Properties

Label 729.2.e.e.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
CM discriminant -3
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{U}(1)[D_{9}]$

Embedding invariants

Embedding label 406.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.e.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.347296 - 1.96962i) q^{4} +(-0.694593 + 3.93923i) q^{7} +O(q^{10})\) \(q+(-0.347296 - 1.96962i) q^{4} +(-0.694593 + 3.93923i) q^{7} +(-5.36231 + 4.49951i) q^{13} +(-3.75877 + 1.36808i) q^{16} +(0.500000 - 0.866025i) q^{19} +(-3.83022 - 3.21394i) q^{25} +8.00000 q^{28} +(1.91013 + 10.8329i) q^{31} +(5.00000 + 8.66025i) q^{37} +(-4.69846 + 1.71010i) q^{43} +(-8.45723 - 3.07818i) q^{49} +(10.7246 + 8.99903i) q^{52} +(-0.173648 + 0.984808i) q^{61} +(4.00000 + 6.92820i) q^{64} +(3.83022 - 3.21394i) q^{67} +(3.50000 - 6.06218i) q^{73} +(-1.87939 - 0.684040i) q^{76} +(-9.95858 - 8.35624i) q^{79} +(-14.0000 - 24.2487i) q^{91} +(-4.69846 + 1.71010i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{19} + 48 q^{28} + 30 q^{37} + 24 q^{64} + 21 q^{73} - 84 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(3\) 0 0
\(4\) −0.347296 1.96962i −0.173648 0.984808i
\(5\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(6\) 0 0
\(7\) −0.694593 + 3.93923i −0.262531 + 1.48889i 0.513442 + 0.858124i \(0.328370\pi\)
−0.775974 + 0.630765i \(0.782741\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(12\) 0 0
\(13\) −5.36231 + 4.49951i −1.48724 + 1.24794i −0.589226 + 0.807968i \(0.700567\pi\)
−0.898011 + 0.439972i \(0.854988\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.75877 + 1.36808i −0.939693 + 0.342020i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(24\) 0 0
\(25\) −3.83022 3.21394i −0.766044 0.642788i
\(26\) 0 0
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(30\) 0 0
\(31\) 1.91013 + 10.8329i 0.343069 + 1.94564i 0.324714 + 0.945812i \(0.394732\pi\)
0.0183550 + 0.999832i \(0.494157\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 + 8.66025i 0.821995 + 1.42374i 0.904194 + 0.427121i \(0.140472\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(42\) 0 0
\(43\) −4.69846 + 1.71010i −0.716509 + 0.260788i −0.674443 0.738327i \(-0.735616\pi\)
−0.0420659 + 0.999115i \(0.513394\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(48\) 0 0
\(49\) −8.45723 3.07818i −1.20818 0.439740i
\(50\) 0 0
\(51\) 0 0
\(52\) 10.7246 + 8.99903i 1.48724 + 1.24794i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(60\) 0 0
\(61\) −0.173648 + 0.984808i −0.0222334 + 0.126092i −0.993904 0.110246i \(-0.964836\pi\)
0.971671 + 0.236338i \(0.0759472\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 4.00000 + 6.92820i 0.500000 + 0.866025i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.83022 3.21394i 0.467936 0.392645i −0.378105 0.925763i \(-0.623424\pi\)
0.846041 + 0.533118i \(0.178980\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i \(-0.698986\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −1.87939 0.684040i −0.215580 0.0784648i
\(77\) 0 0
\(78\) 0 0
\(79\) −9.95858 8.35624i −1.12043 0.940150i −0.121802 0.992554i \(-0.538867\pi\)
−0.998626 + 0.0524041i \(0.983312\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) −14.0000 24.2487i −1.46760 2.54196i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.69846 + 1.71010i −0.477057 + 0.173634i −0.569346 0.822098i \(-0.692804\pi\)
0.0922897 + 0.995732i \(0.470581\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 + 8.66025i −0.500000 + 0.866025i
\(101\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(102\) 0 0
\(103\) 12.2160 + 4.44626i 1.20368 + 0.438103i 0.864507 0.502621i \(-0.167631\pi\)
0.339172 + 0.940724i \(0.389853\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −19.0000 −1.81987 −0.909935 0.414751i \(-0.863869\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.77837 15.7569i −0.262531 1.48889i
\(113\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.42649 + 7.07066i −0.766044 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) 20.6732 7.52444i 1.85651 0.675715i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.500000 0.866025i 0.0443678 0.0768473i −0.842989 0.537931i \(-0.819206\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 3.06418 + 2.57115i 0.265698 + 0.222947i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(138\) 0 0
\(139\) −2.77837 15.7569i −0.235658 1.33648i −0.841223 0.540689i \(-0.818164\pi\)
0.605564 0.795796i \(-0.292947\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 15.3209 12.8558i 1.25937 1.05674i
\(149\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(150\) 0 0
\(151\) 17.8542 6.49838i 1.45295 0.528831i 0.509537 0.860449i \(-0.329817\pi\)
0.943414 + 0.331618i \(0.107594\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 23.4923 + 8.55050i 1.87489 + 0.682404i 0.961085 + 0.276254i \(0.0890931\pi\)
0.913806 + 0.406150i \(0.133129\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(168\) 0 0
\(169\) 6.25133 35.4531i 0.480872 2.72716i
\(170\) 0 0
\(171\) 0 0
\(172\) 5.00000 + 8.66025i 0.381246 + 0.660338i
\(173\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(174\) 0 0
\(175\) 15.3209 12.8558i 1.15815 0.971804i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) −13.0000 + 22.5167i −0.966282 + 1.67365i −0.260153 + 0.965567i \(0.583773\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(192\) 0 0
\(193\) 3.99391 + 22.6506i 0.287488 + 1.63042i 0.696261 + 0.717788i \(0.254845\pi\)
−0.408773 + 0.912636i \(0.634043\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −3.12567 + 17.7265i −0.223262 + 1.26618i
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) −8.50000 14.7224i −0.602549 1.04365i −0.992434 0.122782i \(-0.960818\pi\)
0.389885 0.920864i \(-0.372515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 14.0000 24.2487i 0.970725 1.68135i
\(209\) 0 0
\(210\) 0 0
\(211\) −27.2511 9.91858i −1.87604 0.682823i −0.958412 0.285388i \(-0.907878\pi\)
−0.917630 0.397436i \(-0.869900\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −44.0000 −2.98691
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.99391 22.6506i 0.267452 1.51679i −0.494509 0.869172i \(-0.664652\pi\)
0.761961 0.647623i \(-0.224237\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(228\) 0 0
\(229\) −5.36231 + 4.49951i −0.354351 + 0.297336i −0.802535 0.596606i \(-0.796516\pi\)
0.448183 + 0.893942i \(0.352071\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(240\) 0 0
\(241\) 10.7246 + 8.99903i 0.690834 + 0.579678i 0.919150 0.393909i \(-0.128877\pi\)
−0.228316 + 0.973587i \(0.573322\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 1.21554 + 6.89365i 0.0773428 + 0.438633i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 12.2567 10.2846i 0.766044 0.642788i
\(257\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(258\) 0 0
\(259\) −37.5877 + 13.6808i −2.33559 + 0.850084i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −7.66044 6.42788i −0.467936 0.392645i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 29.0000 1.76162 0.880812 0.473466i \(-0.156997\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.38309 + 30.5290i −0.323439 + 1.83431i 0.196988 + 0.980406i \(0.436884\pi\)
−0.520427 + 0.853906i \(0.674227\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(282\) 0 0
\(283\) −5.36231 + 4.49951i −0.318756 + 0.267468i −0.788100 0.615547i \(-0.788935\pi\)
0.469344 + 0.883016i \(0.344491\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) −13.1557 4.78828i −0.769879 0.280213i
\(293\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.47296 19.6962i −0.200178 1.13527i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.694593 + 3.93923i −0.0398376 + 0.225930i
\(305\) 0 0
\(306\) 0 0
\(307\) 8.00000 + 13.8564i 0.456584 + 0.790827i 0.998778 0.0494267i \(-0.0157394\pi\)
−0.542194 + 0.840254i \(0.682406\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(312\) 0 0
\(313\) 20.6732 7.52444i 1.16852 0.425307i 0.316387 0.948630i \(-0.397530\pi\)
0.852134 + 0.523324i \(0.175308\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −13.0000 + 22.5167i −0.731307 + 1.26666i
\(317\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 35.0000 1.94145
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.38309 + 30.5290i −0.295882 + 1.67803i 0.367716 + 0.929938i \(0.380140\pi\)
−0.663598 + 0.748090i \(0.730971\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −26.0455 + 21.8548i −1.41879 + 1.19051i −0.466805 + 0.884361i \(0.654595\pi\)
−0.951985 + 0.306145i \(0.900961\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 4.00000 6.92820i 0.215980 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(348\) 0 0
\(349\) 10.7246 + 8.99903i 0.574076 + 0.481707i 0.882996 0.469381i \(-0.155523\pi\)
−0.308920 + 0.951088i \(0.599967\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) −42.8985 + 35.9961i −2.24849 + 1.88671i
\(365\) 0 0
\(366\) 0 0
\(367\) −32.8892 + 11.9707i −1.71680 + 0.624866i −0.997555 0.0698862i \(-0.977736\pi\)
−0.719249 + 0.694752i \(0.755514\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 23.4923 + 8.55050i 1.21639 + 0.442728i 0.868914 0.494962i \(-0.164818\pi\)
0.347472 + 0.937691i \(0.387040\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 5.00000 + 8.66025i 0.253837 + 0.439658i
\(389\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 18.7939 + 6.84040i 0.939693 + 0.342020i
\(401\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(402\) 0 0
\(403\) −58.9854 49.4946i −2.93827 2.46550i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 6.59863 + 37.4227i 0.326281 + 1.85043i 0.500514 + 0.865729i \(0.333144\pi\)
−0.174232 + 0.984705i \(0.555744\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.51485 25.6050i 0.222431 1.26147i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(420\) 0 0
\(421\) 20.6732 7.52444i 1.00755 0.366719i 0.215060 0.976601i \(-0.431005\pi\)
0.792492 + 0.609882i \(0.208783\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.75877 1.36808i −0.181900 0.0662061i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 35.0000 1.68199 0.840996 0.541041i \(-0.181970\pi\)
0.840996 + 0.541041i \(0.181970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.59863 + 37.4227i 0.316017 + 1.79222i
\(437\) 0 0
\(438\) 0 0
\(439\) −4.86215 + 27.5746i −0.232058 + 1.31606i 0.616665 + 0.787226i \(0.288483\pi\)
−0.848722 + 0.528839i \(0.822628\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −30.0702 + 10.9446i −1.42068 + 0.517086i
\(449\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.4078 + 26.3543i 1.46920 + 1.23280i 0.916878 + 0.399169i \(0.130701\pi\)
0.552318 + 0.833633i \(0.313743\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(462\) 0 0
\(463\) −7.46687 42.3467i −0.347015 1.96802i −0.213144 0.977021i \(-0.568370\pi\)
−0.133871 0.990999i \(-0.542741\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) 10.0000 + 17.3205i 0.461757 + 0.799787i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.69846 + 1.71010i −0.215580 + 0.0784648i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(480\) 0 0
\(481\) −65.7785 23.9414i −2.99924 1.09163i
\(482\) 0 0
\(483\) 0 0
\(484\) 16.8530 + 14.1413i 0.766044 + 0.642788i
\(485\) 0 0
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −22.0000 38.1051i −0.987829 1.71097i
\(497\) 0 0
\(498\) 0 0
\(499\) 24.5134 20.5692i 1.09737 0.920804i 0.100126 0.994975i \(-0.468075\pi\)
0.997246 + 0.0741708i \(0.0236310\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.87939 0.684040i −0.0833842 0.0303494i
\(509\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(510\) 0 0
\(511\) 21.4492 + 17.9981i 0.948859 + 0.796187i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) 21.5000 + 37.2391i 0.940129 + 1.62835i 0.765222 + 0.643767i \(0.222629\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.6129 7.86646i 0.939693 0.342020i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00000 6.92820i 0.173422 0.300376i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −46.0000 −1.97769 −0.988847 0.148933i \(-0.952416\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.173648 + 0.984808i −0.00742466 + 0.0421073i −0.988295 0.152555i \(-0.951250\pi\)
0.980870 + 0.194662i \(0.0623610\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 39.8343 33.4250i 1.69393 1.42137i
\(554\) 0 0
\(555\) 0 0
\(556\) −30.0702 + 10.9446i −1.27526 + 0.464156i
\(557\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(558\) 0 0
\(559\) 17.5000 30.3109i 0.740171 1.28201i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(570\) 0 0
\(571\) −2.77837 15.7569i −0.116271 0.659407i −0.986113 0.166076i \(-0.946890\pi\)
0.869842 0.493331i \(-0.164221\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.228968 0.396584i 0.728535 0.685009i \(-0.240202\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(588\) 0 0
\(589\) 10.3366 + 3.76222i 0.425913 + 0.155020i
\(590\) 0 0
\(591\) 0 0
\(592\) −30.6418 25.7115i −1.25937 1.05674i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(600\) 0 0
\(601\) 3.99391 22.6506i 0.162915 0.923936i −0.788273 0.615325i \(-0.789025\pi\)
0.951188 0.308611i \(-0.0998642\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −19.0000 32.9090i −0.773099 1.33905i
\(605\) 0 0
\(606\) 0 0
\(607\) 15.3209 12.8558i 0.621856 0.521799i −0.276531 0.961005i \(-0.589185\pi\)
0.898386 + 0.439206i \(0.144740\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −23.5000 + 40.7032i −0.949156 + 1.64399i −0.201948 + 0.979396i \(0.564727\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(618\) 0 0
\(619\) 13.0228 + 10.9274i 0.523429 + 0.439209i 0.865825 0.500347i \(-0.166794\pi\)
−0.342396 + 0.939556i \(0.611239\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.34120 + 24.6202i 0.173648 + 0.984808i
\(626\) 0 0
\(627\) 0 0
\(628\) 8.68241 49.2404i 0.346466 1.96491i
\(629\) 0 0
\(630\) 0 0
\(631\) −22.0000 38.1051i −0.875806 1.51694i −0.855901 0.517139i \(-0.826997\pi\)
−0.0199047 0.999802i \(-0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 59.2006 21.5473i 2.34561 0.853734i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(642\) 0 0
\(643\) 37.5877 + 13.6808i 1.48231 + 0.539518i 0.951414 0.307916i \(-0.0996315\pi\)
0.530901 + 0.847434i \(0.321854\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −2.77837 15.7569i −0.108809 0.617089i
\(653\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(660\) 0 0
\(661\) −37.5362 + 31.4966i −1.45999 + 1.22508i −0.535126 + 0.844772i \(0.679736\pi\)
−0.924862 + 0.380303i \(0.875820\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9.95858 8.35624i −0.383875 0.322109i 0.430346 0.902664i \(-0.358391\pi\)
−0.814221 + 0.580554i \(0.802836\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −72.0000 −2.76923
\(677\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(678\) 0 0
\(679\) −3.47296 19.6962i −0.133280 0.755869i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 15.3209 12.8558i 0.584103 0.490121i
\(689\) 0 0
\(690\) 0 0
\(691\) 46.0449 16.7590i 1.75163 0.637542i 0.751869 0.659313i \(-0.229153\pi\)
0.999763 + 0.0217706i \(0.00693034\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −30.6418 25.7115i −1.15815 0.971804i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.38309 + 30.5290i −0.202166 + 1.14654i 0.699671 + 0.714466i \(0.253330\pi\)
−0.901837 + 0.432077i \(0.857781\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −26.0000 + 45.0333i −0.968291 + 1.67713i
\(722\) 0 0
\(723\) 0 0
\(724\) 48.8640 + 17.7850i 1.81602 + 0.660976i
\(725\) 0 0
\(726\) 0 0
\(727\) 33.7060 + 28.2827i 1.25008 + 1.04895i 0.996666 + 0.0815889i \(0.0259995\pi\)
0.253419 + 0.967357i \(0.418445\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −7.46687 42.3467i −0.275795 1.56411i −0.736425 0.676520i \(-0.763487\pi\)
0.460629 0.887593i \(-0.347624\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 18.5000 + 32.0429i 0.680534 + 1.17872i 0.974818 + 0.223001i \(0.0715853\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 48.8640 + 17.7850i 1.78307 + 0.648986i 0.999621 + 0.0275338i \(0.00876539\pi\)
0.783452 + 0.621452i \(0.213457\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0000 1.05402 0.527011 0.849858i \(-0.323312\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(762\) 0 0
\(763\) 13.1973 74.8454i 0.477773 2.70959i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 36.0041 30.2110i 1.29834 1.08944i 0.307912 0.951415i \(-0.400370\pi\)
0.990429 0.138022i \(-0.0440745\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 43.2259 15.7329i 1.55573 0.566240i
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 27.5000 47.6314i 0.987829 1.71097i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 36.0000 1.28571
\(785\) 0 0
\(786\) 0 0
\(787\) −5.38309 30.5290i −0.191887 1.08824i −0.916783 0.399385i \(-0.869224\pi\)
0.724897 0.688858i \(-0.241887\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.50000 6.06218i −0.124289 0.215274i
\(794\) 0 0
\(795\) 0 0
\(796\) −26.0455 + 21.8548i −0.923159 + 0.774622i
\(797\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0