Properties

Label 729.2.e.c.325.1
Level $729$
Weight $2$
Character 729.325
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 325.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.325
Dual form 729.2.e.c.406.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03209 - 0.866025i) q^{2} +(-0.0320889 + 0.181985i) q^{4} +(-1.55303 + 0.565258i) q^{5} +(0.418748 + 2.37484i) q^{7} +(1.47178 + 2.54920i) q^{8} +O(q^{10})\) \(q+(1.03209 - 0.866025i) q^{2} +(-0.0320889 + 0.181985i) q^{4} +(-1.55303 + 0.565258i) q^{5} +(0.418748 + 2.37484i) q^{7} +(1.47178 + 2.54920i) q^{8} +(-1.11334 + 1.92836i) q^{10} +(-5.58512 - 2.03282i) q^{11} +(-2.47178 - 2.07407i) q^{13} +(2.48886 + 2.08840i) q^{14} +(3.37939 + 1.23000i) q^{16} +(-1.50000 + 2.59808i) q^{17} +(3.31908 + 5.74881i) q^{19} +(-0.0530334 - 0.300767i) q^{20} +(-7.52481 + 2.73881i) q^{22} +(-0.511144 + 2.89884i) q^{23} +(-1.73783 + 1.45821i) q^{25} -4.34730 q^{26} -0.445622 q^{28} +(-0.988856 + 0.829748i) q^{29} +(-0.102196 + 0.579585i) q^{31} +(-0.979055 + 0.356347i) q^{32} +(0.701867 + 3.98048i) q^{34} +(-1.99273 - 3.45150i) q^{35} +(-0.0209445 + 0.0362770i) q^{37} +(8.40420 + 3.05888i) q^{38} +(-3.72668 - 3.12706i) q^{40} +(-3.75490 - 3.15074i) q^{41} +(4.87211 + 1.77330i) q^{43} +(0.549163 - 0.951178i) q^{44} +(1.98293 + 3.43453i) q^{46} +(-0.648833 - 3.67972i) q^{47} +(1.11334 - 0.405223i) q^{49} +(-0.530745 + 3.01000i) q^{50} +(0.456767 - 0.383273i) q^{52} +11.6382 q^{53} +9.82295 q^{55} +(-5.43763 + 4.56272i) q^{56} +(-0.302004 + 1.71275i) q^{58} +(6.90420 - 2.51292i) q^{59} +(1.91875 + 10.8818i) q^{61} +(0.396459 + 0.686688i) q^{62} +(-4.29813 + 7.44459i) q^{64} +(5.01114 + 1.82391i) q^{65} +(1.42262 + 1.19372i) q^{67} +(-0.424678 - 0.356347i) q^{68} +(-5.04576 - 1.83651i) q^{70} +(2.75624 - 4.77396i) q^{71} +(-2.77719 - 4.81023i) q^{73} +(0.00980018 + 0.0555796i) q^{74} +(-1.15270 + 0.419550i) q^{76} +(2.48886 - 14.1150i) q^{77} +(-2.89646 + 2.43042i) q^{79} -5.94356 q^{80} -6.60401 q^{82} +(3.05303 - 2.56180i) q^{83} +(0.860967 - 4.88279i) q^{85} +(6.56418 - 2.38917i) q^{86} +(-3.03802 - 17.2295i) q^{88} +(-4.07532 - 7.05866i) q^{89} +(3.89053 - 6.73859i) q^{91} +(-0.511144 - 0.186041i) q^{92} +(-3.85638 - 3.23589i) q^{94} +(-8.40420 - 7.05196i) q^{95} +(-0.245100 - 0.0892091i) q^{97} +(0.798133 - 1.38241i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 9 q^{4} + 3 q^{5} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{2} + 9 q^{4} + 3 q^{5} - 6 q^{8} - 12 q^{11} + 21 q^{14} + 9 q^{16} - 9 q^{17} + 3 q^{19} + 12 q^{20} - 18 q^{22} + 3 q^{23} + 9 q^{25} - 24 q^{26} - 24 q^{28} - 12 q^{29} - 9 q^{32} + 18 q^{34} + 6 q^{35} + 3 q^{37} + 12 q^{38} - 9 q^{40} - 24 q^{41} + 15 q^{44} - 9 q^{46} - 30 q^{47} - 3 q^{50} + 18 q^{52} + 36 q^{53} + 18 q^{55} + 24 q^{56} + 36 q^{58} + 3 q^{59} + 9 q^{61} + 12 q^{62} - 12 q^{64} + 24 q^{65} - 18 q^{67} - 27 q^{68} + 9 q^{71} - 6 q^{73} + 3 q^{74} - 9 q^{76} + 21 q^{77} - 27 q^{79} - 6 q^{80} + 36 q^{82} + 6 q^{83} - 18 q^{85} + 21 q^{86} - 36 q^{88} + 6 q^{91} + 3 q^{92} + 36 q^{94} - 12 q^{95} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03209 0.866025i 0.729797 0.612372i −0.200279 0.979739i \(-0.564185\pi\)
0.930076 + 0.367366i \(0.119740\pi\)
\(3\) 0 0
\(4\) −0.0320889 + 0.181985i −0.0160444 + 0.0909926i
\(5\) −1.55303 + 0.565258i −0.694538 + 0.252791i −0.665077 0.746775i \(-0.731601\pi\)
−0.0294608 + 0.999566i \(0.509379\pi\)
\(6\) 0 0
\(7\) 0.418748 + 2.37484i 0.158272 + 0.897605i 0.955733 + 0.294235i \(0.0950647\pi\)
−0.797461 + 0.603370i \(0.793824\pi\)
\(8\) 1.47178 + 2.54920i 0.520353 + 0.901278i
\(9\) 0 0
\(10\) −1.11334 + 1.92836i −0.352069 + 0.609802i
\(11\) −5.58512 2.03282i −1.68398 0.612918i −0.690131 0.723684i \(-0.742447\pi\)
−0.993846 + 0.110766i \(0.964669\pi\)
\(12\) 0 0
\(13\) −2.47178 2.07407i −0.685549 0.575244i 0.232073 0.972698i \(-0.425449\pi\)
−0.917622 + 0.397455i \(0.869894\pi\)
\(14\) 2.48886 + 2.08840i 0.665175 + 0.558148i
\(15\) 0 0
\(16\) 3.37939 + 1.23000i 0.844846 + 0.307499i
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 3.31908 + 5.74881i 0.761449 + 1.31887i 0.942104 + 0.335321i \(0.108845\pi\)
−0.180655 + 0.983547i \(0.557822\pi\)
\(20\) −0.0530334 0.300767i −0.0118586 0.0672537i
\(21\) 0 0
\(22\) −7.52481 + 2.73881i −1.60430 + 0.583916i
\(23\) −0.511144 + 2.89884i −0.106581 + 0.604451i 0.883996 + 0.467494i \(0.154843\pi\)
−0.990577 + 0.136956i \(0.956268\pi\)
\(24\) 0 0
\(25\) −1.73783 + 1.45821i −0.347565 + 0.291642i
\(26\) −4.34730 −0.852575
\(27\) 0 0
\(28\) −0.445622 −0.0842147
\(29\) −0.988856 + 0.829748i −0.183626 + 0.154080i −0.729967 0.683482i \(-0.760465\pi\)
0.546341 + 0.837563i \(0.316020\pi\)
\(30\) 0 0
\(31\) −0.102196 + 0.579585i −0.0183550 + 0.104097i −0.992609 0.121357i \(-0.961275\pi\)
0.974254 + 0.225454i \(0.0723865\pi\)
\(32\) −0.979055 + 0.356347i −0.173074 + 0.0629939i
\(33\) 0 0
\(34\) 0.701867 + 3.98048i 0.120369 + 0.682647i
\(35\) −1.99273 3.45150i −0.336832 0.583410i
\(36\) 0 0
\(37\) −0.0209445 + 0.0362770i −0.00344326 + 0.00596390i −0.867742 0.497015i \(-0.834429\pi\)
0.864299 + 0.502979i \(0.167763\pi\)
\(38\) 8.40420 + 3.05888i 1.36334 + 0.496216i
\(39\) 0 0
\(40\) −3.72668 3.12706i −0.589240 0.494431i
\(41\) −3.75490 3.15074i −0.586417 0.492062i 0.300630 0.953741i \(-0.402803\pi\)
−0.887047 + 0.461679i \(0.847247\pi\)
\(42\) 0 0
\(43\) 4.87211 + 1.77330i 0.742990 + 0.270426i 0.685653 0.727929i \(-0.259517\pi\)
0.0573371 + 0.998355i \(0.481739\pi\)
\(44\) 0.549163 0.951178i 0.0827894 0.143396i
\(45\) 0 0
\(46\) 1.98293 + 3.43453i 0.292366 + 0.506394i
\(47\) −0.648833 3.67972i −0.0946421 0.536742i −0.994856 0.101295i \(-0.967701\pi\)
0.900214 0.435447i \(-0.143410\pi\)
\(48\) 0 0
\(49\) 1.11334 0.405223i 0.159049 0.0578890i
\(50\) −0.530745 + 3.01000i −0.0750586 + 0.425679i
\(51\) 0 0
\(52\) 0.456767 0.383273i 0.0633422 0.0531504i
\(53\) 11.6382 1.59862 0.799312 0.600916i \(-0.205198\pi\)
0.799312 + 0.600916i \(0.205198\pi\)
\(54\) 0 0
\(55\) 9.82295 1.32453
\(56\) −5.43763 + 4.56272i −0.726634 + 0.609719i
\(57\) 0 0
\(58\) −0.302004 + 1.71275i −0.0396550 + 0.224895i
\(59\) 6.90420 2.51292i 0.898850 0.327155i 0.149058 0.988828i \(-0.452376\pi\)
0.749792 + 0.661674i \(0.230154\pi\)
\(60\) 0 0
\(61\) 1.91875 + 10.8818i 0.245671 + 1.39327i 0.818930 + 0.573893i \(0.194567\pi\)
−0.573260 + 0.819374i \(0.694321\pi\)
\(62\) 0.396459 + 0.686688i 0.0503504 + 0.0872094i
\(63\) 0 0
\(64\) −4.29813 + 7.44459i −0.537267 + 0.930573i
\(65\) 5.01114 + 1.82391i 0.621556 + 0.226228i
\(66\) 0 0
\(67\) 1.42262 + 1.19372i 0.173801 + 0.145836i 0.725539 0.688182i \(-0.241591\pi\)
−0.551738 + 0.834017i \(0.686035\pi\)
\(68\) −0.424678 0.356347i −0.0514998 0.0432134i
\(69\) 0 0
\(70\) −5.04576 1.83651i −0.603084 0.219504i
\(71\) 2.75624 4.77396i 0.327106 0.566564i −0.654830 0.755776i \(-0.727260\pi\)
0.981936 + 0.189212i \(0.0605932\pi\)
\(72\) 0 0
\(73\) −2.77719 4.81023i −0.325045 0.562995i 0.656476 0.754347i \(-0.272046\pi\)
−0.981522 + 0.191352i \(0.938713\pi\)
\(74\) 0.00980018 + 0.0555796i 0.00113925 + 0.00646100i
\(75\) 0 0
\(76\) −1.15270 + 0.419550i −0.132224 + 0.0481257i
\(77\) 2.48886 14.1150i 0.283631 1.60855i
\(78\) 0 0
\(79\) −2.89646 + 2.43042i −0.325877 + 0.273443i −0.791017 0.611794i \(-0.790448\pi\)
0.465140 + 0.885237i \(0.346004\pi\)
\(80\) −5.94356 −0.664511
\(81\) 0 0
\(82\) −6.60401 −0.729291
\(83\) 3.05303 2.56180i 0.335114 0.281194i −0.459666 0.888092i \(-0.652031\pi\)
0.794780 + 0.606898i \(0.207586\pi\)
\(84\) 0 0
\(85\) 0.860967 4.88279i 0.0933850 0.529613i
\(86\) 6.56418 2.38917i 0.707833 0.257630i
\(87\) 0 0
\(88\) −3.03802 17.2295i −0.323854 1.83667i
\(89\) −4.07532 7.05866i −0.431983 0.748217i 0.565061 0.825049i \(-0.308853\pi\)
−0.997044 + 0.0768323i \(0.975519\pi\)
\(90\) 0 0
\(91\) 3.89053 6.73859i 0.407838 0.706397i
\(92\) −0.511144 0.186041i −0.0532905 0.0193961i
\(93\) 0 0
\(94\) −3.85638 3.23589i −0.397755 0.333756i
\(95\) −8.40420 7.05196i −0.862253 0.723516i
\(96\) 0 0
\(97\) −0.245100 0.0892091i −0.0248861 0.00905781i 0.329547 0.944139i \(-0.393104\pi\)
−0.354433 + 0.935081i \(0.615326\pi\)
\(98\) 0.798133 1.38241i 0.0806236 0.139644i
\(99\) 0 0
\(100\) −0.209607 0.363051i −0.0209607 0.0363051i
\(101\) 1.91488 + 10.8598i 0.190537 + 1.08059i 0.918632 + 0.395115i \(0.129295\pi\)
−0.728094 + 0.685477i \(0.759594\pi\)
\(102\) 0 0
\(103\) 3.67112 1.33618i 0.361726 0.131658i −0.154762 0.987952i \(-0.549461\pi\)
0.516489 + 0.856294i \(0.327239\pi\)
\(104\) 1.64930 9.35365i 0.161727 0.917200i
\(105\) 0 0
\(106\) 12.0116 10.0789i 1.16667 0.978953i
\(107\) −2.63816 −0.255040 −0.127520 0.991836i \(-0.540702\pi\)
−0.127520 + 0.991836i \(0.540702\pi\)
\(108\) 0 0
\(109\) −8.95811 −0.858031 −0.429016 0.903297i \(-0.641140\pi\)
−0.429016 + 0.903297i \(0.641140\pi\)
\(110\) 10.1382 8.50692i 0.966635 0.811103i
\(111\) 0 0
\(112\) −1.50593 + 8.54055i −0.142297 + 0.807006i
\(113\) −14.9684 + 5.44804i −1.40811 + 0.512509i −0.930574 0.366105i \(-0.880691\pi\)
−0.477533 + 0.878614i \(0.658469\pi\)
\(114\) 0 0
\(115\) −0.844770 4.79093i −0.0787752 0.446756i
\(116\) −0.119271 0.206583i −0.0110740 0.0191807i
\(117\) 0 0
\(118\) 4.94949 8.57277i 0.455638 0.789188i
\(119\) −6.79813 2.47432i −0.623184 0.226820i
\(120\) 0 0
\(121\) 18.6348 + 15.6364i 1.69407 + 1.42149i
\(122\) 11.4042 + 9.56926i 1.03249 + 0.866360i
\(123\) 0 0
\(124\) −0.102196 0.0371965i −0.00917751 0.00334034i
\(125\) 6.00640 10.4034i 0.537228 0.930507i
\(126\) 0 0
\(127\) −1.79813 3.11446i −0.159559 0.276363i 0.775151 0.631776i \(-0.217674\pi\)
−0.934710 + 0.355412i \(0.884340\pi\)
\(128\) 1.64930 + 9.35365i 0.145779 + 0.826753i
\(129\) 0 0
\(130\) 6.75150 2.45734i 0.592145 0.215523i
\(131\) −3.07486 + 17.4384i −0.268651 + 1.52360i 0.489781 + 0.871846i \(0.337077\pi\)
−0.758432 + 0.651752i \(0.774034\pi\)
\(132\) 0 0
\(133\) −12.2626 + 10.2896i −1.06331 + 0.892220i
\(134\) 2.50206 0.216145
\(135\) 0 0
\(136\) −8.83069 −0.757225
\(137\) −3.00980 + 2.52552i −0.257145 + 0.215770i −0.762242 0.647293i \(-0.775901\pi\)
0.505097 + 0.863063i \(0.331457\pi\)
\(138\) 0 0
\(139\) 2.07785 11.7841i 0.176241 0.999511i −0.760461 0.649383i \(-0.775027\pi\)
0.936702 0.350128i \(-0.113862\pi\)
\(140\) 0.692066 0.251892i 0.0584903 0.0212887i
\(141\) 0 0
\(142\) −1.28968 7.31412i −0.108227 0.613788i
\(143\) 9.58899 + 16.6086i 0.801872 + 1.38888i
\(144\) 0 0
\(145\) 1.06670 1.84759i 0.0885849 0.153434i
\(146\) −7.03209 2.55947i −0.581980 0.211823i
\(147\) 0 0
\(148\) −0.00592979 0.00497568i −0.000487425 0.000408999i
\(149\) 15.7233 + 13.1934i 1.28810 + 1.08085i 0.992073 + 0.125666i \(0.0401068\pi\)
0.296029 + 0.955179i \(0.404338\pi\)
\(150\) 0 0
\(151\) −15.0424 5.47497i −1.22413 0.445547i −0.352546 0.935794i \(-0.614684\pi\)
−0.871583 + 0.490248i \(0.836906\pi\)
\(152\) −9.76991 + 16.9220i −0.792445 + 1.37255i
\(153\) 0 0
\(154\) −9.65523 16.7233i −0.778041 1.34761i
\(155\) −0.168900 0.957882i −0.0135664 0.0769389i
\(156\) 0 0
\(157\) 20.6484 7.51541i 1.64792 0.599795i 0.659526 0.751682i \(-0.270757\pi\)
0.988398 + 0.151887i \(0.0485350\pi\)
\(158\) −0.884600 + 5.01681i −0.0703750 + 0.399116i
\(159\) 0 0
\(160\) 1.31908 1.10684i 0.104282 0.0875032i
\(161\) −7.09833 −0.559426
\(162\) 0 0
\(163\) 20.5107 1.60652 0.803262 0.595625i \(-0.203096\pi\)
0.803262 + 0.595625i \(0.203096\pi\)
\(164\) 0.693877 0.582232i 0.0541827 0.0454647i
\(165\) 0 0
\(166\) 0.932419 5.28801i 0.0723697 0.410429i
\(167\) −4.03209 + 1.46756i −0.312012 + 0.113563i −0.493280 0.869871i \(-0.664202\pi\)
0.181268 + 0.983434i \(0.441980\pi\)
\(168\) 0 0
\(169\) −0.449493 2.54920i −0.0345764 0.196092i
\(170\) −3.34002 5.78509i −0.256168 0.443696i
\(171\) 0 0
\(172\) −0.479055 + 0.829748i −0.0365276 + 0.0632677i
\(173\) −3.56418 1.29725i −0.270979 0.0986284i 0.202957 0.979188i \(-0.434945\pi\)
−0.473936 + 0.880559i \(0.657167\pi\)
\(174\) 0 0
\(175\) −4.19072 3.51643i −0.316789 0.265817i
\(176\) −16.3739 13.7394i −1.23423 1.03564i
\(177\) 0 0
\(178\) −10.3191 3.75584i −0.773448 0.281512i
\(179\) −4.13816 + 7.16750i −0.309300 + 0.535724i −0.978209 0.207620i \(-0.933428\pi\)
0.668909 + 0.743344i \(0.266761\pi\)
\(180\) 0 0
\(181\) −3.36097 5.82137i −0.249819 0.432699i 0.713657 0.700496i \(-0.247038\pi\)
−0.963475 + 0.267797i \(0.913704\pi\)
\(182\) −1.82042 10.3241i −0.134939 0.765275i
\(183\) 0 0
\(184\) −8.14203 + 2.96346i −0.600238 + 0.218469i
\(185\) 0.0120217 0.0681784i 0.000883853 0.00501258i
\(186\) 0 0
\(187\) 13.6591 11.4613i 0.998852 0.838137i
\(188\) 0.690474 0.0503580
\(189\) 0 0
\(190\) −14.7811 −1.07233
\(191\) −3.84137 + 3.22329i −0.277952 + 0.233229i −0.771097 0.636718i \(-0.780292\pi\)
0.493145 + 0.869947i \(0.335847\pi\)
\(192\) 0 0
\(193\) −3.10220 + 17.5934i −0.223301 + 1.26640i 0.642606 + 0.766197i \(0.277853\pi\)
−0.865907 + 0.500206i \(0.833258\pi\)
\(194\) −0.330222 + 0.120191i −0.0237086 + 0.00862922i
\(195\) 0 0
\(196\) 0.0380187 + 0.215615i 0.00271562 + 0.0154010i
\(197\) −0.361844 0.626733i −0.0257803 0.0446529i 0.852847 0.522160i \(-0.174874\pi\)
−0.878628 + 0.477507i \(0.841540\pi\)
\(198\) 0 0
\(199\) 5.09627 8.82699i 0.361265 0.625729i −0.626905 0.779096i \(-0.715678\pi\)
0.988169 + 0.153367i \(0.0490117\pi\)
\(200\) −6.27497 2.28390i −0.443707 0.161496i
\(201\) 0 0
\(202\) 11.3812 + 9.54996i 0.800778 + 0.671933i
\(203\) −2.38460 2.00092i −0.167366 0.140437i
\(204\) 0 0
\(205\) 7.61246 + 2.77071i 0.531678 + 0.193515i
\(206\) 2.63176 4.55834i 0.183363 0.317595i
\(207\) 0 0
\(208\) −5.80200 10.0494i −0.402297 0.696798i
\(209\) −6.85117 38.8549i −0.473905 2.68765i
\(210\) 0 0
\(211\) 13.9684 5.08407i 0.961623 0.350002i 0.186954 0.982369i \(-0.440139\pi\)
0.774669 + 0.632367i \(0.217916\pi\)
\(212\) −0.373455 + 2.11797i −0.0256490 + 0.145463i
\(213\) 0 0
\(214\) −2.72281 + 2.28471i −0.186128 + 0.156180i
\(215\) −8.56893 −0.584396
\(216\) 0 0
\(217\) −1.41921 −0.0963426
\(218\) −9.24557 + 7.75795i −0.626189 + 0.525435i
\(219\) 0 0
\(220\) −0.315207 + 1.78763i −0.0212513 + 0.120522i
\(221\) 9.09627 3.31077i 0.611881 0.222707i
\(222\) 0 0
\(223\) −1.90121 10.7823i −0.127314 0.722035i −0.979906 0.199458i \(-0.936082\pi\)
0.852592 0.522577i \(-0.175029\pi\)
\(224\) −1.25624 2.17588i −0.0839364 0.145382i
\(225\) 0 0
\(226\) −10.7306 + 18.5859i −0.713786 + 1.23631i
\(227\) 16.2875 + 5.92815i 1.08104 + 0.393465i 0.820293 0.571943i \(-0.193810\pi\)
0.260743 + 0.965408i \(0.416032\pi\)
\(228\) 0 0
\(229\) 1.19665 + 1.00411i 0.0790770 + 0.0663535i 0.681469 0.731847i \(-0.261341\pi\)
−0.602392 + 0.798200i \(0.705786\pi\)
\(230\) −5.02094 4.21307i −0.331071 0.277802i
\(231\) 0 0
\(232\) −3.57057 1.29958i −0.234420 0.0853218i
\(233\) −8.39440 + 14.5395i −0.549935 + 0.952516i 0.448343 + 0.893862i \(0.352014\pi\)
−0.998278 + 0.0586545i \(0.981319\pi\)
\(234\) 0 0
\(235\) 3.08765 + 5.34796i 0.201416 + 0.348863i
\(236\) 0.235767 + 1.33710i 0.0153471 + 0.0870377i
\(237\) 0 0
\(238\) −9.15910 + 3.33364i −0.593696 + 0.216088i
\(239\) −0.699645 + 3.96788i −0.0452563 + 0.256661i −0.999039 0.0438370i \(-0.986042\pi\)
0.953782 + 0.300498i \(0.0971529\pi\)
\(240\) 0 0
\(241\) −2.56805 + 2.15485i −0.165423 + 0.138806i −0.721741 0.692163i \(-0.756658\pi\)
0.556319 + 0.830969i \(0.312213\pi\)
\(242\) 32.7743 2.10681
\(243\) 0 0
\(244\) −2.04189 −0.130719
\(245\) −1.50000 + 1.25865i −0.0958315 + 0.0804122i
\(246\) 0 0
\(247\) 3.71941 21.0938i 0.236660 1.34217i
\(248\) −1.62789 + 0.592503i −0.103371 + 0.0376240i
\(249\) 0 0
\(250\) −2.81046 15.9389i −0.177749 1.00807i
\(251\) 11.5753 + 20.0490i 0.730628 + 1.26548i 0.956615 + 0.291354i \(0.0941059\pi\)
−0.225987 + 0.974130i \(0.572561\pi\)
\(252\) 0 0
\(253\) 8.74763 15.1513i 0.549959 0.952556i
\(254\) −4.55303 1.65717i −0.285683 0.103980i
\(255\) 0 0
\(256\) −3.36753 2.82569i −0.210470 0.176606i
\(257\) 9.20233 + 7.72167i 0.574026 + 0.481665i 0.882979 0.469412i \(-0.155534\pi\)
−0.308953 + 0.951077i \(0.599979\pi\)
\(258\) 0 0
\(259\) −0.0949225 0.0345490i −0.00589820 0.00214677i
\(260\) −0.492726 + 0.853427i −0.0305576 + 0.0529273i
\(261\) 0 0
\(262\) 11.9285 + 20.6609i 0.736948 + 1.27643i
\(263\) 2.93494 + 16.6449i 0.180976 + 1.02637i 0.931017 + 0.364976i \(0.118923\pi\)
−0.750040 + 0.661392i \(0.769966\pi\)
\(264\) 0 0
\(265\) −18.0744 + 6.57856i −1.11030 + 0.404118i
\(266\) −3.74510 + 21.2395i −0.229627 + 1.30228i
\(267\) 0 0
\(268\) −0.262889 + 0.220590i −0.0160585 + 0.0134747i
\(269\) −7.91447 −0.482554 −0.241277 0.970456i \(-0.577566\pi\)
−0.241277 + 0.970456i \(0.577566\pi\)
\(270\) 0 0
\(271\) −17.2344 −1.04692 −0.523458 0.852051i \(-0.675358\pi\)
−0.523458 + 0.852051i \(0.675358\pi\)
\(272\) −8.26470 + 6.93491i −0.501121 + 0.420490i
\(273\) 0 0
\(274\) −0.919215 + 5.21313i −0.0555318 + 0.314937i
\(275\) 12.6702 4.61159i 0.764044 0.278089i
\(276\) 0 0
\(277\) 4.59034 + 26.0331i 0.275807 + 1.56418i 0.736388 + 0.676560i \(0.236530\pi\)
−0.460581 + 0.887618i \(0.652359\pi\)
\(278\) −8.06077 13.9617i −0.483453 0.837365i
\(279\) 0 0
\(280\) 5.86571 10.1597i 0.350543 0.607159i
\(281\) 17.8503 + 6.49697i 1.06486 + 0.387577i 0.814252 0.580512i \(-0.197148\pi\)
0.250607 + 0.968089i \(0.419370\pi\)
\(282\) 0 0
\(283\) −12.7062 10.6618i −0.755305 0.633777i 0.181595 0.983373i \(-0.441874\pi\)
−0.936900 + 0.349597i \(0.886319\pi\)
\(284\) 0.780344 + 0.654786i 0.0463049 + 0.0388544i
\(285\) 0 0
\(286\) 24.2802 + 8.83726i 1.43572 + 0.522558i
\(287\) 5.91013 10.2366i 0.348864 0.604250i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −0.499123 2.83067i −0.0293095 0.166222i
\(291\) 0 0
\(292\) 0.964508 0.351052i 0.0564435 0.0205438i
\(293\) 3.36143 19.0636i 0.196377 1.11371i −0.714067 0.700077i \(-0.753149\pi\)
0.910444 0.413632i \(-0.135740\pi\)
\(294\) 0 0
\(295\) −9.30200 + 7.80531i −0.541584 + 0.454443i
\(296\) −0.123303 −0.00716685
\(297\) 0 0
\(298\) 27.6536 1.60193
\(299\) 7.27584 6.10516i 0.420773 0.353070i
\(300\) 0 0
\(301\) −2.17112 + 12.3130i −0.125141 + 0.709712i
\(302\) −20.2665 + 7.37641i −1.16621 + 0.424465i
\(303\) 0 0
\(304\) 4.14543 + 23.5099i 0.237757 + 1.34839i
\(305\) −9.13088 15.8152i −0.522833 0.905573i
\(306\) 0 0
\(307\) −10.4029 + 18.0183i −0.593722 + 1.02836i 0.400003 + 0.916514i \(0.369009\pi\)
−0.993726 + 0.111844i \(0.964324\pi\)
\(308\) 2.48886 + 0.905869i 0.141816 + 0.0516167i
\(309\) 0 0
\(310\) −1.00387 0.842347i −0.0570160 0.0478421i
\(311\) −8.17024 6.85565i −0.463292 0.388748i 0.381049 0.924555i \(-0.375563\pi\)
−0.844341 + 0.535807i \(0.820008\pi\)
\(312\) 0 0
\(313\) −3.58512 1.30488i −0.202643 0.0737561i 0.238705 0.971092i \(-0.423277\pi\)
−0.441348 + 0.897336i \(0.645499\pi\)
\(314\) 14.8025 25.6386i 0.835352 1.44687i
\(315\) 0 0
\(316\) −0.349356 0.605102i −0.0196528 0.0340396i
\(317\) 4.58243 + 25.9883i 0.257375 + 1.45965i 0.789902 + 0.613234i \(0.210132\pi\)
−0.532526 + 0.846413i \(0.678757\pi\)
\(318\) 0 0
\(319\) 7.20961 2.62408i 0.403661 0.146920i
\(320\) 2.46703 13.9912i 0.137911 0.782134i
\(321\) 0 0
\(322\) −7.32610 + 6.14733i −0.408268 + 0.342577i
\(323\) −19.9145 −1.10807
\(324\) 0 0
\(325\) 7.31996 0.406038
\(326\) 21.1689 17.7628i 1.17244 0.983791i
\(327\) 0 0
\(328\) 2.50546 14.2092i 0.138341 0.784571i
\(329\) 8.46703 3.08175i 0.466803 0.169902i
\(330\) 0 0
\(331\) −0.272908 1.54774i −0.0150004 0.0850713i 0.976389 0.216022i \(-0.0693082\pi\)
−0.991389 + 0.130950i \(0.958197\pi\)
\(332\) 0.368241 + 0.637812i 0.0202098 + 0.0350045i
\(333\) 0 0
\(334\) −2.89053 + 5.00654i −0.158163 + 0.273946i
\(335\) −2.88413 1.04974i −0.157577 0.0573533i
\(336\) 0 0
\(337\) −6.14022 5.15225i −0.334479 0.280661i 0.460043 0.887897i \(-0.347834\pi\)
−0.794522 + 0.607236i \(0.792278\pi\)
\(338\) −2.67159 2.24173i −0.145315 0.121934i
\(339\) 0 0
\(340\) 0.860967 + 0.313366i 0.0466925 + 0.0169947i
\(341\) 1.74897 3.02931i 0.0947121 0.164046i
\(342\) 0 0
\(343\) 9.86871 + 17.0931i 0.532860 + 0.922941i
\(344\) 2.65018 + 15.0299i 0.142888 + 0.810358i
\(345\) 0 0
\(346\) −4.80200 + 1.74779i −0.258157 + 0.0939616i
\(347\) 3.44609 19.5437i 0.184996 1.04916i −0.740965 0.671544i \(-0.765632\pi\)
0.925961 0.377620i \(-0.123257\pi\)
\(348\) 0 0
\(349\) 8.49794 7.13062i 0.454884 0.381693i −0.386360 0.922348i \(-0.626268\pi\)
0.841245 + 0.540655i \(0.181823\pi\)
\(350\) −7.37052 −0.393971
\(351\) 0 0
\(352\) 6.19253 0.330063
\(353\) −2.19388 + 1.84088i −0.116768 + 0.0979803i −0.699302 0.714826i \(-0.746506\pi\)
0.582534 + 0.812806i \(0.302061\pi\)
\(354\) 0 0
\(355\) −1.58202 + 8.97210i −0.0839651 + 0.476190i
\(356\) 1.41534 0.515143i 0.0750131 0.0273025i
\(357\) 0 0
\(358\) 1.93629 + 10.9812i 0.102336 + 0.580377i
\(359\) −14.3944 24.9318i −0.759707 1.31585i −0.943000 0.332793i \(-0.892009\pi\)
0.183292 0.983058i \(-0.441324\pi\)
\(360\) 0 0
\(361\) −12.5326 + 21.7070i −0.659608 + 1.14247i
\(362\) −8.51027 3.09748i −0.447290 0.162800i
\(363\) 0 0
\(364\) 1.10148 + 0.924252i 0.0577333 + 0.0484440i
\(365\) 7.03209 + 5.90062i 0.368076 + 0.308853i
\(366\) 0 0
\(367\) 10.3293 + 3.75957i 0.539187 + 0.196248i 0.597236 0.802066i \(-0.296266\pi\)
−0.0580485 + 0.998314i \(0.518488\pi\)
\(368\) −5.29292 + 9.16760i −0.275912 + 0.477894i
\(369\) 0 0
\(370\) −0.0466368 0.0807773i −0.00242453 0.00419941i
\(371\) 4.87346 + 27.6387i 0.253017 + 1.43493i
\(372\) 0 0
\(373\) −31.3949 + 11.4268i −1.62556 + 0.591657i −0.984431 0.175772i \(-0.943758\pi\)
−0.641134 + 0.767429i \(0.721536\pi\)
\(374\) 4.17159 23.6583i 0.215708 1.22334i
\(375\) 0 0
\(376\) 8.42539 7.06974i 0.434506 0.364594i
\(377\) 4.16519 0.214518
\(378\) 0 0
\(379\) 20.9394 1.07559 0.537794 0.843077i \(-0.319258\pi\)
0.537794 + 0.843077i \(0.319258\pi\)
\(380\) 1.55303 1.30315i 0.0796689 0.0668502i
\(381\) 0 0
\(382\) −1.17318 + 6.65344i −0.0600252 + 0.340420i
\(383\) 3.86319 1.40609i 0.197400 0.0718476i −0.241428 0.970419i \(-0.577616\pi\)
0.438828 + 0.898571i \(0.355394\pi\)
\(384\) 0 0
\(385\) 4.11334 + 23.3279i 0.209635 + 1.18890i
\(386\) 12.0346 + 20.8446i 0.612546 + 1.06096i
\(387\) 0 0
\(388\) 0.0240997 0.0417419i 0.00122348 0.00211912i
\(389\) −16.0633 5.84656i −0.814442 0.296433i −0.0989844 0.995089i \(-0.531559\pi\)
−0.715457 + 0.698656i \(0.753782\pi\)
\(390\) 0 0
\(391\) −6.76470 5.67626i −0.342106 0.287061i
\(392\) 2.67159 + 2.24173i 0.134936 + 0.113224i
\(393\) 0 0
\(394\) −0.916222 0.333477i −0.0461586 0.0168004i
\(395\) 3.12449 5.41177i 0.157210 0.272296i
\(396\) 0 0
\(397\) −11.2010 19.4007i −0.562162 0.973692i −0.997308 0.0733324i \(-0.976637\pi\)
0.435146 0.900360i \(-0.356697\pi\)
\(398\) −2.38460 13.5237i −0.119529 0.677884i
\(399\) 0 0
\(400\) −7.66637 + 2.79033i −0.383319 + 0.139517i
\(401\) −2.53209 + 14.3602i −0.126446 + 0.717114i 0.853992 + 0.520287i \(0.174175\pi\)
−0.980438 + 0.196827i \(0.936936\pi\)
\(402\) 0 0
\(403\) 1.45471 1.22064i 0.0724641 0.0608046i
\(404\) −2.03777 −0.101383
\(405\) 0 0
\(406\) −4.19396 −0.208143
\(407\) 0.190722 0.160035i 0.00945375 0.00793264i
\(408\) 0 0
\(409\) −3.03936 + 17.2371i −0.150287 + 0.852319i 0.812682 + 0.582707i \(0.198007\pi\)
−0.962969 + 0.269612i \(0.913105\pi\)
\(410\) 10.2562 3.73297i 0.506520 0.184358i
\(411\) 0 0
\(412\) 0.125362 + 0.710966i 0.00617617 + 0.0350268i
\(413\) 8.85891 + 15.3441i 0.435918 + 0.755033i
\(414\) 0 0
\(415\) −3.29339 + 5.70431i −0.161666 + 0.280014i
\(416\) 3.15910 + 1.14982i 0.154888 + 0.0563745i
\(417\) 0 0
\(418\) −40.7203 34.1684i −1.99170 1.67123i
\(419\) 14.4492 + 12.1244i 0.705892 + 0.592314i 0.923443 0.383735i \(-0.125363\pi\)
−0.217551 + 0.976049i \(0.569807\pi\)
\(420\) 0 0
\(421\) 30.3837 + 11.0588i 1.48081 + 0.538971i 0.951013 0.309152i \(-0.100045\pi\)
0.529799 + 0.848123i \(0.322267\pi\)
\(422\) 10.0137 17.3442i 0.487458 0.844302i
\(423\) 0 0
\(424\) 17.1288 + 29.6680i 0.831849 + 1.44080i
\(425\) −1.18180 6.70232i −0.0573257 0.325110i
\(426\) 0 0
\(427\) −25.0390 + 9.11343i −1.21172 + 0.441030i
\(428\) 0.0846555 0.480105i 0.00409198 0.0232068i
\(429\) 0 0
\(430\) −8.84389 + 7.42091i −0.426490 + 0.357868i
\(431\) 34.3164 1.65297 0.826483 0.562962i \(-0.190338\pi\)
0.826483 + 0.562962i \(0.190338\pi\)
\(432\) 0 0
\(433\) −25.0669 −1.20464 −0.602318 0.798256i \(-0.705756\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(434\) −1.46476 + 1.22908i −0.0703105 + 0.0589975i
\(435\) 0 0
\(436\) 0.287456 1.63024i 0.0137666 0.0780745i
\(437\) −18.3614 + 6.68302i −0.878346 + 0.319692i
\(438\) 0 0
\(439\) −4.03003 22.8554i −0.192343 1.09083i −0.916152 0.400830i \(-0.868722\pi\)
0.723809 0.690000i \(-0.242389\pi\)
\(440\) 14.4572 + 25.0407i 0.689222 + 1.19377i
\(441\) 0 0
\(442\) 6.52094 11.2946i 0.310170 0.537230i
\(443\) 3.87299 + 1.40965i 0.184011 + 0.0669746i 0.432382 0.901690i \(-0.357673\pi\)
−0.248371 + 0.968665i \(0.579895\pi\)
\(444\) 0 0
\(445\) 10.3191 + 8.65873i 0.489171 + 0.410463i
\(446\) −11.2999 9.48178i −0.535068 0.448975i
\(447\) 0 0
\(448\) −19.4795 7.08997i −0.920321 0.334969i
\(449\) −9.17071 + 15.8841i −0.432793 + 0.749619i −0.997113 0.0759373i \(-0.975805\pi\)
0.564320 + 0.825556i \(0.309138\pi\)
\(450\) 0 0
\(451\) 14.5667 + 25.2303i 0.685919 + 1.18805i
\(452\) −0.511144 2.89884i −0.0240422 0.136350i
\(453\) 0 0
\(454\) 21.9440 7.98697i 1.02988 0.374847i
\(455\) −2.23308 + 12.6644i −0.104688 + 0.593717i
\(456\) 0 0
\(457\) −14.9081 + 12.5094i −0.697370 + 0.585163i −0.921024 0.389506i \(-0.872646\pi\)
0.223654 + 0.974669i \(0.428201\pi\)
\(458\) 2.10464 0.0983432
\(459\) 0 0
\(460\) 0.898986 0.0419154
\(461\) 21.2572 17.8369i 0.990045 0.830747i 0.00447116 0.999990i \(-0.498577\pi\)
0.985574 + 0.169243i \(0.0541323\pi\)
\(462\) 0 0
\(463\) 6.71776 38.0983i 0.312201 1.77058i −0.275304 0.961357i \(-0.588778\pi\)
0.587504 0.809221i \(-0.300110\pi\)
\(464\) −4.36231 + 1.58775i −0.202515 + 0.0737095i
\(465\) 0 0
\(466\) 3.92783 + 22.2758i 0.181953 + 1.03191i
\(467\) −14.8819 25.7762i −0.688653 1.19278i −0.972274 0.233845i \(-0.924869\pi\)
0.283621 0.958936i \(-0.408464\pi\)
\(468\) 0 0
\(469\) −2.23917 + 3.87836i −0.103395 + 0.179086i
\(470\) 7.81820 + 2.84559i 0.360627 + 0.131257i
\(471\) 0 0
\(472\) 16.5674 + 13.9017i 0.762577 + 0.639878i
\(473\) −23.6065 19.8082i −1.08543 0.910784i
\(474\) 0 0
\(475\) −14.1509 5.15052i −0.649290 0.236322i
\(476\) 0.668434 1.15776i 0.0306376 0.0530659i
\(477\) 0 0
\(478\) 2.71419 + 4.70112i 0.124144 + 0.215024i
\(479\) −6.54236 37.1035i −0.298928 1.69530i −0.650794 0.759254i \(-0.725564\pi\)
0.351867 0.936050i \(-0.385547\pi\)
\(480\) 0 0
\(481\) 0.127011 0.0462284i 0.00579122 0.00210783i
\(482\) −0.784301 + 4.44799i −0.0357239 + 0.202600i
\(483\) 0 0
\(484\) −3.44356 + 2.88949i −0.156526 + 0.131341i
\(485\) 0.431074 0.0195741
\(486\) 0 0
\(487\) −0.763823 −0.0346121 −0.0173061 0.999850i \(-0.505509\pi\)
−0.0173061 + 0.999850i \(0.505509\pi\)
\(488\) −24.9158 + 20.9068i −1.12789 + 0.946409i
\(489\) 0 0
\(490\) −0.458111 + 2.59808i −0.0206953 + 0.117369i
\(491\) 0.467911 0.170306i 0.0211165 0.00768579i −0.331440 0.943476i \(-0.607535\pi\)
0.352557 + 0.935790i \(0.385312\pi\)
\(492\) 0 0
\(493\) −0.672466 3.81374i −0.0302864 0.171762i
\(494\) −14.4290 24.9918i −0.649192 1.12443i
\(495\) 0 0
\(496\) −1.05825 + 1.83294i −0.0475167 + 0.0823014i
\(497\) 12.4915 + 4.54655i 0.560322 + 0.203941i
\(498\) 0 0
\(499\) 6.86824 + 5.76314i 0.307465 + 0.257994i 0.783443 0.621463i \(-0.213462\pi\)
−0.475979 + 0.879457i \(0.657906\pi\)
\(500\) 1.70052 + 1.42691i 0.0760497 + 0.0638133i
\(501\) 0 0
\(502\) 29.3097 + 10.6679i 1.30816 + 0.476131i
\(503\) −9.18092 + 15.9018i −0.409357 + 0.709027i −0.994818 0.101673i \(-0.967580\pi\)
0.585461 + 0.810701i \(0.300914\pi\)
\(504\) 0 0
\(505\) −9.11246 15.7832i −0.405499 0.702345i
\(506\) −4.09311 23.2132i −0.181961 1.03195i
\(507\) 0 0
\(508\) 0.624485 0.227294i 0.0277070 0.0100845i
\(509\) −4.92649 + 27.9395i −0.218363 + 1.23840i 0.656612 + 0.754228i \(0.271989\pi\)
−0.874975 + 0.484168i \(0.839122\pi\)
\(510\) 0 0
\(511\) 10.2606 8.60965i 0.453901 0.380868i
\(512\) −24.9186 −1.10126
\(513\) 0 0
\(514\) 16.1848 0.713881
\(515\) −4.94609 + 4.15026i −0.217951 + 0.182882i
\(516\) 0 0
\(517\) −3.85638 + 21.8706i −0.169603 + 0.961869i
\(518\) −0.127889 + 0.0465477i −0.00561911 + 0.00204519i
\(519\) 0 0
\(520\) 2.72580 + 15.4588i 0.119534 + 0.677913i
\(521\) 16.3191 + 28.2655i 0.714952 + 1.23833i 0.962978 + 0.269580i \(0.0868847\pi\)
−0.248026 + 0.968753i \(0.579782\pi\)
\(522\) 0 0
\(523\) 11.0116 19.0727i 0.481504 0.833990i −0.518271 0.855217i \(-0.673424\pi\)
0.999775 + 0.0212271i \(0.00675730\pi\)
\(524\) −3.07486 1.11916i −0.134326 0.0488905i
\(525\) 0 0
\(526\) 17.4440 + 14.6373i 0.760596 + 0.638216i
\(527\) −1.35251 1.13489i −0.0589163 0.0494366i
\(528\) 0 0
\(529\) 13.4709 + 4.90301i 0.585691 + 0.213174i
\(530\) −12.9572 + 22.4426i −0.562826 + 0.974844i
\(531\) 0 0
\(532\) −1.47906 2.56180i −0.0641252 0.111068i
\(533\) 2.74644 + 15.5759i 0.118962 + 0.674665i
\(534\) 0 0
\(535\) 4.09714 1.49124i 0.177135 0.0644719i
\(536\) −0.949244 + 5.38343i −0.0410011 + 0.232529i
\(537\) 0 0
\(538\) −8.16843 + 6.85413i −0.352166 + 0.295503i
\(539\) −7.04189 −0.303316
\(540\) 0 0
\(541\) −15.7870 −0.678738 −0.339369 0.940653i \(-0.610214\pi\)
−0.339369 + 0.940653i \(0.610214\pi\)
\(542\) −17.7875 + 14.9254i −0.764037 + 0.641103i
\(543\) 0 0
\(544\) 0.542766 3.07818i 0.0232709 0.131976i
\(545\) 13.9122 5.06364i 0.595935 0.216903i
\(546\) 0 0
\(547\) −4.76130 27.0027i −0.203578 1.15455i −0.899661 0.436589i \(-0.856187\pi\)
0.696083 0.717961i \(-0.254925\pi\)
\(548\) −0.363026 0.628780i −0.0155077 0.0268602i
\(549\) 0 0
\(550\) 9.08306 15.7323i 0.387303 0.670829i
\(551\) −8.05216 2.93075i −0.343033 0.124854i
\(552\) 0 0
\(553\) −6.98474 5.86089i −0.297021 0.249230i
\(554\) 27.2830 + 22.8931i 1.15914 + 0.972635i
\(555\) 0 0
\(556\) 2.07785 + 0.756275i 0.0881204 + 0.0320732i
\(557\) −14.7010 + 25.4629i −0.622901 + 1.07890i 0.366042 + 0.930598i \(0.380713\pi\)
−0.988943 + 0.148298i \(0.952621\pi\)
\(558\) 0 0
\(559\) −8.36484 14.4883i −0.353795 0.612791i
\(560\) −2.48886 14.1150i −0.105173 0.596468i
\(561\) 0 0
\(562\) 24.0496 8.75335i 1.01447 0.369238i
\(563\) −1.80082 + 10.2130i −0.0758956 + 0.430425i 0.923057 + 0.384664i \(0.125683\pi\)
−0.998952 + 0.0457616i \(0.985429\pi\)
\(564\) 0 0
\(565\) 20.1668 16.9220i 0.848425 0.711913i
\(566\) −22.3473 −0.939327
\(567\) 0 0
\(568\) 16.2264 0.680843
\(569\) −25.2558 + 21.1922i −1.05878 + 0.888422i −0.993989 0.109477i \(-0.965082\pi\)
−0.0647903 + 0.997899i \(0.520638\pi\)
\(570\) 0 0
\(571\) −0.128051 + 0.726212i −0.00535876 + 0.0303910i −0.987370 0.158432i \(-0.949356\pi\)
0.982011 + 0.188823i \(0.0604673\pi\)
\(572\) −3.33022 + 1.21210i −0.139244 + 0.0506805i
\(573\) 0 0
\(574\) −2.76542 15.6835i −0.115426 0.654615i
\(575\) −3.33884 5.78304i −0.139239 0.241169i
\(576\) 0 0
\(577\) −9.67159 + 16.7517i −0.402634 + 0.697382i −0.994043 0.108990i \(-0.965238\pi\)
0.591409 + 0.806371i \(0.298572\pi\)
\(578\) 10.1284 + 3.68642i 0.421284 + 0.153335i
\(579\) 0 0
\(580\) 0.302004 + 0.253411i 0.0125400 + 0.0105223i
\(581\) 7.36231 + 6.17771i 0.305440 + 0.256295i
\(582\) 0 0
\(583\) −65.0005 23.6583i −2.69205 0.979825i
\(584\) 8.17483 14.1592i 0.338277 0.585913i
\(585\) 0 0
\(586\) −13.0403 22.5865i −0.538690 0.933038i
\(587\) −5.54148 31.4273i −0.228721 1.29714i −0.855442 0.517899i \(-0.826714\pi\)
0.626721 0.779244i \(-0.284397\pi\)
\(588\) 0 0
\(589\) −3.67112 + 1.33618i −0.151266 + 0.0550563i
\(590\) −2.84090 + 16.1115i −0.116958 + 0.663302i
\(591\) 0 0
\(592\) −0.115400 + 0.0968323i −0.00474292 + 0.00397978i
\(593\) 31.6783 1.30087 0.650436 0.759561i \(-0.274586\pi\)
0.650436 + 0.759561i \(0.274586\pi\)
\(594\) 0 0
\(595\) 11.9564 0.490163
\(596\) −2.90554 + 2.43804i −0.119016 + 0.0998661i
\(597\) 0 0
\(598\) 2.22210 12.6021i 0.0908683 0.515340i
\(599\) 11.8623 4.31753i 0.484681 0.176409i −0.0881103 0.996111i \(-0.528083\pi\)
0.572791 + 0.819701i \(0.305861\pi\)
\(600\) 0 0
\(601\) −1.54694 8.77314i −0.0631011 0.357864i −0.999967 0.00817407i \(-0.997398\pi\)
0.936866 0.349690i \(-0.113713\pi\)
\(602\) 8.42262 + 14.5884i 0.343280 + 0.594579i
\(603\) 0 0
\(604\) 1.47906 2.56180i 0.0601819 0.104238i
\(605\) −37.7790 13.7504i −1.53593 0.559035i
\(606\) 0 0
\(607\) −25.3746 21.2918i −1.02992 0.864209i −0.0390828 0.999236i \(-0.512444\pi\)
−0.990842 + 0.135026i \(0.956888\pi\)
\(608\) −5.29813 4.44566i −0.214868 0.180295i
\(609\) 0 0
\(610\) −23.1202 8.41507i −0.936110 0.340716i
\(611\) −6.02822 + 10.4412i −0.243876 + 0.422405i
\(612\) 0 0
\(613\) −8.84002 15.3114i −0.357045 0.618420i 0.630421 0.776254i \(-0.282882\pi\)
−0.987466 + 0.157833i \(0.949549\pi\)
\(614\) 4.86761 + 27.6056i 0.196441 + 1.11407i
\(615\) 0 0
\(616\) 39.6450 14.4296i 1.59734 0.581385i
\(617\) −4.46838 + 25.3414i −0.179890 + 1.02021i 0.752457 + 0.658642i \(0.228869\pi\)
−0.932347 + 0.361566i \(0.882242\pi\)
\(618\) 0 0
\(619\) 21.2920 17.8661i 0.855799 0.718101i −0.105259 0.994445i \(-0.533567\pi\)
0.961059 + 0.276344i \(0.0891229\pi\)
\(620\) 0.179740 0.00721854
\(621\) 0 0
\(622\) −14.3696 −0.576168
\(623\) 15.0567 12.6340i 0.603232 0.506172i
\(624\) 0 0
\(625\) −1.47787 + 8.38144i −0.0591149 + 0.335257i
\(626\) −4.83022 + 1.75806i −0.193055 + 0.0702661i
\(627\) 0 0
\(628\) 0.705108 + 3.99887i 0.0281369 + 0.159572i
\(629\) −0.0628336 0.108831i −0.00250534 0.00433938i
\(630\) 0 0
\(631\) −13.4069 + 23.2214i −0.533720 + 0.924430i 0.465504 + 0.885046i \(0.345873\pi\)
−0.999224 + 0.0393842i \(0.987460\pi\)
\(632\) −10.4586 3.80661i −0.416020 0.151419i
\(633\) 0 0
\(634\) 27.2360 + 22.8537i 1.08168 + 0.907637i
\(635\) 4.55303 + 3.82045i 0.180682 + 0.151610i
\(636\) 0 0
\(637\) −3.59240 1.30753i −0.142336 0.0518060i
\(638\) 5.16843 8.95199i 0.204620 0.354413i
\(639\) 0 0
\(640\) −7.84864 13.5942i −0.310245 0.537360i
\(641\) 2.20368 + 12.4977i 0.0870400 + 0.493629i 0.996898 + 0.0787081i \(0.0250795\pi\)
−0.909858 + 0.414920i \(0.863809\pi\)
\(642\) 0 0
\(643\) −14.5432 + 5.29330i −0.573529 + 0.208748i −0.612470 0.790494i \(-0.709824\pi\)
0.0389407 + 0.999242i \(0.487602\pi\)
\(644\) 0.227777 1.29179i 0.00897569 0.0509036i
\(645\) 0 0
\(646\) −20.5535 + 17.2464i −0.808667 + 0.678552i
\(647\) 11.1506 0.438377 0.219189 0.975683i \(-0.429659\pi\)
0.219189 + 0.975683i \(0.429659\pi\)
\(648\) 0 0
\(649\) −43.6691 −1.71416
\(650\) 7.55484 6.33927i 0.296325 0.248647i
\(651\) 0 0
\(652\) −0.658167 + 3.73265i −0.0257758 + 0.146182i
\(653\) −41.9029 + 15.2514i −1.63979 + 0.596834i −0.987002 0.160709i \(-0.948622\pi\)
−0.652786 + 0.757543i \(0.726400\pi\)
\(654\) 0 0
\(655\) −5.08182 28.8205i −0.198563 1.12611i
\(656\) −8.81386 15.2661i −0.344124 0.596039i
\(657\) 0 0
\(658\) 6.06986 10.5133i 0.236628 0.409851i
\(659\) 13.2464 + 4.82131i 0.516008 + 0.187812i 0.586880 0.809674i \(-0.300356\pi\)
−0.0708720 + 0.997485i \(0.522578\pi\)
\(660\) 0 0
\(661\) 27.6655 + 23.2141i 1.07606 + 0.902924i 0.995588 0.0938325i \(-0.0299118\pi\)
0.0804751 + 0.996757i \(0.474356\pi\)
\(662\) −1.62205 1.36106i −0.0630426 0.0528990i
\(663\) 0 0
\(664\) 11.0239 + 4.01239i 0.427812 + 0.155711i
\(665\) 13.2280 22.9116i 0.512961 0.888474i
\(666\) 0 0
\(667\) −1.89986 3.29066i −0.0735630 0.127415i
\(668\) −0.137689 0.780873i −0.00532734 0.0302129i
\(669\) 0 0
\(670\) −3.88578 + 1.41431i −0.150121 + 0.0546395i
\(671\) 11.4042 64.6764i 0.440254 2.49681i
\(672\) 0 0
\(673\) 1.71760 1.44123i 0.0662085 0.0555555i −0.609083 0.793107i \(-0.708462\pi\)
0.675291 + 0.737551i \(0.264018\pi\)
\(674\) −10.7992 −0.415971
\(675\) 0 0
\(676\) 0.478340 0.0183977
\(677\) 26.9466 22.6108i 1.03564 0.869005i 0.0441290 0.999026i \(-0.485949\pi\)
0.991511 + 0.130020i \(0.0415043\pi\)
\(678\) 0 0
\(679\) 0.109222 0.619429i 0.00419156 0.0237715i
\(680\) 13.7144 4.99162i 0.525922 0.191420i
\(681\) 0 0
\(682\) −0.818363 4.64117i −0.0313367 0.177719i
\(683\) 8.88191 + 15.3839i 0.339857 + 0.588649i 0.984406 0.175914i \(-0.0562880\pi\)
−0.644549 + 0.764563i \(0.722955\pi\)
\(684\) 0 0
\(685\) 3.24675 5.62353i 0.124052 0.214864i
\(686\) 24.9884 + 9.09505i 0.954063 + 0.347251i
\(687\) 0 0
\(688\) 14.2836 + 11.9854i 0.544557 + 0.456937i
\(689\) −28.7670 24.1384i −1.09593 0.919598i
\(690\) 0 0
\(691\) 41.3753 + 15.0594i 1.57399 + 0.572885i 0.973886 0.227037i \(-0.0729039\pi\)
0.600103 + 0.799923i \(0.295126\pi\)
\(692\) 0.350452 0.607000i 0.0133222 0.0230747i
\(693\) 0 0
\(694\) −13.3687 23.1553i −0.507469 0.878962i
\(695\) 3.43407 + 19.4756i 0.130262 + 0.738750i
\(696\) 0 0
\(697\) 13.8182 5.02941i 0.523402 0.190503i
\(698\) 2.59533 14.7189i 0.0982348 0.557117i
\(699\) 0 0
\(700\) 0.774414 0.649811i 0.0292701 0.0245605i
\(701\) −30.1052 −1.13706 −0.568530 0.822663i \(-0.692488\pi\)
−0.568530 + 0.822663i \(0.692488\pi\)
\(702\) 0 0
\(703\) −0.278066 −0.0104875
\(704\) 39.1391 32.8416i 1.47511 1.23776i
\(705\) 0 0
\(706\) −0.670026 + 3.79991i −0.0252168 + 0.143011i
\(707\) −24.9884 + 9.09505i −0.939787 + 0.342055i
\(708\) 0 0
\(709\) −4.29561 24.3616i −0.161325 0.914919i −0.952773 0.303683i \(-0.901784\pi\)
0.791448 0.611236i \(-0.209327\pi\)
\(710\) 6.13728 + 10.6301i 0.230328 + 0.398940i
\(711\) 0 0
\(712\) 11.9960 20.7776i 0.449568 0.778674i
\(713\) −1.62789 0.592503i −0.0609649 0.0221894i
\(714\) 0 0
\(715\) −24.2802 20.3735i −0.908027 0.761925i
\(716\) −1.17159 0.983080i −0.0437843 0.0367394i
\(717\) 0 0
\(718\) −36.4479 13.2660i −1.36022 0.495081i
\(719\) 21.7763 37.7177i 0.812119 1.40663i −0.0992586 0.995062i \(-0.531647\pi\)
0.911378 0.411570i \(-0.135020\pi\)
\(720\) 0 0
\(721\) 4.71048 + 8.15880i 0.175428 + 0.303850i
\(722\) 5.86412 + 33.2571i 0.218240 + 1.23770i
\(723\) 0 0
\(724\) 1.16725 0.424845i 0.0433806 0.0157892i
\(725\) 0.508512 2.88392i 0.0188857 0.107106i
\(726\) 0 0
\(727\) 15.7324 13.2010i 0.583481 0.489599i −0.302607 0.953115i \(-0.597857\pi\)
0.886088 + 0.463517i \(0.153413\pi\)
\(728\) 22.9040 0.848880
\(729\) 0 0
\(730\) 12.3678 0.457754
\(731\) −11.9153 + 9.99816i −0.440705 + 0.369795i
\(732\) 0 0
\(733\) 2.43211 13.7932i 0.0898322 0.509464i −0.906377 0.422470i \(-0.861163\pi\)
0.996209 0.0869932i \(-0.0277258\pi\)
\(734\) 13.9167 5.06526i 0.513674 0.186962i
\(735\) 0 0
\(736\) −0.532556 3.02027i −0.0196303 0.111329i
\(737\) −5.51889 9.55899i −0.203291 0.352110i
\(738\) 0 0
\(739\) 20.9907 36.3569i 0.772154 1.33741i −0.164226 0.986423i \(-0.552513\pi\)
0.936380 0.350987i \(-0.114154\pi\)
\(740\) 0.0120217 + 0.00437554i 0.000441926 + 0.000160848i
\(741\) 0 0
\(742\) 28.9657 + 24.3051i 1.06336 + 0.892268i
\(743\) 21.3436 + 17.9094i 0.783022 + 0.657034i 0.944008 0.329923i \(-0.107023\pi\)
−0.160985 + 0.986957i \(0.551467\pi\)
\(744\) 0 0
\(745\) −31.8764 11.6021i −1.16786 0.425067i
\(746\) −22.5064 + 38.9822i −0.824018 + 1.42724i
\(747\) 0 0
\(748\) 1.64749 + 2.85353i 0.0602382 + 0.104336i
\(749\) −1.10472 6.26519i −0.0403657 0.228925i
\(750\) 0 0
\(751\) 49.7144 18.0946i 1.81410 0.660280i 0.817692 0.575656i \(-0.195253\pi\)
0.996413 0.0846236i \(-0.0269688\pi\)
\(752\) 2.33338 13.2332i 0.0850895 0.482567i
\(753\) 0 0
\(754\) 4.29885 3.60716i 0.156555 0.131365i
\(755\) 26.4561 0.962834
\(756\) 0 0
\(757\) −41.4858 −1.50783 −0.753913 0.656975i \(-0.771836\pi\)
−0.753913 + 0.656975i \(0.771836\pi\)
\(758\) 21.6114 18.1341i 0.784960 0.658660i
\(759\) 0 0
\(760\) 5.60772 31.8029i 0.203413 1.15361i
\(761\) 42.6502 15.5234i 1.54607 0.562723i 0.578578 0.815627i \(-0.303608\pi\)
0.967492 + 0.252904i \(0.0813855\pi\)
\(762\) 0 0
\(763\) −3.75119 21.2741i −0.135802 0.770173i
\(764\) −0.463326 0.802503i −0.0167625 0.0290336i
\(765\) 0 0
\(766\) 2.76945 4.79682i 0.100064 0.173316i
\(767\) −22.2777 8.10840i −0.804400 0.292777i
\(768\) 0 0
\(769\) 3.91946 + 3.28882i 0.141339 + 0.118598i 0.710716 0.703479i \(-0.248371\pi\)
−0.569377 + 0.822077i \(0.692815\pi\)
\(770\) 24.4479 + 20.5142i 0.881041 + 0.739281i
\(771\) 0 0
\(772\) −3.10220 1.12911i −0.111650 0.0406375i
\(773\) 26.3214 45.5899i 0.946713 1.63976i 0.194430 0.980916i \(-0.437714\pi\)
0.752284 0.658839i \(-0.228952\pi\)
\(774\) 0 0
\(775\) −0.667556 1.15624i −0.0239793 0.0415334i
\(776\) −0.133322 0.756105i −0.00478597 0.0271426i
\(777\) 0 0
\(778\) −21.6420 + 7.87705i −0.775904 + 0.282406i
\(779\) 5.65018 32.0437i 0.202439 1.14809i