Properties

Label 729.2.e.e.568.1
Level $729$
Weight $2$
Character 729.568
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
CM discriminant -3
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{U}(1)[D_{9}]$

Embedding invariants

Embedding label 568.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 729.568
Dual form 729.2.e.e.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.53209 - 1.28558i) q^{4} +(-3.06418 + 2.57115i) q^{7} +O(q^{10})\) \(q+(-1.53209 - 1.28558i) q^{4} +(-3.06418 + 2.57115i) q^{7} +(6.57785 - 2.39414i) q^{13} +(0.694593 + 3.93923i) q^{16} +(0.500000 + 0.866025i) q^{19} +(4.69846 + 1.71010i) q^{25} +8.00000 q^{28} +(8.42649 + 7.07066i) q^{31} +(5.00000 - 8.66025i) q^{37} +(0.868241 + 4.92404i) q^{43} +(1.56283 - 8.86327i) q^{49} +(-13.1557 - 4.78828i) q^{52} +(-0.766044 + 0.642788i) q^{61} +(4.00000 - 6.92820i) q^{64} +(-4.69846 + 1.71010i) q^{67} +(3.50000 + 6.06218i) q^{73} +(0.347296 - 1.96962i) q^{76} +(12.2160 + 4.44626i) q^{79} +(-14.0000 + 24.2487i) q^{91} +(0.868241 + 4.92404i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{19} + 48 q^{28} + 30 q^{37} + 24 q^{64} + 21 q^{73} - 84 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(3\) 0 0
\(4\) −1.53209 1.28558i −0.766044 0.642788i
\(5\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(6\) 0 0
\(7\) −3.06418 + 2.57115i −1.15815 + 0.971804i −0.999878 0.0155920i \(-0.995037\pi\)
−0.158272 + 0.987396i \(0.550592\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(12\) 0 0
\(13\) 6.57785 2.39414i 1.82437 0.664015i 0.830033 0.557714i \(-0.188322\pi\)
0.994334 0.106301i \(-0.0339006\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.694593 + 3.93923i 0.173648 + 0.984808i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(24\) 0 0
\(25\) 4.69846 + 1.71010i 0.939693 + 0.342020i
\(26\) 0 0
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(30\) 0 0
\(31\) 8.42649 + 7.07066i 1.51344 + 1.26993i 0.856702 + 0.515812i \(0.172510\pi\)
0.656740 + 0.754117i \(0.271935\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 8.66025i 0.821995 1.42374i −0.0821995 0.996616i \(-0.526194\pi\)
0.904194 0.427121i \(-0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(42\) 0 0
\(43\) 0.868241 + 4.92404i 0.132405 + 0.750909i 0.976631 + 0.214921i \(0.0689495\pi\)
−0.844226 + 0.535988i \(0.819939\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(48\) 0 0
\(49\) 1.56283 8.86327i 0.223262 1.26618i
\(50\) 0 0
\(51\) 0 0
\(52\) −13.1557 4.78828i −1.82437 0.664015i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(60\) 0 0
\(61\) −0.766044 + 0.642788i −0.0980819 + 0.0823005i −0.690510 0.723323i \(-0.742614\pi\)
0.592428 + 0.805623i \(0.298169\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4.00000 6.92820i 0.500000 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) −4.69846 + 1.71010i −0.574009 + 0.208922i −0.612682 0.790330i \(-0.709909\pi\)
0.0386729 + 0.999252i \(0.487687\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(72\) 0 0
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.347296 1.96962i 0.0398376 0.225930i
\(77\) 0 0
\(78\) 0 0
\(79\) 12.2160 + 4.44626i 1.37441 + 0.500244i 0.920478 0.390794i \(-0.127800\pi\)
0.453930 + 0.891038i \(0.350022\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −14.0000 + 24.2487i −1.46760 + 2.54196i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.868241 + 4.92404i 0.0881565 + 0.499960i 0.996631 + 0.0820195i \(0.0261370\pi\)
−0.908474 + 0.417941i \(0.862752\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 8.66025i −0.500000 0.866025i
\(101\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(102\) 0 0
\(103\) −2.25743 + 12.8025i −0.222431 + 1.26147i 0.645105 + 0.764094i \(0.276813\pi\)
−0.867536 + 0.497374i \(0.834298\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −19.0000 −1.81987 −0.909935 0.414751i \(-0.863869\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −12.2567 10.2846i −1.15815 0.971804i
\(113\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.3366 3.76222i 0.939693 0.342020i
\(122\) 0 0
\(123\) 0 0
\(124\) −3.82026 21.6658i −0.343069 1.94564i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.500000 + 0.866025i 0.0443678 + 0.0768473i 0.887357 0.461084i \(-0.152539\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(132\) 0 0
\(133\) −3.75877 1.36808i −0.325927 0.118628i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(138\) 0 0
\(139\) −12.2567 10.2846i −1.03960 0.872329i −0.0476387 0.998865i \(-0.515170\pi\)
−0.991962 + 0.126536i \(0.959614\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −18.7939 + 6.84040i −1.54485 + 0.562278i
\(149\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(150\) 0 0
\(151\) −3.29932 18.7113i −0.268494 1.52271i −0.758896 0.651211i \(-0.774261\pi\)
0.490402 0.871496i \(-0.336850\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.34120 + 24.6202i −0.346466 + 1.96491i −0.105167 + 0.994455i \(0.533538\pi\)
−0.241299 + 0.970451i \(0.577574\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(168\) 0 0
\(169\) 27.5776 23.1404i 2.12135 1.78003i
\(170\) 0 0
\(171\) 0 0
\(172\) 5.00000 8.66025i 0.381246 0.660338i
\(173\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(174\) 0 0
\(175\) −18.7939 + 6.84040i −1.42068 + 0.517086i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) −13.0000 22.5167i −0.966282 1.67365i −0.706129 0.708083i \(-0.749560\pi\)
−0.260153 0.965567i \(-0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(192\) 0 0
\(193\) 17.6190 + 14.7841i 1.26824 + 1.06418i 0.994753 + 0.102310i \(0.0326233\pi\)
0.273492 + 0.961874i \(0.411821\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −13.7888 + 11.5702i −0.984914 + 0.826441i
\(197\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(198\) 0 0
\(199\) −8.50000 + 14.7224i −0.602549 + 1.04365i 0.389885 + 0.920864i \(0.372515\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 14.0000 + 24.2487i 0.970725 + 1.68135i
\(209\) 0 0
\(210\) 0 0
\(211\) 5.03580 28.5594i 0.346679 1.96611i 0.114625 0.993409i \(-0.463433\pi\)
0.232053 0.972703i \(-0.425456\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −44.0000 −2.98691
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.6190 14.7841i 1.17986 0.990018i 0.179877 0.983689i \(-0.442430\pi\)
0.999980 0.00632846i \(-0.00201443\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(228\) 0 0
\(229\) 6.57785 2.39414i 0.434676 0.158209i −0.115408 0.993318i \(-0.536818\pi\)
0.550085 + 0.835109i \(0.314595\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(240\) 0 0
\(241\) −13.1557 4.78828i −0.847433 0.308440i −0.118440 0.992961i \(-0.537789\pi\)
−0.728993 + 0.684521i \(0.760011\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 5.36231 + 4.49951i 0.341196 + 0.286297i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −15.0351 + 5.47232i −0.939693 + 0.342020i
\(257\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(258\) 0 0
\(259\) 6.94593 + 39.3923i 0.431599 + 2.44772i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 9.39693 + 3.42020i 0.574009 + 0.208922i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 29.0000 1.76162 0.880812 0.473466i \(-0.156997\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −23.7474 + 19.9264i −1.42684 + 1.19726i −0.479291 + 0.877656i \(0.659106\pi\)
−0.947550 + 0.319606i \(0.896449\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(282\) 0 0
\(283\) 6.57785 2.39414i 0.391012 0.142317i −0.139030 0.990288i \(-0.544398\pi\)
0.530042 + 0.847971i \(0.322176\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 2.43107 13.7873i 0.142268 0.806841i
\(293\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −15.3209 12.8558i −0.883081 0.740993i
\(302\) 0 0
\(303\) 0 0
\(304\) −3.06418 + 2.57115i −0.175743 + 0.147466i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.00000 13.8564i 0.456584 0.790827i −0.542194 0.840254i \(-0.682406\pi\)
0.998778 + 0.0494267i \(0.0157394\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(312\) 0 0
\(313\) −3.82026 21.6658i −0.215934 1.22462i −0.879279 0.476308i \(-0.841975\pi\)
0.663345 0.748314i \(-0.269136\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −13.0000 22.5167i −0.731307 1.26666i
\(317\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −23.7474 + 19.9264i −1.30527 + 1.09525i −0.316066 + 0.948737i \(0.602362\pi\)
−0.989208 + 0.146518i \(0.953193\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 31.9495 11.6287i 1.74040 0.633455i 0.741122 0.671370i \(-0.234294\pi\)
0.999281 + 0.0379157i \(0.0120718\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 4.00000 + 6.92820i 0.215980 + 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(348\) 0 0
\(349\) −13.1557 4.78828i −0.704208 0.256311i −0.0350017 0.999387i \(-0.511144\pi\)
−0.669207 + 0.743076i \(0.733366\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 52.6228 19.1531i 2.75818 1.00390i
\(365\) 0 0
\(366\) 0 0
\(367\) 6.07769 + 34.4683i 0.317253 + 1.79923i 0.559301 + 0.828965i \(0.311070\pi\)
−0.242048 + 0.970264i \(0.577819\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.34120 + 24.6202i −0.224779 + 1.27479i 0.638328 + 0.769764i \(0.279626\pi\)
−0.863107 + 0.505021i \(0.831485\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 5.00000 8.66025i 0.253837 0.439658i
\(389\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 + 0.866025i 0.0250943 + 0.0434646i 0.878300 0.478110i \(-0.158678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −3.47296 + 19.6962i −0.173648 + 0.984808i
\(401\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(402\) 0 0
\(403\) 72.3563 + 26.3356i 3.60433 + 1.31187i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 29.1097 + 24.4259i 1.43938 + 1.20778i 0.939895 + 0.341463i \(0.110922\pi\)
0.499486 + 0.866322i \(0.333522\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 19.9172 16.7125i 0.981248 0.823365i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(420\) 0 0
\(421\) −3.82026 21.6658i −0.186188 1.05593i −0.924419 0.381377i \(-0.875450\pi\)
0.738231 0.674548i \(-0.235661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.694593 3.93923i 0.0336137 0.190633i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 35.0000 1.68199 0.840996 0.541041i \(-0.181970\pi\)
0.840996 + 0.541041i \(0.181970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 29.1097 + 24.4259i 1.39410 + 1.16979i
\(437\) 0 0
\(438\) 0 0
\(439\) −21.4492 + 17.9981i −1.02372 + 0.859000i −0.990090 0.140434i \(-0.955150\pi\)
−0.0336266 + 0.999434i \(0.510706\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.55674 + 31.5138i 0.262531 + 1.48889i
\(449\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.5274 14.0228i −1.80224 0.655960i −0.998107 0.0615051i \(-0.980410\pi\)
−0.804129 0.594455i \(-0.797368\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(462\) 0 0
\(463\) −32.9399 27.6399i −1.53085 1.28453i −0.791294 0.611435i \(-0.790592\pi\)
−0.739553 0.673098i \(-0.764963\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) 10.0000 17.3205i 0.461757 0.799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.868241 + 4.92404i 0.0398376 + 0.225930i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(480\) 0 0
\(481\) 12.1554 68.9365i 0.554237 3.14324i
\(482\) 0 0
\(483\) 0 0
\(484\) −20.6732 7.52444i −0.939693 0.342020i
\(485\) 0 0
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −22.0000 + 38.1051i −0.987829 + 1.71097i
\(497\) 0 0
\(498\) 0 0
\(499\) −30.0702 + 10.9446i −1.34613 + 0.489950i −0.911736 0.410776i \(-0.865258\pi\)
−0.434389 + 0.900725i \(0.643036\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0.347296 1.96962i 0.0154088 0.0873876i
\(509\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(510\) 0 0
\(511\) −26.3114 9.57656i −1.16395 0.423642i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 21.5000 37.2391i 0.940129 1.62835i 0.174908 0.984585i \(-0.444037\pi\)
0.765222 0.643767i \(-0.222629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.99391 22.6506i −0.173648 0.984808i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00000 + 6.92820i 0.173422 + 0.300376i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −46.0000 −1.97769 −0.988847 0.148933i \(-0.952416\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.766044 + 0.642788i −0.0327537 + 0.0274836i −0.659018 0.752128i \(-0.729028\pi\)
0.626264 + 0.779611i \(0.284583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −48.8640 + 17.7850i −2.07791 + 0.756297i
\(554\) 0 0
\(555\) 0 0
\(556\) 5.55674 + 31.5138i 0.235658 + 1.33648i
\(557\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) 0 0
\(559\) 17.5000 + 30.3109i 0.740171 + 1.28201i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(570\) 0 0
\(571\) −12.2567 10.2846i −0.512927 0.430397i 0.349231 0.937037i \(-0.386443\pi\)
−0.862158 + 0.506640i \(0.830887\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.50000 + 9.52628i −0.228968 + 0.396584i −0.957503 0.288425i \(-0.906868\pi\)
0.728535 + 0.685009i \(0.240202\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(588\) 0 0
\(589\) −1.91013 + 10.8329i −0.0787055 + 0.446361i
\(590\) 0 0
\(591\) 0 0
\(592\) 37.5877 + 13.6808i 1.54485 + 0.562278i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(600\) 0 0
\(601\) 17.6190 14.7841i 0.718695 0.603057i −0.208329 0.978059i \(-0.566802\pi\)
0.927024 + 0.375002i \(0.122358\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −19.0000 + 32.9090i −0.773099 + 1.33905i
\(605\) 0 0
\(606\) 0 0
\(607\) −18.7939 + 6.84040i −0.762819 + 0.277643i −0.693990 0.719985i \(-0.744149\pi\)
−0.0688294 + 0.997628i \(0.521926\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −23.5000 40.7032i −0.949156 1.64399i −0.747208 0.664590i \(-0.768606\pi\)
−0.201948 0.979396i \(-0.564727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(618\) 0 0
\(619\) −15.9748 5.81434i −0.642080 0.233698i 0.000400419 1.00000i \(-0.499873\pi\)
−0.642481 + 0.766302i \(0.722095\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 19.1511 + 16.0697i 0.766044 + 0.642788i
\(626\) 0 0
\(627\) 0 0
\(628\) 38.3022 32.1394i 1.52843 1.28250i
\(629\) 0 0
\(630\) 0 0
\(631\) −22.0000 + 38.1051i −0.875806 + 1.51694i −0.0199047 + 0.999802i \(0.506336\pi\)
−0.855901 + 0.517139i \(0.826997\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −10.9398 62.0429i −0.433452 2.45823i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(642\) 0 0
\(643\) −6.94593 + 39.3923i −0.273921 + 1.55348i 0.468449 + 0.883491i \(0.344813\pi\)
−0.742370 + 0.669991i \(0.766298\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −12.2567 10.2846i −0.480010 0.402776i
\(653\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(660\) 0 0
\(661\) 46.0449 16.7590i 1.79094 0.651849i 0.791783 0.610802i \(-0.209153\pi\)
0.999157 0.0410470i \(-0.0130693\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 12.2160 + 4.44626i 0.470892 + 0.171391i 0.566557 0.824023i \(-0.308275\pi\)
−0.0956642 + 0.995414i \(0.530497\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −72.0000 −2.76923
\(677\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(678\) 0 0
\(679\) −15.3209 12.8558i −0.587962 0.493358i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −18.7939 + 6.84040i −0.716509 + 0.260788i
\(689\) 0 0
\(690\) 0 0
\(691\) −8.50876 48.2556i −0.323689 1.83573i −0.518735 0.854935i \(-0.673597\pi\)
0.195047 0.980794i \(-0.437514\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 37.5877 + 13.6808i 1.42068 + 0.517086i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.7474 + 19.9264i −0.891851 + 0.748352i −0.968581 0.248700i \(-0.919997\pi\)
0.0767291 + 0.997052i \(0.475552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) −26.0000 45.0333i −0.968291 1.67713i
\(722\) 0 0
\(723\) 0 0
\(724\) −9.02971 + 51.2100i −0.335586 + 1.90320i
\(725\) 0 0
\(726\) 0 0
\(727\) −41.3465 15.0489i −1.53346 0.558132i −0.568991 0.822344i \(-0.692666\pi\)
−0.964465 + 0.264211i \(0.914888\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −32.9399 27.6399i −1.21666 1.02090i −0.998992 0.0448796i \(-0.985710\pi\)
−0.217671 0.976022i \(-0.569846\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 18.5000 32.0429i 0.680534 1.17872i −0.294285 0.955718i \(-0.595081\pi\)
0.974818 0.223001i \(-0.0715853\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.02971 + 51.2100i −0.329499 + 1.86868i 0.146467 + 0.989216i \(0.453210\pi\)
−0.475965 + 0.879464i \(0.657901\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(762\) 0 0
\(763\) 58.2194 48.8519i 2.10768 1.76856i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −44.1656 + 16.0749i −1.59265 + 0.579677i −0.977905 0.209048i \(-0.932963\pi\)
−0.614745 + 0.788726i \(0.710741\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.98782 45.3012i −0.287488 1.63042i
\(773\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) 0 0
\(775\) 27.5000 + 47.6314i 0.987829 + 1.71097i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 36.0000 1.28571
\(785\) 0 0
\(786\) 0 0
\(787\) −23.7474 19.9264i −0.846503 0.710300i 0.112514 0.993650i \(-0.464110\pi\)
−0.959017 + 0.283350i \(0.908554\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.50000 + 6.06218i −0.124289 + 0.215274i
\(794\) 0 0
\(795\) 0 0
\(796\) 31.9495 11.6287i 1.13242 0.412168i
\(797\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0