867i) q^{97} +(-0.798133 - 1.38241i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 9 q^{4} + 6 q^{5} + 9 q^{7} + 6 q^{8} + 3 q^{11} + 9 q^{13} + 6 q^{14} + 9 q^{16} + 9 q^{17} + 3 q^{19} + 6 q^{20} - 9 q^{22} + 15 q^{23} + 18 q^{25} + 24 q^{26} - 24 q^{28} - 15 q^{29}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26604 0.460802i 0.895229 0.325837i 0.146889 0.989153i \(-0.453074\pi\)
0.748339 + 0.663316i \(0.230852\pi\)
\(3\) 0 0
\(4\) −0.141559 + 0.118782i −0.0707796 + 0.0593912i
\(5\) −0.286989 1.62760i −0.128345 0.727883i −0.979264 0.202586i \(-0.935065\pi\)
0.850919 0.525297i \(-0.176046\pi\)
\(6\) 0 0
\(7\) 1.84730 + 1.55007i 0.698212 + 0.585870i 0.921264 0.388937i \(-0.127158\pi\)
−0.223052 + 0.974807i \(0.571602\pi\)
\(8\) −1.47178 + 2.54920i −0.520353 + 0.901278i
\(9\) 0 0
\(10\) −1.11334 1.92836i −0.352069 0.609802i
\(11\) −1.03209 + 5.85327i −0.311187 + 1.76483i 0.281663 + 0.959513i \(0.409114\pi\)
−0.592850 + 0.805313i \(0.701997\pi\)
\(12\) 0 0
\(13\) 3.03209 + 1.10359i 0.840950 + 0.306081i 0.726345 0.687330i \(-0.241217\pi\)
0.114605 + 0.993411i \(0.463440\pi\)
\(14\) 3.05303 + 1.11121i 0.815958 + 0.296984i
\(15\) 0 0
\(16\) −0.624485 + 3.54163i −0.156121 + 0.885408i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) 3.31908 5.74881i 0.761449 1.31887i −0.180655 0.983547i \(-0.557822\pi\)
0.942104 0.335321i \(-0.108845\pi\)
\(20\) 0.233956 + 0.196312i 0.0523141 + 0.0438967i
\(21\) 0 0
\(22\) 1.39053 + 7.88609i 0.296462 + 1.68132i
\(23\) 2.25490 1.89209i 0.470179 0.394527i −0.376681 0.926343i \(-0.622935\pi\)
0.846860 + 0.531816i \(0.178490\pi\)
\(24\) 0 0
\(25\) 2.13176 0.775897i 0.426352 0.155179i
\(26\) 4.34730 0.852575
\(27\) 0 0
\(28\) −0.445622 −0.0842147
\(29\) −1.21301 + 0.441500i −0.225250 + 0.0819845i −0.452180 0.891927i \(-0.649354\pi\)
0.226929 + 0.973911i \(0.427131\pi\)
\(30\) 0 0
\(31\) −0.450837 + 0.378297i −0.0809727 + 0.0679442i −0.682376 0.731002i \(-0.739053\pi\)
0.601403 + 0.798946i \(0.294609\pi\)
\(32\) −0.180922 1.02606i −0.0319828 0.181384i
\(33\) 0 0
\(34\) 3.09627 + 2.59808i 0.531005 + 0.445566i
\(35\) 1.99273 3.45150i 0.336832 0.583410i
\(36\) 0 0
\(37\) −0.0209445 0.0362770i −0.00344326 0.00596390i 0.864299 0.502979i \(-0.167763\pi\)
−0.867742 + 0.497015i \(0.834429\pi\)
\(38\) 1.55303 8.80769i 0.251935 1.42880i
\(39\) 0 0
\(40\) 4.57145 + 1.66387i 0.722810 + 0.263081i
\(41\) −4.60607 1.67647i −0.719347 0.261821i −0.0436983 0.999045i \(-0.513914\pi\)
−0.675648 + 0.737224i \(0.736136\pi\)
\(42\) 0 0
\(43\) −0.900330 + 5.10602i −0.137299 + 0.778661i 0.835932 + 0.548833i \(0.184928\pi\)
−0.973231 + 0.229829i \(0.926183\pi\)
\(44\) −0.549163 0.951178i −0.0827894 0.143396i
\(45\) 0 0
\(46\) 1.98293 3.43453i 0.292366 0.506394i
\(47\) 2.86231 + 2.40176i 0.417511 + 0.350333i 0.827215 0.561885i \(-0.189924\pi\)
−0.409704 + 0.912218i \(0.634368\pi\)
\(48\) 0 0
\(49\) −0.205737 1.16679i −0.0293910 0.166685i
\(50\) 2.34137 1.96464i 0.331119 0.277842i
\(51\) 0 0
\(52\) −0.560307 + 0.203935i −0.0777007 + 0.0282807i
\(53\) −11.6382 −1.59862 −0.799312 0.600916i \(-0.794802\pi\)
−0.799312 + 0.600916i \(0.794802\pi\)
\(54\) 0 0
\(55\) 9.82295 1.32453
\(56\) −6.67024 + 2.42777i −0.891349 + 0.324424i
\(57\) 0 0
\(58\) −1.33228 + 1.11792i −0.174937 + 0.146790i
\(59\) 1.27584 + 7.23567i 0.166101 + 0.942005i 0.947922 + 0.318502i \(0.103180\pi\)
−0.781821 + 0.623503i \(0.785709\pi\)
\(60\) 0 0
\(61\) 8.46451 + 7.10257i 1.08377 + 0.909390i 0.996228 0.0867707i \(-0.0276547\pi\)
0.0875408 + 0.996161i \(0.472099\pi\)
\(62\) −0.396459 + 0.686688i −0.0503504 + 0.0872094i
\(63\) 0 0
\(64\) −4.29813 7.44459i −0.537267 0.930573i
\(65\) 0.926022 5.25173i 0.114859 0.651397i
\(66\) 0 0
\(67\) −1.74510 0.635164i −0.213198 0.0775977i 0.233213 0.972426i \(-0.425076\pi\)
−0.446411 + 0.894828i \(0.647298\pi\)
\(68\) −0.520945 0.189608i −0.0631738 0.0229934i
\(69\) 0 0
\(70\) 0.932419 5.28801i 0.111445 0.632038i
\(71\) −2.75624 4.77396i −0.327106 0.566564i 0.654830 0.755776i \(-0.272740\pi\)
−0.981936 + 0.189212i \(0.939407\pi\)
\(72\) 0 0
\(73\) −2.77719 + 4.81023i −0.325045 + 0.562995i −0.981522 0.191352i \(-0.938713\pi\)
0.656476 + 0.754347i \(0.272046\pi\)
\(74\) −0.0432332 0.0362770i −0.00502576 0.00421712i
\(75\) 0 0
\(76\) 0.213011 + 1.20805i 0.0244340 + 0.138572i
\(77\) −10.9795 + 9.21291i −1.25123 + 1.04991i
\(78\) 0 0
\(79\) 3.55303 1.29320i 0.399747 0.145496i −0.134320 0.990938i \(-0.542885\pi\)
0.534068 + 0.845442i \(0.320663\pi\)
\(80\) 5.94356 0.664511
\(81\) 0 0
\(82\) −6.60401 −0.729291
\(83\) 3.74510 1.36310i 0.411078 0.149620i −0.128199 0.991748i \(-0.540920\pi\)
0.539277 + 0.842128i \(0.318697\pi\)
\(84\) 0 0
\(85\) 3.79813 3.18701i 0.411965 0.345680i
\(86\) 1.21301 + 6.87933i 0.130802 + 0.741817i
\(87\) 0 0
\(88\) −13.4021 11.2457i −1.42867 1.19880i
\(89\) 4.07532 7.05866i 0.431983 0.748217i −0.565061 0.825049i \(-0.691147\pi\)
0.997044 + 0.0768323i \(0.0244806\pi\)
\(90\) 0 0
\(91\) 3.89053 + 6.73859i 0.407838 + 0.706397i
\(92\) −0.0944557 + 0.535685i −0.00984768 + 0.0558490i
\(93\) 0 0
\(94\) 4.73055 + 1.72178i 0.487919 + 0.177588i
\(95\) −10.3093 3.75227i −1.05771 0.384975i
\(96\) 0 0
\(97\) 0.0452926 0.256867i 0.00459877 0.0260809i −0.982422 0.186673i \(-0.940229\pi\)
0.987021 + 0.160592i \(0.0513405\pi\)
\(98\) −0.798133 1.38241i −0.0806236 0.139644i
\(99\) 0 0
\(100\) −0.209607 + 0.363051i −0.0209607 + 0.0363051i
\(101\) −8.44743 7.08824i −0.840551 0.705306i 0.117137 0.993116i \(-0.462628\pi\)
−0.957688 + 0.287810i \(0.907073\pi\)
\(102\) 0 0
\(103\) −0.678396 3.84737i −0.0668443 0.379093i −0.999817 0.0191451i \(-0.993906\pi\)
0.932972 0.359948i \(-0.117206\pi\)
\(104\) −7.27584 + 6.10516i −0.713455 + 0.598660i
\(105\) 0 0
\(106\) −14.7344 + 5.36289i −1.43113 + 0.520890i
\(107\) 2.63816 0.255040 0.127520 0.991836i \(-0.459298\pi\)
0.127520 + 0.991836i \(0.459298\pi\)
\(108\) 0 0
\(109\) −8.95811 −0.858031 −0.429016 0.903297i \(-0.641140\pi\)
−0.429016 + 0.903297i \(0.641140\pi\)
\(110\) 12.4363 4.52644i 1.18575 0.431579i
\(111\) 0 0
\(112\) −6.64337 + 5.57445i −0.627739 + 0.526736i
\(113\) −2.76604 15.6870i −0.260208 1.47571i −0.782343 0.622848i \(-0.785976\pi\)
0.522135 0.852863i \(-0.325136\pi\)
\(114\) 0 0
\(115\) −3.72668 3.12706i −0.347515 0.291600i
\(116\) 0.119271 0.206583i 0.0110740 0.0191807i
\(117\) 0 0
\(118\) 4.94949 + 8.57277i 0.455638 + 0.789188i
\(119\) −1.25624 + 7.12452i −0.115160 + 0.653103i
\(120\) 0 0
\(121\) −22.8589 8.31996i −2.07808 0.756360i
\(122\) 13.9893 + 5.09170i 1.26653 + 0.460981i
\(123\) 0 0
\(124\) 0.0188851 0.107103i 0.00169594 0.00961813i
\(125\) −6.00640 10.4034i −0.537228 0.930507i
\(126\) 0 0
\(127\) −1.79813 + 3.11446i −0.159559 + 0.276363i −0.934710 0.355412i \(-0.884340\pi\)
0.775151 + 0.631776i \(0.217674\pi\)
\(128\) −7.27584 6.10516i −0.643100 0.539625i
\(129\) 0 0
\(130\) −1.24763 7.07564i −0.109424 0.620575i
\(131\) 13.5646 11.3821i 1.18515 0.994458i 0.185218 0.982698i \(-0.440701\pi\)
0.999931 0.0117601i \(-0.00374346\pi\)
\(132\) 0 0
\(133\) 15.0424 5.47497i 1.30434 0.474740i
\(134\) −2.50206 −0.216145
\(135\) 0 0
\(136\) −8.83069 −0.757225
\(137\) −3.69207 + 1.34380i −0.315435 + 0.114809i −0.494886 0.868958i \(-0.664790\pi\)
0.179451 + 0.983767i \(0.442568\pi\)
\(138\) 0 0
\(139\) 9.16637 7.69150i 0.777482 0.652385i −0.165131 0.986272i \(-0.552805\pi\)
0.942613 + 0.333887i \(0.108360\pi\)
\(140\) 0.127889 + 0.725293i 0.0108086 + 0.0612984i
\(141\) 0 0
\(142\) −5.68938 4.77396i −0.477442 0.400621i
\(143\) −9.58899 + 16.6086i −0.801872 + 1.38888i
\(144\) 0 0
\(145\) 1.06670 + 1.84759i 0.0885849 + 0.153434i
\(146\) −1.29948 + 7.36970i −0.107546 + 0.609921i
\(147\) 0 0
\(148\) 0.00727396 + 0.00264750i 0.000597916 + 0.000217624i
\(149\) 19.2875 + 7.02006i 1.58009 + 0.575106i 0.975224 0.221221i \(-0.0710043\pi\)
0.604866 + 0.796327i \(0.293227\pi\)
\(150\) 0 0
\(151\) 2.77972 15.7645i 0.226210 1.28290i −0.634148 0.773211i \(-0.718649\pi\)
0.860358 0.509689i \(-0.170240\pi\)
\(152\) 9.76991 + 16.9220i 0.792445 + 1.37255i
\(153\) 0 0
\(154\) −9.65523 + 16.7233i −0.778041 + 1.34761i
\(155\) 0.745100 + 0.625213i 0.0598479 + 0.0502183i
\(156\) 0 0
\(157\) −3.81567 21.6398i −0.304524 1.72704i −0.625737 0.780034i \(-0.715202\pi\)
0.321213 0.947007i \(-0.395909\pi\)
\(158\) 3.90239 3.27449i 0.310457 0.260505i
\(159\) 0 0
\(160\) −1.61809 + 0.588936i −0.127921 + 0.0465595i
\(161\) 7.09833 0.559426
\(162\) 0 0
\(163\) 20.5107 1.60652 0.803262 0.595625i \(-0.203096\pi\)
0.803262 + 0.595625i \(0.203096\pi\)
\(164\) 0.851167 0.309799i 0.0664650 0.0241913i
\(165\) 0 0
\(166\) 4.11334 3.45150i 0.319257 0.267889i
\(167\) −0.745100 4.22567i −0.0576576 0.326992i 0.942312 0.334735i \(-0.108647\pi\)
−0.999970 + 0.00774226i \(0.997536\pi\)
\(168\) 0 0
\(169\) −1.98293 1.66387i −0.152533 0.127990i
\(170\) 3.34002 5.78509i 0.256168 0.443696i
\(171\) 0 0
\(172\) −0.479055 0.829748i −0.0365276 0.0632677i
\(173\) −0.658633 + 3.73530i −0.0500750 + 0.283989i −0.999555 0.0298390i \(-0.990501\pi\)
0.949480 + 0.313828i \(0.101612\pi\)
\(174\) 0 0
\(175\) 5.14068 + 1.87106i 0.388599 + 0.141438i
\(176\) −20.0856 7.31056i −1.51401 0.551054i
\(177\) 0 0
\(178\) 1.90689 10.8145i 0.142927 0.810581i
\(179\) 4.13816 + 7.16750i 0.309300 + 0.535724i 0.978209 0.207620i \(-0.0665718\pi\)
−0.668909 + 0.743344i \(0.733239\pi\)
\(180\) 0 0
\(181\) −3.36097 + 5.82137i −0.249819 + 0.432699i −0.963475 0.267797i \(-0.913704\pi\)
0.713657 + 0.700496i \(0.247038\pi\)
\(182\) 8.03074 + 6.73859i 0.595278 + 0.499498i
\(183\) 0 0
\(184\) 1.50459 + 8.53293i 0.110920 + 0.629056i
\(185\) −0.0530334 + 0.0445003i −0.00389909 + 0.00327173i
\(186\) 0 0
\(187\) −16.7554 + 6.09845i −1.22527 + 0.445963i
\(188\) −0.690474 −0.0503580
\(189\) 0 0
\(190\) −14.7811 −1.07233
\(191\) −4.71213 + 1.71508i −0.340958 + 0.124099i −0.506824 0.862050i \(-0.669180\pi\)
0.165866 + 0.986148i \(0.446958\pi\)
\(192\) 0 0
\(193\) −13.6853 + 11.4833i −0.985087 + 0.826586i −0.984849 0.173414i \(-0.944520\pi\)
−0.000237549 1.00000i \(0.500076\pi\)
\(194\) −0.0610226 0.346076i −0.00438117 0.0248468i
\(195\) 0 0
\(196\) 0.167718 + 0.140732i 0.0119799 + 0.0100523i
\(197\) 0.361844 0.626733i 0.0257803 0.0446529i −0.852847 0.522160i \(-0.825126\pi\)
0.878628 + 0.477507i \(0.158460\pi\)
\(198\) 0 0
\(199\) 5.09627 + 8.82699i 0.361265 + 0.625729i 0.988169 0.153367i \(-0.0490117\pi\)
−0.626905 + 0.779096i \(0.715678\pi\)
\(200\) −1.15957 + 6.57623i −0.0819938 + 0.465010i
\(201\) 0 0
\(202\) −13.9611 5.08143i −0.982300 0.357528i
\(203\) −2.92514 1.06467i −0.205305 0.0747249i
\(204\) 0 0
\(205\) −1.40673 + 7.97794i −0.0982500 + 0.557204i
\(206\) −2.63176 4.55834i −0.183363 0.317595i
\(207\) 0 0
\(208\) −5.80200 + 10.0494i −0.402297 + 0.696798i
\(209\) 30.2237 + 25.3607i 2.09062 + 1.75424i
\(210\) 0 0
\(211\) −2.58125 14.6390i −0.177701 1.00779i −0.934980 0.354700i \(-0.884583\pi\)
0.757280 0.653091i \(-0.226528\pi\)
\(212\) 1.64749 1.38241i 0.113150 0.0949441i
\(213\) 0 0
\(214\) 3.34002 1.21567i 0.228319 0.0831014i
\(215\) 8.56893 0.584396
\(216\) 0 0
\(217\) −1.41921 −0.0963426
\(218\) −11.3414 + 4.12792i −0.768134 + 0.279578i
\(219\) 0 0
\(220\) −1.39053 + 1.16679i −0.0937495 + 0.0786652i
\(221\) 1.68092 + 9.53298i 0.113071 + 0.641258i
\(222\) 0 0
\(223\) −8.38713 7.03763i −0.561644 0.471275i 0.317217 0.948353i \(-0.397251\pi\)
−0.878861 + 0.477078i \(0.841696\pi\)
\(224\) 1.25624 2.17588i 0.0839364 0.145382i
\(225\) 0 0
\(226\) −10.7306 18.5859i −0.713786 1.23631i
\(227\) 3.00980 17.0694i 0.199767 1.13294i −0.705696 0.708514i \(-0.749366\pi\)
0.905464 0.424423i \(-0.139523\pi\)
\(228\) 0 0
\(229\) −1.46791 0.534276i −0.0970023 0.0353059i 0.293063 0.956093i \(-0.405325\pi\)
−0.390065 + 0.920787i \(0.627548\pi\)
\(230\) −6.15910 2.24173i −0.406119 0.147815i
\(231\) 0 0
\(232\) 0.659815 3.74200i 0.0433190 0.245674i
\(233\) 8.39440 + 14.5395i 0.549935 + 0.952516i 0.998278 + 0.0586545i \(0.0186810\pi\)
−0.448343 + 0.893862i \(0.647986\pi\)
\(234\) 0 0
\(235\) 3.08765 5.34796i 0.201416 0.348863i
\(236\) −1.04008 0.872729i −0.0677033 0.0568098i
\(237\) 0 0
\(238\) 1.69253 + 9.59883i 0.109711 + 0.622200i
\(239\) 3.08647 2.58985i 0.199647 0.167524i −0.537483 0.843274i \(-0.680625\pi\)
0.737130 + 0.675751i \(0.236180\pi\)
\(240\) 0 0
\(241\) 3.15018 1.14657i 0.202921 0.0738571i −0.238560 0.971128i \(-0.576675\pi\)
0.441481 + 0.897271i \(0.354453\pi\)
\(242\) −32.7743 −2.10681
\(243\) 0 0
\(244\) −2.04189 −0.130719
\(245\) −1.84002 + 0.669713i −0.117555 + 0.0427864i
\(246\) 0 0
\(247\) 16.4081 13.7680i 1.04402 0.876037i
\(248\) −0.300822 1.70604i −0.0191022 0.108334i
\(249\) 0 0
\(250\) −12.3983 10.4034i −0.784135 0.657968i
\(251\) −11.5753 + 20.0490i −0.730628 + 1.26548i 0.225987 + 0.974130i \(0.427439\pi\)
−0.956615 + 0.291354i \(0.905894\pi\)
\(252\) 0 0
\(253\) 8.74763 + 15.1513i 0.549959 + 0.952556i
\(254\) −0.841367 + 4.77163i −0.0527920 + 0.299399i
\(255\) 0 0
\(256\) 4.13088 + 1.50352i 0.258180 + 0.0939699i
\(257\) 11.2883 + 4.10862i 0.704147 + 0.256289i 0.669180 0.743100i \(-0.266645\pi\)
0.0349665 + 0.999388i \(0.488868\pi\)
\(258\) 0 0
\(259\) 0.0175410 0.0994798i 0.00108994 0.00618137i
\(260\) 0.492726 + 0.853427i 0.0305576 + 0.0529273i
\(261\) 0 0
\(262\) 11.9285 20.6609i 0.736948 1.27643i
\(263\) −12.9474 10.8642i −0.798373 0.669914i 0.149430 0.988772i \(-0.452256\pi\)
−0.947803 + 0.318858i \(0.896701\pi\)
\(264\) 0 0
\(265\) 3.34002 + 18.9422i 0.205176 + 1.16361i
\(266\) 16.5214 13.8631i 1.01299 0.850002i
\(267\) 0 0
\(268\) 0.322481 0.117374i 0.0196987 0.00716974i
\(269\) 7.91447 0.482554 0.241277 0.970456i \(-0.422434\pi\)
0.241277 + 0.970456i \(0.422434\pi\)
\(270\) 0 0
\(271\) −17.2344 −1.04692 −0.523458 0.852051i \(-0.675358\pi\)
−0.523458 + 0.852051i \(0.675358\pi\)
\(272\) −10.1382 + 3.68999i −0.614716 + 0.223738i
\(273\) 0 0
\(274\) −4.05509 + 3.40263i −0.244977 + 0.205560i
\(275\) 2.34137 + 13.2785i 0.141190 + 0.800727i
\(276\) 0 0
\(277\) 20.2502 + 16.9919i 1.21671 + 1.02094i 0.998990 + 0.0449336i \(0.0143076\pi\)
0.217724 + 0.976010i \(0.430137\pi\)
\(278\) 8.06077 13.9617i 0.483453 0.837365i
\(279\) 0 0
\(280\) 5.86571 + 10.1597i 0.350543 + 0.607159i
\(281\) 3.29860 18.7073i 0.196778 1.11598i −0.713086 0.701077i \(-0.752703\pi\)
0.909864 0.414907i \(-0.136186\pi\)
\(282\) 0 0
\(283\) 15.5865 + 5.67301i 0.926519 + 0.337225i 0.760829 0.648952i \(-0.224793\pi\)
0.165690 + 0.986178i \(0.447015\pi\)
\(284\) 0.957234 + 0.348405i 0.0568014 + 0.0206740i
\(285\) 0 0
\(286\) −4.48680 + 25.4459i −0.265310 + 1.50465i
\(287\) −5.91013 10.2366i −0.348864 0.604250i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 2.20187 + 1.84759i 0.129298 + 0.108494i
\(291\) 0 0
\(292\) −0.178234 1.01081i −0.0104303 0.0591534i
\(293\) −14.8289 + 12.4429i −0.866312 + 0.726922i −0.963318 0.268361i \(-0.913518\pi\)
0.0970060 + 0.995284i \(0.469073\pi\)
\(294\) 0 0
\(295\) 11.4106 4.15312i 0.664351 0.241804i
\(296\) 0.123303 0.00716685
\(297\) 0 0
\(298\) 27.6536 1.60193
\(299\) 8.92514 3.24849i 0.516154 0.187865i
\(300\) 0 0
\(301\) −9.57785 + 8.03677i −0.552058 + 0.463232i
\(302\) −3.74510 21.2395i −0.215506 1.22220i
\(303\) 0 0
\(304\) 18.2875 + 15.3450i 1.04886 + 0.880096i
\(305\) 9.13088 15.8152i 0.522833 0.905573i
\(306\) 0 0
\(307\) −10.4029 18.0183i −0.593722 1.02836i −0.993726 0.111844i \(-0.964324\pi\)
0.400003 0.916514i \(-0.369009\pi\)
\(308\) 0.459922 2.60835i 0.0262065 0.148624i
\(309\) 0 0
\(310\) 1.23143 + 0.448204i 0.0699405 + 0.0254563i
\(311\) −10.0223 3.64781i −0.568312 0.206849i 0.0418520 0.999124i \(-0.486674\pi\)
−0.610164 + 0.792275i \(0.708896\pi\)
\(312\) 0 0
\(313\) 0.662504 3.75725i 0.0374469 0.212372i −0.960343 0.278822i \(-0.910056\pi\)
0.997790 + 0.0664498i \(0.0211672\pi\)
\(314\) −14.8025 25.6386i −0.835352 1.44687i
\(315\) 0 0
\(316\) −0.349356 + 0.605102i −0.0196528 + 0.0340396i
\(317\) −20.2153 16.9626i −1.13540 0.952717i −0.136125 0.990692i \(-0.543465\pi\)
−0.999279 + 0.0379748i \(0.987909\pi\)
\(318\) 0 0
\(319\) −1.33228 7.55574i −0.0745934 0.423040i
\(320\) −10.8833 + 9.13214i −0.608392 + 0.510502i
\(321\) 0 0
\(322\) 8.98680 3.27093i 0.500815 0.182282i
\(323\) 19.9145 1.10807
\(324\) 0 0
\(325\) 7.31996 0.406038
\(326\) 25.9675 9.45140i 1.43821 0.523464i
\(327\) 0 0
\(328\) 11.0528 9.27439i 0.610288 0.512092i
\(329\) 1.56464 + 8.87354i 0.0862616 + 0.489214i
\(330\) 0 0
\(331\) −1.20393 1.01021i −0.0661738 0.0555264i 0.609101 0.793093i \(-0.291530\pi\)
−0.675275 + 0.737566i \(0.735975\pi\)
\(332\) −0.368241 + 0.637812i −0.0202098 + 0.0350045i
\(333\) 0 0
\(334\) −2.89053 5.00654i −0.158163 0.273946i
\(335\) −0.532966 + 3.02260i −0.0291191 + 0.165142i
\(336\) 0 0
\(337\) 7.53209 + 2.74146i 0.410299 + 0.149337i 0.538920 0.842357i \(-0.318833\pi\)
−0.128620 + 0.991694i \(0.541055\pi\)
\(338\) −3.27719 1.19280i −0.178256 0.0648797i
\(339\) 0 0
\(340\) −0.159100 + 0.902302i −0.00862842 + 0.0489342i
\(341\) −1.74897 3.02931i −0.0947121 0.164046i
\(342\) 0 0
\(343\) 9.86871 17.0931i 0.532860 0.922941i
\(344\) −11.6912 9.81007i −0.630347 0.528924i
\(345\) 0 0
\(346\) 0.887374 + 5.03255i 0.0477055 + 0.270552i
\(347\) −15.2023 + 12.7563i −0.816104 + 0.684793i −0.952056 0.305923i \(-0.901035\pi\)
0.135952 + 0.990715i \(0.456591\pi\)
\(348\) 0 0
\(349\) −10.4243 + 3.79412i −0.557998 + 0.203095i −0.605597 0.795772i \(-0.707065\pi\)
0.0475984 + 0.998867i \(0.484843\pi\)
\(350\) 7.37052 0.393971
\(351\) 0 0
\(352\) 6.19253 0.330063
\(353\) −2.69119 + 0.979513i −0.143238 + 0.0521342i −0.412644 0.910892i \(-0.635395\pi\)
0.269407 + 0.963027i \(0.413172\pi\)
\(354\) 0 0
\(355\) −6.97906 + 5.85612i −0.370410 + 0.310811i
\(356\) 0.261545 + 1.48330i 0.0138619 + 0.0786145i
\(357\) 0 0
\(358\) 8.54189 + 7.16750i 0.451453 + 0.378814i
\(359\) 14.3944 24.9318i 0.759707 1.31585i −0.183292 0.983058i \(-0.558676\pi\)
0.943000 0.332793i \(-0.107991\pi\)
\(360\) 0 0
\(361\) −12.5326 21.7070i −0.659608 1.14247i
\(362\) −1.57263 + 8.91885i −0.0826558 + 0.468764i
\(363\) 0 0
\(364\) −1.35117 0.491784i −0.0708204 0.0257765i
\(365\) 8.62613 + 3.13966i 0.451512 + 0.164337i
\(366\) 0 0
\(367\) −1.90879 + 10.8253i −0.0996378 + 0.565074i 0.893589 + 0.448885i \(0.148179\pi\)
−0.993227 + 0.116189i \(0.962932\pi\)
\(368\) 5.29292 + 9.16760i 0.275912 + 0.477894i
\(369\) 0 0
\(370\) −0.0466368 + 0.0807773i −0.00242453 + 0.00419941i
\(371\) −21.4991 18.0399i −1.11618 0.936585i
\(372\) 0 0
\(373\) 5.80154 + 32.9022i 0.300392 + 1.70361i 0.644439 + 0.764656i \(0.277091\pi\)
−0.344046 + 0.938953i \(0.611798\pi\)
\(374\) −18.4029 + 15.4418i −0.951589 + 0.798478i
\(375\) 0 0
\(376\) −10.3353 + 3.76173i −0.533001 + 0.193997i
\(377\) −4.16519 −0.214518
\(378\) 0 0
\(379\) 20.9394 1.07559 0.537794 0.843077i \(-0.319258\pi\)
0.537794 + 0.843077i \(0.319258\pi\)
\(380\) 1.90508 0.693392i 0.0977284 0.0355702i
\(381\) 0 0
\(382\) −5.17546 + 4.34273i −0.264800 + 0.222193i
\(383\) 0.713888 + 4.04866i 0.0364780 + 0.206877i 0.997599 0.0692492i \(-0.0220604\pi\)
−0.961121 + 0.276126i \(0.910949\pi\)
\(384\) 0 0
\(385\) 18.1459 + 15.2262i 0.924801 + 0.776000i
\(386\) −12.0346 + 20.8446i −0.612546 + 1.06096i
\(387\) 0 0
\(388\) 0.0240997 + 0.0417419i 0.00122348 + 0.00211912i
\(389\) −2.96838 + 16.8345i −0.150503 + 0.853543i 0.812280 + 0.583267i \(0.198226\pi\)
−0.962783 + 0.270276i \(0.912885\pi\)
\(390\) 0 0
\(391\) 8.29813 + 3.02027i 0.419655 + 0.152742i
\(392\) 3.27719 + 1.19280i 0.165523 + 0.0602455i
\(393\) 0 0
\(394\) 0.169311 0.960210i 0.00852976 0.0483747i
\(395\) −3.12449 5.41177i −0.157210 0.272296i
\(396\) 0 0
\(397\) −11.2010 + 19.4007i −0.562162 + 0.973692i 0.435146 + 0.900360i \(0.356697\pi\)
−0.997308 + 0.0733324i \(0.976637\pi\)
\(398\) 10.5196 + 8.82699i 0.527300 + 0.442457i
\(399\) 0 0
\(400\) 1.41669 + 8.03444i 0.0708344 + 0.401722i
\(401\) 11.1702 9.37295i 0.557815 0.468063i −0.319762 0.947498i \(-0.603603\pi\)
0.877577 + 0.479435i \(0.159158\pi\)
\(402\) 0 0
\(403\) −1.78446 + 0.649491i −0.0888904 + 0.0323535i
\(404\) 2.03777 0.101383
\(405\) 0 0
\(406\) −4.19396 −0.208143
\(407\) 0.233956 0.0851529i 0.0115967 0.00422087i
\(408\) 0 0
\(409\) −13.4081 + 11.2507i −0.662986 + 0.556312i −0.910980 0.412450i \(-0.864673\pi\)
0.247994 + 0.968762i \(0.420229\pi\)
\(410\) 1.89528 + 10.7487i 0.0936011 + 0.530838i
\(411\) 0 0
\(412\) 0.553033 + 0.464050i 0.0272460 + 0.0228621i
\(413\) −8.85891 + 15.3441i −0.435918 + 0.755033i
\(414\) 0 0
\(415\) −3.29339 5.70431i −0.161666 0.280014i
\(416\) 0.583778 3.31077i 0.0286221 0.162324i
\(417\) 0 0
\(418\) 49.9509 + 18.1806i 2.44318 + 0.889244i
\(419\) 17.7246 + 6.45123i 0.865904 + 0.315163i 0.736507 0.676429i \(-0.236474\pi\)
0.129397 + 0.991593i \(0.458696\pi\)
\(420\) 0 0
\(421\) −5.61468 + 31.8425i −0.273643 + 1.55191i 0.469597 + 0.882881i \(0.344399\pi\)
−0.743240 + 0.669025i \(0.766712\pi\)
\(422\) −10.0137 17.3442i −0.487458 0.844302i
\(423\) 0 0
\(424\) 17.1288 29.6680i 0.831849 1.44080i
\(425\) 5.21348 + 4.37463i 0.252891 + 0.212201i
\(426\) 0 0
\(427\) 4.62701 + 26.2411i 0.223917 + 1.26990i
\(428\) −0.373455 + 0.313366i −0.0180517 + 0.0151471i
\(429\) 0 0
\(430\) 10.8486 3.94858i 0.523168 0.190418i
\(431\) −34.3164 −1.65297 −0.826483 0.562962i \(-0.809662\pi\)
−0.826483 + 0.562962i \(0.809662\pi\)
\(432\) 0 0
\(433\) −25.0669 −1.20464 −0.602318 0.798256i \(-0.705756\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(434\) −1.79679 + 0.653978i −0.0862486 + 0.0313919i
\(435\) 0 0
\(436\) 1.26810 1.06407i 0.0607312 0.0509595i
\(437\) −3.39306 19.2430i −0.162312 0.920516i
\(438\) 0 0
\(439\) −17.7784 14.9178i −0.848515 0.711989i 0.110947 0.993826i \(-0.464612\pi\)
−0.959462 + 0.281837i \(0.909056\pi\)
\(440\) −14.4572 + 25.0407i −0.689222 + 1.19377i
\(441\) 0 0
\(442\) 6.52094 + 11.2946i 0.310170 + 0.537230i
\(443\) 0.715699 4.05893i 0.0340039 0.192846i −0.963074 0.269237i \(-0.913229\pi\)
0.997078 + 0.0763910i \(0.0243397\pi\)
\(444\) 0 0
\(445\) −12.6582 4.60722i −0.600057 0.218403i
\(446\) −13.8614 5.04515i −0.656358 0.238895i
\(447\) 0 0
\(448\) 3.59967 20.4147i 0.170068 0.964506i
\(449\) 9.17071 + 15.8841i 0.432793 + 0.749619i 0.997113 0.0759373i \(-0.0241949\pi\)
−0.564320 + 0.825556i \(0.690862\pi\)
\(450\) 0 0
\(451\) 14.5667 25.2303i 0.685919 1.18805i
\(452\) 2.25490 + 1.89209i 0.106062 + 0.0889962i
\(453\) 0 0
\(454\) −4.05509 22.9976i −0.190315 1.07933i
\(455\) 9.85117 8.26611i 0.461830 0.387521i
\(456\) 0 0
\(457\) 18.2875 6.65609i 0.855451 0.311359i 0.123190 0.992383i \(-0.460687\pi\)
0.732261 + 0.681024i \(0.238465\pi\)
\(458\) −2.10464 −0.0983432
\(459\) 0 0
\(460\) 0.898986 0.0419154
\(461\) 26.0758 9.49081i 1.21447 0.442031i 0.346218 0.938154i \(-0.387466\pi\)
0.868252 + 0.496123i \(0.165243\pi\)
\(462\) 0 0
\(463\) 29.6352 24.8669i 1.37727 1.15566i 0.407054 0.913404i \(-0.366556\pi\)
0.970212 0.242259i \(-0.0778883\pi\)
\(464\) −0.806123 4.57175i −0.0374233 0.212238i
\(465\) 0 0
\(466\) 17.3275 + 14.5395i 0.802683 + 0.673531i
\(467\) 14.8819 25.7762i 0.688653 1.19278i −0.283621 0.958936i \(-0.591536\pi\)
0.972274 0.233845i \(-0.0751309\pi\)
\(468\) 0 0
\(469\) −2.23917 3.87836i −0.103395 0.179086i
\(470\) 1.44475 8.19356i 0.0666411 0.377941i
\(471\) 0 0
\(472\) −20.3229 7.39695i −0.935440 0.340472i
\(473\) −28.9577 10.5397i −1.33148 0.484618i
\(474\) 0 0
\(475\) 2.61499 14.8303i 0.119984 0.680463i
\(476\) −0.668434 1.15776i −0.0306376 0.0530659i
\(477\) 0 0
\(478\) 2.71419 4.70112i 0.124144 0.215024i
\(479\) 28.8614 + 24.2176i 1.31871 + 1.10653i 0.986577 + 0.163300i \(0.0522138\pi\)
0.332136 + 0.943231i \(0.392231\pi\)
\(480\) 0 0
\(481\) −0.0234708 0.133109i −0.00107017 0.00606926i
\(482\) 3.45992 2.90322i 0.157595 0.132238i
\(483\) 0 0
\(484\) 4.22416 1.53747i 0.192007 0.0698849i
\(485\) −0.431074 −0.0195741
\(486\) 0 0
\(487\) −0.763823 −0.0346121 −0.0173061 0.999850i \(-0.505509\pi\)
−0.0173061 + 0.999850i \(0.505509\pi\)
\(488\) −30.5638 + 11.1243i −1.38356 + 0.503573i
\(489\) 0 0
\(490\) −2.02094 + 1.69577i −0.0912970 + 0.0766073i
\(491\) 0.0864665 + 0.490376i 0.00390218 + 0.0221303i 0.986697 0.162572i \(-0.0519790\pi\)
−0.982794 + 0.184702i \(0.940868\pi\)
\(492\) 0 0
\(493\) −2.96657 2.48925i −0.133607 0.112110i
\(494\) 14.4290 24.9918i 0.649192 1.12443i
\(495\) 0 0
\(496\) −1.05825 1.83294i −0.0475167 0.0823014i
\(497\) 2.30834 13.0913i 0.103543 0.587224i
\(498\) 0 0
\(499\) −8.42514 3.06650i −0.377161 0.137275i 0.146482 0.989213i \(-0.453205\pi\)
−0.523643 + 0.851938i \(0.675427\pi\)
\(500\) 2.08600 + 0.759242i 0.0932887 + 0.0339543i
\(501\) 0 0
\(502\) −5.41622 + 30.7169i −0.241738 + 1.37096i
\(503\) 9.18092 + 15.9018i 0.409357 + 0.709027i 0.994818 0.101673i \(-0.0324197\pi\)
−0.585461 + 0.810701i \(0.699086\pi\)
\(504\) 0 0
\(505\) −9.11246 + 15.7832i −0.405499 + 0.702345i
\(506\) 18.0567 + 15.1513i 0.802716 + 0.673559i
\(507\) 0 0
\(508\) −0.115400 0.654467i −0.00512006 0.0290373i
\(509\) 21.7331 18.2362i 0.963302 0.808306i −0.0181853 0.999835i \(-0.505789\pi\)
0.981487 + 0.191528i \(0.0613444\pi\)
\(510\) 0 0
\(511\) −12.5865 + 4.58110i −0.556792 + 0.202656i
\(512\) 24.9186 1.10126
\(513\) 0 0
\(514\) 16.1848 0.713881
\(515\) −6.06728 + 2.20831i −0.267356 + 0.0973097i
\(516\) 0 0
\(517\) −17.0123 + 14.2750i −0.748201 + 0.627815i
\(518\) −0.0236329 0.134029i −0.00103837 0.00588888i
\(519\) 0 0
\(520\) 12.0248 + 10.0900i 0.527323 + 0.442477i
\(521\) −16.3191 + 28.2655i −0.714952 + 1.23833i 0.248026 + 0.968753i \(0.420218\pi\)
−0.962978 + 0.269580i \(0.913115\pi\)
\(522\) 0 0
\(523\) 11.0116 + 19.0727i 0.481504 + 0.833990i 0.999775 0.0212271i \(-0.00675730\pi\)
−0.518271 + 0.855217i \(0.673424\pi\)
\(524\) −0.568210 + 3.22248i −0.0248224 + 0.140775i
\(525\) 0 0
\(526\) −21.3983 7.78833i −0.933009 0.339587i
\(527\) −1.65910 0.603863i −0.0722715 0.0263047i
\(528\) 0 0
\(529\) −2.48932 + 14.1176i −0.108231 + 0.613811i
\(530\) 12.9572 + 22.4426i 0.562826 + 0.974844i
\(531\) 0 0
\(532\) −1.47906 + 2.56180i −0.0641252 + 0.111068i
\(533\) −12.1159 10.1664i −0.524796 0.440357i
\(534\) 0 0
\(535\) −0.757122 4.29385i −0.0327332 0.185639i
\(536\) 4.18757 3.51379i 0.180875 0.151772i
\(537\) 0 0
\(538\) 10.0201 3.64701i 0.431996 0.157234i
\(539\) 7.04189 0.303316
\(540\) 0 0
\(541\) −15.7870 −0.678738 −0.339369 0.940653i \(-0.610214\pi\)
−0.339369 + 0.940653i \(0.610214\pi\)
\(542\) −21.8195 + 7.94166i −0.937230 + 0.341124i
\(543\) 0 0
\(544\) 2.39440 2.00914i 0.102659 0.0861412i
\(545\) 2.57088 + 14.5802i 0.110124 + 0.624546i
\(546\) 0 0
\(547\) −21.0043 17.6247i −0.898081 0.753579i 0.0717337 0.997424i \(-0.477147\pi\)
−0.969814 + 0.243845i \(0.921591\pi\)
\(548\) 0.363026 0.628780i 0.0155077 0.0268602i
\(549\) 0 0
\(550\) 9.08306 + 15.7323i 0.387303 + 0.670829i
\(551\) −1.48798 + 8.43874i −0.0633900 + 0.359503i
\(552\) 0 0
\(553\) 8.56805 + 3.11851i 0.364350 + 0.132613i
\(554\) 33.4675 + 12.1812i 1.42190 + 0.517528i
\(555\) 0 0
\(556\) −0.383971 + 2.17761i −0.0162840 + 0.0923511i
\(557\) 14.7010 + 25.4629i 0.622901 + 1.07890i 0.988943 + 0.148298i \(0.0473794\pi\)
−0.366042 + 0.930598i \(0.619287\pi\)
\(558\) 0 0
\(559\) −8.36484 + 14.4883i −0.353795 + 0.612791i
\(560\) 10.9795 + 9.21291i 0.463969 + 0.389317i
\(561\) 0 0
\(562\) −4.44419 25.2043i −0.187467 1.06318i
\(563\) 7.94428 6.66604i 0.334811 0.280940i −0.459845 0.887999i \(-0.652095\pi\)
0.794657 + 0.607059i \(0.207651\pi\)
\(564\) 0 0
\(565\) −24.7383 + 9.00400i −1.04075 + 0.378801i
\(566\) 22.3473 0.939327
\(567\) 0 0
\(568\) 16.2264 0.680843
\(569\) −30.9809 + 11.2761i −1.29879 + 0.472719i −0.896601 0.442839i \(-0.853971\pi\)
−0.402185 + 0.915559i \(0.631749\pi\)
\(570\) 0 0
\(571\) −0.564893 + 0.474002i −0.0236400 + 0.0198363i −0.654531 0.756035i \(-0.727134\pi\)
0.630891 + 0.775871i \(0.282689\pi\)
\(572\) −0.615400 3.49011i −0.0257312 0.145929i
\(573\) 0 0
\(574\) −12.1996 10.2366i −0.509200 0.427269i
\(575\) 3.33884 5.78304i 0.139239 0.241169i
\(576\) 0 0
\(577\) −9.67159 16.7517i −0.402634 0.697382i 0.591409 0.806371i \(-0.298572\pi\)
−0.994043 + 0.108990i \(0.965238\pi\)
\(578\) 1.87164 10.6146i 0.0778501 0.441510i
\(579\) 0 0
\(580\) −0.370462 0.134837i −0.0153826 0.00559881i
\(581\) 9.03121 + 3.28709i 0.374678 + 0.136372i
\(582\) 0 0
\(583\) 12.0116 68.1212i 0.497470 2.82129i
\(584\) −8.17483 14.1592i −0.338277 0.585913i
\(585\) 0 0
\(586\) −13.0403 + 22.5865i −0.538690 + 0.933038i
\(587\) 24.4461 + 20.5127i 1.00900 + 0.846650i 0.988205 0.153134i \(-0.0489366\pi\)
0.0207926 + 0.999784i \(0.493381\pi\)
\(588\) 0 0
\(589\) 0.678396 + 3.84737i 0.0279528 + 0.158528i
\(590\) 12.5326 10.5161i 0.515957 0.432939i
\(591\) 0 0
\(592\) 0.141559 0.0515234i 0.00581805 0.00211760i
\(593\) −31.6783 −1.30087 −0.650436 0.759561i \(-0.725414\pi\)
−0.650436 + 0.759561i \(0.725414\pi\)
\(594\) 0 0
\(595\) 11.9564 0.490163
\(596\) −3.56418 + 1.29725i −0.145994 + 0.0531376i
\(597\) 0 0
\(598\) 9.80272 8.22546i 0.400863 0.336364i
\(599\) 2.19207 + 12.4318i 0.0895654 + 0.507951i 0.996278 + 0.0862011i \(0.0274728\pi\)
−0.906712 + 0.421750i \(0.861416\pi\)
\(600\) 0 0
\(601\) −6.82429 5.72626i −0.278369 0.233579i 0.492904 0.870084i \(-0.335935\pi\)
−0.771273 + 0.636504i \(0.780380\pi\)
\(602\) −8.42262 + 14.5884i −0.343280 + 0.594579i
\(603\) 0 0
\(604\) 1.47906 + 2.56180i 0.0601819 + 0.104238i
\(605\) −6.98128 + 39.5928i −0.283829 + 1.60968i
\(606\) 0 0
\(607\) 31.1266 + 11.3292i 1.26339 + 0.459836i 0.884905 0.465771i \(-0.154223\pi\)
0.378485 + 0.925608i \(0.376445\pi\)
\(608\) −6.49912 2.36549i −0.263574 0.0959332i
\(609\) 0 0
\(610\) 4.27244 24.2302i 0.172986 0.981053i
\(611\) 6.02822 + 10.4412i 0.243876 + 0.422405i
\(612\) 0 0
\(613\) −8.84002 + 15.3114i −0.357045 + 0.618420i −0.987466 0.157833i \(-0.949549\pi\)
0.630421 + 0.776254i \(0.282882\pi\)
\(614\) −21.4733 18.0183i −0.866594 0.727158i
\(615\) 0 0
\(616\) −7.32610 41.5484i −0.295177 1.67403i
\(617\) 19.7121 16.5404i 0.793581 0.665893i −0.153048 0.988219i \(-0.548909\pi\)
0.946629 + 0.322326i \(0.104465\pi\)
\(618\) 0 0
\(619\) −26.1186 + 9.50638i −1.04979 + 0.382094i −0.808585 0.588380i \(-0.799766\pi\)
−0.241209 + 0.970473i \(0.577544\pi\)
\(620\) −0.179740 −0.00721854
\(621\) 0 0
\(622\) −14.3696 −0.576168
\(623\) 18.4697 6.72243i 0.739974 0.269328i
\(624\) 0 0
\(625\) −6.51960 + 5.47059i −0.260784 + 0.218824i
\(626\) −0.892589 5.06212i −0.0356750 0.202323i
\(627\) 0 0
\(628\) 3.11057 + 2.61007i 0.124125 + 0.104153i
\(629\) 0.0628336 0.108831i 0.00250534 0.00433938i
\(630\) 0 0
\(631\) −13.4069 23.2214i −0.533720 0.924430i −0.999224 0.0393842i \(-0.987460\pi\)
0.465504 0.885046i \(-0.345873\pi\)
\(632\) −1.93267 + 10.9607i −0.0768774 + 0.435993i
\(633\) 0 0
\(634\) −33.4099 12.1602i −1.32688 0.482943i
\(635\) 5.58512 + 2.03282i 0.221639 + 0.0806699i
\(636\) 0 0
\(637\) 0.663848 3.76487i 0.0263026 0.149170i
\(638\) −5.16843 8.95199i −0.204620 0.354413i
\(639\) 0 0
\(640\) −7.84864 + 13.5942i −0.310245 + 0.537360i
\(641\) −9.72147 8.15728i −0.383975 0.322193i 0.430286 0.902693i \(-0.358413\pi\)
−0.814261 + 0.580500i \(0.802857\pi\)
\(642\) 0 0
\(643\) 2.68748 + 15.2415i 0.105984 + 0.601065i 0.990823 + 0.135167i \(0.0431572\pi\)
−0.884839 + 0.465897i \(0.845732\pi\)
\(644\) −1.00483 + 0.843156i −0.0395960 + 0.0332250i
\(645\) 0 0
\(646\) 25.2126 9.17664i 0.991976 0.361050i
\(647\) −11.1506 −0.438377 −0.219189 0.975683i \(-0.570341\pi\)
−0.219189 + 0.975683i \(0.570341\pi\)
\(648\) 0 0
\(649\) −43.6691 −1.71416
\(650\) 9.26739 3.37305i 0.363497 0.132302i
\(651\) 0 0
\(652\) −2.90348 + 2.43631i −0.113709 + 0.0954134i
\(653\) −7.74335 43.9147i −0.303021 1.71851i −0.632679 0.774414i \(-0.718045\pi\)
0.329658 0.944100i \(-0.393066\pi\)
\(654\) 0 0
\(655\) −22.4183 18.8112i −0.875957 0.735015i
\(656\) 8.81386 15.2661i 0.344124 0.596039i
\(657\) 0 0
\(658\) 6.06986 + 10.5133i 0.236628 + 0.409851i
\(659\) 2.44784 13.8824i 0.0953545 0.540782i −0.899284 0.437366i \(-0.855912\pi\)
0.994638 0.103416i \(-0.0329774\pi\)
\(660\) 0 0
\(661\) −33.9368 12.3520i −1.31999 0.480436i −0.416533 0.909121i \(-0.636755\pi\)
−0.903454 + 0.428685i \(0.858977\pi\)
\(662\) −1.98973 0.724204i −0.0773332 0.0281470i
\(663\) 0 0
\(664\) −2.03714 + 11.5532i −0.0790564 + 0.448351i
\(665\) −13.2280 22.9116i −0.512961 0.888474i
\(666\) 0 0
\(667\) −1.89986 + 3.29066i −0.0735630 + 0.127415i
\(668\) 0.607411 + 0.509678i 0.0235014 + 0.0197200i
\(669\) 0 0
\(670\) 0.718063 + 4.07234i 0.0277412 + 0.157328i
\(671\) −50.3093 + 42.2145i −1.94217 + 1.62967i
\(672\) 0 0
\(673\) −2.10694 + 0.766865i −0.0812167 + 0.0295605i −0.382309 0.924035i \(-0.624871\pi\)
0.301092 + 0.953595i \(0.402649\pi\)
\(674\) 10.7992 0.415971
\(675\) 0 0
\(676\) 0.478340 0.0183977
\(677\) 33.0548 12.0310i 1.27040 0.462388i 0.383155 0.923684i \(-0.374838\pi\)
0.887246 + 0.461296i \(0.152615\pi\)
\(678\) 0 0
\(679\) 0.481830 0.404303i 0.0184909 0.0155157i
\(680\) 2.53431 + 14.3728i 0.0971864 + 0.551171i
\(681\) 0 0
\(682\) −3.61019 3.02931i −0.138241 0.115998i
\(683\) −8.88191 + 15.3839i −0.339857 + 0.588649i −0.984406 0.175914i \(-0.943712\pi\)
0.644549 + 0.764563i \(0.277045\pi\)
\(684\) 0 0
\(685\) 3.24675 + 5.62353i 0.124052 + 0.214864i
\(686\) 4.61768 26.1882i 0.176304 0.999868i
\(687\) 0 0
\(688\) −17.5214 6.37727i −0.667998 0.243131i
\(689\) −35.2879 12.8438i −1.34436 0.489308i
\(690\) 0 0
\(691\) −7.64584 + 43.3617i −0.290861 + 1.64956i 0.392702 + 0.919666i \(0.371541\pi\)
−0.683563 + 0.729891i \(0.739571\pi\)
\(692\) −0.350452 0.607000i −0.0133222 0.0230747i
\(693\) 0 0
\(694\) −13.3687 + 23.1553i −0.507469 + 0.878962i
\(695\) −15.1493 12.7118i −0.574646 0.482185i
\(696\) 0 0
\(697\) −2.55350 14.4816i −0.0967207 0.548530i
\(698\) −11.4492 + 9.60706i −0.433360 + 0.363632i
\(699\) 0 0
\(700\) −0.949960 + 0.345757i −0.0359051 + 0.0130684i
\(701\) 30.1052 1.13706 0.568530 0.822663i \(-0.307512\pi\)
0.568530 + 0.822663i \(0.307512\pi\)
\(702\) 0 0
\(703\) −0.278066 −0.0104875
\(704\) 48.0112 17.4746i 1.80949 0.658601i
\(705\) 0 0
\(706\) −2.95580 + 2.48021i −0.111243 + 0.0933441i
\(707\) −4.61768 26.1882i −0.173666 0.984907i
\(708\) 0 0
\(709\) −18.9500 15.9009i −0.711681 0.597171i 0.213390 0.976967i \(-0.431550\pi\)
−0.925070 + 0.379796i \(0.875994\pi\)
\(710\) −6.13728 + 10.6301i −0.230328 + 0.398940i
\(711\) 0 0
\(712\) 11.9960 + 20.7776i 0.449568 + 0.778674i
\(713\) −0.300822 + 1.70604i −0.0112659 + 0.0638919i
\(714\) 0 0
\(715\) 29.7841 + 10.8405i 1.11386 + 0.405412i
\(716\) −1.43717 0.523086i −0.0537094 0.0195486i
\(717\) 0 0
\(718\) 6.73530 38.1978i 0.251359 1.42553i
\(719\) −21.7763 37.7177i −0.812119 1.40663i −0.911378 0.411570i \(-0.864980\pi\)
0.0992586 0.995062i \(-0.468353\pi\)
\(720\) 0 0
\(721\) 4.71048 8.15880i 0.175428 0.303850i
\(722\) −25.8694 21.7070i −0.962760 0.807852i
\(723\) 0 0
\(724\) −0.215699 1.22329i −0.00801640 0.0454633i
\(725\) −2.24329 + 1.88234i −0.0833137 + 0.0699085i
\(726\) 0 0
\(727\) −19.2986 + 7.02412i −0.715745 + 0.260510i −0.674119 0.738623i \(-0.735476\pi\)
−0.0416269 + 0.999133i \(0.513254\pi\)
\(728\) −22.9040 −0.848880
\(729\) 0 0
\(730\) 12.3678 0.457754
\(731\) −14.6163 + 5.31991i −0.540605 + 0.196764i
\(732\) 0 0
\(733\) 10.7292 9.00287i 0.396292 0.332529i −0.422766 0.906239i \(-0.638941\pi\)
0.819058 + 0.573710i \(0.194496\pi\)
\(734\) 2.57170 + 14.5848i 0.0949232 + 0.538336i
\(735\) 0 0
\(736\) −2.34936 1.97134i −0.0865984 0.0726647i
\(737\) 5.51889 9.55899i 0.203291 0.352110i
\(738\) 0 0
\(739\) 20.9907 + 36.3569i 0.772154 + 1.33741i 0.936380 + 0.350987i \(0.114154\pi\)
−0.164226 + 0.986423i \(0.552513\pi\)
\(740\) 0.00222152 0.0125989i 8.16647e−5 0.000463144i
\(741\) 0 0
\(742\) −35.5317 12.9325i −1.30441 0.474766i
\(743\) 26.1819 + 9.52942i 0.960519 + 0.349600i 0.774237 0.632896i \(-0.218134\pi\)
0.186282 + 0.982496i \(0.440356\pi\)
\(744\) 0 0
\(745\) 5.89053 33.4069i 0.215812 1.22393i
\(746\) 22.5064 + 38.9822i 0.824018 + 1.42724i
\(747\) 0 0
\(748\) 1.64749 2.85353i 0.0602382 0.104336i
\(749\) 4.87346 + 4.08931i 0.178072 + 0.149420i
\(750\) 0 0
\(751\) −9.18685 52.1012i −0.335233 1.90120i −0.424920 0.905231i \(-0.639698\pi\)
0.0896873 0.995970i \(-0.471413\pi\)
\(752\) −10.2936 + 8.63738i −0.375370 + 0.314973i
\(753\) 0 0
\(754\) −5.27332 + 1.91933i −0.192043 + 0.0698979i
\(755\) −26.4561 −0.962834
\(756\) 0 0
\(757\) −41.4858 −1.50783 −0.753913 0.656975i \(-0.771836\pi\)
−0.753913 + 0.656975i \(0.771836\pi\)
\(758\) 26.5103 9.64895i 0.962896 0.350466i
\(759\) 0 0
\(760\) 24.7383 20.7579i 0.897352 0.752968i
\(761\) 7.88144 + 44.6979i 0.285702 + 1.62030i 0.702767 + 0.711420i \(0.251948\pi\)
−0.417064 + 0.908877i \(0.636941\pi\)
\(762\) 0 0
\(763\) −16.5483 13.8857i −0.599088 0.502695i
\(764\) 0.463326 0.802503i 0.0167625 0.0290336i
\(765\) 0 0
\(766\) 2.76945 + 4.79682i 0.100064 + 0.173316i
\(767\) −4.11674 + 23.3472i −0.148647 + 0.843019i
\(768\) 0 0
\(769\) −4.80793 1.74994i −0.173379 0.0631046i 0.253872 0.967238i \(-0.418296\pi\)
−0.427251 + 0.904133i \(0.640518\pi\)
\(770\) 29.9898 + 10.9154i 1.08076 + 0.393363i
\(771\) 0 0
\(772\) 0.573263 3.25113i 0.0206322 0.117011i
\(773\) −26.3214 45.5899i −0.946713 1.63976i −0.752284 0.658839i \(-0.771048\pi\)
−0.194430 0.980916i \(-0.562286\pi\)
\(774\) 0 0
\(775\) −0.667556 + 1.15624i −0.0239793 + 0.0415334i
\(776\) 0.588145 + 0.493513i 0.0211132 + 0.0177161i
\(777\) 0 0
\(778\) 3.99928 + 22.6811i 0.143381 + 0.813156i
\(779\) −24.9256 + 20.9151i −0.893053 + 0.749360i
\(780\) 0 0