Properties

Label 729.2.e.f.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
CM discriminant -3
Inner twists $12$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{U}(1)[D_{9}]$

Embedding invariants

Embedding label 406.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.f.325.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.347296 - 1.96962i) q^{4} +(-0.173648 + 0.984808i) q^{7} +O(q^{10})\) \(q+(-0.347296 - 1.96962i) q^{4} +(-0.173648 + 0.984808i) q^{7} +(3.83022 - 3.21394i) q^{13} +(-3.75877 + 1.36808i) q^{16} +(3.50000 - 6.06218i) q^{19} +(-3.83022 - 3.21394i) q^{25} +2.00000 q^{28} +(-0.694593 - 3.93923i) q^{31} +(-5.50000 - 9.52628i) q^{37} +(-7.51754 + 2.73616i) q^{43} +(5.63816 + 2.05212i) q^{49} +(-7.66044 - 6.42788i) q^{52} +(-0.173648 + 0.984808i) q^{61} +(4.00000 + 6.92820i) q^{64} +(3.83022 - 3.21394i) q^{67} +(3.50000 - 6.06218i) q^{73} +(-13.1557 - 4.78828i) q^{76} +(13.0228 + 10.9274i) q^{79} +(2.50000 + 4.33013i) q^{91} +(17.8542 - 6.49838i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + O(q^{10}) \) \( 6 q + 21 q^{19} + 12 q^{28} - 33 q^{37} + 24 q^{64} + 21 q^{73} + 15 q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(3\) 0 0
\(4\) −0.347296 1.96962i −0.173648 0.984808i
\(5\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(6\) 0 0
\(7\) −0.173648 + 0.984808i −0.0656328 + 0.372222i 0.934246 + 0.356630i \(0.116074\pi\)
−0.999878 + 0.0155920i \(0.995037\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(12\) 0 0
\(13\) 3.83022 3.21394i 1.06231 0.891386i 0.0679785 0.997687i \(-0.478345\pi\)
0.994334 + 0.106301i \(0.0339006\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.75877 + 1.36808i −0.939693 + 0.342020i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(24\) 0 0
\(25\) −3.83022 3.21394i −0.766044 0.642788i
\(26\) 0 0
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(30\) 0 0
\(31\) −0.694593 3.93923i −0.124753 0.707507i −0.981455 0.191695i \(-0.938602\pi\)
0.856702 0.515812i \(-0.172510\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.50000 9.52628i −0.904194 1.56611i −0.821995 0.569495i \(-0.807139\pi\)
−0.0821995 0.996616i \(-0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(42\) 0 0
\(43\) −7.51754 + 2.73616i −1.14641 + 0.417261i −0.844226 0.535988i \(-0.819939\pi\)
−0.302188 + 0.953248i \(0.597717\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(48\) 0 0
\(49\) 5.63816 + 2.05212i 0.805451 + 0.293160i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.66044 6.42788i −1.06231 0.891386i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(60\) 0 0
\(61\) −0.173648 + 0.984808i −0.0222334 + 0.126092i −0.993904 0.110246i \(-0.964836\pi\)
0.971671 + 0.236338i \(0.0759472\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4.00000 + 6.92820i 0.500000 + 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.83022 3.21394i 0.467936 0.392645i −0.378105 0.925763i \(-0.623424\pi\)
0.846041 + 0.533118i \(0.178980\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i \(-0.698986\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −13.1557 4.78828i −1.50906 0.549254i
\(77\) 0 0
\(78\) 0 0
\(79\) 13.0228 + 10.9274i 1.46517 + 1.22943i 0.920478 + 0.390794i \(0.127800\pi\)
0.544696 + 0.838633i \(0.316645\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) 2.50000 + 4.33013i 0.262071 + 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.8542 6.49838i 1.81282 0.659811i 0.816185 0.577791i \(-0.196085\pi\)
0.996631 0.0820195i \(-0.0261370\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 + 8.66025i −0.500000 + 0.866025i
\(101\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(102\) 0 0
\(103\) 12.2160 + 4.44626i 1.20368 + 0.438103i 0.864507 0.502621i \(-0.167631\pi\)
0.339172 + 0.940724i \(0.389853\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.694593 3.93923i −0.0656328 0.372222i
\(113\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.42649 + 7.07066i −0.766044 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) −7.51754 + 2.73616i −0.675095 + 0.245715i
\(125\) 0 0
\(126\) 0 0
\(127\) −10.0000 + 17.3205i −0.887357 + 1.53695i −0.0443678 + 0.999015i \(0.514127\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 5.36231 + 4.49951i 0.464971 + 0.390157i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(138\) 0 0
\(139\) 3.99391 + 22.6506i 0.338759 + 1.92120i 0.386398 + 0.922332i \(0.373719\pi\)
−0.0476387 + 0.998865i \(0.515170\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −16.8530 + 14.1413i −1.38531 + 1.16241i
\(149\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(150\) 0 0
\(151\) 17.8542 6.49838i 1.45295 0.528831i 0.509537 0.860449i \(-0.329817\pi\)
0.943414 + 0.331618i \(0.107594\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −13.1557 4.78828i −1.04994 0.382147i −0.241299 0.970451i \(-0.577574\pi\)
−0.808640 + 0.588304i \(0.799796\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −25.0000 −1.95815 −0.979076 0.203497i \(-0.934769\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(168\) 0 0
\(169\) 2.08378 11.8177i 0.160291 0.909053i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000 + 13.8564i 0.609994 + 1.05654i
\(173\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(174\) 0 0
\(175\) 3.83022 3.21394i 0.289538 0.242951i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 3.50000 6.06218i 0.260153 0.450598i −0.706129 0.708083i \(-0.749560\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(192\) 0 0
\(193\) 3.99391 + 22.6506i 0.287488 + 1.63042i 0.696261 + 0.717788i \(0.254845\pi\)
−0.408773 + 0.912636i \(0.634043\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.08378 11.8177i 0.148841 0.844121i
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) −5.50000 9.52628i −0.389885 0.675300i 0.602549 0.798082i \(-0.294152\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −10.0000 + 17.3205i −0.693375 + 1.20096i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.2160 + 4.44626i 0.840984 + 0.306093i 0.726359 0.687315i \(-0.241211\pi\)
0.114625 + 0.993409i \(0.463433\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.86215 + 27.5746i −0.325594 + 1.84653i 0.179877 + 0.983689i \(0.442430\pi\)
−0.505471 + 0.862844i \(0.668681\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(228\) 0 0
\(229\) −16.8530 + 14.1413i −1.11368 + 0.934485i −0.998268 0.0588329i \(-0.981262\pi\)
−0.115408 + 0.993318i \(0.536818\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(240\) 0 0
\(241\) 13.0228 + 10.9274i 0.838869 + 0.703895i 0.957309 0.289066i \(-0.0933448\pi\)
−0.118440 + 0.992961i \(0.537789\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) −6.07769 34.4683i −0.386714 2.19316i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 12.2567 10.2846i 0.766044 0.642788i
\(257\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(258\) 0 0
\(259\) 10.3366 3.76222i 0.642286 0.233773i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −7.66044 6.42788i −0.467936 0.392645i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 29.0000 1.76162 0.880812 0.473466i \(-0.156997\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.51485 25.6050i 0.271271 1.53846i −0.479291 0.877656i \(-0.659106\pi\)
0.750562 0.660800i \(-0.229783\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(282\) 0 0
\(283\) 24.5134 20.5692i 1.45717 1.22271i 0.530042 0.847971i \(-0.322176\pi\)
0.927130 0.374741i \(-0.122268\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) −13.1557 4.78828i −0.769879 0.280213i
\(293\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.38919 7.87846i −0.0800713 0.454107i
\(302\) 0 0
\(303\) 0 0
\(304\) −4.86215 + 27.5746i −0.278863 + 1.58151i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.00000 + 13.8564i 0.456584 + 0.790827i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(312\) 0 0
\(313\) −32.8892 + 11.9707i −1.85901 + 0.676624i −0.879279 + 0.476308i \(0.841975\pi\)
−0.979731 + 0.200316i \(0.935803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 17.0000 29.4449i 0.956325 1.65640i
\(317\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −25.0000 −1.38675
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.173648 + 0.984808i −0.00954457 + 0.0541299i −0.989208 0.146518i \(-0.953193\pi\)
0.979663 + 0.200648i \(0.0643046\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.83022 3.21394i 0.208645 0.175074i −0.532476 0.846445i \(-0.678738\pi\)
0.741122 + 0.671370i \(0.234294\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −6.50000 + 11.2583i −0.350967 + 0.607893i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(348\) 0 0
\(349\) −28.3436 23.7831i −1.51720 1.27308i −0.847994 0.530006i \(-0.822190\pi\)
−0.669207 0.743076i \(-0.733366\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 7.66044 6.42788i 0.401516 0.336912i
\(365\) 0 0
\(366\) 0 0
\(367\) −32.8892 + 11.9707i −1.71680 + 0.624866i −0.997555 0.0698862i \(-0.977736\pi\)
−0.719249 + 0.694752i \(0.755514\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.2160 + 4.44626i 0.632521 + 0.230219i 0.638328 0.769764i \(-0.279626\pi\)
−0.00580736 + 0.999983i \(0.501849\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −19.0000 32.9090i −0.964579 1.67070i
\(389\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 17.0000 29.4449i 0.853206 1.47780i −0.0250943 0.999685i \(-0.507989\pi\)
0.878300 0.478110i \(-0.158678\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 18.7939 + 6.84040i 0.939693 + 0.342020i
\(401\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(402\) 0 0
\(403\) −15.3209 12.8558i −0.763188 0.640391i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −5.38309 30.5290i −0.266177 1.50956i −0.765663 0.643242i \(-0.777589\pi\)
0.499486 0.866322i \(-0.333522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.51485 25.6050i 0.222431 1.26147i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(420\) 0 0
\(421\) 17.8542 6.49838i 0.870159 0.316712i 0.131927 0.991259i \(-0.457883\pi\)
0.738231 + 0.674548i \(0.235661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.939693 0.342020i −0.0454749 0.0165515i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.694593 3.93923i −0.0332650 0.188655i
\(437\) 0 0
\(438\) 0 0
\(439\) −4.86215 + 27.5746i −0.232058 + 1.31606i 0.616665 + 0.787226i \(0.288483\pi\)
−0.848722 + 0.528839i \(0.822628\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −7.51754 + 2.73616i −0.355170 + 0.129271i
\(449\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.66044 6.42788i −0.358340 0.300683i 0.445788 0.895138i \(-0.352923\pi\)
−0.804129 + 0.594455i \(0.797368\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(462\) 0 0
\(463\) 3.99391 + 22.6506i 0.185613 + 1.05266i 0.925166 + 0.379563i \(0.123926\pi\)
−0.739553 + 0.673098i \(0.764963\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) 2.50000 + 4.33013i 0.115439 + 0.199947i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −32.8892 + 11.9707i −1.50906 + 0.549254i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(480\) 0 0
\(481\) −51.6831 18.8111i −2.35655 0.857713i
\(482\) 0 0
\(483\) 0 0
\(484\) 16.8530 + 14.1413i 0.766044 + 0.642788i
\(485\) 0 0
\(486\) 0 0
\(487\) −25.0000 −1.13286 −0.566429 0.824110i \(-0.691675\pi\)
−0.566429 + 0.824110i \(0.691675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 + 13.8564i 0.359211 + 0.622171i
\(497\) 0 0
\(498\) 0 0
\(499\) 24.5134 20.5692i 1.09737 0.920804i 0.100126 0.994975i \(-0.468075\pi\)
0.997246 + 0.0741708i \(0.0236310\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 37.5877 + 13.6808i 1.66768 + 0.606988i
\(509\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(510\) 0 0
\(511\) 5.36231 + 4.49951i 0.237215 + 0.199047i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) 21.5000 + 37.2391i 0.940129 + 1.62835i 0.765222 + 0.643767i \(0.222629\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.6129 7.86646i 0.939693 0.342020i
\(530\) 0 0
\(531\) 0 0
\(532\) 7.00000 12.1244i 0.303488 0.525657i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.173648 + 0.984808i −0.00742466 + 0.0421073i −0.988295 0.152555i \(-0.951250\pi\)
0.980870 + 0.194662i \(0.0623610\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −13.0228 + 10.9274i −0.553784 + 0.464680i
\(554\) 0 0
\(555\) 0 0
\(556\) 43.2259 15.7329i 1.83318 0.667225i
\(557\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) 0 0
\(559\) −20.0000 + 34.6410i −0.845910 + 1.46516i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(570\) 0 0
\(571\) −5.38309 30.5290i −0.225275 1.27760i −0.862158 0.506640i \(-0.830887\pi\)
0.636882 0.770961i \(-0.280224\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.228968 0.396584i 0.728535 0.685009i \(-0.240202\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(588\) 0 0
\(589\) −26.3114 9.57656i −1.08414 0.394595i
\(590\) 0 0
\(591\) 0 0
\(592\) 33.7060 + 28.2827i 1.38531 + 1.16241i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(600\) 0 0
\(601\) 4.51485 25.6050i 0.184165 1.04445i −0.742859 0.669448i \(-0.766531\pi\)
0.927024 0.375002i \(-0.122358\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −19.0000 32.9090i −0.773099 1.33905i
\(605\) 0 0
\(606\) 0 0
\(607\) −37.5362 + 31.4966i −1.52355 + 1.27841i −0.693990 + 0.719985i \(0.744149\pi\)
−0.829557 + 0.558422i \(0.811407\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −23.5000 + 40.7032i −0.949156 + 1.64399i −0.201948 + 0.979396i \(0.564727\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(618\) 0 0
\(619\) 13.0228 + 10.9274i 0.523429 + 0.439209i 0.865825 0.500347i \(-0.166794\pi\)
−0.342396 + 0.939556i \(0.611239\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.34120 + 24.6202i 0.173648 + 0.984808i
\(626\) 0 0
\(627\) 0 0
\(628\) −4.86215 + 27.5746i −0.194021 + 1.10035i
\(629\) 0 0
\(630\) 0 0
\(631\) 21.5000 + 37.2391i 0.855901 + 1.48246i 0.875806 + 0.482663i \(0.160330\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 28.1908 10.2606i 1.11696 0.406540i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(642\) 0 0
\(643\) 37.5877 + 13.6808i 1.48231 + 0.539518i 0.951414 0.307916i \(-0.0996315\pi\)
0.530901 + 0.847434i \(0.321854\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 8.68241 + 49.2404i 0.340029 + 1.92840i
\(653\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(660\) 0 0
\(661\) −37.5362 + 31.4966i −1.45999 + 1.22508i −0.535126 + 0.844772i \(0.679736\pi\)
−0.924862 + 0.380303i \(0.875820\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −28.3436 23.7831i −1.09257 0.916773i −0.0956642 0.995414i \(-0.530497\pi\)
−0.996903 + 0.0786409i \(0.974942\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −24.0000 −0.923077
\(677\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(678\) 0 0
\(679\) 3.29932 + 18.7113i 0.126616 + 0.718076i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 24.5134 20.5692i 0.934565 0.784194i
\(689\) 0 0
\(690\) 0 0
\(691\) −7.51754 + 2.73616i −0.285981 + 0.104088i −0.481028 0.876705i \(-0.659736\pi\)
0.195047 + 0.980794i \(0.437514\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −7.66044 6.42788i −0.289538 0.242951i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −77.0000 −2.90411
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.20335 52.1948i 0.345639 1.96022i 0.0767291 0.997052i \(-0.475552\pi\)
0.268910 0.963165i \(-0.413337\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −6.50000 + 11.2583i −0.242073 + 0.419282i
\(722\) 0 0
\(723\) 0 0
\(724\) −13.1557 4.78828i −0.488928 0.177955i
\(725\) 0 0
\(726\) 0 0
\(727\) 33.7060 + 28.2827i 1.25008 + 1.04895i 0.996666 + 0.0815889i \(0.0259995\pi\)
0.253419 + 0.967357i \(0.418445\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8.68241 + 49.2404i 0.320692 + 1.81874i 0.538363 + 0.842713i \(0.319043\pi\)
−0.217671 + 0.976022i \(0.569846\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i \(-0.0715853\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −38.5274 14.0228i −1.40588 0.511700i −0.475965 0.879464i \(-0.657901\pi\)
−0.929919 + 0.367764i \(0.880123\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(762\) 0 0
\(763\) −0.347296 + 1.96962i −0.0125730 + 0.0713049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.5362 + 31.4966i −1.35359 + 1.13580i −0.375684 + 0.926748i \(0.622592\pi\)
−0.977905 + 0.209048i \(0.932963\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 43.2259 15.7329i 1.55573 0.566240i
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) −10.0000 + 17.3205i −0.359211 + 0.622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −24.0000 −0.857143
\(785\) 0 0
\(786\) 0 0
\(787\) −5.38309 30.5290i −0.191887 1.08824i −0.916783 0.399385i \(-0.869224\pi\)
0.724897 0.688858i \(-0.241887\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.50000 + 4.33013i 0.0887776 + 0.153767i
\(794\) 0 0
\(795\) 0 0
\(796\) −16.8530 + 14.1413i −0.597338 + 0.501226i
\(797\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)