Properties

Label 729.2.e.a.82.1
Level $729$
Weight $2$
Character 729.82
Analytic conductor $5.821$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 729.82
Dual form 729.2.e.a.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.233956 - 1.32683i) q^{2} +(0.173648 - 0.0632028i) q^{4} +(-1.26604 - 1.06234i) q^{5} +(-2.26604 - 0.824773i) q^{7} +(-1.47178 - 2.54920i) q^{8} +O(q^{10})\) \(q+(-0.233956 - 1.32683i) q^{2} +(0.173648 - 0.0632028i) q^{4} +(-1.26604 - 1.06234i) q^{5} +(-2.26604 - 0.824773i) q^{7} +(-1.47178 - 2.54920i) q^{8} +(-1.11334 + 1.92836i) q^{10} +(-4.55303 + 3.82045i) q^{11} +(-0.560307 + 3.17766i) q^{13} +(-0.564178 + 3.19961i) q^{14} +(-2.75490 + 2.31164i) q^{16} +(1.50000 - 2.59808i) q^{17} +(3.31908 + 5.74881i) q^{19} +(-0.286989 - 0.104455i) q^{20} +(6.13429 + 5.14728i) q^{22} +(-2.76604 + 1.00676i) q^{23} +(-0.393933 - 2.23411i) q^{25} +4.34730 q^{26} -0.445622 q^{28} +(0.224155 + 1.27125i) q^{29} +(0.553033 - 0.201288i) q^{31} +(-0.798133 - 0.669713i) q^{32} +(-3.79813 - 1.38241i) q^{34} +(1.99273 + 3.45150i) q^{35} +(-0.0209445 + 0.0362770i) q^{37} +(6.85117 - 5.74881i) q^{38} +(-0.844770 + 4.79093i) q^{40} +(0.851167 - 4.82721i) q^{41} +(-3.97178 + 3.33272i) q^{43} +(-0.549163 + 0.951178i) q^{44} +(1.98293 + 3.43453i) q^{46} +(-3.51114 - 1.27795i) q^{47} +(-0.907604 - 0.761570i) q^{49} +(-2.87211 + 1.04536i) q^{50} +(0.103541 + 0.587208i) q^{52} -11.6382 q^{53} +9.82295 q^{55} +(1.23261 + 6.99049i) q^{56} +(1.63429 - 0.594831i) q^{58} +(5.62836 + 4.72275i) q^{59} +(-10.3833 - 3.77920i) q^{61} +(-0.396459 - 0.686688i) q^{62} +(-4.29813 + 7.44459i) q^{64} +(4.08512 - 3.42782i) q^{65} +(0.322481 - 1.82888i) q^{67} +(0.0962667 - 0.545955i) q^{68} +(4.11334 - 3.45150i) q^{70} +(-2.75624 + 4.77396i) q^{71} +(-2.77719 - 4.81023i) q^{73} +(0.0530334 + 0.0193026i) q^{74} +(0.939693 + 0.788496i) q^{76} +(13.4684 - 4.90209i) q^{77} +(-0.656574 - 3.72362i) q^{79} +5.94356 q^{80} -6.60401 q^{82} +(-0.692066 - 3.92490i) q^{83} +(-4.65910 + 1.69577i) q^{85} +(5.35117 + 4.49016i) q^{86} +(16.4402 + 5.98373i) q^{88} +(4.07532 + 7.05866i) q^{89} +(3.89053 - 6.73859i) q^{91} +(-0.416689 + 0.349643i) q^{92} +(-0.874171 + 4.95767i) q^{94} +(1.90508 - 10.8042i) q^{95} +(0.199807 - 0.167658i) q^{97} +(-0.798133 + 1.38241i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 3 q^{5} - 9 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} - 3 q^{5} - 9 q^{7} + 6 q^{8} - 15 q^{11} - 9 q^{13} + 15 q^{14} - 18 q^{16} + 9 q^{17} + 3 q^{19} + 6 q^{20} + 27 q^{22} - 12 q^{23} - 27 q^{25} + 24 q^{26} - 24 q^{28} + 3 q^{29} - 9 q^{31} + 9 q^{32} - 9 q^{34} - 6 q^{35} + 3 q^{37} + 15 q^{38} - 18 q^{40} - 21 q^{41} - 9 q^{43} - 15 q^{44} - 9 q^{46} - 15 q^{47} - 9 q^{49} + 12 q^{50} - 9 q^{52} - 36 q^{53} + 18 q^{55} + 21 q^{56} - 3 q^{59} - 27 q^{61} - 12 q^{62} - 12 q^{64} + 3 q^{65} + 27 q^{67} - 27 q^{68} + 18 q^{70} - 9 q^{71} - 6 q^{73} - 12 q^{74} + 24 q^{77} + 18 q^{79} + 6 q^{80} + 36 q^{82} - 15 q^{83} + 9 q^{85} + 6 q^{86} + 27 q^{88} + 6 q^{91} + 51 q^{92} - 27 q^{94} + 30 q^{95} - 36 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.233956 1.32683i −0.165432 0.938209i −0.948618 0.316423i \(-0.897518\pi\)
0.783187 0.621786i \(-0.213593\pi\)
\(3\) 0 0
\(4\) 0.173648 0.0632028i 0.0868241 0.0316014i
\(5\) −1.26604 1.06234i −0.566192 0.475092i 0.314188 0.949361i \(-0.398268\pi\)
−0.880380 + 0.474269i \(0.842712\pi\)
\(6\) 0 0
\(7\) −2.26604 0.824773i −0.856484 0.311735i −0.123803 0.992307i \(-0.539509\pi\)
−0.732681 + 0.680572i \(0.761731\pi\)
\(8\) −1.47178 2.54920i −0.520353 0.901278i
\(9\) 0 0
\(10\) −1.11334 + 1.92836i −0.352069 + 0.609802i
\(11\) −4.55303 + 3.82045i −1.37279 + 1.15191i −0.400997 + 0.916080i \(0.631336\pi\)
−0.971795 + 0.235829i \(0.924219\pi\)
\(12\) 0 0
\(13\) −0.560307 + 3.17766i −0.155401 + 0.881325i 0.803017 + 0.595957i \(0.203227\pi\)
−0.958418 + 0.285368i \(0.907884\pi\)
\(14\) −0.564178 + 3.19961i −0.150783 + 0.855132i
\(15\) 0 0
\(16\) −2.75490 + 2.31164i −0.688725 + 0.577909i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 3.31908 + 5.74881i 0.761449 + 1.31887i 0.942104 + 0.335321i \(0.108845\pi\)
−0.180655 + 0.983547i \(0.557822\pi\)
\(20\) −0.286989 0.104455i −0.0641727 0.0233569i
\(21\) 0 0
\(22\) 6.13429 + 5.14728i 1.30783 + 1.09740i
\(23\) −2.76604 + 1.00676i −0.576760 + 0.209924i −0.613896 0.789387i \(-0.710399\pi\)
0.0371361 + 0.999310i \(0.488176\pi\)
\(24\) 0 0
\(25\) −0.393933 2.23411i −0.0787866 0.446821i
\(26\) 4.34730 0.852575
\(27\) 0 0
\(28\) −0.445622 −0.0842147
\(29\) 0.224155 + 1.27125i 0.0416246 + 0.236065i 0.998521 0.0543640i \(-0.0173131\pi\)
−0.956897 + 0.290429i \(0.906202\pi\)
\(30\) 0 0
\(31\) 0.553033 0.201288i 0.0993277 0.0361523i −0.291878 0.956455i \(-0.594280\pi\)
0.391206 + 0.920303i \(0.372058\pi\)
\(32\) −0.798133 0.669713i −0.141091 0.118390i
\(33\) 0 0
\(34\) −3.79813 1.38241i −0.651374 0.237081i
\(35\) 1.99273 + 3.45150i 0.336832 + 0.583410i
\(36\) 0 0
\(37\) −0.0209445 + 0.0362770i −0.00344326 + 0.00596390i −0.867742 0.497015i \(-0.834429\pi\)
0.864299 + 0.502979i \(0.167763\pi\)
\(38\) 6.85117 5.74881i 1.11141 0.932580i
\(39\) 0 0
\(40\) −0.844770 + 4.79093i −0.133570 + 0.757512i
\(41\) 0.851167 4.82721i 0.132930 0.753883i −0.843349 0.537366i \(-0.819419\pi\)
0.976279 0.216517i \(-0.0694696\pi\)
\(42\) 0 0
\(43\) −3.97178 + 3.33272i −0.605691 + 0.508235i −0.893269 0.449522i \(-0.851594\pi\)
0.287578 + 0.957757i \(0.407150\pi\)
\(44\) −0.549163 + 0.951178i −0.0827894 + 0.143396i
\(45\) 0 0
\(46\) 1.98293 + 3.43453i 0.292366 + 0.506394i
\(47\) −3.51114 1.27795i −0.512153 0.186408i 0.0729991 0.997332i \(-0.476743\pi\)
−0.585152 + 0.810924i \(0.698965\pi\)
\(48\) 0 0
\(49\) −0.907604 0.761570i −0.129658 0.108796i
\(50\) −2.87211 + 1.04536i −0.406178 + 0.147837i
\(51\) 0 0
\(52\) 0.103541 + 0.587208i 0.0143585 + 0.0814311i
\(53\) −11.6382 −1.59862 −0.799312 0.600916i \(-0.794802\pi\)
−0.799312 + 0.600916i \(0.794802\pi\)
\(54\) 0 0
\(55\) 9.82295 1.32453
\(56\) 1.23261 + 6.99049i 0.164715 + 0.934143i
\(57\) 0 0
\(58\) 1.63429 0.594831i 0.214592 0.0781052i
\(59\) 5.62836 + 4.72275i 0.732749 + 0.614850i 0.930880 0.365326i \(-0.119042\pi\)
−0.198130 + 0.980176i \(0.563487\pi\)
\(60\) 0 0
\(61\) −10.3833 3.77920i −1.32944 0.483876i −0.422969 0.906144i \(-0.639012\pi\)
−0.906471 + 0.422268i \(0.861234\pi\)
\(62\) −0.396459 0.686688i −0.0503504 0.0872094i
\(63\) 0 0
\(64\) −4.29813 + 7.44459i −0.537267 + 0.930573i
\(65\) 4.08512 3.42782i 0.506697 0.425169i
\(66\) 0 0
\(67\) 0.322481 1.82888i 0.0393974 0.223434i −0.958752 0.284244i \(-0.908257\pi\)
0.998149 + 0.0608104i \(0.0193685\pi\)
\(68\) 0.0962667 0.545955i 0.0116740 0.0662068i
\(69\) 0 0
\(70\) 4.11334 3.45150i 0.491638 0.412533i
\(71\) −2.75624 + 4.77396i −0.327106 + 0.566564i −0.981936 0.189212i \(-0.939407\pi\)
0.654830 + 0.755776i \(0.272740\pi\)
\(72\) 0 0
\(73\) −2.77719 4.81023i −0.325045 0.562995i 0.656476 0.754347i \(-0.272046\pi\)
−0.981522 + 0.191352i \(0.938713\pi\)
\(74\) 0.0530334 + 0.0193026i 0.00616501 + 0.00224388i
\(75\) 0 0
\(76\) 0.939693 + 0.788496i 0.107790 + 0.0904467i
\(77\) 13.4684 4.90209i 1.53486 0.558645i
\(78\) 0 0
\(79\) −0.656574 3.72362i −0.0738704 0.418940i −0.999208 0.0397952i \(-0.987329\pi\)
0.925338 0.379144i \(-0.123782\pi\)
\(80\) 5.94356 0.664511
\(81\) 0 0
\(82\) −6.60401 −0.729291
\(83\) −0.692066 3.92490i −0.0759642 0.430814i −0.998943 0.0459637i \(-0.985364\pi\)
0.922979 0.384850i \(-0.125747\pi\)
\(84\) 0 0
\(85\) −4.65910 + 1.69577i −0.505350 + 0.183932i
\(86\) 5.35117 + 4.49016i 0.577031 + 0.484187i
\(87\) 0 0
\(88\) 16.4402 + 5.98373i 1.75253 + 0.637868i
\(89\) 4.07532 + 7.05866i 0.431983 + 0.748217i 0.997044 0.0768323i \(-0.0244806\pi\)
−0.565061 + 0.825049i \(0.691147\pi\)
\(90\) 0 0
\(91\) 3.89053 6.73859i 0.407838 0.706397i
\(92\) −0.416689 + 0.349643i −0.0434428 + 0.0364528i
\(93\) 0 0
\(94\) −0.874171 + 4.95767i −0.0901638 + 0.511344i
\(95\) 1.90508 10.8042i 0.195457 1.10849i
\(96\) 0 0
\(97\) 0.199807 0.167658i 0.0202874 0.0170231i −0.632588 0.774489i \(-0.718007\pi\)
0.652875 + 0.757466i \(0.273563\pi\)
\(98\) −0.798133 + 1.38241i −0.0806236 + 0.139644i
\(99\) 0 0
\(100\) −0.209607 0.363051i −0.0209607 0.0363051i
\(101\) 10.3623 + 3.77157i 1.03109 + 0.375286i 0.801495 0.598001i \(-0.204038\pi\)
0.229593 + 0.973287i \(0.426260\pi\)
\(102\) 0 0
\(103\) −2.99273 2.51120i −0.294882 0.247435i 0.483328 0.875439i \(-0.339428\pi\)
−0.778210 + 0.628004i \(0.783872\pi\)
\(104\) 8.92514 3.24849i 0.875182 0.318540i
\(105\) 0 0
\(106\) 2.72281 + 15.4418i 0.264463 + 1.49984i
\(107\) 2.63816 0.255040 0.127520 0.991836i \(-0.459298\pi\)
0.127520 + 0.991836i \(0.459298\pi\)
\(108\) 0 0
\(109\) −8.95811 −0.858031 −0.429016 0.903297i \(-0.641140\pi\)
−0.429016 + 0.903297i \(0.641140\pi\)
\(110\) −2.29813 13.0334i −0.219118 1.24268i
\(111\) 0 0
\(112\) 8.14930 2.96610i 0.770036 0.280270i
\(113\) −12.2023 10.2390i −1.14790 0.963202i −0.148231 0.988953i \(-0.547358\pi\)
−0.999668 + 0.0257512i \(0.991802\pi\)
\(114\) 0 0
\(115\) 4.57145 + 1.66387i 0.426290 + 0.155157i
\(116\) 0.119271 + 0.206583i 0.0110740 + 0.0191807i
\(117\) 0 0
\(118\) 4.94949 8.57277i 0.455638 0.789188i
\(119\) −5.54189 + 4.65020i −0.508024 + 0.426283i
\(120\) 0 0
\(121\) 4.22416 23.9564i 0.384014 2.17785i
\(122\) −2.58512 + 14.6610i −0.234046 + 1.32734i
\(123\) 0 0
\(124\) 0.0833113 0.0699065i 0.00748158 0.00627779i
\(125\) −6.00640 + 10.4034i −0.537228 + 0.930507i
\(126\) 0 0
\(127\) −1.79813 3.11446i −0.159559 0.276363i 0.775151 0.631776i \(-0.217674\pi\)
−0.934710 + 0.355412i \(0.884340\pi\)
\(128\) 8.92514 + 3.24849i 0.788879 + 0.287128i
\(129\) 0 0
\(130\) −5.50387 4.61830i −0.482721 0.405051i
\(131\) −16.6395 + 6.05628i −1.45380 + 0.529140i −0.943650 0.330946i \(-0.892632\pi\)
−0.510150 + 0.860085i \(0.670410\pi\)
\(132\) 0 0
\(133\) −2.77972 15.7645i −0.241032 1.36696i
\(134\) −2.50206 −0.216145
\(135\) 0 0
\(136\) −8.83069 −0.757225
\(137\) 0.682266 + 3.86932i 0.0582899 + 0.330579i 0.999983 0.00589552i \(-0.00187661\pi\)
−0.941693 + 0.336474i \(0.890766\pi\)
\(138\) 0 0
\(139\) −11.2442 + 4.09256i −0.953723 + 0.347127i −0.771571 0.636144i \(-0.780529\pi\)
−0.182152 + 0.983270i \(0.558306\pi\)
\(140\) 0.564178 + 0.473401i 0.0476817 + 0.0400097i
\(141\) 0 0
\(142\) 6.97906 + 2.54017i 0.585669 + 0.213166i
\(143\) −9.58899 16.6086i −0.801872 1.38888i
\(144\) 0 0
\(145\) 1.06670 1.84759i 0.0885849 0.153434i
\(146\) −5.73261 + 4.81023i −0.474434 + 0.398098i
\(147\) 0 0
\(148\) −0.00134417 + 0.00762319i −0.000110490 + 0.000626622i
\(149\) −3.56418 + 20.2135i −0.291989 + 1.65595i 0.387206 + 0.921993i \(0.373440\pi\)
−0.679195 + 0.733958i \(0.737671\pi\)
\(150\) 0 0
\(151\) 12.2626 10.2896i 0.997920 0.837354i 0.0112247 0.999937i \(-0.496427\pi\)
0.986695 + 0.162583i \(0.0519825\pi\)
\(152\) 9.76991 16.9220i 0.792445 1.37255i
\(153\) 0 0
\(154\) −9.65523 16.7233i −0.778041 1.34761i
\(155\) −0.914000 0.332669i −0.0734143 0.0267206i
\(156\) 0 0
\(157\) −16.8327 14.1244i −1.34340 1.12725i −0.980739 0.195325i \(-0.937424\pi\)
−0.362661 0.931921i \(-0.618132\pi\)
\(158\) −4.78699 + 1.74232i −0.380832 + 0.138612i
\(159\) 0 0
\(160\) 0.299011 + 1.69577i 0.0236389 + 0.134063i
\(161\) 7.09833 0.559426
\(162\) 0 0
\(163\) 20.5107 1.60652 0.803262 0.595625i \(-0.203096\pi\)
0.803262 + 0.595625i \(0.203096\pi\)
\(164\) −0.157289 0.892032i −0.0122822 0.0696560i
\(165\) 0 0
\(166\) −5.04576 + 1.83651i −0.391627 + 0.142541i
\(167\) −3.28699 2.75811i −0.254355 0.213429i 0.506690 0.862128i \(-0.330869\pi\)
−0.761045 + 0.648699i \(0.775313\pi\)
\(168\) 0 0
\(169\) 2.43242 + 0.885328i 0.187109 + 0.0681022i
\(170\) 3.34002 + 5.78509i 0.256168 + 0.443696i
\(171\) 0 0
\(172\) −0.479055 + 0.829748i −0.0365276 + 0.0632677i
\(173\) −2.90554 + 2.43804i −0.220904 + 0.185361i −0.746523 0.665359i \(-0.768278\pi\)
0.525619 + 0.850720i \(0.323834\pi\)
\(174\) 0 0
\(175\) −0.949960 + 5.38749i −0.0718102 + 0.407256i
\(176\) 3.71167 21.0499i 0.279777 1.58670i
\(177\) 0 0
\(178\) 8.41219 7.05866i 0.630520 0.529069i
\(179\) 4.13816 7.16750i 0.309300 0.535724i −0.668909 0.743344i \(-0.733239\pi\)
0.978209 + 0.207620i \(0.0665718\pi\)
\(180\) 0 0
\(181\) −3.36097 5.82137i −0.249819 0.432699i 0.713657 0.700496i \(-0.247038\pi\)
−0.963475 + 0.267797i \(0.913704\pi\)
\(182\) −9.85117 3.58553i −0.730217 0.265777i
\(183\) 0 0
\(184\) 6.63744 + 5.56947i 0.489319 + 0.410587i
\(185\) 0.0650551 0.0236781i 0.00478295 0.00174085i
\(186\) 0 0
\(187\) 3.09627 + 17.5598i 0.226421 + 1.28410i
\(188\) −0.690474 −0.0503580
\(189\) 0 0
\(190\) −14.7811 −1.07233
\(191\) 0.870767 + 4.93837i 0.0630065 + 0.357328i 0.999969 + 0.00789719i \(0.00251378\pi\)
−0.936962 + 0.349430i \(0.886375\pi\)
\(192\) 0 0
\(193\) 16.7875 6.11013i 1.20839 0.439817i 0.342243 0.939611i \(-0.388813\pi\)
0.866144 + 0.499794i \(0.166591\pi\)
\(194\) −0.269200 0.225885i −0.0193274 0.0162176i
\(195\) 0 0
\(196\) −0.205737 0.0748822i −0.0146955 0.00534873i
\(197\) 0.361844 + 0.626733i 0.0257803 + 0.0446529i 0.878628 0.477507i \(-0.158460\pi\)
−0.852847 + 0.522160i \(0.825126\pi\)
\(198\) 0 0
\(199\) 5.09627 8.82699i 0.361265 0.625729i −0.626905 0.779096i \(-0.715678\pi\)
0.988169 + 0.153367i \(0.0490117\pi\)
\(200\) −5.11540 + 4.29233i −0.361713 + 0.303514i
\(201\) 0 0
\(202\) 2.57991 14.6314i 0.181522 1.02946i
\(203\) 0.540545 3.06558i 0.0379388 0.215162i
\(204\) 0 0
\(205\) −6.20574 + 5.20723i −0.433427 + 0.363689i
\(206\) −2.63176 + 4.55834i −0.183363 + 0.317595i
\(207\) 0 0
\(208\) −5.80200 10.0494i −0.402297 0.696798i
\(209\) −37.0749 13.4942i −2.56453 0.933411i
\(210\) 0 0
\(211\) −11.3871 9.55493i −0.783922 0.657789i 0.160311 0.987067i \(-0.448750\pi\)
−0.944233 + 0.329278i \(0.893195\pi\)
\(212\) −2.02094 + 0.735564i −0.138799 + 0.0505187i
\(213\) 0 0
\(214\) −0.617211 3.50038i −0.0421917 0.239281i
\(215\) 8.56893 0.584396
\(216\) 0 0
\(217\) −1.41921 −0.0963426
\(218\) 2.09580 + 11.8859i 0.141945 + 0.805013i
\(219\) 0 0
\(220\) 1.70574 0.620838i 0.115001 0.0418569i
\(221\) 7.41534 + 6.22221i 0.498810 + 0.418551i
\(222\) 0 0
\(223\) 10.2883 + 3.74465i 0.688958 + 0.250760i 0.662689 0.748895i \(-0.269415\pi\)
0.0262688 + 0.999655i \(0.491637\pi\)
\(224\) 1.25624 + 2.17588i 0.0839364 + 0.145382i
\(225\) 0 0
\(226\) −10.7306 + 18.5859i −0.713786 + 1.23631i
\(227\) 13.2777 11.1413i 0.881269 0.739472i −0.0851707 0.996366i \(-0.527144\pi\)
0.966440 + 0.256894i \(0.0826991\pi\)
\(228\) 0 0
\(229\) 0.271259 1.53839i 0.0179253 0.101659i −0.974532 0.224246i \(-0.928008\pi\)
0.992458 + 0.122587i \(0.0391191\pi\)
\(230\) 1.13816 6.45480i 0.0750478 0.425617i
\(231\) 0 0
\(232\) 2.91076 2.44242i 0.191101 0.160353i
\(233\) 8.39440 14.5395i 0.549935 0.952516i −0.448343 0.893862i \(-0.647986\pi\)
0.998278 0.0586545i \(-0.0186810\pi\)
\(234\) 0 0
\(235\) 3.08765 + 5.34796i 0.201416 + 0.348863i
\(236\) 1.27584 + 0.464369i 0.0830504 + 0.0302279i
\(237\) 0 0
\(238\) 7.46657 + 6.26519i 0.483986 + 0.406112i
\(239\) −3.78611 + 1.37803i −0.244903 + 0.0891375i −0.461555 0.887111i \(-0.652708\pi\)
0.216652 + 0.976249i \(0.430486\pi\)
\(240\) 0 0
\(241\) −0.582129 3.30142i −0.0374982 0.212663i 0.960301 0.278965i \(-0.0899912\pi\)
−0.997800 + 0.0663015i \(0.978880\pi\)
\(242\) −32.7743 −2.10681
\(243\) 0 0
\(244\) −2.04189 −0.130719
\(245\) 0.340022 + 1.92836i 0.0217232 + 0.123199i
\(246\) 0 0
\(247\) −20.1275 + 7.32580i −1.28068 + 0.466130i
\(248\) −1.32707 1.11354i −0.0842688 0.0707100i
\(249\) 0 0
\(250\) 15.2087 + 5.53553i 0.961885 + 0.350097i
\(251\) −11.5753 20.0490i −0.730628 1.26548i −0.956615 0.291354i \(-0.905894\pi\)
0.225987 0.974130i \(-0.427439\pi\)
\(252\) 0 0
\(253\) 8.74763 15.1513i 0.549959 0.952556i
\(254\) −3.71167 + 3.11446i −0.232891 + 0.195418i
\(255\) 0 0
\(256\) −0.763356 + 4.32921i −0.0477098 + 0.270575i
\(257\) −2.08600 + 11.8303i −0.130121 + 0.737953i 0.848013 + 0.529976i \(0.177799\pi\)
−0.978134 + 0.207977i \(0.933312\pi\)
\(258\) 0 0
\(259\) 0.0773815 0.0649308i 0.00480825 0.00403460i
\(260\) 0.492726 0.853427i 0.0305576 0.0529273i
\(261\) 0 0
\(262\) 11.9285 + 20.6609i 0.736948 + 1.27643i
\(263\) 15.8824 + 5.78071i 0.979349 + 0.356454i 0.781587 0.623796i \(-0.214410\pi\)
0.197762 + 0.980250i \(0.436633\pi\)
\(264\) 0 0
\(265\) 14.7344 + 12.3636i 0.905128 + 0.759493i
\(266\) −20.2665 + 7.37641i −1.24262 + 0.452277i
\(267\) 0 0
\(268\) −0.0595922 0.337964i −0.00364017 0.0206444i
\(269\) 7.91447 0.482554 0.241277 0.970456i \(-0.422434\pi\)
0.241277 + 0.970456i \(0.422434\pi\)
\(270\) 0 0
\(271\) −17.2344 −1.04692 −0.523458 0.852051i \(-0.675358\pi\)
−0.523458 + 0.852051i \(0.675358\pi\)
\(272\) 1.87346 + 10.6249i 0.113595 + 0.644229i
\(273\) 0 0
\(274\) 4.97431 1.81050i 0.300509 0.109376i
\(275\) 10.3289 + 8.66696i 0.622855 + 0.522637i
\(276\) 0 0
\(277\) −24.8405 9.04120i −1.49252 0.543233i −0.538409 0.842684i \(-0.680974\pi\)
−0.954112 + 0.299451i \(0.903197\pi\)
\(278\) 8.06077 + 13.9617i 0.483453 + 0.837365i
\(279\) 0 0
\(280\) 5.86571 10.1597i 0.350543 0.607159i
\(281\) 14.5517 12.2103i 0.868081 0.728406i −0.0956121 0.995419i \(-0.530481\pi\)
0.963693 + 0.267012i \(0.0860364\pi\)
\(282\) 0 0
\(283\) −2.88026 + 16.3348i −0.171214 + 0.971002i 0.771210 + 0.636581i \(0.219652\pi\)
−0.942424 + 0.334421i \(0.891459\pi\)
\(284\) −0.176890 + 1.00319i −0.0104965 + 0.0595284i
\(285\) 0 0
\(286\) −19.7934 + 16.6086i −1.17041 + 0.982088i
\(287\) −5.91013 + 10.2366i −0.348864 + 0.604250i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −2.70099 0.983080i −0.158608 0.0577284i
\(291\) 0 0
\(292\) −0.786274 0.659762i −0.0460132 0.0386097i
\(293\) 18.1903 6.62073i 1.06269 0.386787i 0.249251 0.968439i \(-0.419815\pi\)
0.813438 + 0.581652i \(0.197593\pi\)
\(294\) 0 0
\(295\) −2.10859 11.9584i −0.122767 0.696246i
\(296\) 0.123303 0.00716685
\(297\) 0 0
\(298\) 27.6536 1.60193
\(299\) −1.64930 9.35365i −0.0953815 0.540935i
\(300\) 0 0
\(301\) 11.7490 4.27628i 0.677199 0.246480i
\(302\) −16.5214 13.8631i −0.950700 0.797732i
\(303\) 0 0
\(304\) −22.4329 8.16490i −1.28661 0.468289i
\(305\) 9.13088 + 15.8152i 0.522833 + 0.905573i
\(306\) 0 0
\(307\) −10.4029 + 18.0183i −0.593722 + 1.02836i 0.400003 + 0.916514i \(0.369009\pi\)
−0.993726 + 0.111844i \(0.964324\pi\)
\(308\) 2.02893 1.70248i 0.115609 0.0970077i
\(309\) 0 0
\(310\) −0.227559 + 1.29055i −0.0129245 + 0.0732984i
\(311\) 1.85204 10.5035i 0.105020 0.595597i −0.886193 0.463317i \(-0.846659\pi\)
0.991212 0.132280i \(-0.0422297\pi\)
\(312\) 0 0
\(313\) 2.92262 2.45237i 0.165196 0.138616i −0.556442 0.830886i \(-0.687834\pi\)
0.721638 + 0.692270i \(0.243389\pi\)
\(314\) −14.8025 + 25.6386i −0.835352 + 1.44687i
\(315\) 0 0
\(316\) −0.349356 0.605102i −0.0196528 0.0340396i
\(317\) 24.7977 + 9.02563i 1.39278 + 0.506930i 0.926027 0.377458i \(-0.123202\pi\)
0.466752 + 0.884388i \(0.345424\pi\)
\(318\) 0 0
\(319\) −5.87733 4.93166i −0.329067 0.276120i
\(320\) 13.3503 4.85911i 0.746304 0.271632i
\(321\) 0 0
\(322\) −1.66069 9.41826i −0.0925468 0.524859i
\(323\) 19.9145 1.10807
\(324\) 0 0
\(325\) 7.31996 0.406038
\(326\) −4.79860 27.2142i −0.265770 1.50726i
\(327\) 0 0
\(328\) −13.5582 + 4.93480i −0.748629 + 0.272479i
\(329\) 6.90239 + 5.79179i 0.380541 + 0.319312i
\(330\) 0 0
\(331\) 1.47683 + 0.537524i 0.0811741 + 0.0295450i 0.382288 0.924043i \(-0.375136\pi\)
−0.301114 + 0.953588i \(0.597358\pi\)
\(332\) −0.368241 0.637812i −0.0202098 0.0350045i
\(333\) 0 0
\(334\) −2.89053 + 5.00654i −0.158163 + 0.273946i
\(335\) −2.35117 + 1.97286i −0.128458 + 0.107789i
\(336\) 0 0
\(337\) −1.39187 + 7.89371i −0.0758202 + 0.429998i 0.923142 + 0.384458i \(0.125612\pi\)
−0.998963 + 0.0455394i \(0.985499\pi\)
\(338\) 0.605600 3.43453i 0.0329403 0.186814i
\(339\) 0 0
\(340\) −0.701867 + 0.588936i −0.0380641 + 0.0319395i
\(341\) −1.74897 + 3.02931i −0.0947121 + 0.164046i
\(342\) 0 0
\(343\) 9.86871 + 17.0931i 0.532860 + 0.922941i
\(344\) 14.3414 + 5.21983i 0.773235 + 0.281434i
\(345\) 0 0
\(346\) 3.91463 + 3.28476i 0.210452 + 0.176590i
\(347\) 18.6484 6.78747i 1.00110 0.364371i 0.211091 0.977466i \(-0.432298\pi\)
0.790009 + 0.613096i \(0.210076\pi\)
\(348\) 0 0
\(349\) 1.92633 + 10.9247i 0.103114 + 0.584788i 0.991957 + 0.126576i \(0.0403988\pi\)
−0.888843 + 0.458212i \(0.848490\pi\)
\(350\) 7.37052 0.393971
\(351\) 0 0
\(352\) 6.19253 0.330063
\(353\) 0.497312 + 2.82039i 0.0264692 + 0.150114i 0.995178 0.0980859i \(-0.0312720\pi\)
−0.968709 + 0.248200i \(0.920161\pi\)
\(354\) 0 0
\(355\) 8.56108 3.11598i 0.454375 0.165379i
\(356\) 1.15380 + 0.968153i 0.0611512 + 0.0513120i
\(357\) 0 0
\(358\) −10.4782 3.81374i −0.553789 0.201563i
\(359\) 14.3944 + 24.9318i 0.759707 + 1.31585i 0.943000 + 0.332793i \(0.107991\pi\)
−0.183292 + 0.983058i \(0.558676\pi\)
\(360\) 0 0
\(361\) −12.5326 + 21.7070i −0.659608 + 1.14247i
\(362\) −6.93763 + 5.82137i −0.364634 + 0.305964i
\(363\) 0 0
\(364\) 0.249686 1.41604i 0.0130871 0.0742205i
\(365\) −1.59405 + 9.04028i −0.0834361 + 0.473190i
\(366\) 0 0
\(367\) −8.42056 + 7.06569i −0.439550 + 0.368826i −0.835541 0.549428i \(-0.814846\pi\)
0.395991 + 0.918254i \(0.370401\pi\)
\(368\) 5.29292 9.16760i 0.275912 0.477894i
\(369\) 0 0
\(370\) −0.0466368 0.0807773i −0.00242453 0.00419941i
\(371\) 26.3726 + 9.59883i 1.36920 + 0.498347i
\(372\) 0 0
\(373\) 25.5933 + 21.4754i 1.32517 + 1.11195i 0.985180 + 0.171523i \(0.0548689\pi\)
0.339992 + 0.940428i \(0.389576\pi\)
\(374\) 22.5744 8.21643i 1.16730 0.424861i
\(375\) 0 0
\(376\) 1.90988 + 10.8315i 0.0984946 + 0.558591i
\(377\) −4.16519 −0.214518
\(378\) 0 0
\(379\) 20.9394 1.07559 0.537794 0.843077i \(-0.319258\pi\)
0.537794 + 0.843077i \(0.319258\pi\)
\(380\) −0.352044 1.99654i −0.0180595 0.102420i
\(381\) 0 0
\(382\) 6.34864 2.31072i 0.324825 0.118227i
\(383\) 3.14930 + 2.64258i 0.160922 + 0.135029i 0.719693 0.694292i \(-0.244283\pi\)
−0.558771 + 0.829322i \(0.688727\pi\)
\(384\) 0 0
\(385\) −22.2592 8.10170i −1.13444 0.412901i
\(386\) −12.0346 20.8446i −0.612546 1.06096i
\(387\) 0 0
\(388\) 0.0240997 0.0417419i 0.00122348 0.00211912i
\(389\) −13.0949 + 10.9879i −0.663939 + 0.557111i −0.911265 0.411822i \(-0.864893\pi\)
0.247326 + 0.968932i \(0.420448\pi\)
\(390\) 0 0
\(391\) −1.53343 + 8.69653i −0.0775490 + 0.439802i
\(392\) −0.605600 + 3.43453i −0.0305874 + 0.173470i
\(393\) 0 0
\(394\) 0.746911 0.626733i 0.0376288 0.0315743i
\(395\) −3.12449 + 5.41177i −0.157210 + 0.272296i
\(396\) 0 0
\(397\) −11.2010 19.4007i −0.562162 0.973692i −0.997308 0.0733324i \(-0.976637\pi\)
0.435146 0.900360i \(-0.356697\pi\)
\(398\) −12.9042 4.69674i −0.646829 0.235427i
\(399\) 0 0
\(400\) 6.24969 + 5.24411i 0.312484 + 0.262205i
\(401\) −13.7023 + 4.98724i −0.684262 + 0.249051i −0.660676 0.750671i \(-0.729730\pi\)
−0.0235855 + 0.999722i \(0.507508\pi\)
\(402\) 0 0
\(403\) 0.329755 + 1.87014i 0.0164263 + 0.0931581i
\(404\) 2.03777 0.101383
\(405\) 0 0
\(406\) −4.19396 −0.208143
\(407\) −0.0432332 0.245188i −0.00214299 0.0121535i
\(408\) 0 0
\(409\) 16.4474 5.98638i 0.813273 0.296007i 0.0982980 0.995157i \(-0.468660\pi\)
0.714975 + 0.699150i \(0.246438\pi\)
\(410\) 8.36097 + 7.01568i 0.412919 + 0.346480i
\(411\) 0 0
\(412\) −0.678396 0.246916i −0.0334222 0.0121647i
\(413\) −8.85891 15.3441i −0.435918 0.755033i
\(414\) 0 0
\(415\) −3.29339 + 5.70431i −0.161666 + 0.280014i
\(416\) 2.57532 2.16095i 0.126266 0.105949i
\(417\) 0 0
\(418\) −9.23055 + 52.3491i −0.451481 + 2.56048i
\(419\) −3.27538 + 18.5756i −0.160013 + 0.907477i 0.794046 + 0.607858i \(0.207971\pi\)
−0.954059 + 0.299619i \(0.903140\pi\)
\(420\) 0 0
\(421\) −24.7690 + 20.7837i −1.20717 + 1.01294i −0.207773 + 0.978177i \(0.566622\pi\)
−0.999396 + 0.0347581i \(0.988934\pi\)
\(422\) −10.0137 + 17.3442i −0.487458 + 0.844302i
\(423\) 0 0
\(424\) 17.1288 + 29.6680i 0.831849 + 1.44080i
\(425\) −6.39528 2.32769i −0.310217 0.112910i
\(426\) 0 0
\(427\) 20.4119 + 17.1277i 0.987803 + 0.828865i
\(428\) 0.458111 0.166739i 0.0221436 0.00805962i
\(429\) 0 0
\(430\) −2.00475 11.3695i −0.0966775 0.548285i
\(431\) −34.3164 −1.65297 −0.826483 0.562962i \(-0.809662\pi\)
−0.826483 + 0.562962i \(0.809662\pi\)
\(432\) 0 0
\(433\) −25.0669 −1.20464 −0.602318 0.798256i \(-0.705756\pi\)
−0.602318 + 0.798256i \(0.705756\pi\)
\(434\) 0.332033 + 1.88305i 0.0159381 + 0.0903895i
\(435\) 0 0
\(436\) −1.55556 + 0.566177i −0.0744978 + 0.0271150i
\(437\) −14.9684 12.5600i −0.716035 0.600824i
\(438\) 0 0
\(439\) 21.8084 + 7.93761i 1.04086 + 0.378841i 0.805205 0.592996i \(-0.202055\pi\)
0.235653 + 0.971837i \(0.424277\pi\)
\(440\) −14.4572 25.0407i −0.689222 1.19377i
\(441\) 0 0
\(442\) 6.52094 11.2946i 0.310170 0.537230i
\(443\) 3.15729 2.64928i 0.150007 0.125871i −0.564695 0.825299i \(-0.691006\pi\)
0.714703 + 0.699428i \(0.246562\pi\)
\(444\) 0 0
\(445\) 2.33915 13.2660i 0.110886 0.628866i
\(446\) 2.56149 14.5269i 0.121290 0.687870i
\(447\) 0 0
\(448\) 15.8799 13.3248i 0.750252 0.629537i
\(449\) 9.17071 15.8841i 0.432793 0.749619i −0.564320 0.825556i \(-0.690862\pi\)
0.997113 + 0.0759373i \(0.0241949\pi\)
\(450\) 0 0
\(451\) 14.5667 + 25.2303i 0.685919 + 1.18805i
\(452\) −2.76604 1.00676i −0.130104 0.0473539i
\(453\) 0 0
\(454\) −17.8889 15.0106i −0.839569 0.704482i
\(455\) −12.0842 + 4.39831i −0.566518 + 0.206196i
\(456\) 0 0
\(457\) −3.37939 19.1654i −0.158081 0.896522i −0.955915 0.293644i \(-0.905132\pi\)
0.797834 0.602877i \(-0.205979\pi\)
\(458\) −2.10464 −0.0983432
\(459\) 0 0
\(460\) 0.898986 0.0419154
\(461\) −4.81861 27.3277i −0.224425 1.27278i −0.863781 0.503867i \(-0.831910\pi\)
0.639356 0.768911i \(-0.279201\pi\)
\(462\) 0 0
\(463\) −36.3530 + 13.2314i −1.68947 + 0.614915i −0.994558 0.104183i \(-0.966777\pi\)
−0.694908 + 0.719099i \(0.744555\pi\)
\(464\) −3.55619 2.98400i −0.165092 0.138529i
\(465\) 0 0
\(466\) −21.2554 7.73632i −0.984636 0.358378i
\(467\) 14.8819 + 25.7762i 0.688653 + 1.19278i 0.972274 + 0.233845i \(0.0751309\pi\)
−0.283621 + 0.958936i \(0.591536\pi\)
\(468\) 0 0
\(469\) −2.23917 + 3.87836i −0.103395 + 0.179086i
\(470\) 6.37346 5.34796i 0.293986 0.246683i
\(471\) 0 0
\(472\) 3.75553 21.2987i 0.172862 0.980350i
\(473\) 5.35117 30.3480i 0.246047 1.39540i
\(474\) 0 0
\(475\) 11.5360 9.67982i 0.529306 0.444141i
\(476\) −0.668434 + 1.15776i −0.0306376 + 0.0530659i
\(477\) 0 0
\(478\) 2.71419 + 4.70112i 0.124144 + 0.215024i
\(479\) −35.4038 12.8859i −1.61764 0.588773i −0.634710 0.772750i \(-0.718880\pi\)
−0.982930 + 0.183977i \(0.941103\pi\)
\(480\) 0 0
\(481\) −0.103541 0.0868809i −0.00472105 0.00396143i
\(482\) −4.24422 + 1.54477i −0.193319 + 0.0703624i
\(483\) 0 0
\(484\) −0.780592 4.42696i −0.0354815 0.201225i
\(485\) −0.431074 −0.0195741
\(486\) 0 0
\(487\) −0.763823 −0.0346121 −0.0173061 0.999850i \(-0.505509\pi\)
−0.0173061 + 0.999850i \(0.505509\pi\)
\(488\) 5.64796 + 32.0311i 0.255671 + 1.44998i
\(489\) 0 0
\(490\) 2.47906 0.902302i 0.111992 0.0407619i
\(491\) 0.381445 + 0.320070i 0.0172144 + 0.0144446i 0.651354 0.758774i \(-0.274201\pi\)
−0.634140 + 0.773218i \(0.718646\pi\)
\(492\) 0 0
\(493\) 3.63903 + 1.32450i 0.163894 + 0.0596525i
\(494\) 14.4290 + 24.9918i 0.649192 + 1.12443i
\(495\) 0 0
\(496\) −1.05825 + 1.83294i −0.0475167 + 0.0823014i
\(497\) 10.1832 8.54472i 0.456779 0.383283i
\(498\) 0 0
\(499\) 1.55690 8.82964i 0.0696966 0.395269i −0.929925 0.367750i \(-0.880128\pi\)
0.999621 0.0275190i \(-0.00876067\pi\)
\(500\) −0.385477 + 2.18615i −0.0172391 + 0.0977676i
\(501\) 0 0
\(502\) −23.8935 + 20.0490i −1.06642 + 0.894833i
\(503\) 9.18092 15.9018i 0.409357 0.709027i −0.585461 0.810701i \(-0.699086\pi\)
0.994818 + 0.101673i \(0.0324197\pi\)
\(504\) 0 0
\(505\) −9.11246 15.7832i −0.405499 0.702345i
\(506\) −22.1498 8.06186i −0.984677 0.358393i
\(507\) 0 0
\(508\) −0.509085 0.427173i −0.0225870 0.0189527i
\(509\) −26.6596 + 9.70329i −1.18166 + 0.430091i −0.856790 0.515666i \(-0.827544\pi\)
−0.324875 + 0.945757i \(0.605322\pi\)
\(510\) 0 0
\(511\) 2.32588 + 13.1907i 0.102891 + 0.583524i
\(512\) 24.9186 1.10126
\(513\) 0 0
\(514\) 16.1848 0.713881
\(515\) 1.12119 + 6.35857i 0.0494054 + 0.280192i
\(516\) 0 0
\(517\) 20.8687 7.59559i 0.917805 0.334054i
\(518\) −0.104256 0.0874810i −0.00458074 0.00384370i
\(519\) 0 0
\(520\) −14.7506 5.36879i −0.646857 0.235437i
\(521\) −16.3191 28.2655i −0.714952 1.23833i −0.962978 0.269580i \(-0.913115\pi\)
0.248026 0.968753i \(-0.420218\pi\)
\(522\) 0 0
\(523\) 11.0116 19.0727i 0.481504 0.833990i −0.518271 0.855217i \(-0.673424\pi\)
0.999775 + 0.0212271i \(0.00675730\pi\)
\(524\) −2.50665 + 2.10332i −0.109503 + 0.0918842i
\(525\) 0 0
\(526\) 3.95424 22.4256i 0.172413 0.977803i
\(527\) 0.306589 1.73875i 0.0133552 0.0757413i
\(528\) 0 0
\(529\) −10.9816 + 9.21464i −0.477460 + 0.400637i
\(530\) 12.9572 22.4426i 0.562826 0.974844i
\(531\) 0 0
\(532\) −1.47906 2.56180i −0.0641252 0.111068i
\(533\) 14.8623 + 5.40944i 0.643758 + 0.234309i
\(534\) 0 0
\(535\) −3.34002 2.80261i −0.144402 0.121167i
\(536\) −5.13681 + 1.86965i −0.221876 + 0.0807564i
\(537\) 0 0
\(538\) −1.85163 10.5011i −0.0798296 0.452736i
\(539\) 7.04189 0.303316
\(540\) 0 0
\(541\) −15.7870 −0.678738 −0.339369 0.940653i \(-0.610214\pi\)
−0.339369 + 0.940653i \(0.610214\pi\)
\(542\) 4.03209 + 22.8671i 0.173193 + 0.982227i
\(543\) 0 0
\(544\) −2.93717 + 1.06904i −0.125930 + 0.0458348i
\(545\) 11.3414 + 9.51654i 0.485811 + 0.407644i
\(546\) 0 0
\(547\) 25.7656 + 9.37792i 1.10166 + 0.400971i 0.827928 0.560835i \(-0.189520\pi\)
0.273731 + 0.961806i \(0.411742\pi\)
\(548\) 0.363026 + 0.628780i 0.0155077 + 0.0268602i
\(549\) 0 0
\(550\) 9.08306 15.7323i 0.387303 0.670829i
\(551\) −6.56418 + 5.50800i −0.279643 + 0.234649i
\(552\) 0 0
\(553\) −1.58331 + 8.97940i −0.0673292 + 0.381843i
\(554\) −6.18454 + 35.0743i −0.262756 + 1.49016i
\(555\) 0 0
\(556\) −1.69388 + 1.42133i −0.0718364 + 0.0602779i
\(557\) 14.7010 25.4629i 0.622901 1.07890i −0.366042 0.930598i \(-0.619287\pi\)
0.988943 0.148298i \(-0.0473794\pi\)
\(558\) 0 0
\(559\) −8.36484 14.4883i −0.353795 0.612791i
\(560\) −13.4684 4.90209i −0.569143 0.207151i
\(561\) 0 0
\(562\) −19.6054 16.4509i −0.827005 0.693940i
\(563\) −9.74510 + 3.54693i −0.410707 + 0.149485i −0.539107 0.842237i \(-0.681238\pi\)
0.128400 + 0.991722i \(0.459016\pi\)
\(564\) 0 0
\(565\) 4.57145 + 25.9260i 0.192322 + 1.09071i
\(566\) 22.3473 0.939327
\(567\) 0 0
\(568\) 16.2264 0.680843
\(569\) 5.72503 + 32.4683i 0.240006 + 1.36114i 0.831811 + 0.555060i \(0.187305\pi\)
−0.591805 + 0.806081i \(0.701584\pi\)
\(570\) 0 0
\(571\) 0.692944 0.252211i 0.0289988 0.0105547i −0.327480 0.944858i \(-0.606199\pi\)
0.356479 + 0.934303i \(0.383977\pi\)
\(572\) −2.71482 2.27801i −0.113512 0.0952482i
\(573\) 0 0
\(574\) 14.9650 + 5.44681i 0.624626 + 0.227345i
\(575\) 3.33884 + 5.78304i 0.139239 + 0.241169i
\(576\) 0 0
\(577\) −9.67159 + 16.7517i −0.402634 + 0.697382i −0.994043 0.108990i \(-0.965238\pi\)
0.591409 + 0.806371i \(0.298572\pi\)
\(578\) 8.25671 6.92820i 0.343434 0.288175i
\(579\) 0 0
\(580\) 0.0684587 0.388249i 0.00284259 0.0161211i
\(581\) −1.66890 + 9.46480i −0.0692377 + 0.392666i
\(582\) 0 0
\(583\) 52.9889 44.4630i 2.19458 1.84147i
\(584\) −8.17483 + 14.1592i −0.338277 + 0.585913i
\(585\) 0 0
\(586\) −13.0403 22.5865i −0.538690 0.933038i
\(587\) −29.9876 10.9146i −1.23772 0.450493i −0.361485 0.932378i \(-0.617730\pi\)
−0.876234 + 0.481885i \(0.839952\pi\)
\(588\) 0 0
\(589\) 2.99273 + 2.51120i 0.123313 + 0.103472i
\(590\) −15.3735 + 5.59548i −0.632915 + 0.230362i
\(591\) 0 0
\(592\) −0.0261591 0.148356i −0.00107513 0.00609738i
\(593\) −31.6783 −1.30087 −0.650436 0.759561i \(-0.725414\pi\)
−0.650436 + 0.759561i \(0.725414\pi\)
\(594\) 0 0
\(595\) 11.9564 0.490163
\(596\) 0.658633 + 3.73530i 0.0269787 + 0.153004i
\(597\) 0 0
\(598\) −12.0248 + 4.37667i −0.491731 + 0.178976i
\(599\) 9.67024 + 8.11430i 0.395115 + 0.331541i 0.818602 0.574361i \(-0.194749\pi\)
−0.423487 + 0.905902i \(0.639194\pi\)
\(600\) 0 0
\(601\) 8.37123 + 3.04688i 0.341470 + 0.124285i 0.507062 0.861909i \(-0.330731\pi\)
−0.165592 + 0.986194i \(0.552954\pi\)
\(602\) −8.42262 14.5884i −0.343280 0.594579i
\(603\) 0 0
\(604\) 1.47906 2.56180i 0.0601819 0.104238i
\(605\) −30.7977 + 25.8424i −1.25211 + 1.05064i
\(606\) 0 0
\(607\) −5.75196 + 32.6210i −0.233465 + 1.32405i 0.612357 + 0.790581i \(0.290221\pi\)
−0.845822 + 0.533465i \(0.820890\pi\)
\(608\) 1.20099 6.81115i 0.0487065 0.276229i
\(609\) 0 0
\(610\) 18.8478 15.8152i 0.763124 0.640337i
\(611\) 6.02822 10.4412i 0.243876 0.422405i
\(612\) 0 0
\(613\) −8.84002 15.3114i −0.357045 0.618420i 0.630421 0.776254i \(-0.282882\pi\)
−0.987466 + 0.157833i \(0.949549\pi\)
\(614\) 26.3410 + 9.58732i 1.06303 + 0.386913i
\(615\) 0 0
\(616\) −32.3189 27.1188i −1.30217 1.09265i
\(617\) −24.1805 + 8.80099i −0.973471 + 0.354314i −0.779298 0.626653i \(-0.784424\pi\)
−0.194172 + 0.980967i \(0.562202\pi\)
\(618\) 0 0
\(619\) 4.82651 + 27.3725i 0.193994 + 1.10019i 0.913844 + 0.406065i \(0.133099\pi\)
−0.719850 + 0.694129i \(0.755790\pi\)
\(620\) −0.179740 −0.00721854
\(621\) 0 0
\(622\) −14.3696 −0.576168
\(623\) −3.41307 19.3565i −0.136742 0.775500i
\(624\) 0 0
\(625\) 7.99747 2.91084i 0.319899 0.116434i
\(626\) −3.93763 3.30407i −0.157379 0.132057i
\(627\) 0 0
\(628\) −3.81567 1.38879i −0.152262 0.0554188i
\(629\) 0.0628336 + 0.108831i 0.00250534 + 0.00433938i
\(630\) 0 0
\(631\) −13.4069 + 23.2214i −0.533720 + 0.924430i 0.465504 + 0.885046i \(0.345873\pi\)
−0.999224 + 0.0393842i \(0.987460\pi\)
\(632\) −8.52591 + 7.15409i −0.339143 + 0.284574i
\(633\) 0 0
\(634\) 6.17390 35.0139i 0.245197 1.39058i
\(635\) −1.03209 + 5.85327i −0.0409572 + 0.232280i
\(636\) 0 0
\(637\) 2.92855 2.45734i 0.116033 0.0973635i
\(638\) −5.16843 + 8.95199i −0.204620 + 0.354413i
\(639\) 0 0
\(640\) −7.84864 13.5942i −0.310245 0.537360i
\(641\) 11.9251 + 4.34040i 0.471015 + 0.171435i 0.566612 0.823985i \(-0.308254\pi\)
−0.0955971 + 0.995420i \(0.530476\pi\)
\(642\) 0 0
\(643\) 11.8558 + 9.94816i 0.467545 + 0.392317i 0.845898 0.533344i \(-0.179065\pi\)
−0.378353 + 0.925661i \(0.623509\pi\)
\(644\) 1.23261 0.448634i 0.0485717 0.0176787i
\(645\) 0 0
\(646\) −4.65910 26.4231i −0.183310 1.03960i
\(647\) −11.1506 −0.438377 −0.219189 0.975683i \(-0.570341\pi\)
−0.219189 + 0.975683i \(0.570341\pi\)
\(648\) 0 0
\(649\) −43.6691 −1.71416
\(650\) −1.71254 9.71232i −0.0671715 0.380949i
\(651\) 0 0
\(652\) 3.56165 1.29634i 0.139485 0.0507684i
\(653\) −34.1596 28.6633i −1.33677 1.12168i −0.982444 0.186558i \(-0.940267\pi\)
−0.354323 0.935123i \(-0.615289\pi\)
\(654\) 0 0
\(655\) 27.5002 + 10.0092i 1.07452 + 0.391093i
\(656\) 8.81386 + 15.2661i 0.344124 + 0.596039i
\(657\) 0 0
\(658\) 6.06986 10.5133i 0.236628 0.409851i
\(659\) 10.7986 9.06110i 0.420654 0.352970i −0.407758 0.913090i \(-0.633689\pi\)
0.828412 + 0.560120i \(0.189245\pi\)
\(660\) 0 0
\(661\) 6.27126 35.5661i 0.243924 1.38336i −0.579055 0.815288i \(-0.696578\pi\)
0.822979 0.568072i \(-0.192310\pi\)
\(662\) 0.367688 2.08526i 0.0142906 0.0810460i
\(663\) 0 0
\(664\) −8.98680 + 7.54082i −0.348755 + 0.292640i
\(665\) −13.2280 + 22.9116i −0.512961 + 0.888474i
\(666\) 0 0
\(667\) −1.89986 3.29066i −0.0735630 0.127415i
\(668\) −0.745100 0.271194i −0.0288288 0.0104928i
\(669\) 0 0
\(670\) 3.16772 + 2.65803i 0.122380 + 0.102689i
\(671\) 61.7135 22.4619i 2.38242 0.867132i
\(672\) 0 0
\(673\) 0.389348 + 2.20810i 0.0150082 + 0.0851160i 0.991392 0.130928i \(-0.0417957\pi\)
−0.976384 + 0.216044i \(0.930685\pi\)
\(674\) 10.7992 0.415971
\(675\) 0 0
\(676\) 0.478340 0.0183977
\(677\) −6.10829 34.6418i −0.234761 1.33139i −0.843117 0.537730i \(-0.819282\pi\)
0.608357 0.793664i \(-0.291829\pi\)
\(678\) 0 0
\(679\) −0.591052 + 0.215125i −0.0226825 + 0.00825575i
\(680\) 11.1800 + 9.38117i 0.428735 + 0.359752i
\(681\) 0 0
\(682\) 4.42855 + 1.61186i 0.169578 + 0.0617213i
\(683\) −8.88191 15.3839i −0.339857 0.588649i 0.644549 0.764563i \(-0.277045\pi\)
−0.984406 + 0.175914i \(0.943712\pi\)
\(684\) 0 0
\(685\) 3.24675 5.62353i 0.124052 0.214864i
\(686\) 20.3708 17.0931i 0.777760 0.652618i
\(687\) 0 0
\(688\) 3.23783 18.3626i 0.123441 0.700068i
\(689\) 6.52094 36.9821i 0.248428 1.40891i
\(690\) 0 0
\(691\) −33.7294 + 28.3023i −1.28313 + 1.07667i −0.290323 + 0.956929i \(0.593763\pi\)
−0.992805 + 0.119743i \(0.961793\pi\)
\(692\) −0.350452 + 0.607000i −0.0133222 + 0.0230747i
\(693\) 0 0
\(694\) −13.3687 23.1553i −0.507469 0.878962i
\(695\) 18.5834 + 6.76379i 0.704907 + 0.256565i
\(696\) 0 0
\(697\) −11.2647 9.45221i −0.426681 0.358028i
\(698\) 14.0446 5.11181i 0.531595 0.193485i
\(699\) 0 0
\(700\) 0.175545 + 0.995568i 0.00663499 + 0.0376289i
\(701\) 30.1052 1.13706 0.568530 0.822663i \(-0.307512\pi\)
0.568530 + 0.822663i \(0.307512\pi\)
\(702\) 0 0
\(703\) −0.278066 −0.0104875
\(704\) −8.87211 50.3162i −0.334380 1.89636i
\(705\) 0 0
\(706\) 3.62583 1.31969i 0.136460 0.0496673i
\(707\) −20.3708 17.0931i −0.766122 0.642852i
\(708\) 0 0
\(709\) 23.2456 + 8.46069i 0.873006 + 0.317748i 0.739384 0.673284i \(-0.235117\pi\)
0.133622 + 0.991032i \(0.457339\pi\)
\(710\) −6.13728 10.6301i −0.230328 0.398940i
\(711\) 0 0
\(712\) 11.9960 20.7776i 0.449568 0.778674i
\(713\) −1.32707 + 1.11354i −0.0496991 + 0.0417025i
\(714\) 0 0
\(715\) −5.50387 + 31.2140i −0.205833 + 1.16734i
\(716\) 0.265578 1.50617i 0.00992510 0.0562880i
\(717\) 0 0
\(718\) 29.7126 24.9318i 1.10886 0.930448i
\(719\) −21.7763 + 37.7177i −0.812119 + 1.40663i 0.0992586 + 0.995062i \(0.468353\pi\)
−0.911378 + 0.411570i \(0.864980\pi\)
\(720\) 0 0
\(721\) 4.71048 + 8.15880i 0.175428 + 0.303850i
\(722\) 31.7335 + 11.5501i 1.18100 + 0.429849i
\(723\) 0 0
\(724\) −0.951552 0.798447i −0.0353642 0.0296741i
\(725\) 2.75180 1.00157i 0.102199 0.0371975i
\(726\) 0 0
\(727\) 3.56624 + 20.2251i 0.132264 + 0.750109i 0.976726 + 0.214492i \(0.0688096\pi\)
−0.844461 + 0.535617i \(0.820079\pi\)
\(728\) −22.9040 −0.848880
\(729\) 0 0
\(730\) 12.3678 0.457754
\(731\) 2.70099 + 15.3181i 0.0998997 + 0.566559i
\(732\) 0 0
\(733\) −13.1613 + 4.79033i −0.486125 + 0.176935i −0.573443 0.819246i \(-0.694393\pi\)
0.0873183 + 0.996180i \(0.472170\pi\)
\(734\) 11.3450 + 9.51958i 0.418751 + 0.351374i
\(735\) 0 0
\(736\) 2.88191 + 1.04893i 0.106229 + 0.0386641i
\(737\) 5.51889 + 9.55899i 0.203291 + 0.352110i
\(738\) 0 0
\(739\) 20.9907 36.3569i 0.772154 1.33741i −0.164226 0.986423i \(-0.552513\pi\)
0.936380 0.350987i \(-0.114154\pi\)
\(740\) 0.00980018 0.00822333i 0.000360262 0.000302296i
\(741\) 0 0
\(742\) 6.56599 37.2376i 0.241045 1.36703i
\(743\) −4.83821 + 27.4389i −0.177497 + 1.00663i 0.757726 + 0.652573i \(0.226311\pi\)
−0.935222 + 0.354061i \(0.884801\pi\)
\(744\) 0 0
\(745\) 25.9859 21.8048i 0.952050 0.798865i
\(746\) 22.5064 38.9822i 0.824018 1.42724i
\(747\) 0 0
\(748\) 1.64749 + 2.85353i 0.0602382 + 0.104336i
\(749\) −5.97818 2.17588i −0.218438 0.0795049i
\(750\) 0 0
\(751\) −40.5276 34.0067i −1.47887 1.24092i −0.907379 0.420314i \(-0.861920\pi\)
−0.571493 0.820607i \(-0.693635\pi\)
\(752\) 12.6270 4.59586i 0.460460 0.167594i
\(753\) 0 0
\(754\) 0.974470 + 5.52649i 0.0354881 + 0.201263i
\(755\) −26.4561 −0.962834
\(756\) 0 0
\(757\) −41.4858 −1.50783 −0.753913 0.656975i \(-0.771836\pi\)
−0.753913 + 0.656975i \(0.771836\pi\)
\(758\) −4.89890 27.7830i −0.177936 1.00913i
\(759\) 0 0
\(760\) −30.3460 + 11.0450i −1.10077 + 0.400646i
\(761\) 34.7688 + 29.1745i 1.26037 + 1.05757i 0.995643 + 0.0932500i \(0.0297256\pi\)
0.264725 + 0.964324i \(0.414719\pi\)
\(762\) 0 0
\(763\) 20.2995 + 7.38841i 0.734890 + 0.267478i
\(764\) 0.463326 + 0.802503i 0.0167625 + 0.0290336i
\(765\) 0 0
\(766\) 2.76945 4.79682i 0.100064 0.173316i
\(767\) −18.1609 + 15.2388i −0.655752 + 0.550242i
\(768\) 0 0
\(769\) 0.888470 5.03876i 0.0320391 0.181703i −0.964589 0.263759i \(-0.915038\pi\)
0.996628 + 0.0820564i \(0.0261488\pi\)
\(770\) −5.54189 + 31.4296i −0.199716 + 1.13264i
\(771\) 0 0
\(772\) 2.52893 2.12203i 0.0910183 0.0763734i
\(773\) −26.3214 + 45.5899i −0.946713 + 1.63976i −0.194430 + 0.980916i \(0.562286\pi\)
−0.752284 + 0.658839i \(0.771048\pi\)
\(774\) 0 0
\(775\) −0.667556 1.15624i −0.0239793 0.0415334i
\(776\) −0.721467 0.262593i −0.0258992 0.00942652i
\(777\) 0 0
\(778\) 17.6427 + 14.8040i 0.632523 + 0.530750i
\(779\) 30.5758 11.1287i 1.09549 0.398726i
\(780\)