Properties

Label 729.2.e.b.649.1
Level $729$
Weight $2$
Character 729.649
Analytic conductor $5.821$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 649.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 729.649
Dual form 729.2.e.b.82.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.439693 - 2.49362i) q^{2} +(-4.14543 - 1.50881i) q^{4} +(0.358441 - 0.300767i) q^{5} +(3.03209 - 1.10359i) q^{7} +(-3.05303 + 5.28801i) q^{8} +(-0.592396 - 1.02606i) q^{10} +(-2.37939 - 1.99654i) q^{11} +(-0.379385 - 2.15160i) q^{13} +(-1.41875 - 8.04612i) q^{14} +(5.08512 + 4.26692i) q^{16} +(-1.50000 - 2.59808i) q^{17} +(-0.0209445 + 0.0362770i) q^{19} +(-1.93969 + 0.705990i) q^{20} +(-6.02481 + 5.05542i) q^{22} +(-5.73783 - 2.08840i) q^{23} +(-0.830222 + 4.70842i) q^{25} -5.53209 q^{26} -14.2344 q^{28} +(1.14156 - 6.47410i) q^{29} +(5.85117 + 2.12965i) q^{31} +(3.52094 - 2.95442i) q^{32} +(-7.13816 + 2.59808i) q^{34} +(0.754900 - 1.30753i) q^{35} +(-1.79813 - 3.11446i) q^{37} +(0.0812519 + 0.0681784i) q^{38} +(0.496130 + 2.81369i) q^{40} +(1.33750 + 7.58532i) q^{41} +(-0.450837 - 0.378297i) q^{43} +(6.85117 + 11.8666i) q^{44} +(-7.73055 + 13.3897i) q^{46} +(9.07785 - 3.30407i) q^{47} +(2.61334 - 2.19285i) q^{49} +(11.3760 + 4.14052i) q^{50} +(-1.67365 + 9.49173i) q^{52} +4.95811 q^{53} -1.45336 q^{55} +(-3.42127 + 19.4030i) q^{56} +(-15.6420 - 5.69323i) q^{58} +(-6.53596 + 5.48432i) q^{59} +(1.19207 - 0.433877i) q^{61} +(7.88326 - 13.6542i) q^{62} +(0.819078 + 1.41868i) q^{64} +(-0.783119 - 0.657115i) q^{65} +(1.73783 + 9.85570i) q^{67} +(2.29813 + 13.0334i) q^{68} +(-2.92855 - 2.45734i) q^{70} +(-5.91534 - 10.2457i) q^{71} +(4.11721 - 7.13122i) q^{73} +(-8.55690 + 3.11446i) q^{74} +(0.141559 - 0.118782i) q^{76} +(-9.41787 - 3.42782i) q^{77} +(1.91875 - 10.8818i) q^{79} +3.10607 q^{80} +19.5030 q^{82} +(-0.262174 + 1.48686i) q^{83} +(-1.31908 - 0.480105i) q^{85} +(-1.14156 + 0.957882i) q^{86} +(17.8221 - 6.48670i) q^{88} +(7.93629 - 13.7461i) q^{89} +(-3.52481 - 6.10516i) q^{91} +(20.6348 + 17.3146i) q^{92} +(-4.24763 - 24.0895i) q^{94} +(0.00340357 + 0.0193026i) q^{95} +(14.2836 + 11.9854i) q^{97} +(-4.31908 - 7.48086i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 9 q^{4} - 6 q^{5} + 9 q^{7} - 6 q^{8} - 3 q^{11} + 9 q^{13} - 6 q^{14} + 9 q^{16} - 9 q^{17} + 3 q^{19} - 6 q^{20} - 9 q^{22} - 15 q^{23} + 18 q^{25} - 24 q^{26} - 24 q^{28} + 15 q^{29}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.439693 2.49362i 0.310910 1.76326i −0.283383 0.959007i \(-0.591457\pi\)
0.594292 0.804249i \(-0.297432\pi\)
\(3\) 0 0
\(4\) −4.14543 1.50881i −2.07271 0.754407i
\(5\) 0.358441 0.300767i 0.160300 0.134507i −0.559110 0.829094i \(-0.688857\pi\)
0.719409 + 0.694586i \(0.244413\pi\)
\(6\) 0 0
\(7\) 3.03209 1.10359i 1.14602 0.417118i 0.301937 0.953328i \(-0.402367\pi\)
0.844085 + 0.536210i \(0.180144\pi\)
\(8\) −3.05303 + 5.28801i −1.07941 + 1.86959i
\(9\) 0 0
\(10\) −0.592396 1.02606i −0.187332 0.324469i
\(11\) −2.37939 1.99654i −0.717412 0.601980i 0.209256 0.977861i \(-0.432896\pi\)
−0.926668 + 0.375881i \(0.877340\pi\)
\(12\) 0 0
\(13\) −0.379385 2.15160i −0.105223 0.596747i −0.991131 0.132887i \(-0.957575\pi\)
0.885909 0.463860i \(-0.153536\pi\)
\(14\) −1.41875 8.04612i −0.379176 2.15042i
\(15\) 0 0
\(16\) 5.08512 + 4.26692i 1.27128 + 1.06673i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) −0.0209445 + 0.0362770i −0.00480501 + 0.00832251i −0.868418 0.495833i \(-0.834863\pi\)
0.863613 + 0.504155i \(0.168196\pi\)
\(20\) −1.93969 + 0.705990i −0.433728 + 0.157864i
\(21\) 0 0
\(22\) −6.02481 + 5.05542i −1.28449 + 1.07782i
\(23\) −5.73783 2.08840i −1.19642 0.435461i −0.334446 0.942415i \(-0.608549\pi\)
−0.861973 + 0.506954i \(0.830771\pi\)
\(24\) 0 0
\(25\) −0.830222 + 4.70842i −0.166044 + 0.941685i
\(26\) −5.53209 −1.08493
\(27\) 0 0
\(28\) −14.2344 −2.69005
\(29\) 1.14156 6.47410i 0.211982 1.20221i −0.674085 0.738654i \(-0.735462\pi\)
0.886067 0.463557i \(-0.153427\pi\)
\(30\) 0 0
\(31\) 5.85117 + 2.12965i 1.05090 + 0.382497i 0.809003 0.587805i \(-0.200008\pi\)
0.241898 + 0.970302i \(0.422230\pi\)
\(32\) 3.52094 2.95442i 0.622421 0.522273i
\(33\) 0 0
\(34\) −7.13816 + 2.59808i −1.22418 + 0.445566i
\(35\) 0.754900 1.30753i 0.127601 0.221012i
\(36\) 0 0
\(37\) −1.79813 3.11446i −0.295611 0.512014i 0.679516 0.733661i \(-0.262190\pi\)
−0.975127 + 0.221647i \(0.928857\pi\)
\(38\) 0.0812519 + 0.0681784i 0.0131808 + 0.0110600i
\(39\) 0 0
\(40\) 0.496130 + 2.81369i 0.0784450 + 0.444884i
\(41\) 1.33750 + 7.58532i 0.208882 + 1.18463i 0.891213 + 0.453585i \(0.149855\pi\)
−0.682331 + 0.731043i \(0.739034\pi\)
\(42\) 0 0
\(43\) −0.450837 0.378297i −0.0687520 0.0576898i 0.607764 0.794118i \(-0.292067\pi\)
−0.676516 + 0.736428i \(0.736511\pi\)
\(44\) 6.85117 + 11.8666i 1.03285 + 1.78895i
\(45\) 0 0
\(46\) −7.73055 + 13.3897i −1.13981 + 1.97420i
\(47\) 9.07785 3.30407i 1.32414 0.481948i 0.419358 0.907821i \(-0.362255\pi\)
0.904783 + 0.425874i \(0.140033\pi\)
\(48\) 0 0
\(49\) 2.61334 2.19285i 0.373334 0.313265i
\(50\) 11.3760 + 4.14052i 1.60881 + 0.585558i
\(51\) 0 0
\(52\) −1.67365 + 9.49173i −0.232093 + 1.31627i
\(53\) 4.95811 0.681049 0.340524 0.940236i \(-0.389395\pi\)
0.340524 + 0.940236i \(0.389395\pi\)
\(54\) 0 0
\(55\) −1.45336 −0.195971
\(56\) −3.42127 + 19.4030i −0.457187 + 2.59284i
\(57\) 0 0
\(58\) −15.6420 5.69323i −2.05390 0.747558i
\(59\) −6.53596 + 5.48432i −0.850909 + 0.713998i −0.959990 0.280035i \(-0.909654\pi\)
0.109080 + 0.994033i \(0.465209\pi\)
\(60\) 0 0
\(61\) 1.19207 0.433877i 0.152628 0.0555522i −0.264576 0.964365i \(-0.585232\pi\)
0.417205 + 0.908813i \(0.363010\pi\)
\(62\) 7.88326 13.6542i 1.00117 1.73409i
\(63\) 0 0
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) −0.783119 0.657115i −0.0971339 0.0815050i
\(66\) 0 0
\(67\) 1.73783 + 9.85570i 0.212309 + 1.20407i 0.885515 + 0.464610i \(0.153806\pi\)
−0.673206 + 0.739455i \(0.735083\pi\)
\(68\) 2.29813 + 13.0334i 0.278690 + 1.58053i
\(69\) 0 0
\(70\) −2.92855 2.45734i −0.350028 0.293709i
\(71\) −5.91534 10.2457i −0.702022 1.21594i −0.967755 0.251892i \(-0.918947\pi\)
0.265733 0.964047i \(-0.414386\pi\)
\(72\) 0 0
\(73\) 4.11721 7.13122i 0.481883 0.834646i −0.517901 0.855441i \(-0.673286\pi\)
0.999784 + 0.0207947i \(0.00661964\pi\)
\(74\) −8.55690 + 3.11446i −0.994720 + 0.362048i
\(75\) 0 0
\(76\) 0.141559 0.118782i 0.0162380 0.0136253i
\(77\) −9.41787 3.42782i −1.07327 0.390637i
\(78\) 0 0
\(79\) 1.91875 10.8818i 0.215876 1.22429i −0.663504 0.748173i \(-0.730931\pi\)
0.879380 0.476121i \(-0.157958\pi\)
\(80\) 3.10607 0.347269
\(81\) 0 0
\(82\) 19.5030 2.15375
\(83\) −0.262174 + 1.48686i −0.0287773 + 0.163204i −0.995810 0.0914488i \(-0.970850\pi\)
0.967032 + 0.254653i \(0.0819613\pi\)
\(84\) 0 0
\(85\) −1.31908 0.480105i −0.143074 0.0520747i
\(86\) −1.14156 + 0.957882i −0.123098 + 0.103291i
\(87\) 0 0
\(88\) 17.8221 6.48670i 1.89984 0.691485i
\(89\) 7.93629 13.7461i 0.841245 1.45708i −0.0475978 0.998867i \(-0.515157\pi\)
0.888843 0.458212i \(-0.151510\pi\)
\(90\) 0 0
\(91\) −3.52481 6.10516i −0.369501 0.639995i
\(92\) 20.6348 + 17.3146i 2.15132 + 1.80517i
\(93\) 0 0
\(94\) −4.24763 24.0895i −0.438109 2.48464i
\(95\) 0.00340357 + 0.0193026i 0.000349199 + 0.00198040i
\(96\) 0 0
\(97\) 14.2836 + 11.9854i 1.45028 + 1.21693i 0.932377 + 0.361488i \(0.117731\pi\)
0.517902 + 0.855440i \(0.326713\pi\)
\(98\) −4.31908 7.48086i −0.436293 0.755681i
\(99\) 0 0
\(100\) 10.5458 18.2658i 1.05458 1.82658i
\(101\) −8.53849 + 3.10775i −0.849611 + 0.309233i −0.729882 0.683573i \(-0.760425\pi\)
−0.119729 + 0.992807i \(0.538203\pi\)
\(102\) 0 0
\(103\) 0.199807 0.167658i 0.0196876 0.0165199i −0.632891 0.774241i \(-0.718132\pi\)
0.652578 + 0.757721i \(0.273687\pi\)
\(104\) 12.5360 + 4.56272i 1.22925 + 0.447411i
\(105\) 0 0
\(106\) 2.18004 12.3636i 0.211745 1.20086i
\(107\) 4.04189 0.390744 0.195372 0.980729i \(-0.437409\pi\)
0.195372 + 0.980729i \(0.437409\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) −0.639033 + 3.62414i −0.0609294 + 0.345548i
\(111\) 0 0
\(112\) 20.1275 + 7.32580i 1.90187 + 0.692223i
\(113\) 1.06031 0.889704i 0.0997453 0.0836963i −0.591551 0.806267i \(-0.701484\pi\)
0.691297 + 0.722571i \(0.257040\pi\)
\(114\) 0 0
\(115\) −2.68479 + 0.977185i −0.250358 + 0.0911229i
\(116\) −14.5005 + 25.1155i −1.34633 + 2.33192i
\(117\) 0 0
\(118\) 10.8020 + 18.7096i 0.994405 + 1.72236i
\(119\) −7.41534 6.22221i −0.679764 0.570389i
\(120\) 0 0
\(121\) −0.234833 1.33180i −0.0213484 0.121073i
\(122\) −0.557781 3.16333i −0.0504991 0.286395i
\(123\) 0 0
\(124\) −21.0424 17.6566i −1.88966 1.58561i
\(125\) 2.28833 + 3.96351i 0.204675 + 0.354507i
\(126\) 0 0
\(127\) 3.31908 5.74881i 0.294521 0.510125i −0.680353 0.732885i \(-0.738173\pi\)
0.974873 + 0.222760i \(0.0715067\pi\)
\(128\) 12.5360 4.56272i 1.10803 0.403291i
\(129\) 0 0
\(130\) −1.98293 + 1.66387i −0.173914 + 0.145931i
\(131\) 11.8785 + 4.32342i 1.03783 + 0.377739i 0.804057 0.594552i \(-0.202671\pi\)
0.233773 + 0.972291i \(0.424893\pi\)
\(132\) 0 0
\(133\) −0.0234708 + 0.133109i −0.00203517 + 0.0115420i
\(134\) 25.3405 2.18908
\(135\) 0 0
\(136\) 18.3182 1.57077
\(137\) 1.84343 10.4546i 0.157495 0.893196i −0.798975 0.601364i \(-0.794624\pi\)
0.956470 0.291832i \(-0.0942647\pi\)
\(138\) 0 0
\(139\) 7.01114 + 2.55185i 0.594678 + 0.216445i 0.621785 0.783188i \(-0.286408\pi\)
−0.0271080 + 0.999633i \(0.508630\pi\)
\(140\) −5.10220 + 4.28125i −0.431214 + 0.361832i
\(141\) 0 0
\(142\) −28.1498 + 10.2457i −2.36228 + 0.859798i
\(143\) −3.39306 + 5.87695i −0.283742 + 0.491455i
\(144\) 0 0
\(145\) −1.53802 2.66393i −0.127725 0.221227i
\(146\) −15.9722 13.4023i −1.32187 1.10918i
\(147\) 0 0
\(148\) 2.75490 + 15.6238i 0.226451 + 1.28427i
\(149\) −0.738703 4.18939i −0.0605169 0.343209i −1.00000 0.000612725i \(-0.999805\pi\)
0.939483 0.342596i \(-0.111306\pi\)
\(150\) 0 0
\(151\) 0.103541 + 0.0868809i 0.00842602 + 0.00707027i 0.646991 0.762498i \(-0.276027\pi\)
−0.638565 + 0.769568i \(0.720472\pi\)
\(152\) −0.127889 0.221510i −0.0103731 0.0179668i
\(153\) 0 0
\(154\) −12.6887 + 21.9774i −1.02248 + 1.77099i
\(155\) 2.73783 0.996487i 0.219907 0.0800398i
\(156\) 0 0
\(157\) 10.2083 8.56575i 0.814708 0.683621i −0.137018 0.990568i \(-0.543752\pi\)
0.951727 + 0.306947i \(0.0993075\pi\)
\(158\) −26.2913 9.56926i −2.09163 0.761289i
\(159\) 0 0
\(160\) 0.373455 2.11797i 0.0295242 0.167440i
\(161\) −19.7023 −1.55276
\(162\) 0 0
\(163\) −9.76382 −0.764762 −0.382381 0.924005i \(-0.624896\pi\)
−0.382381 + 0.924005i \(0.624896\pi\)
\(164\) 5.90033 33.4624i 0.460738 2.61298i
\(165\) 0 0
\(166\) 3.59240 + 1.30753i 0.278824 + 0.101484i
\(167\) −2.73783 + 2.29731i −0.211859 + 0.177771i −0.742542 0.669799i \(-0.766380\pi\)
0.530683 + 0.847571i \(0.321936\pi\)
\(168\) 0 0
\(169\) 7.73055 2.81369i 0.594658 0.216438i
\(170\) −1.77719 + 3.07818i −0.136304 + 0.236086i
\(171\) 0 0
\(172\) 1.29813 + 2.24843i 0.0989817 + 0.171441i
\(173\) 14.3760 + 12.0629i 1.09299 + 0.917124i 0.996934 0.0782525i \(-0.0249340\pi\)
0.0960521 + 0.995376i \(0.469378\pi\)
\(174\) 0 0
\(175\) 2.67886 + 15.1926i 0.202503 + 1.14845i
\(176\) −3.58037 20.3053i −0.269881 1.53057i
\(177\) 0 0
\(178\) −30.7879 25.8341i −2.30765 1.93635i
\(179\) 2.54189 + 4.40268i 0.189990 + 0.329072i 0.945247 0.326357i \(-0.105821\pi\)
−0.755257 + 0.655429i \(0.772488\pi\)
\(180\) 0 0
\(181\) −3.57532 + 6.19264i −0.265752 + 0.460295i −0.967760 0.251873i \(-0.918953\pi\)
0.702009 + 0.712168i \(0.252287\pi\)
\(182\) −16.7738 + 6.10516i −1.24336 + 0.452544i
\(183\) 0 0
\(184\) 28.5612 23.9657i 2.10556 1.76678i
\(185\) −1.58125 0.575529i −0.116256 0.0423137i
\(186\) 0 0
\(187\) −1.61809 + 9.17664i −0.118326 + 0.671062i
\(188\) −42.6168 −3.10815
\(189\) 0 0
\(190\) 0.0496299 0.00360053
\(191\) −1.82501 + 10.3501i −0.132053 + 0.748909i 0.844814 + 0.535060i \(0.179711\pi\)
−0.976867 + 0.213849i \(0.931400\pi\)
\(192\) 0 0
\(193\) 9.53121 + 3.46908i 0.686072 + 0.249710i 0.661452 0.749987i \(-0.269940\pi\)
0.0246193 + 0.999697i \(0.492163\pi\)
\(194\) 36.1673 30.3480i 2.59666 2.17886i
\(195\) 0 0
\(196\) −14.1420 + 5.14728i −1.01014 + 0.367663i
\(197\) −7.04189 + 12.1969i −0.501714 + 0.868994i 0.498284 + 0.867014i \(0.333964\pi\)
−0.999998 + 0.00198008i \(0.999370\pi\)
\(198\) 0 0
\(199\) −5.13816 8.89955i −0.364234 0.630872i 0.624419 0.781090i \(-0.285336\pi\)
−0.988653 + 0.150218i \(0.952003\pi\)
\(200\) −22.3635 18.7652i −1.58134 1.32690i
\(201\) 0 0
\(202\) 3.99525 + 22.6582i 0.281105 + 1.59423i
\(203\) −3.68345 20.8899i −0.258527 1.46618i
\(204\) 0 0
\(205\) 2.76083 + 2.31661i 0.192825 + 0.161799i
\(206\) −0.330222 0.571962i −0.0230077 0.0398505i
\(207\) 0 0
\(208\) 7.25150 12.5600i 0.502801 0.870877i
\(209\) 0.122264 0.0445003i 0.00845715 0.00307815i
\(210\) 0 0
\(211\) −5.47178 + 4.59137i −0.376693 + 0.316083i −0.811403 0.584488i \(-0.801295\pi\)
0.434710 + 0.900571i \(0.356851\pi\)
\(212\) −20.5535 7.48086i −1.41162 0.513788i
\(213\) 0 0
\(214\) 1.77719 10.0789i 0.121486 0.688982i
\(215\) −0.275378 −0.0187806
\(216\) 0 0
\(217\) 20.0915 1.36390
\(218\) −2.37598 + 13.4749i −0.160922 + 0.912633i
\(219\) 0 0
\(220\) 6.02481 + 2.19285i 0.406193 + 0.147842i
\(221\) −5.02094 + 4.21307i −0.337745 + 0.283402i
\(222\) 0 0
\(223\) 9.71213 3.53493i 0.650373 0.236716i 0.00429825 0.999991i \(-0.498632\pi\)
0.646074 + 0.763275i \(0.276410\pi\)
\(224\) 7.41534 12.8438i 0.495459 0.858159i
\(225\) 0 0
\(226\) −1.75237 3.03520i −0.116566 0.201899i
\(227\) −9.97565 8.37057i −0.662107 0.555574i 0.248610 0.968604i \(-0.420026\pi\)
−0.910718 + 0.413030i \(0.864471\pi\)
\(228\) 0 0
\(229\) −4.87939 27.6724i −0.322439 1.82864i −0.527093 0.849807i \(-0.676718\pi\)
0.204655 0.978834i \(-0.434393\pi\)
\(230\) 1.25624 + 7.12452i 0.0828343 + 0.469777i
\(231\) 0 0
\(232\) 30.7499 + 25.8022i 2.01883 + 1.69400i
\(233\) 6.95723 + 12.0503i 0.455784 + 0.789440i 0.998733 0.0503252i \(-0.0160258\pi\)
−0.542949 + 0.839765i \(0.682692\pi\)
\(234\) 0 0
\(235\) 2.26011 3.91463i 0.147434 0.255363i
\(236\) 35.3692 12.8733i 2.30234 0.837982i
\(237\) 0 0
\(238\) −18.7763 + 15.7552i −1.21709 + 1.02126i
\(239\) 14.1138 + 5.13701i 0.912946 + 0.332285i 0.755429 0.655231i \(-0.227429\pi\)
0.157518 + 0.987516i \(0.449651\pi\)
\(240\) 0 0
\(241\) −2.25284 + 12.7765i −0.145118 + 0.823006i 0.822154 + 0.569265i \(0.192772\pi\)
−0.967272 + 0.253741i \(0.918339\pi\)
\(242\) −3.42427 −0.220120
\(243\) 0 0
\(244\) −5.59627 −0.358264
\(245\) 0.277189 1.57202i 0.0177089 0.100432i
\(246\) 0 0
\(247\) 0.0859997 + 0.0313013i 0.00547203 + 0.00199165i
\(248\) −29.1254 + 24.4391i −1.84947 + 1.55189i
\(249\) 0 0
\(250\) 10.8897 3.96351i 0.688722 0.250674i
\(251\) −0.436289 + 0.755675i −0.0275383 + 0.0476978i −0.879466 0.475961i \(-0.842100\pi\)
0.851928 + 0.523659i \(0.175433\pi\)
\(252\) 0 0
\(253\) 9.48293 + 16.4249i 0.596186 + 1.03263i
\(254\) −12.8760 10.8042i −0.807911 0.677918i
\(255\) 0 0
\(256\) −5.29679 30.0396i −0.331049 1.87747i
\(257\) 0.794730 + 4.50714i 0.0495739 + 0.281147i 0.999510 0.0312963i \(-0.00996354\pi\)
−0.949936 + 0.312444i \(0.898852\pi\)
\(258\) 0 0
\(259\) −8.88919 7.45891i −0.552347 0.463474i
\(260\) 2.25490 + 3.90560i 0.139843 + 0.242215i
\(261\) 0 0
\(262\) 16.0039 27.7195i 0.988722 1.71252i
\(263\) −4.03849 + 1.46989i −0.249024 + 0.0906372i −0.463516 0.886088i \(-0.653412\pi\)
0.214493 + 0.976726i \(0.431190\pi\)
\(264\) 0 0
\(265\) 1.77719 1.49124i 0.109172 0.0916061i
\(266\) 0.321604 + 0.117054i 0.0197188 + 0.00717706i
\(267\) 0 0
\(268\) 7.66637 43.4782i 0.468298 2.65585i
\(269\) 12.1257 0.739315 0.369657 0.929168i \(-0.379475\pi\)
0.369657 + 0.929168i \(0.379475\pi\)
\(270\) 0 0
\(271\) −0.319955 −0.0194359 −0.00971795 0.999953i \(-0.503093\pi\)
−0.00971795 + 0.999953i \(0.503093\pi\)
\(272\) 3.45811 19.6119i 0.209679 1.18915i
\(273\) 0 0
\(274\) −25.2592 9.19361i −1.52597 0.555406i
\(275\) 11.3760 9.54558i 0.685998 0.575620i
\(276\) 0 0
\(277\) 25.2037 9.17339i 1.51434 0.551175i 0.554615 0.832107i \(-0.312866\pi\)
0.959728 + 0.280932i \(0.0906435\pi\)
\(278\) 9.44609 16.3611i 0.566539 0.981274i
\(279\) 0 0
\(280\) 4.60947 + 7.98384i 0.275469 + 0.477126i
\(281\) 20.4388 + 17.1502i 1.21928 + 1.02310i 0.998862 + 0.0476892i \(0.0151857\pi\)
0.220415 + 0.975406i \(0.429259\pi\)
\(282\) 0 0
\(283\) −1.61381 9.15236i −0.0959309 0.544051i −0.994458 0.105133i \(-0.966473\pi\)
0.898527 0.438918i \(-0.144638\pi\)
\(284\) 9.06283 + 51.3979i 0.537780 + 3.04990i
\(285\) 0 0
\(286\) 13.1630 + 11.0450i 0.778343 + 0.653107i
\(287\) 12.4265 + 21.5233i 0.733512 + 1.27048i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −7.31908 + 2.66393i −0.429791 + 0.156431i
\(291\) 0 0
\(292\) −27.8273 + 23.3499i −1.62847 + 1.36645i
\(293\) 18.4547 + 6.71696i 1.07814 + 0.392409i 0.819213 0.573489i \(-0.194410\pi\)
0.258922 + 0.965898i \(0.416633\pi\)
\(294\) 0 0
\(295\) −0.693249 + 3.93161i −0.0403625 + 0.228907i
\(296\) 21.9590 1.27634
\(297\) 0 0
\(298\) −10.7716 −0.623980
\(299\) −2.31655 + 13.1378i −0.133970 + 0.759780i
\(300\) 0 0
\(301\) −1.78446 0.649491i −0.102855 0.0374361i
\(302\) 0.262174 0.219990i 0.0150864 0.0126590i
\(303\) 0 0
\(304\) −0.261297 + 0.0951042i −0.0149864 + 0.00545460i
\(305\) 0.296789 0.514054i 0.0169941 0.0294346i
\(306\) 0 0
\(307\) −14.1716 24.5459i −0.808815 1.40091i −0.913685 0.406423i \(-0.866776\pi\)
0.104870 0.994486i \(-0.466557\pi\)
\(308\) 33.8692 + 28.4196i 1.92988 + 1.61936i
\(309\) 0 0
\(310\) −1.28106 7.26525i −0.0727593 0.412638i
\(311\) −0.355037 2.01352i −0.0201323 0.114176i 0.973086 0.230444i \(-0.0740179\pi\)
−0.993218 + 0.116268i \(0.962907\pi\)
\(312\) 0 0
\(313\) 6.44356 + 5.40679i 0.364212 + 0.305610i 0.806467 0.591279i \(-0.201377\pi\)
−0.442255 + 0.896889i \(0.645821\pi\)
\(314\) −16.8712 29.2218i −0.952099 1.64908i
\(315\) 0 0
\(316\) −24.3726 + 42.2145i −1.37106 + 2.37475i
\(317\) −29.2511 + 10.6465i −1.64290 + 0.597968i −0.987543 0.157347i \(-0.949706\pi\)
−0.655361 + 0.755316i \(0.727484\pi\)
\(318\) 0 0
\(319\) −15.6420 + 13.1252i −0.875785 + 0.734871i
\(320\) 0.720285 + 0.262162i 0.0402652 + 0.0146553i
\(321\) 0 0
\(322\) −8.66297 + 49.1301i −0.482768 + 2.73792i
\(323\) 0.125667 0.00699231
\(324\) 0 0
\(325\) 10.4456 0.579419
\(326\) −4.29308 + 24.3473i −0.237772 + 1.34847i
\(327\) 0 0
\(328\) −44.1946 16.0855i −2.44024 0.888175i
\(329\) 23.8785 20.0364i 1.31646 1.10465i
\(330\) 0 0
\(331\) −29.1596 + 10.6132i −1.60275 + 0.583355i −0.979989 0.199053i \(-0.936213\pi\)
−0.622766 + 0.782408i \(0.713991\pi\)
\(332\) 3.33022 5.76811i 0.182770 0.316566i
\(333\) 0 0
\(334\) 4.52481 + 7.83721i 0.247587 + 0.428833i
\(335\) 3.58718 + 3.01000i 0.195989 + 0.164454i
\(336\) 0 0
\(337\) 4.12061 + 23.3692i 0.224464 + 1.27300i 0.863707 + 0.503995i \(0.168137\pi\)
−0.639243 + 0.769005i \(0.720752\pi\)
\(338\) −3.61721 20.5142i −0.196750 1.11583i
\(339\) 0 0
\(340\) 4.74376 + 3.98048i 0.257266 + 0.215872i
\(341\) −9.67024 16.7494i −0.523673 0.907028i
\(342\) 0 0
\(343\) −5.78952 + 10.0277i −0.312604 + 0.541447i
\(344\) 3.37686 1.22908i 0.182068 0.0662673i
\(345\) 0 0
\(346\) 36.4013 30.5443i 1.95694 1.64207i
\(347\) 1.69934 + 0.618509i 0.0912254 + 0.0332033i 0.387230 0.921983i \(-0.373432\pi\)
−0.296004 + 0.955187i \(0.595654\pi\)
\(348\) 0 0
\(349\) 2.65002 15.0290i 0.141852 0.804483i −0.827989 0.560744i \(-0.810515\pi\)
0.969841 0.243739i \(-0.0783739\pi\)
\(350\) 39.0624 2.08797
\(351\) 0 0
\(352\) −14.2763 −0.760930
\(353\) −5.62314 + 31.8904i −0.299290 + 1.69736i 0.349947 + 0.936769i \(0.386199\pi\)
−0.649237 + 0.760586i \(0.724912\pi\)
\(354\) 0 0
\(355\) −5.20187 1.89332i −0.276086 0.100487i
\(356\) −53.6396 + 45.0089i −2.84289 + 2.38547i
\(357\) 0 0
\(358\) 12.0963 4.40268i 0.639308 0.232689i
\(359\) 0.957234 1.65798i 0.0505209 0.0875047i −0.839659 0.543114i \(-0.817245\pi\)
0.890180 + 0.455609i \(0.150579\pi\)
\(360\) 0 0
\(361\) 9.49912 + 16.4530i 0.499954 + 0.865945i
\(362\) 13.8701 + 11.6384i 0.728994 + 0.611698i
\(363\) 0 0
\(364\) 5.40033 + 30.6268i 0.283054 + 1.60528i
\(365\) −0.669063 3.79444i −0.0350203 0.198610i
\(366\) 0 0
\(367\) −20.5797 17.2684i −1.07425 0.901402i −0.0788188 0.996889i \(-0.525115\pi\)
−0.995431 + 0.0954866i \(0.969559\pi\)
\(368\) −20.2665 35.1026i −1.05646 1.82985i
\(369\) 0 0
\(370\) −2.13041 + 3.68999i −0.110755 + 0.191833i
\(371\) 15.0334 5.47172i 0.780497 0.284078i
\(372\) 0 0
\(373\) 11.3682 9.53909i 0.588625 0.493915i −0.299142 0.954209i \(-0.596700\pi\)
0.887767 + 0.460294i \(0.152256\pi\)
\(374\) 22.1716 + 8.06980i 1.14647 + 0.417279i
\(375\) 0 0
\(376\) −10.2430 + 58.0912i −0.528244 + 2.99582i
\(377\) −14.3628 −0.739721
\(378\) 0 0
\(379\) −33.7870 −1.73552 −0.867762 0.496980i \(-0.834442\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(380\) 0.0150147 0.0851529i 0.000770240 0.00436825i
\(381\) 0 0
\(382\) 25.0069 + 9.10175i 1.27946 + 0.465686i
\(383\) −7.10813 + 5.96443i −0.363208 + 0.304768i −0.806068 0.591823i \(-0.798408\pi\)
0.442860 + 0.896591i \(0.353964\pi\)
\(384\) 0 0
\(385\) −4.40673 + 1.60392i −0.224588 + 0.0817432i
\(386\) 12.8414 22.2419i 0.653608 1.13208i
\(387\) 0 0
\(388\) −41.1279 71.2357i −2.08796 3.61644i
\(389\) −12.2404 10.2709i −0.620610 0.520754i 0.277385 0.960759i \(-0.410532\pi\)
−0.897995 + 0.440005i \(0.854977\pi\)
\(390\) 0 0
\(391\) 3.18092 + 18.0399i 0.160866 + 0.912317i
\(392\) 3.61721 + 20.5142i 0.182697 + 1.03612i
\(393\) 0 0
\(394\) 27.3182 + 22.9227i 1.37627 + 1.15483i
\(395\) −2.58512 4.47756i −0.130072 0.225291i
\(396\) 0 0
\(397\) −9.85251 + 17.0650i −0.494483 + 0.856470i −0.999980 0.00635841i \(-0.997976\pi\)
0.505496 + 0.862829i \(0.331309\pi\)
\(398\) −24.4513 + 8.89955i −1.22563 + 0.446094i
\(399\) 0 0
\(400\) −24.3123 + 20.4004i −1.21561 + 1.02002i
\(401\) −1.07873 0.392624i −0.0538690 0.0196067i 0.314945 0.949110i \(-0.398014\pi\)
−0.368814 + 0.929503i \(0.620236\pi\)
\(402\) 0 0
\(403\) 2.36231 13.3973i 0.117675 0.667369i
\(404\) 40.0847 1.99429
\(405\) 0 0
\(406\) −53.7110 −2.66563
\(407\) −1.93969 + 11.0005i −0.0961470 + 0.545277i
\(408\) 0 0
\(409\) 2.91400 + 1.06061i 0.144088 + 0.0524438i 0.413057 0.910705i \(-0.364461\pi\)
−0.268969 + 0.963149i \(0.586683\pi\)
\(410\) 6.99067 5.86587i 0.345244 0.289694i
\(411\) 0 0
\(412\) −1.08125 + 0.393544i −0.0532695 + 0.0193885i
\(413\) −13.7652 + 23.8420i −0.677340 + 1.17319i
\(414\) 0 0
\(415\) 0.353226 + 0.611806i 0.0173392 + 0.0300324i
\(416\) −7.69253 6.45480i −0.377157 0.316473i
\(417\) 0 0
\(418\) −0.0572085 0.324446i −0.00279816 0.0158692i
\(419\) 6.15570 + 34.9107i 0.300725 + 1.70550i 0.642973 + 0.765889i \(0.277701\pi\)
−0.342247 + 0.939610i \(0.611188\pi\)
\(420\) 0 0
\(421\) 7.06077 + 5.92469i 0.344121 + 0.288752i 0.798424 0.602095i \(-0.205667\pi\)
−0.454303 + 0.890847i \(0.650112\pi\)
\(422\) 9.04323 + 15.6633i 0.440218 + 0.762479i
\(423\) 0 0
\(424\) −15.1373 + 26.2185i −0.735131 + 1.27328i
\(425\) 13.4782 4.90566i 0.653788 0.237959i
\(426\) 0 0
\(427\) 3.13563 2.63111i 0.151744 0.127328i
\(428\) −16.7554 6.09845i −0.809901 0.294780i
\(429\) 0 0
\(430\) −0.121082 + 0.686688i −0.00583907 + 0.0331150i
\(431\) 11.5794 0.557758 0.278879 0.960326i \(-0.410037\pi\)
0.278879 + 0.960326i \(0.410037\pi\)
\(432\) 0 0
\(433\) 6.06511 0.291471 0.145735 0.989324i \(-0.453445\pi\)
0.145735 + 0.989324i \(0.453445\pi\)
\(434\) 8.83409 50.1006i 0.424050 2.40491i
\(435\) 0 0
\(436\) 22.4008 + 8.15322i 1.07280 + 0.390469i
\(437\) 0.195937 0.164411i 0.00937293 0.00786482i
\(438\) 0 0
\(439\) −27.2567 + 9.92063i −1.30089 + 0.473486i −0.897287 0.441448i \(-0.854465\pi\)
−0.403605 + 0.914933i \(0.632243\pi\)
\(440\) 4.43717 7.68540i 0.211534 0.366387i
\(441\) 0 0
\(442\) 8.29813 + 14.3728i 0.394702 + 0.683644i
\(443\) 23.6648 + 19.8571i 1.12435 + 0.943440i 0.998816 0.0486498i \(-0.0154918\pi\)
0.125532 + 0.992090i \(0.459936\pi\)
\(444\) 0 0
\(445\) −1.28968 7.31412i −0.0611366 0.346723i
\(446\) −4.54442 25.7727i −0.215184 1.22037i
\(447\) 0 0
\(448\) 4.04916 + 3.39765i 0.191305 + 0.160524i
\(449\) 19.5410 + 33.8460i 0.922197 + 1.59729i 0.796008 + 0.605287i \(0.206941\pi\)
0.126190 + 0.992006i \(0.459725\pi\)
\(450\) 0 0
\(451\) 11.9620 20.7188i 0.563268 0.975608i
\(452\) −5.73783 + 2.08840i −0.269885 + 0.0982300i
\(453\) 0 0
\(454\) −25.2592 + 21.1950i −1.18547 + 0.994731i
\(455\) −3.09967 1.12819i −0.145315 0.0528903i
\(456\) 0 0
\(457\) −0.261297 + 1.48189i −0.0122229 + 0.0693198i −0.990309 0.138881i \(-0.955650\pi\)
0.978086 + 0.208200i \(0.0667606\pi\)
\(458\) −71.1498 −3.32461
\(459\) 0 0
\(460\) 12.6040 0.587665
\(461\) 4.55603 25.8385i 0.212195 1.20342i −0.673512 0.739176i \(-0.735215\pi\)
0.885708 0.464243i \(-0.153674\pi\)
\(462\) 0 0
\(463\) −6.34895 2.31083i −0.295061 0.107393i 0.190248 0.981736i \(-0.439071\pi\)
−0.485309 + 0.874343i \(0.661293\pi\)
\(464\) 33.4295 28.0507i 1.55192 1.30222i
\(465\) 0 0
\(466\) 33.1079 12.0503i 1.53369 0.558219i
\(467\) −16.8735 + 29.2257i −0.780810 + 1.35240i 0.150660 + 0.988586i \(0.451860\pi\)
−0.931470 + 0.363818i \(0.881473\pi\)
\(468\) 0 0
\(469\) 16.1459 + 27.9655i 0.745548 + 1.29133i
\(470\) −8.76786 7.35710i −0.404431 0.339358i
\(471\) 0 0
\(472\) −9.04664 51.3060i −0.416405 2.36155i
\(473\) 0.317429 + 1.80023i 0.0145954 + 0.0827746i
\(474\) 0 0
\(475\) −0.153419 0.128734i −0.00703934 0.00590671i
\(476\) 21.3516 + 36.9821i 0.978651 + 1.69507i
\(477\) 0 0
\(478\) 19.0155 32.9358i 0.869748 1.50645i
\(479\) −10.4556 + 3.80552i −0.477728 + 0.173879i −0.569650 0.821887i \(-0.692921\pi\)
0.0919220 + 0.995766i \(0.470699\pi\)
\(480\) 0 0
\(481\) −6.01889 + 5.05044i −0.274438 + 0.230280i
\(482\) 30.8692 + 11.2355i 1.40605 + 0.511761i
\(483\) 0 0
\(484\) −1.03596 + 5.87522i −0.0470891 + 0.267055i
\(485\) 8.72462 0.396165
\(486\) 0 0
\(487\) −4.74691 −0.215103 −0.107552 0.994200i \(-0.534301\pi\)
−0.107552 + 0.994200i \(0.534301\pi\)
\(488\) −1.34507 + 7.62830i −0.0608887 + 0.345317i
\(489\) 0 0
\(490\) −3.79813 1.38241i −0.171582 0.0624508i
\(491\) 17.1138 14.3602i 0.772335 0.648066i −0.168971 0.985621i \(-0.554044\pi\)
0.941306 + 0.337555i \(0.109600\pi\)
\(492\) 0 0
\(493\) −18.5326 + 6.74530i −0.834664 + 0.303793i
\(494\) 0.115867 0.200688i 0.00521310 0.00902936i
\(495\) 0 0
\(496\) 20.6668 + 35.7960i 0.927969 + 1.60729i
\(497\) −29.2429 24.5377i −1.31172 1.10067i
\(498\) 0 0
\(499\) −1.81655 10.3022i −0.0813200 0.461189i −0.998090 0.0617736i \(-0.980324\pi\)
0.916770 0.399415i \(-0.130787\pi\)
\(500\) −3.50593 19.8831i −0.156790 0.889200i
\(501\) 0 0
\(502\) 1.69253 + 1.42020i 0.0755415 + 0.0633868i
\(503\) −12.5209 21.6869i −0.558281 0.966972i −0.997640 0.0686600i \(-0.978128\pi\)
0.439359 0.898312i \(-0.355206\pi\)
\(504\) 0 0
\(505\) −2.12583 + 3.68204i −0.0945982 + 0.163849i
\(506\) 45.1271 16.4249i 2.00614 0.730176i
\(507\) 0 0
\(508\) −22.4329 + 18.8234i −0.995298 + 0.835154i
\(509\) −16.9731 6.17771i −0.752321 0.273822i −0.0627387 0.998030i \(-0.519983\pi\)
−0.689582 + 0.724208i \(0.742206\pi\)
\(510\) 0 0
\(511\) 4.61381 26.1662i 0.204103 1.15752i
\(512\) −50.5553 −2.23425
\(513\) 0 0
\(514\) 11.5885 0.511148
\(515\) 0.0211929 0.120191i 0.000933872 0.00529625i
\(516\) 0 0
\(517\) −28.1964 10.2627i −1.24008 0.451351i
\(518\) −22.5082 + 18.8866i −0.988954 + 0.829831i
\(519\) 0 0
\(520\) 5.86571 2.13495i 0.257229 0.0936236i
\(521\) 12.9791 22.4804i 0.568623 0.984883i −0.428080 0.903741i \(-0.640810\pi\)
0.996703 0.0811425i \(-0.0258569\pi\)
\(522\) 0 0
\(523\) −12.7973 22.1655i −0.559585 0.969230i −0.997531 0.0702283i \(-0.977627\pi\)
0.437946 0.899001i \(-0.355706\pi\)
\(524\) −42.7183 35.8449i −1.86616 1.56589i
\(525\) 0 0
\(526\) 1.88965 + 10.7168i 0.0823928 + 0.467273i
\(527\) −3.24376 18.3963i −0.141300 0.801353i
\(528\) 0 0
\(529\) 10.9422 + 9.18161i 0.475749 + 0.399201i
\(530\) −2.93717 5.08732i −0.127582 0.220979i
\(531\) 0 0
\(532\) 0.298133 0.516382i 0.0129257 0.0223880i
\(533\) 15.8131 5.75552i 0.684943 0.249299i
\(534\) 0 0
\(535\) 1.44878 1.21567i 0.0626361 0.0525579i
\(536\) −57.4227 20.9001i −2.48028 0.902749i
\(537\) 0 0
\(538\) 5.33157 30.2368i 0.229860 1.30360i
\(539\) −10.5963 −0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) −0.140682 + 0.797847i −0.00604281 + 0.0342705i
\(543\) 0 0
\(544\) −12.9572 4.71605i −0.555537 0.202199i
\(545\) −1.93692 + 1.62527i −0.0829685 + 0.0696188i
\(546\) 0 0
\(547\) 5.55216 2.02082i 0.237393 0.0864040i −0.220584 0.975368i \(-0.570796\pi\)
0.457977 + 0.888964i \(0.348574\pi\)
\(548\) −23.4158 + 40.5574i −1.00027 + 1.73253i
\(549\) 0 0
\(550\) −18.8011 32.5645i −0.801683 1.38856i
\(551\) 0.210952 + 0.177009i 0.00898684 + 0.00754086i
\(552\) 0 0
\(553\) −6.19119 35.1120i −0.263276 1.49311i
\(554\) −11.7931 66.8819i −0.501040 2.84154i
\(555\) 0 0
\(556\) −25.2139 21.1570i −1.06931 0.897257i
\(557\) −13.3525 23.1272i −0.565764 0.979932i −0.996978 0.0776824i \(-0.975248\pi\)
0.431214 0.902250i \(-0.358085\pi\)
\(558\) 0 0
\(559\) −0.642903 + 1.11354i −0.0271919 + 0.0470978i
\(560\) 9.41787 3.42782i 0.397978 0.144852i
\(561\) 0 0
\(562\) 51.7529 43.4258i 2.18306 1.83181i
\(563\) −33.8876 12.3341i −1.42819 0.519819i −0.491779 0.870720i \(-0.663653\pi\)
−0.936413 + 0.350901i \(0.885875\pi\)
\(564\) 0 0
\(565\) 0.112463 0.637812i 0.00473137 0.0268329i
\(566\) −23.5321 −0.989127
\(567\) 0 0
\(568\) 72.2390 3.03108
\(569\) −1.57104 + 8.90982i −0.0658615 + 0.373519i 0.934006 + 0.357257i \(0.116288\pi\)
−0.999868 + 0.0162624i \(0.994823\pi\)
\(570\) 0 0
\(571\) −28.7349 10.4586i −1.20252 0.437681i −0.338415 0.940997i \(-0.609891\pi\)
−0.864102 + 0.503316i \(0.832113\pi\)
\(572\) 22.9329 19.2430i 0.958872 0.804589i
\(573\) 0 0
\(574\) 59.1348 21.5233i 2.46824 0.898366i
\(575\) 14.5967 25.2823i 0.608726 1.05434i
\(576\) 0 0
\(577\) 12.5744 + 21.7796i 0.523481 + 0.906696i 0.999626 + 0.0273292i \(0.00870022\pi\)
−0.476146 + 0.879367i \(0.657966\pi\)
\(578\) −15.5175 13.0208i −0.645445 0.541592i
\(579\) 0 0
\(580\) 2.35638 + 13.3637i 0.0978434 + 0.554898i
\(581\) 0.845952 + 4.79763i 0.0350960 + 0.199039i
\(582\) 0 0
\(583\) −11.7973 9.89907i −0.488592 0.409978i
\(584\) 25.1400 + 43.5437i 1.04030 + 1.80185i
\(585\) 0 0
\(586\) 24.8640 43.0656i 1.02712 1.77903i
\(587\) −19.6147 + 7.13916i −0.809585 + 0.294665i −0.713452 0.700704i \(-0.752869\pi\)
−0.0961324 + 0.995369i \(0.530647\pi\)
\(588\) 0 0
\(589\) −0.199807 + 0.167658i −0.00823292 + 0.00690824i
\(590\) 9.49912 + 3.45740i 0.391073 + 0.142339i
\(591\) 0 0
\(592\) 4.14543 23.5099i 0.170376 0.966251i
\(593\) 15.6212 0.641488 0.320744 0.947166i \(-0.396067\pi\)
0.320744 + 0.947166i \(0.396067\pi\)
\(594\) 0 0
\(595\) −4.52940 −0.185687
\(596\) −3.25877 + 18.4814i −0.133484 + 0.757028i
\(597\) 0 0
\(598\) 31.7422 + 11.5532i 1.29803 + 0.472446i
\(599\) −0.343426 + 0.288169i −0.0140320 + 0.0117742i −0.649777 0.760125i \(-0.725138\pi\)
0.635745 + 0.771899i \(0.280693\pi\)
\(600\) 0 0
\(601\) 16.6065 6.04428i 0.677395 0.246551i 0.0196662 0.999807i \(-0.493740\pi\)
0.657728 + 0.753255i \(0.271517\pi\)
\(602\) −2.40420 + 4.16420i −0.0979879 + 0.169720i
\(603\) 0 0
\(604\) −0.298133 0.516382i −0.0121309 0.0210113i
\(605\) −0.484737 0.406743i −0.0197074 0.0165364i
\(606\) 0 0
\(607\) 4.54933 + 25.8005i 0.184651 + 1.04721i 0.926402 + 0.376535i \(0.122884\pi\)
−0.741751 + 0.670675i \(0.766004\pi\)
\(608\) 0.0334331 + 0.189608i 0.00135589 + 0.00768963i
\(609\) 0 0
\(610\) −1.15136 0.966105i −0.0466172 0.0391165i
\(611\) −10.5530 18.2784i −0.426930 0.739465i
\(612\) 0 0
\(613\) −7.27719 + 12.6045i −0.293923 + 0.509089i −0.974734 0.223370i \(-0.928294\pi\)
0.680811 + 0.732459i \(0.261628\pi\)
\(614\) −67.4393 + 24.5459i −2.72163 + 0.990592i
\(615\) 0 0
\(616\) 46.8794 39.3365i 1.88883 1.58491i
\(617\) −13.1750 4.79531i −0.530405 0.193052i 0.0629140 0.998019i \(-0.479961\pi\)
−0.593319 + 0.804967i \(0.702183\pi\)
\(618\) 0 0
\(619\) −5.50681 + 31.2307i −0.221337 + 1.25527i 0.648227 + 0.761447i \(0.275511\pi\)
−0.869565 + 0.493819i \(0.835600\pi\)
\(620\) −12.8530 −0.516188
\(621\) 0 0
\(622\) −5.17705 −0.207581
\(623\) 8.89352 50.4377i 0.356311 2.02074i
\(624\) 0 0
\(625\) −20.4513 7.44367i −0.818052 0.297747i
\(626\) 16.3157 13.6905i 0.652105 0.547181i
\(627\) 0 0
\(628\) −55.2418 + 20.1064i −2.20439 + 0.802331i
\(629\) −5.39440 + 9.34337i −0.215089 + 0.372545i
\(630\) 0 0
\(631\) 19.2879 + 33.4077i 0.767840 + 1.32994i 0.938732 + 0.344648i \(0.112002\pi\)
−0.170892 + 0.985290i \(0.554665\pi\)
\(632\) 51.6848 + 43.3687i 2.05591 + 1.72512i
\(633\) 0 0
\(634\) 13.6869 + 77.6223i 0.543577 + 3.08278i
\(635\) −0.539363 3.05888i −0.0214040 0.121388i
\(636\) 0 0
\(637\) −5.70961 4.79093i −0.226223 0.189824i
\(638\) 25.8516 + 44.7763i 1.02348 + 1.77271i
\(639\) 0 0
\(640\) 3.12108 5.40587i 0.123372 0.213686i
\(641\) 28.7704 10.4716i 1.13636 0.413602i 0.295764 0.955261i \(-0.404426\pi\)
0.840598 + 0.541659i \(0.182204\pi\)
\(642\) 0 0
\(643\) −26.2178 + 21.9994i −1.03393 + 0.867570i −0.991313 0.131521i \(-0.958014\pi\)
−0.0426164 + 0.999092i \(0.513569\pi\)
\(644\) 81.6746 + 29.7271i 3.21843 + 1.17141i
\(645\) 0 0
\(646\) 0.0552549 0.313366i 0.00217398 0.0123292i
\(647\) −12.8726 −0.506073 −0.253037 0.967457i \(-0.581429\pi\)
−0.253037 + 0.967457i \(0.581429\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) 4.59286 26.0474i 0.180147 1.02166i
\(651\) 0 0
\(652\) 40.4752 + 14.7318i 1.58513 + 0.576941i
\(653\) −8.67096 + 7.27580i −0.339321 + 0.284724i −0.796485 0.604658i \(-0.793310\pi\)
0.457164 + 0.889382i \(0.348865\pi\)
\(654\) 0 0
\(655\) 5.55809 2.02298i 0.217172 0.0790443i
\(656\) −25.5646 + 44.2793i −0.998132 + 1.72881i
\(657\) 0 0
\(658\) −39.4641 68.3538i −1.53847 2.66471i
\(659\) −10.5478 8.85067i −0.410885 0.344773i 0.413798 0.910369i \(-0.364202\pi\)
−0.824683 + 0.565595i \(0.808646\pi\)
\(660\) 0 0
\(661\) −3.51930 19.9589i −0.136885 0.776312i −0.973529 0.228565i \(-0.926597\pi\)
0.836644 0.547747i \(-0.184514\pi\)
\(662\) 13.6441 + 77.3795i 0.530292 + 3.00744i
\(663\) 0 0
\(664\) −7.06212 5.92582i −0.274063 0.229966i
\(665\) 0.0316221 + 0.0547710i 0.00122625 + 0.00212393i
\(666\) 0 0
\(667\) −20.0706 + 34.7633i −0.777136 + 1.34604i
\(668\) 14.8157 5.39246i 0.573236 0.208641i
\(669\) 0 0
\(670\) 9.08306 7.62159i 0.350909 0.294448i
\(671\) −3.70264 1.34765i −0.142939 0.0520255i
\(672\) 0 0
\(673\) −5.30406 + 30.0808i −0.204457 + 1.15953i 0.693836 + 0.720133i \(0.255919\pi\)
−0.898293 + 0.439398i \(0.855192\pi\)
\(674\) 60.0856 2.31441
\(675\) 0 0
\(676\) −36.2918 −1.39584
\(677\) −0.645840 + 3.66274i −0.0248217 + 0.140771i −0.994700 0.102819i \(-0.967214\pi\)
0.969878 + 0.243589i \(0.0783249\pi\)
\(678\) 0 0
\(679\) 56.5360 + 20.5774i 2.16965 + 0.789689i
\(680\) 6.56599 5.50952i 0.251794 0.211280i
\(681\) 0 0
\(682\) −46.0185 + 16.7494i −1.76214 + 0.641366i
\(683\) 10.8735 18.8334i 0.416061 0.720639i −0.579478 0.814988i \(-0.696744\pi\)
0.995539 + 0.0943487i \(0.0300769\pi\)
\(684\) 0 0
\(685\) −2.48364 4.30179i −0.0948950 0.164363i
\(686\) 22.4598 + 18.8460i 0.857518 + 0.719543i
\(687\) 0 0
\(688\) −0.678396 3.84737i −0.0258636 0.146680i
\(689\) −1.88103 10.6679i −0.0716617 0.406414i
\(690\) 0 0
\(691\) −28.7993 24.1655i −1.09558 0.919299i −0.0984578 0.995141i \(-0.531391\pi\)
−0.997120 + 0.0758425i \(0.975835\pi\)
\(692\) −41.3940 71.6965i −1.57356 2.72549i
\(693\) 0 0
\(694\) 2.28952 3.96556i 0.0869088 0.150530i
\(695\) 3.28059 1.19404i 0.124440 0.0452924i
\(696\) 0 0
\(697\) 17.7010 14.8529i 0.670473 0.562593i
\(698\) −36.3114 13.2163i −1.37441 0.500243i
\(699\) 0 0
\(700\) 11.8177 67.0217i 0.446668 2.53318i
\(701\) 23.3351 0.881355 0.440678 0.897665i \(-0.354738\pi\)
0.440678 + 0.897665i \(0.354738\pi\)
\(702\) 0 0
\(703\) 0.150644 0.00568166
\(704\) 0.883560 5.01092i 0.0333004 0.188856i
\(705\) 0 0
\(706\) 77.0502 + 28.0440i 2.89982 + 1.05545i
\(707\) −22.4598 + 18.8460i −0.844686 + 0.708776i
\(708\) 0 0
\(709\) −6.18227 + 2.25016i −0.232180 + 0.0845066i −0.455490 0.890241i \(-0.650536\pi\)
0.223310 + 0.974747i \(0.428314\pi\)
\(710\) −7.00846 + 12.1390i −0.263023 + 0.455569i
\(711\) 0 0
\(712\) 48.4595 + 83.9343i 1.81610 + 3.14557i
\(713\) −29.1254 24.4391i −1.09076 0.915253i
\(714\) 0 0
\(715\) 0.551385 + 3.12706i 0.0206206 + 0.116945i
\(716\) −3.89440 22.0862i −0.145541 0.825402i
\(717\) 0 0
\(718\) −3.71348 3.11598i −0.138586 0.116287i
\(719\) 8.41622 + 14.5773i 0.313872 + 0.543642i 0.979197 0.202911i \(-0.0650403\pi\)
−0.665325 + 0.746554i \(0.731707\pi\)
\(720\) 0 0
\(721\) 0.420807 0.728860i 0.0156717 0.0271442i
\(722\) 45.2041 16.4530i 1.68232 0.612316i
\(723\) 0 0
\(724\) 24.1648 20.2767i 0.898077 0.753576i
\(725\) 29.5351 + 10.7499i 1.09691 + 0.399241i
\(726\) 0 0
\(727\) 4.43882 25.1738i 0.164627 0.933644i −0.784822 0.619721i \(-0.787246\pi\)
0.949449 0.313922i \(-0.101643\pi\)
\(728\) 43.0455 1.59537
\(729\) 0 0
\(730\) −9.75608 −0.361089
\(731\) −0.306589 + 1.73875i −0.0113396 + 0.0643102i
\(732\) 0 0
\(733\) 13.9055 + 5.06120i 0.513613 + 0.186940i 0.585807 0.810451i \(-0.300778\pi\)
−0.0721937 + 0.997391i \(0.523000\pi\)
\(734\) −52.1095 + 43.7251i −1.92340 + 1.61392i
\(735\) 0 0
\(736\) −26.3726 + 9.59883i −0.972106 + 0.353818i
\(737\) 15.5424 26.9202i 0.572510 0.991616i
\(738\) 0 0
\(739\) −4.59539 7.95945i −0.169044 0.292793i 0.769040 0.639201i \(-0.220735\pi\)
−0.938084 + 0.346408i \(0.887401\pi\)
\(740\) 5.68660 + 4.77163i 0.209044 + 0.175408i
\(741\) 0 0
\(742\) −7.03431 39.8936i −0.258238 1.46454i
\(743\) 7.71853 + 43.7740i 0.283165 + 1.60591i 0.711766 + 0.702417i \(0.247896\pi\)
−0.428600 + 0.903494i \(0.640993\pi\)
\(744\) 0 0
\(745\) −1.52481 1.27947i −0.0558649 0.0468762i
\(746\) −18.7883 32.5423i −0.687890 1.19146i
\(747\) 0 0
\(748\) 20.5535 35.5997i 0.751510 1.30165i
\(749\) 12.2554 4.46059i 0.447801 0.162986i
\(750\) 0 0
\(751\) −27.4290 + 23.0157i −1.00090 + 0.839854i −0.987109 0.160051i \(-0.948834\pi\)
−0.0137902 + 0.999905i \(0.504390\pi\)
\(752\) 60.2602 + 21.9329i 2.19746 + 0.799811i
\(753\) 0 0
\(754\) −6.31521 + 35.8153i −0.229986 + 1.30432i
\(755\) 0.0632441 0.00230169
\(756\) 0 0
\(757\) −45.8976 −1.66818 −0.834088 0.551632i \(-0.814005\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(758\) −14.8559 + 84.2521i −0.539591 + 3.06017i
\(759\) 0 0
\(760\) −0.112463 0.0409333i −0.00407948 0.00148481i
\(761\) −28.4932 + 23.9086i −1.03288 + 0.866687i −0.991191 0.132444i \(-0.957718\pi\)
−0.0416869 + 0.999131i \(0.513273\pi\)
\(762\) 0 0
\(763\) −16.3846 + 5.96351i −0.593162 + 0.215893i
\(764\) 23.1819 40.1522i 0.838690 1.45265i
\(765\) 0 0
\(766\) 11.7476 + 20.3475i 0.424459 + 0.735185i
\(767\) 14.2797 + 11.9821i 0.515611 + 0.432649i
\(768\) 0 0
\(769\) −6.65657 37.7513i −0.240042 1.36135i −0.831730 0.555180i \(-0.812649\pi\)
0.591688 0.806167i \(-0.298462\pi\)
\(770\) 2.06196 + 11.6939i 0.0743077 + 0.421420i
\(771\) 0 0
\(772\) −34.2768 28.7616i −1.23365 1.03515i
\(773\) −26.4136 45.7497i −0.950031 1.64550i −0.745351 0.666673i \(-0.767718\pi\)
−0.204680 0.978829i \(-0.565615\pi\)
\(774\) 0 0
\(775\) −14.8851 + 25.7817i −0.534687 + 0.926106i
\(776\) −106.987 + 38.9401i −3.84061 + 1.39787i
\(777\) 0 0
\(778\) −30.9937 + 26.0068i −1.11118 + 0.932388i
\(779\) −0.303186 0.110351i −0.0108628 0.00395372i
\(780\) 0 0