Properties

Label 729.2.e.a.406.1
Level $729$
Weight $2$
Character 729.406
Analytic conductor $5.821$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 243)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 406.1
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 729.406
Dual form 729.2.e.a.325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93969 - 1.62760i) q^{2} +(0.766044 + 4.34445i) q^{4} +(0.439693 + 0.160035i) q^{5} +(-0.560307 + 3.17766i) q^{7} +(3.05303 - 5.28801i) q^{8} +O(q^{10})\) \(q+(-1.93969 - 1.62760i) q^{2} +(0.766044 + 4.34445i) q^{4} +(0.439693 + 0.160035i) q^{5} +(-0.560307 + 3.17766i) q^{7} +(3.05303 - 5.28801i) q^{8} +(-0.592396 - 1.02606i) q^{10} +(-2.91875 + 1.06234i) q^{11} +(-1.67365 + 1.40436i) q^{13} +(6.25877 - 5.25173i) q^{14} +(-6.23783 + 2.27038i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-0.0209445 + 0.0362770i) q^{19} +(-0.358441 + 2.03282i) q^{20} +(7.39053 + 2.68993i) q^{22} +(-1.06031 - 6.01330i) q^{23} +(-3.66250 - 3.07321i) q^{25} +5.53209 q^{26} -14.2344 q^{28} +(-5.03596 - 4.22567i) q^{29} +(-1.08125 - 6.13208i) q^{31} +(4.31908 + 1.57202i) q^{32} +(1.31908 - 7.48086i) q^{34} +(-0.754900 + 1.30753i) q^{35} +(-1.79813 - 3.11446i) q^{37} +(0.0996702 - 0.0362770i) q^{38} +(2.18866 - 1.83651i) q^{40} +(-5.90033 + 4.95096i) q^{41} +(0.553033 - 0.201288i) q^{43} +(-6.85117 - 11.8666i) q^{44} +(-7.73055 + 13.3897i) q^{46} +(1.67752 - 9.51368i) q^{47} +(-3.20574 - 1.16679i) q^{49} +(2.10220 + 11.9221i) q^{50} +(-7.38326 - 6.19529i) q^{52} -4.95811 q^{53} -1.45336 q^{55} +(15.0929 + 12.6644i) q^{56} +(2.89053 + 16.3930i) q^{58} +(-8.01754 - 2.91815i) q^{59} +(-0.220285 + 1.24930i) q^{61} +(-7.88326 + 13.6542i) q^{62} +(0.819078 + 1.41868i) q^{64} +(-0.960637 + 0.349643i) q^{65} +(7.66637 - 6.43285i) q^{67} +(-10.1382 + 8.50692i) q^{68} +(3.59240 - 1.30753i) q^{70} +(5.91534 + 10.2457i) q^{71} +(4.11721 - 7.13122i) q^{73} +(-1.58125 + 8.96773i) q^{74} +(-0.173648 - 0.0632028i) q^{76} +(-1.74035 - 9.87003i) q^{77} +(8.46451 + 7.10257i) q^{79} -3.10607 q^{80} +19.5030 q^{82} +(1.15657 + 0.970481i) q^{83} +(0.243756 + 1.38241i) q^{85} +(-1.40033 - 0.509678i) q^{86} +(-3.29339 + 18.6777i) q^{88} +(-7.93629 + 13.7461i) q^{89} +(-3.52481 - 6.10516i) q^{91} +(25.3123 - 9.21291i) q^{92} +(-18.7383 + 15.7233i) q^{94} +(-0.0150147 + 0.0125989i) q^{95} +(-17.5214 + 6.37727i) q^{97} +(4.31908 + 7.48086i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 3 q^{5} - 9 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} - 3 q^{5} - 9 q^{7} + 6 q^{8} - 15 q^{11} - 9 q^{13} + 15 q^{14} - 18 q^{16} + 9 q^{17} + 3 q^{19} + 6 q^{20} + 27 q^{22} - 12 q^{23} - 27 q^{25} + 24 q^{26} - 24 q^{28} + 3 q^{29} - 9 q^{31} + 9 q^{32} - 9 q^{34} - 6 q^{35} + 3 q^{37} + 15 q^{38} - 18 q^{40} - 21 q^{41} - 9 q^{43} - 15 q^{44} - 9 q^{46} - 15 q^{47} - 9 q^{49} + 12 q^{50} - 9 q^{52} - 36 q^{53} + 18 q^{55} + 21 q^{56} - 3 q^{59} - 27 q^{61} - 12 q^{62} - 12 q^{64} + 3 q^{65} + 27 q^{67} - 27 q^{68} + 18 q^{70} - 9 q^{71} - 6 q^{73} - 12 q^{74} + 24 q^{77} + 18 q^{79} + 6 q^{80} + 36 q^{82} - 15 q^{83} + 9 q^{85} + 6 q^{86} + 27 q^{88} + 6 q^{91} + 51 q^{92} - 27 q^{94} + 30 q^{95} - 36 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93969 1.62760i −1.37157 1.15088i −0.972216 0.234087i \(-0.924790\pi\)
−0.399354 0.916797i \(-0.630766\pi\)
\(3\) 0 0
\(4\) 0.766044 + 4.34445i 0.383022 + 2.17223i
\(5\) 0.439693 + 0.160035i 0.196637 + 0.0715698i 0.438461 0.898750i \(-0.355524\pi\)
−0.241825 + 0.970320i \(0.577746\pi\)
\(6\) 0 0
\(7\) −0.560307 + 3.17766i −0.211776 + 1.20104i 0.674637 + 0.738149i \(0.264300\pi\)
−0.886414 + 0.462894i \(0.846811\pi\)
\(8\) 3.05303 5.28801i 1.07941 1.86959i
\(9\) 0 0
\(10\) −0.592396 1.02606i −0.187332 0.324469i
\(11\) −2.91875 + 1.06234i −0.880036 + 0.320307i −0.742224 0.670152i \(-0.766229\pi\)
−0.137811 + 0.990458i \(0.544007\pi\)
\(12\) 0 0
\(13\) −1.67365 + 1.40436i −0.464186 + 0.389499i −0.844669 0.535290i \(-0.820202\pi\)
0.380482 + 0.924788i \(0.375758\pi\)
\(14\) 6.25877 5.25173i 1.67273 1.40358i
\(15\) 0 0
\(16\) −6.23783 + 2.27038i −1.55946 + 0.567596i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −0.0209445 + 0.0362770i −0.00480501 + 0.00832251i −0.868418 0.495833i \(-0.834863\pi\)
0.863613 + 0.504155i \(0.168196\pi\)
\(20\) −0.358441 + 2.03282i −0.0801498 + 0.454552i
\(21\) 0 0
\(22\) 7.39053 + 2.68993i 1.57567 + 0.573496i
\(23\) −1.06031 6.01330i −0.221089 1.25386i −0.870021 0.493014i \(-0.835895\pi\)
0.648932 0.760846i \(-0.275216\pi\)
\(24\) 0 0
\(25\) −3.66250 3.07321i −0.732501 0.614641i
\(26\) 5.53209 1.08493
\(27\) 0 0
\(28\) −14.2344 −2.69005
\(29\) −5.03596 4.22567i −0.935154 0.784688i 0.0415813 0.999135i \(-0.486760\pi\)
−0.976735 + 0.214448i \(0.931205\pi\)
\(30\) 0 0
\(31\) −1.08125 6.13208i −0.194199 1.10135i −0.913555 0.406714i \(-0.866674\pi\)
0.719357 0.694641i \(-0.244437\pi\)
\(32\) 4.31908 + 1.57202i 0.763512 + 0.277896i
\(33\) 0 0
\(34\) 1.31908 7.48086i 0.226220 1.28296i
\(35\) −0.754900 + 1.30753i −0.127601 + 0.221012i
\(36\) 0 0
\(37\) −1.79813 3.11446i −0.295611 0.512014i 0.679516 0.733661i \(-0.262190\pi\)
−0.975127 + 0.221647i \(0.928857\pi\)
\(38\) 0.0996702 0.0362770i 0.0161686 0.00588491i
\(39\) 0 0
\(40\) 2.18866 1.83651i 0.346058 0.290377i
\(41\) −5.90033 + 4.95096i −0.921477 + 0.773211i −0.974268 0.225395i \(-0.927633\pi\)
0.0527908 + 0.998606i \(0.483188\pi\)
\(42\) 0 0
\(43\) 0.553033 0.201288i 0.0843368 0.0306961i −0.299507 0.954094i \(-0.596822\pi\)
0.383844 + 0.923398i \(0.374600\pi\)
\(44\) −6.85117 11.8666i −1.03285 1.78895i
\(45\) 0 0
\(46\) −7.73055 + 13.3897i −1.13981 + 1.97420i
\(47\) 1.67752 9.51368i 0.244691 1.38771i −0.576517 0.817085i \(-0.695589\pi\)
0.821209 0.570628i \(-0.193300\pi\)
\(48\) 0 0
\(49\) −3.20574 1.16679i −0.457962 0.166685i
\(50\) 2.10220 + 11.9221i 0.297295 + 1.68605i
\(51\) 0 0
\(52\) −7.38326 6.19529i −1.02387 0.859132i
\(53\) −4.95811 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(54\) 0 0
\(55\) −1.45336 −0.195971
\(56\) 15.0929 + 12.6644i 2.01687 + 1.69235i
\(57\) 0 0
\(58\) 2.89053 + 16.3930i 0.379545 + 2.15251i
\(59\) −8.01754 2.91815i −1.04379 0.379910i −0.237477 0.971393i \(-0.576321\pi\)
−0.806318 + 0.591483i \(0.798543\pi\)
\(60\) 0 0
\(61\) −0.220285 + 1.24930i −0.0282046 + 0.159956i −0.995657 0.0930965i \(-0.970324\pi\)
0.967452 + 0.253053i \(0.0814346\pi\)
\(62\) −7.88326 + 13.6542i −1.00117 + 1.73409i
\(63\) 0 0
\(64\) 0.819078 + 1.41868i 0.102385 + 0.177336i
\(65\) −0.960637 + 0.349643i −0.119152 + 0.0433679i
\(66\) 0 0
\(67\) 7.66637 6.43285i 0.936597 0.785898i −0.0403931 0.999184i \(-0.512861\pi\)
0.976990 + 0.213286i \(0.0684166\pi\)
\(68\) −10.1382 + 8.50692i −1.22943 + 1.03162i
\(69\) 0 0
\(70\) 3.59240 1.30753i 0.429373 0.156279i
\(71\) 5.91534 + 10.2457i 0.702022 + 1.21594i 0.967755 + 0.251892i \(0.0810526\pi\)
−0.265733 + 0.964047i \(0.585614\pi\)
\(72\) 0 0
\(73\) 4.11721 7.13122i 0.481883 0.834646i −0.517901 0.855441i \(-0.673286\pi\)
0.999784 + 0.0207947i \(0.00661964\pi\)
\(74\) −1.58125 + 8.96773i −0.183817 + 1.04248i
\(75\) 0 0
\(76\) −0.173648 0.0632028i −0.0199188 0.00724985i
\(77\) −1.74035 9.87003i −0.198332 1.12479i
\(78\) 0 0
\(79\) 8.46451 + 7.10257i 0.952332 + 0.799101i 0.979689 0.200525i \(-0.0642647\pi\)
−0.0273571 + 0.999626i \(0.508709\pi\)
\(80\) −3.10607 −0.347269
\(81\) 0 0
\(82\) 19.5030 2.15375
\(83\) 1.15657 + 0.970481i 0.126950 + 0.106524i 0.704052 0.710148i \(-0.251372\pi\)
−0.577102 + 0.816672i \(0.695816\pi\)
\(84\) 0 0
\(85\) 0.243756 + 1.38241i 0.0264390 + 0.149943i
\(86\) −1.40033 0.509678i −0.151001 0.0549600i
\(87\) 0 0
\(88\) −3.29339 + 18.6777i −0.351076 + 1.99105i
\(89\) −7.93629 + 13.7461i −0.841245 + 1.45708i 0.0475978 + 0.998867i \(0.484843\pi\)
−0.888843 + 0.458212i \(0.848490\pi\)
\(90\) 0 0
\(91\) −3.52481 6.10516i −0.369501 0.639995i
\(92\) 25.3123 9.21291i 2.63899 0.960513i
\(93\) 0 0
\(94\) −18.7383 + 15.7233i −1.93271 + 1.62173i
\(95\) −0.0150147 + 0.0125989i −0.00154048 + 0.00129262i
\(96\) 0 0
\(97\) −17.5214 + 6.37727i −1.77903 + 0.647514i −0.779246 + 0.626718i \(0.784398\pi\)
−0.999784 + 0.0207958i \(0.993380\pi\)
\(98\) 4.31908 + 7.48086i 0.436293 + 0.755681i
\(99\) 0 0
\(100\) 10.5458 18.2658i 1.05458 1.82658i
\(101\) −1.57785 + 8.94842i −0.157002 + 0.890401i 0.799931 + 0.600092i \(0.204869\pi\)
−0.956933 + 0.290309i \(0.906242\pi\)
\(102\) 0 0
\(103\) −0.245100 0.0892091i −0.0241504 0.00879003i 0.329917 0.944010i \(-0.392979\pi\)
−0.354067 + 0.935220i \(0.615202\pi\)
\(104\) 2.31655 + 13.1378i 0.227157 + 1.28827i
\(105\) 0 0
\(106\) 9.61721 + 8.06980i 0.934106 + 0.783808i
\(107\) −4.04189 −0.390744 −0.195372 0.980729i \(-0.562591\pi\)
−0.195372 + 0.980729i \(0.562591\pi\)
\(108\) 0 0
\(109\) −5.40373 −0.517584 −0.258792 0.965933i \(-0.583324\pi\)
−0.258792 + 0.965933i \(0.583324\pi\)
\(110\) 2.81908 + 2.36549i 0.268789 + 0.225540i
\(111\) 0 0
\(112\) −3.71941 21.0938i −0.351451 1.99318i
\(113\) 1.30066 + 0.473401i 0.122356 + 0.0445339i 0.402472 0.915432i \(-0.368151\pi\)
−0.280117 + 0.959966i \(0.590373\pi\)
\(114\) 0 0
\(115\) 0.496130 2.81369i 0.0462643 0.262378i
\(116\) 14.5005 25.1155i 1.34633 2.33192i
\(117\) 0 0
\(118\) 10.8020 + 18.7096i 0.994405 + 1.72236i
\(119\) −9.09627 + 3.31077i −0.833853 + 0.303498i
\(120\) 0 0
\(121\) −1.03596 + 0.869273i −0.0941781 + 0.0790248i
\(122\) 2.46064 2.06472i 0.222776 0.186931i
\(123\) 0 0
\(124\) 25.8123 9.39490i 2.31801 0.843687i
\(125\) −2.28833 3.96351i −0.204675 0.354507i
\(126\) 0 0
\(127\) 3.31908 5.74881i 0.294521 0.510125i −0.680353 0.732885i \(-0.738173\pi\)
0.974873 + 0.222760i \(0.0715067\pi\)
\(128\) 2.31655 13.1378i 0.204756 1.16123i
\(129\) 0 0
\(130\) 2.43242 + 0.885328i 0.213337 + 0.0776484i
\(131\) 2.19506 + 12.4488i 0.191783 + 1.08766i 0.916926 + 0.399058i \(0.130663\pi\)
−0.725142 + 0.688599i \(0.758226\pi\)
\(132\) 0 0
\(133\) −0.103541 0.0868809i −0.00897811 0.00753353i
\(134\) −25.3405 −2.18908
\(135\) 0 0
\(136\) 18.3182 1.57077
\(137\) −8.13223 6.82375i −0.694783 0.582992i 0.225501 0.974243i \(-0.427598\pi\)
−0.920284 + 0.391251i \(0.872043\pi\)
\(138\) 0 0
\(139\) −1.29561 7.34775i −0.109892 0.623228i −0.989153 0.146888i \(-0.953074\pi\)
0.879261 0.476340i \(-0.158037\pi\)
\(140\) −6.25877 2.27801i −0.528963 0.192527i
\(141\) 0 0
\(142\) 5.20187 29.5013i 0.436531 2.47569i
\(143\) 3.39306 5.87695i 0.283742 0.491455i
\(144\) 0 0
\(145\) −1.53802 2.66393i −0.127725 0.221227i
\(146\) −19.5929 + 7.13122i −1.62152 + 0.590184i
\(147\) 0 0
\(148\) 12.1532 10.1977i 0.998984 0.838247i
\(149\) 3.25877 2.73443i 0.266969 0.224013i −0.499469 0.866332i \(-0.666472\pi\)
0.766438 + 0.642318i \(0.222027\pi\)
\(150\) 0 0
\(151\) −0.127011 + 0.0462284i −0.0103360 + 0.00376201i −0.347183 0.937797i \(-0.612862\pi\)
0.336847 + 0.941559i \(0.390640\pi\)
\(152\) 0.127889 + 0.221510i 0.0103731 + 0.0179668i
\(153\) 0 0
\(154\) −12.6887 + 21.9774i −1.02248 + 1.77099i
\(155\) 0.505930 2.86927i 0.0406373 0.230465i
\(156\) 0 0
\(157\) −12.5223 4.55774i −0.999387 0.363747i −0.210039 0.977693i \(-0.567359\pi\)
−0.789348 + 0.613946i \(0.789581\pi\)
\(158\) −4.85844 27.5536i −0.386517 2.19205i
\(159\) 0 0
\(160\) 1.64749 + 1.38241i 0.130245 + 0.109289i
\(161\) 19.7023 1.55276
\(162\) 0 0
\(163\) −9.76382 −0.764762 −0.382381 0.924005i \(-0.624896\pi\)
−0.382381 + 0.924005i \(0.624896\pi\)
\(164\) −26.0292 21.8411i −2.03254 1.70550i
\(165\) 0 0
\(166\) −0.663848 3.76487i −0.0515246 0.292211i
\(167\) −3.35844 1.22237i −0.259884 0.0945900i 0.208792 0.977960i \(-0.433047\pi\)
−0.468676 + 0.883370i \(0.655269\pi\)
\(168\) 0 0
\(169\) −1.42855 + 8.10170i −0.109888 + 0.623208i
\(170\) 1.77719 3.07818i 0.136304 0.236086i
\(171\) 0 0
\(172\) 1.29813 + 2.24843i 0.0989817 + 0.171441i
\(173\) 17.6348 6.41852i 1.34075 0.487991i 0.430698 0.902496i \(-0.358267\pi\)
0.910047 + 0.414505i \(0.136045\pi\)
\(174\) 0 0
\(175\) 11.8177 9.91626i 0.893337 0.749598i
\(176\) 15.7947 13.2534i 1.19057 0.999009i
\(177\) 0 0
\(178\) 37.7670 13.7461i 2.83075 1.03031i
\(179\) −2.54189 4.40268i −0.189990 0.329072i 0.755257 0.655429i \(-0.227512\pi\)
−0.945247 + 0.326357i \(0.894179\pi\)
\(180\) 0 0
\(181\) −3.57532 + 6.19264i −0.265752 + 0.460295i −0.967760 0.251873i \(-0.918953\pi\)
0.702009 + 0.712168i \(0.252287\pi\)
\(182\) −3.09967 + 17.5791i −0.229763 + 1.30305i
\(183\) 0 0
\(184\) −35.0355 12.7519i −2.58285 0.940082i
\(185\) −0.292204 1.65717i −0.0214832 0.121837i
\(186\) 0 0
\(187\) −7.13816 5.98962i −0.521994 0.438005i
\(188\) 42.6168 3.10815
\(189\) 0 0
\(190\) 0.0496299 0.00360053
\(191\) 8.05097 + 6.75557i 0.582548 + 0.488816i 0.885783 0.464100i \(-0.153622\pi\)
−0.303235 + 0.952916i \(0.598067\pi\)
\(192\) 0 0
\(193\) −1.76130 9.98881i −0.126781 0.719010i −0.980234 0.197841i \(-0.936607\pi\)
0.853453 0.521169i \(-0.174504\pi\)
\(194\) 44.3658 + 16.1478i 3.18528 + 1.15935i
\(195\) 0 0
\(196\) 2.61334 14.8210i 0.186667 1.05864i
\(197\) 7.04189 12.1969i 0.501714 0.868994i −0.498284 0.867014i \(-0.666036\pi\)
0.999998 0.00198008i \(-0.000630281\pi\)
\(198\) 0 0
\(199\) −5.13816 8.89955i −0.364234 0.630872i 0.624419 0.781090i \(-0.285336\pi\)
−0.988653 + 0.150218i \(0.952003\pi\)
\(200\) −27.4329 + 9.98475i −1.93980 + 0.706029i
\(201\) 0 0
\(202\) 17.6250 14.7891i 1.24009 1.04056i
\(203\) 16.2494 13.6349i 1.14049 0.956982i
\(204\) 0 0
\(205\) −3.38666 + 1.23264i −0.236535 + 0.0860915i
\(206\) 0.330222 + 0.571962i 0.0230077 + 0.0398505i
\(207\) 0 0
\(208\) 7.25150 12.5600i 0.502801 0.870877i
\(209\) 0.0225934 0.128134i 0.00156282 0.00886318i
\(210\) 0 0
\(211\) 6.71213 + 2.44302i 0.462082 + 0.168184i 0.562562 0.826755i \(-0.309816\pi\)
−0.100480 + 0.994939i \(0.532038\pi\)
\(212\) −3.79813 21.5403i −0.260857 1.47939i
\(213\) 0 0
\(214\) 7.84002 + 6.57856i 0.535933 + 0.449701i
\(215\) 0.275378 0.0187806
\(216\) 0 0
\(217\) 20.0915 1.36390
\(218\) 10.4816 + 8.79509i 0.709902 + 0.595679i
\(219\) 0 0
\(220\) −1.11334 6.31407i −0.0750614 0.425694i
\(221\) −6.15910 2.24173i −0.414306 0.150795i
\(222\) 0 0
\(223\) −1.79473 + 10.1784i −0.120184 + 0.681597i 0.863868 + 0.503718i \(0.168035\pi\)
−0.984052 + 0.177880i \(0.943076\pi\)
\(224\) −7.41534 + 12.8438i −0.495459 + 0.858159i
\(225\) 0 0
\(226\) −1.75237 3.03520i −0.116566 0.201899i
\(227\) −12.2369 + 4.45389i −0.812195 + 0.295615i −0.714530 0.699605i \(-0.753359\pi\)
−0.0976647 + 0.995219i \(0.531137\pi\)
\(228\) 0 0
\(229\) −21.5253 + 18.0619i −1.42243 + 1.19356i −0.472408 + 0.881380i \(0.656615\pi\)
−0.950023 + 0.312181i \(0.898940\pi\)
\(230\) −5.54189 + 4.65020i −0.365421 + 0.306625i
\(231\) 0 0
\(232\) −37.7203 + 13.7291i −2.47646 + 0.901358i
\(233\) −6.95723 12.0503i −0.455784 0.789440i 0.542949 0.839765i \(-0.317308\pi\)
−0.998733 + 0.0503252i \(0.983974\pi\)
\(234\) 0 0
\(235\) 2.26011 3.91463i 0.147434 0.255363i
\(236\) 6.53596 37.0673i 0.425455 2.41287i
\(237\) 0 0
\(238\) 23.0326 + 8.38316i 1.49298 + 0.543400i
\(239\) 2.60813 + 14.7914i 0.168706 + 0.956777i 0.945161 + 0.326605i \(0.105905\pi\)
−0.776455 + 0.630172i \(0.782984\pi\)
\(240\) 0 0
\(241\) −9.93835 8.33926i −0.640185 0.537179i 0.263890 0.964553i \(-0.414994\pi\)
−0.904075 + 0.427374i \(0.859439\pi\)
\(242\) 3.42427 0.220120
\(243\) 0 0
\(244\) −5.59627 −0.358264
\(245\) −1.22281 1.02606i −0.0781225 0.0655526i
\(246\) 0 0
\(247\) −0.0158921 0.0901285i −0.00101119 0.00573474i
\(248\) −35.7276 13.0038i −2.26871 0.825741i
\(249\) 0 0
\(250\) −2.01233 + 11.4125i −0.127271 + 0.721788i
\(251\) 0.436289 0.755675i 0.0275383 0.0476978i −0.851928 0.523659i \(-0.824567\pi\)
0.879466 + 0.475961i \(0.157900\pi\)
\(252\) 0 0
\(253\) 9.48293 + 16.4249i 0.596186 + 1.03263i
\(254\) −15.7947 + 5.74881i −0.991049 + 0.360713i
\(255\) 0 0
\(256\) −23.3666 + 19.6069i −1.46042 + 1.22543i
\(257\) −3.50593 + 2.94182i −0.218694 + 0.183506i −0.745552 0.666447i \(-0.767814\pi\)
0.526858 + 0.849953i \(0.323370\pi\)
\(258\) 0 0
\(259\) 10.9042 3.96880i 0.677554 0.246609i
\(260\) −2.25490 3.90560i −0.139843 0.242215i
\(261\) 0 0
\(262\) 16.0039 27.7195i 0.988722 1.71252i
\(263\) −0.746282 + 4.23238i −0.0460177 + 0.260979i −0.999133 0.0416273i \(-0.986746\pi\)
0.953115 + 0.302607i \(0.0978569\pi\)
\(264\) 0 0
\(265\) −2.18004 0.793471i −0.133919 0.0487426i
\(266\) 0.0594300 + 0.337044i 0.00364389 + 0.0206655i
\(267\) 0 0
\(268\) 33.8200 + 28.3784i 2.06589 + 1.73348i
\(269\) −12.1257 −0.739315 −0.369657 0.929168i \(-0.620525\pi\)
−0.369657 + 0.929168i \(0.620525\pi\)
\(270\) 0 0
\(271\) −0.319955 −0.0194359 −0.00971795 0.999953i \(-0.503093\pi\)
−0.00971795 + 0.999953i \(0.503093\pi\)
\(272\) −15.2554 12.8008i −0.924992 0.776161i
\(273\) 0 0
\(274\) 4.66772 + 26.4719i 0.281987 + 1.59923i
\(275\) 13.9547 + 5.07910i 0.841501 + 0.306281i
\(276\) 0 0
\(277\) −4.65745 + 26.4137i −0.279839 + 1.58705i 0.443319 + 0.896364i \(0.353801\pi\)
−0.723158 + 0.690683i \(0.757310\pi\)
\(278\) −9.44609 + 16.3611i −0.566539 + 0.981274i
\(279\) 0 0
\(280\) 4.60947 + 7.98384i 0.275469 + 0.477126i
\(281\) 25.0719 9.12543i 1.49567 0.544378i 0.540731 0.841195i \(-0.318148\pi\)
0.954934 + 0.296818i \(0.0959254\pi\)
\(282\) 0 0
\(283\) −7.11927 + 5.97378i −0.423197 + 0.355104i −0.829378 0.558689i \(-0.811305\pi\)
0.406181 + 0.913793i \(0.366860\pi\)
\(284\) −39.9805 + 33.5476i −2.37240 + 1.99068i
\(285\) 0 0
\(286\) −16.1468 + 5.87695i −0.954779 + 0.347511i
\(287\) −12.4265 21.5233i −0.733512 1.27048i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −1.35251 + 7.67047i −0.0794222 + 0.450426i
\(291\) 0 0
\(292\) 34.1352 + 12.4242i 1.99761 + 0.727072i
\(293\) 3.41029 + 19.3407i 0.199231 + 1.12990i 0.906263 + 0.422715i \(0.138923\pi\)
−0.707031 + 0.707182i \(0.749966\pi\)
\(294\) 0 0
\(295\) −3.05825 2.56617i −0.178058 0.149408i
\(296\) −21.9590 −1.27634
\(297\) 0 0
\(298\) −10.7716 −0.623980
\(299\) 10.2194 + 8.57510i 0.591004 + 0.495911i
\(300\) 0 0
\(301\) 0.329755 + 1.87014i 0.0190068 + 0.107793i
\(302\) 0.321604 + 0.117054i 0.0185062 + 0.00673572i
\(303\) 0 0
\(304\) 0.0482857 0.273842i 0.00276937 0.0157059i
\(305\) −0.296789 + 0.514054i −0.0169941 + 0.0294346i
\(306\) 0 0
\(307\) −14.1716 24.5459i −0.808815 1.40091i −0.913685 0.406423i \(-0.866776\pi\)
0.104870 0.994486i \(-0.466557\pi\)
\(308\) 41.5467 15.1218i 2.36734 0.861642i
\(309\) 0 0
\(310\) −5.65136 + 4.74205i −0.320976 + 0.269331i
\(311\) 1.56624 1.31423i 0.0888132 0.0745231i −0.597300 0.802018i \(-0.703760\pi\)
0.686113 + 0.727495i \(0.259315\pi\)
\(312\) 0 0
\(313\) −7.90420 + 2.87689i −0.446772 + 0.162612i −0.555601 0.831449i \(-0.687512\pi\)
0.108830 + 0.994060i \(0.465290\pi\)
\(314\) 16.8712 + 29.2218i 0.952099 + 1.64908i
\(315\) 0 0
\(316\) −24.3726 + 42.2145i −1.37106 + 2.37475i
\(317\) −5.40538 + 30.6554i −0.303597 + 1.72178i 0.326442 + 0.945217i \(0.394150\pi\)
−0.630038 + 0.776564i \(0.716961\pi\)
\(318\) 0 0
\(319\) 19.1878 + 6.98378i 1.07431 + 0.391017i
\(320\) 0.133103 + 0.754866i 0.00744070 + 0.0421983i
\(321\) 0 0
\(322\) −38.2165 32.0674i −2.12972 1.78705i
\(323\) −0.125667 −0.00699231
\(324\) 0 0
\(325\) 10.4456 0.579419
\(326\) 18.9388 + 15.8916i 1.04892 + 0.880152i
\(327\) 0 0
\(328\) 8.16684 + 46.3165i 0.450938 + 2.55740i
\(329\) 29.2913 + 10.6612i 1.61488 + 0.587769i
\(330\) 0 0
\(331\) 5.38847 30.5595i 0.296177 1.67970i −0.366202 0.930535i \(-0.619342\pi\)
0.662379 0.749169i \(-0.269547\pi\)
\(332\) −3.33022 + 5.76811i −0.182770 + 0.316566i
\(333\) 0 0
\(334\) 4.52481 + 7.83721i 0.247587 + 0.428833i
\(335\) 4.40033 1.60159i 0.240416 0.0875042i
\(336\) 0 0
\(337\) 18.1780 15.2531i 0.990218 0.830892i 0.00461869 0.999989i \(-0.498530\pi\)
0.985599 + 0.169098i \(0.0540854\pi\)
\(338\) 15.9572 13.3897i 0.867959 0.728304i
\(339\) 0 0
\(340\) −5.81908 + 2.11797i −0.315584 + 0.114863i
\(341\) 9.67024 + 16.7494i 0.523673 + 0.907028i
\(342\) 0 0
\(343\) −5.78952 + 10.0277i −0.312604 + 0.541447i
\(344\) 0.624018 3.53898i 0.0336448 0.190809i
\(345\) 0 0
\(346\) −44.6528 16.2523i −2.40055 0.873728i
\(347\) 0.314025 + 1.78093i 0.0168578 + 0.0956052i 0.992076 0.125641i \(-0.0400987\pi\)
−0.975218 + 0.221246i \(0.928988\pi\)
\(348\) 0 0
\(349\) 11.6905 + 9.80947i 0.625777 + 0.525089i 0.899613 0.436687i \(-0.143848\pi\)
−0.273837 + 0.961776i \(0.588293\pi\)
\(350\) −39.0624 −2.08797
\(351\) 0 0
\(352\) −14.2763 −0.760930
\(353\) 24.8063 + 20.8150i 1.32031 + 1.10787i 0.986240 + 0.165321i \(0.0528662\pi\)
0.334069 + 0.942549i \(0.391578\pi\)
\(354\) 0 0
\(355\) 0.961266 + 5.45161i 0.0510187 + 0.289341i
\(356\) −65.7987 23.9488i −3.48732 1.26928i
\(357\) 0 0
\(358\) −2.23530 + 12.6770i −0.118139 + 0.670001i
\(359\) −0.957234 + 1.65798i −0.0505209 + 0.0875047i −0.890180 0.455609i \(-0.849421\pi\)
0.839659 + 0.543114i \(0.182755\pi\)
\(360\) 0 0
\(361\) 9.49912 + 16.4530i 0.499954 + 0.865945i
\(362\) 17.0141 6.19264i 0.894243 0.325478i
\(363\) 0 0
\(364\) 23.8234 19.9902i 1.24869 1.04777i
\(365\) 2.95155 2.47665i 0.154491 0.129634i
\(366\) 0 0
\(367\) 25.2447 9.18832i 1.31776 0.479626i 0.415022 0.909812i \(-0.363774\pi\)
0.902741 + 0.430185i \(0.141552\pi\)
\(368\) 20.2665 + 35.1026i 1.05646 + 1.82985i
\(369\) 0 0
\(370\) −2.13041 + 3.68999i −0.110755 + 0.191833i
\(371\) 2.77807 15.7552i 0.144230 0.817969i
\(372\) 0 0
\(373\) −13.9452 5.07564i −0.722056 0.262807i −0.0452575 0.998975i \(-0.514411\pi\)
−0.676798 + 0.736169i \(0.736633\pi\)
\(374\) 4.09714 + 23.2361i 0.211858 + 1.20151i
\(375\) 0 0
\(376\) −45.1869 37.9163i −2.33034 1.95538i
\(377\) 14.3628 0.739721
\(378\) 0 0
\(379\) −33.7870 −1.73552 −0.867762 0.496980i \(-0.834442\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(380\) −0.0662372 0.0555796i −0.00339789 0.00285117i
\(381\) 0 0
\(382\) −4.62108 26.2075i −0.236435 1.34089i
\(383\) −8.71941 3.17360i −0.445541 0.162164i 0.109500 0.993987i \(-0.465075\pi\)
−0.555041 + 0.831823i \(0.687297\pi\)
\(384\) 0 0
\(385\) 0.814330 4.61830i 0.0415021 0.235370i
\(386\) −12.8414 + 22.2419i −0.653608 + 1.13208i
\(387\) 0 0
\(388\) −41.1279 71.2357i −2.08796 3.61644i
\(389\) −15.0150 + 5.46502i −0.761291 + 0.277087i −0.693349 0.720602i \(-0.743866\pi\)
−0.0679423 + 0.997689i \(0.521643\pi\)
\(390\) 0 0
\(391\) 14.0326 11.7747i 0.709657 0.595473i
\(392\) −15.9572 + 13.3897i −0.805962 + 0.676282i
\(393\) 0 0
\(394\) −33.5107 + 12.1969i −1.68825 + 0.614471i
\(395\) 2.58512 + 4.47756i 0.130072 + 0.225291i
\(396\) 0 0
\(397\) −9.85251 + 17.0650i −0.494483 + 0.856470i −0.999980 0.00635841i \(-0.997976\pi\)
0.505496 + 0.862829i \(0.331309\pi\)
\(398\) −4.51842 + 25.6252i −0.226488 + 1.28448i
\(399\) 0 0
\(400\) 29.8234 + 10.8548i 1.49117 + 0.542742i
\(401\) −0.199340 1.13052i −0.00995459 0.0564553i 0.979426 0.201804i \(-0.0646806\pi\)
−0.989380 + 0.145349i \(0.953569\pi\)
\(402\) 0 0
\(403\) 10.4213 + 8.74449i 0.519121 + 0.435594i
\(404\) −40.0847 −1.99429
\(405\) 0 0
\(406\) −53.7110 −2.66563
\(407\) 8.55690 + 7.18009i 0.424150 + 0.355904i
\(408\) 0 0
\(409\) −0.538485 3.05390i −0.0266264 0.151006i 0.968596 0.248640i \(-0.0799836\pi\)
−0.995222 + 0.0976342i \(0.968872\pi\)
\(410\) 8.57532 + 3.12116i 0.423505 + 0.154143i
\(411\) 0 0
\(412\) 0.199807 1.13316i 0.00984380 0.0558270i
\(413\) 13.7652 23.8420i 0.677340 1.17319i
\(414\) 0 0
\(415\) 0.353226 + 0.611806i 0.0173392 + 0.0300324i
\(416\) −9.43629 + 3.43453i −0.462652 + 0.168392i
\(417\) 0 0
\(418\) −0.252374 + 0.211767i −0.0123440 + 0.0103579i
\(419\) −27.1557 + 22.7863i −1.32664 + 1.11319i −0.341793 + 0.939775i \(0.611034\pi\)
−0.984850 + 0.173410i \(0.944521\pi\)
\(420\) 0 0
\(421\) −8.66132 + 3.15246i −0.422127 + 0.153642i −0.544345 0.838862i \(-0.683222\pi\)
0.122218 + 0.992503i \(0.460999\pi\)
\(422\) −9.04323 15.6633i −0.440218 0.762479i
\(423\) 0 0
\(424\) −15.1373 + 26.2185i −0.735131 + 1.27328i
\(425\) 2.49067 14.1253i 0.120815 0.685176i
\(426\) 0 0
\(427\) −3.84642 1.39998i −0.186141 0.0677499i
\(428\) −3.09627 17.5598i −0.149664 0.848785i
\(429\) 0 0
\(430\) −0.534148 0.448204i −0.0257589 0.0216143i
\(431\) −11.5794 −0.557758 −0.278879 0.960326i \(-0.589963\pi\)
−0.278879 + 0.960326i \(0.589963\pi\)
\(432\) 0 0
\(433\) 6.06511 0.291471 0.145735 0.989324i \(-0.453445\pi\)
0.145735 + 0.989324i \(0.453445\pi\)
\(434\) −38.9714 32.7009i −1.87069 1.56969i
\(435\) 0 0
\(436\) −4.13950 23.4763i −0.198246 1.12431i
\(437\) 0.240352 + 0.0874810i 0.0114976 + 0.00418479i
\(438\) 0 0
\(439\) 5.03684 28.5653i 0.240395 1.36335i −0.590553 0.806999i \(-0.701090\pi\)
0.830948 0.556350i \(-0.187798\pi\)
\(440\) −4.43717 + 7.68540i −0.211534 + 0.366387i
\(441\) 0 0
\(442\) 8.29813 + 14.3728i 0.394702 + 0.683644i
\(443\) 29.0292 10.5657i 1.37922 0.501994i 0.457276 0.889325i \(-0.348825\pi\)
0.921941 + 0.387331i \(0.126603\pi\)
\(444\) 0 0
\(445\) −5.68938 + 4.77396i −0.269702 + 0.226307i
\(446\) 20.0476 16.8219i 0.949280 0.796540i
\(447\) 0 0
\(448\) −4.96703 + 1.80785i −0.234670 + 0.0854130i
\(449\) −19.5410 33.8460i −0.922197 1.59729i −0.796008 0.605287i \(-0.793059\pi\)
−0.126190 0.992006i \(-0.540275\pi\)
\(450\) 0 0
\(451\) 11.9620 20.7188i 0.563268 0.975608i
\(452\) −1.06031 + 6.01330i −0.0498727 + 0.282842i
\(453\) 0 0
\(454\) 30.9850 + 11.2776i 1.45420 + 0.529286i
\(455\) −0.572796 3.24849i −0.0268531 0.152291i
\(456\) 0 0
\(457\) −1.15270 0.967233i −0.0539212 0.0452453i 0.615429 0.788192i \(-0.288983\pi\)
−0.669350 + 0.742947i \(0.733427\pi\)
\(458\) 71.1498 3.32461
\(459\) 0 0
\(460\) 12.6040 0.587665
\(461\) −20.0988 16.8649i −0.936094 0.785476i 0.0408072 0.999167i \(-0.487007\pi\)
−0.976901 + 0.213691i \(0.931451\pi\)
\(462\) 0 0
\(463\) 1.17324 + 6.65376i 0.0545250 + 0.309227i 0.999857 0.0168815i \(-0.00537380\pi\)
−0.945333 + 0.326108i \(0.894263\pi\)
\(464\) 41.0073 + 14.9254i 1.90372 + 0.692897i
\(465\) 0 0
\(466\) −6.11809 + 34.6974i −0.283415 + 1.60733i
\(467\) 16.8735 29.2257i 0.780810 1.35240i −0.150660 0.988586i \(-0.548140\pi\)
0.931470 0.363818i \(-0.118527\pi\)
\(468\) 0 0
\(469\) 16.1459 + 27.9655i 0.745548 + 1.29133i
\(470\) −10.7554 + 3.91463i −0.496108 + 0.180569i
\(471\) 0 0
\(472\) −39.9090 + 33.4876i −1.83696 + 1.54139i
\(473\) −1.40033 + 1.17502i −0.0643872 + 0.0540273i
\(474\) 0 0
\(475\) 0.188196 0.0684978i 0.00863503 0.00314289i
\(476\) −21.3516 36.9821i −0.978651 1.69507i
\(477\) 0 0
\(478\) 19.0155 32.9358i 0.869748 1.50645i
\(479\) −1.93211 + 10.9576i −0.0882805 + 0.500664i 0.908320 + 0.418276i \(0.137366\pi\)
−0.996600 + 0.0823875i \(0.973745\pi\)
\(480\) 0 0
\(481\) 7.38326 + 2.68729i 0.336647 + 0.122530i
\(482\) 5.70439 + 32.3512i 0.259828 + 1.47356i
\(483\) 0 0
\(484\) −4.57011 3.83478i −0.207732 0.174308i
\(485\) −8.72462 −0.396165
\(486\) 0 0
\(487\) −4.74691 −0.215103 −0.107552 0.994200i \(-0.534301\pi\)
−0.107552 + 0.994200i \(0.534301\pi\)
\(488\) 5.93376 + 4.97902i 0.268609 + 0.225390i
\(489\) 0 0
\(490\) 0.701867 + 3.98048i 0.0317071 + 0.179820i
\(491\) 20.9932 + 7.64090i 0.947410 + 0.344829i 0.769088 0.639143i \(-0.220711\pi\)
0.178322 + 0.983972i \(0.442933\pi\)
\(492\) 0 0
\(493\) 3.42468 19.4223i 0.154240 0.874737i
\(494\) −0.115867 + 0.200688i −0.00521310 + 0.00902936i
\(495\) 0 0
\(496\) 20.6668 + 35.7960i 0.927969 + 1.60729i
\(497\) −35.8717 + 13.0562i −1.60907 + 0.585652i
\(498\) 0 0
\(499\) −8.01367 + 6.72427i −0.358741 + 0.301020i −0.804289 0.594239i \(-0.797453\pi\)
0.445548 + 0.895258i \(0.353009\pi\)
\(500\) 15.4663 12.9778i 0.691675 0.580384i
\(501\) 0 0
\(502\) −2.07620 + 0.755675i −0.0926653 + 0.0337274i
\(503\) 12.5209 + 21.6869i 0.558281 + 0.966972i 0.997640 + 0.0686600i \(0.0218723\pi\)
−0.439359 + 0.898312i \(0.644794\pi\)
\(504\) 0 0
\(505\) −2.12583 + 3.68204i −0.0945982 + 0.163849i
\(506\) 8.33915 47.2936i 0.370720 2.10246i
\(507\) 0 0
\(508\) 27.5180 + 10.0157i 1.22091 + 0.444376i
\(509\) −3.13651 17.7880i −0.139023 0.788440i −0.971973 0.235092i \(-0.924461\pi\)
0.832950 0.553348i \(-0.186650\pi\)
\(510\) 0 0
\(511\) 20.3537 + 17.0788i 0.900394 + 0.755521i
\(512\) 50.5553 2.23425
\(513\) 0 0
\(514\) 11.5885 0.511148
\(515\) −0.0934920 0.0784491i −0.00411975 0.00345688i
\(516\) 0 0
\(517\) 5.21048 + 29.5501i 0.229157 + 1.29961i
\(518\) −27.6104 10.0494i −1.21313 0.441544i
\(519\) 0 0
\(520\) −1.08394 + 6.14733i −0.0475339 + 0.269578i
\(521\) −12.9791 + 22.4804i −0.568623 + 0.984883i 0.428080 + 0.903741i \(0.359190\pi\)
−0.996703 + 0.0811425i \(0.974143\pi\)
\(522\) 0 0
\(523\) −12.7973 22.1655i −0.559585 0.969230i −0.997531 0.0702283i \(-0.977627\pi\)
0.437946 0.899001i \(-0.355706\pi\)
\(524\) −52.4017 + 19.0727i −2.28918 + 0.833193i
\(525\) 0 0
\(526\) 8.33615 6.99486i 0.363473 0.304990i
\(527\) 14.3097 12.0073i 0.623342 0.523046i
\(528\) 0 0
\(529\) −13.4226 + 4.88543i −0.583592 + 0.212410i
\(530\) 2.93717 + 5.08732i 0.127582 + 0.220979i
\(531\) 0 0
\(532\) 0.298133 0.516382i 0.0129257 0.0223880i
\(533\) 2.92215 16.5723i 0.126572 0.717828i
\(534\) 0 0
\(535\) −1.77719 0.646844i −0.0768346 0.0279655i
\(536\) −10.6113 60.1796i −0.458338 2.59936i
\(537\) 0 0
\(538\) 23.5201 + 19.7357i 1.01402 + 0.850866i
\(539\) 10.5963 0.456414
\(540\) 0 0
\(541\) 27.8476 1.19726 0.598631 0.801025i \(-0.295712\pi\)
0.598631 + 0.801025i \(0.295712\pi\)
\(542\) 0.620615 + 0.520758i 0.0266577 + 0.0223685i
\(543\) 0 0
\(544\) 2.39440 + 13.5793i 0.102659 + 0.582208i
\(545\) −2.37598 0.864787i −0.101776 0.0370434i
\(546\) 0 0
\(547\) −1.02600 + 5.81872i −0.0438685 + 0.248790i −0.998854 0.0478621i \(-0.984759\pi\)
0.954985 + 0.296653i \(0.0958703\pi\)
\(548\) 23.4158 40.5574i 1.00027 1.73253i
\(549\) 0 0
\(550\) −18.8011 32.5645i −0.801683 1.38856i
\(551\) 0.258770 0.0941848i 0.0110240 0.00401241i
\(552\) 0 0
\(553\) −27.3123 + 22.9177i −1.16144 + 0.974560i
\(554\) 52.0249 43.6541i 2.21032 1.85468i
\(555\) 0 0
\(556\) 30.9295 11.2574i 1.31170 0.477421i
\(557\) 13.3525 + 23.1272i 0.565764 + 0.979932i 0.996978 + 0.0776824i \(0.0247520\pi\)
−0.431214 + 0.902250i \(0.641915\pi\)
\(558\) 0 0
\(559\) −0.642903 + 1.11354i −0.0271919 + 0.0470978i
\(560\) 1.74035 9.87003i 0.0735433 0.417085i
\(561\) 0 0
\(562\) −63.4843 23.1064i −2.67792 0.974685i
\(563\) −6.26217 35.5146i −0.263919 1.49676i −0.772095 0.635507i \(-0.780791\pi\)
0.508176 0.861253i \(-0.330320\pi\)
\(564\) 0 0
\(565\) 0.496130 + 0.416302i 0.0208723 + 0.0175140i
\(566\) 23.5321 0.989127
\(567\) 0 0
\(568\) 72.2390 3.03108
\(569\) 6.93061 + 5.81547i 0.290546 + 0.243797i 0.776396 0.630245i \(-0.217046\pi\)
−0.485850 + 0.874042i \(0.661490\pi\)
\(570\) 0 0
\(571\) 5.30999 + 30.1145i 0.222216 + 1.26025i 0.867936 + 0.496676i \(0.165446\pi\)
−0.645719 + 0.763575i \(0.723442\pi\)
\(572\) 28.1313 + 10.2390i 1.17623 + 0.428113i
\(573\) 0 0
\(574\) −10.9277 + 61.9739i −0.456112 + 2.58674i
\(575\) −14.5967 + 25.2823i −0.608726 + 1.05434i
\(576\) 0 0
\(577\) 12.5744 + 21.7796i 0.523481 + 0.906696i 0.999626 + 0.0273292i \(0.00870022\pi\)
−0.476146 + 0.879367i \(0.657966\pi\)
\(578\) −19.0351 + 6.92820i −0.791755 + 0.288175i
\(579\) 0 0
\(580\) 10.3951 8.72254i 0.431634 0.362184i
\(581\) −3.73190 + 3.13143i −0.154825 + 0.129914i
\(582\) 0 0
\(583\) 14.4715 5.26719i 0.599347 0.218145i
\(584\) −25.1400 43.5437i −1.04030 1.80185i
\(585\) 0 0
\(586\) 24.8640 43.0656i 1.02712 1.77903i
\(587\) −3.62465 + 20.5564i −0.149605 + 0.848453i 0.813948 + 0.580937i \(0.197314\pi\)
−0.963553 + 0.267516i \(0.913797\pi\)
\(588\) 0 0
\(589\) 0.245100 + 0.0892091i 0.0100992 + 0.00367580i
\(590\) 1.75537 + 9.95518i 0.0722673 + 0.409848i
\(591\) 0 0
\(592\) 18.2875 + 15.3450i 0.751610 + 0.630676i
\(593\) −15.6212 −0.641488 −0.320744 0.947166i \(-0.603933\pi\)
−0.320744 + 0.947166i \(0.603933\pi\)
\(594\) 0 0
\(595\) −4.52940 −0.185687
\(596\) 14.3760 + 12.0629i 0.588863 + 0.494115i
\(597\) 0 0
\(598\) −5.86571 33.2661i −0.239867 1.36035i
\(599\) −0.421274 0.153331i −0.0172128 0.00626495i 0.333399 0.942786i \(-0.391804\pi\)
−0.350612 + 0.936521i \(0.614026\pi\)
\(600\) 0 0
\(601\) −3.06876 + 17.4038i −0.125177 + 0.709917i 0.856025 + 0.516935i \(0.172927\pi\)
−0.981202 + 0.192982i \(0.938184\pi\)
\(602\) 2.40420 4.16420i 0.0979879 0.169720i
\(603\) 0 0
\(604\) −0.298133 0.516382i −0.0121309 0.0210113i
\(605\) −0.594618 + 0.216423i −0.0241747 + 0.00879885i
\(606\) 0 0
\(607\) 20.0692 16.8401i 0.814585 0.683518i −0.137112 0.990555i \(-0.543782\pi\)
0.951697 + 0.307038i \(0.0993377\pi\)
\(608\) −0.147489 + 0.123758i −0.00598147 + 0.00501905i
\(609\) 0 0
\(610\) 1.41235 0.514054i 0.0571844 0.0208134i
\(611\) 10.5530 + 18.2784i 0.426930 + 0.739465i
\(612\) 0 0
\(613\) −7.27719 + 12.6045i −0.293923 + 0.509089i −0.974734 0.223370i \(-0.928294\pi\)
0.680811 + 0.732459i \(0.261628\pi\)
\(614\) −12.4623 + 70.6771i −0.502937 + 2.85230i
\(615\) 0 0
\(616\) −57.5061 20.9305i −2.31699 0.843315i
\(617\) −2.43464 13.8075i −0.0980149 0.555870i −0.993782 0.111346i \(-0.964484\pi\)
0.895767 0.444524i \(-0.146627\pi\)
\(618\) 0 0
\(619\) −24.2931 20.3844i −0.976424 0.819317i 0.00712236 0.999975i \(-0.497733\pi\)
−0.983546 + 0.180658i \(0.942177\pi\)
\(620\) 12.8530 0.516188
\(621\) 0 0
\(622\) −5.17705 −0.207581
\(623\) −39.2335 32.9209i −1.57186 1.31895i
\(624\) 0 0
\(625\) 3.77925 + 21.4332i 0.151170 + 0.857327i
\(626\) 20.0141 + 7.28455i 0.799926 + 0.291149i
\(627\) 0 0
\(628\) 10.2083 57.8939i 0.407354 2.31022i
\(629\) 5.39440 9.34337i 0.215089 0.372545i
\(630\) 0 0
\(631\) 19.2879 + 33.4077i 0.767840 + 1.32994i 0.938732 + 0.344648i \(0.112002\pi\)
−0.170892 + 0.985290i \(0.554665\pi\)
\(632\) 63.4009 23.0760i 2.52195 0.917915i
\(633\) 0 0
\(634\) 60.3794 50.6644i 2.39797 2.01214i
\(635\) 2.37939 1.99654i 0.0944230 0.0792303i
\(636\) 0 0
\(637\) 7.00387 2.54920i 0.277503 0.101003i
\(638\) −25.8516 44.7763i −1.02348 1.77271i
\(639\) 0 0
\(640\) 3.12108 5.40587i 0.123372 0.213686i
\(641\) 5.31655 30.1517i 0.209991 1.19092i −0.679399 0.733769i \(-0.737759\pi\)
0.889390 0.457150i \(-0.151130\pi\)
\(642\) 0 0
\(643\) 32.1609 + 11.7056i 1.26830 + 0.461624i 0.886547 0.462639i \(-0.153097\pi\)
0.381756 + 0.924263i \(0.375320\pi\)
\(644\) 15.0929 + 85.5959i 0.594742 + 3.37295i
\(645\) 0 0
\(646\) 0.243756 + 0.204535i 0.00959044 + 0.00804734i
\(647\) 12.8726 0.506073 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(648\) 0 0
\(649\) 26.5012 1.04026
\(650\) −20.2613 17.0012i −0.794713 0.666844i
\(651\) 0 0
\(652\) −7.47952 42.4185i −0.292921 1.66124i
\(653\) −10.6365 3.87137i −0.416239 0.151498i 0.125407 0.992105i \(-0.459976\pi\)
−0.541646 + 0.840607i \(0.682199\pi\)
\(654\) 0 0
\(655\) −1.02709 + 5.82493i −0.0401318 + 0.227599i
\(656\) 25.5646 44.2793i 0.998132 1.72881i
\(657\) 0 0
\(658\) −39.4641 68.3538i −1.53847 2.66471i
\(659\) −12.9388 + 4.70934i −0.504025 + 0.183450i −0.581503 0.813544i \(-0.697535\pi\)
0.0774786 + 0.996994i \(0.475313\pi\)
\(660\) 0 0
\(661\) −15.5253 + 13.0273i −0.603863 + 0.506702i −0.892685 0.450681i \(-0.851181\pi\)
0.288821 + 0.957383i \(0.406737\pi\)
\(662\) −60.1905 + 50.5059i −2.33937 + 1.96297i
\(663\) 0 0
\(664\) 8.66297 3.15306i 0.336188 0.122363i
\(665\) −0.0316221 0.0547710i −0.00122625 0.00212393i
\(666\) 0 0
\(667\) −20.0706 + 34.7633i −0.777136 + 1.34604i
\(668\) 2.73783 15.5270i 0.105930 0.600757i
\(669\) 0 0
\(670\) −11.1420 4.05537i −0.430454 0.156672i
\(671\) −0.684220 3.88040i −0.0264140 0.149801i
\(672\) 0 0
\(673\) −23.3987 19.6339i −0.901955 0.756830i 0.0686165 0.997643i \(-0.478142\pi\)
−0.970572 + 0.240813i \(0.922586\pi\)
\(674\) −60.0856 −2.31441
\(675\) 0 0
\(676\) −36.2918 −1.39584
\(677\) 2.84911 + 2.39068i 0.109500 + 0.0918815i 0.695894 0.718145i \(-0.255008\pi\)
−0.586394 + 0.810026i \(0.699453\pi\)
\(678\) 0 0
\(679\) −10.4474 59.2503i −0.400936 2.27382i
\(680\) 8.05438 + 2.93155i 0.308871 + 0.112420i
\(681\) 0 0
\(682\) 8.50387 48.2278i 0.325630 1.84674i
\(683\) −10.8735 + 18.8334i −0.416061 + 0.720639i −0.995539 0.0943487i \(-0.969923\pi\)
0.579478 + 0.814988i \(0.303256\pi\)
\(684\) 0 0
\(685\) −2.48364 4.30179i −0.0948950 0.164363i
\(686\) 27.5510 10.0277i 1.05190 0.382861i
\(687\) 0 0
\(688\) −2.99273 + 2.51120i −0.114097 + 0.0957384i
\(689\) 8.29813 6.96296i 0.316134 0.265268i
\(690\) 0 0
\(691\) 35.3276 12.8582i 1.34392 0.489149i 0.432878 0.901452i \(-0.357498\pi\)
0.911046 + 0.412304i \(0.135276\pi\)
\(692\) 41.3940 + 71.6965i 1.57356 + 2.72549i
\(693\) 0 0
\(694\) 2.28952 3.96556i 0.0869088 0.150530i
\(695\) 0.606229 3.43810i 0.0229956 0.130414i
\(696\) 0 0
\(697\) −21.7135 7.90306i −0.822457 0.299350i
\(698\) −6.71007 38.0547i −0.253980 1.44039i
\(699\) 0 0
\(700\) 52.1336 + 43.7453i 1.97047 + 1.65342i
\(701\) −23.3351 −0.881355 −0.440678 0.897665i \(-0.645262\pi\)
−0.440678 + 0.897665i \(0.645262\pi\)
\(702\) 0 0
\(703\) 0.150644 0.00568166
\(704\) −3.89780 3.27065i −0.146904 0.123267i
\(705\) 0 0
\(706\) −14.2383 80.7494i −0.535865 3.03904i
\(707\) −27.5510 10.0277i −1.03616 0.377132i
\(708\) 0 0
\(709\) 1.14244 6.47908i 0.0429051 0.243327i −0.955811 0.293981i \(-0.905020\pi\)
0.998716 + 0.0506545i \(0.0161307\pi\)
\(710\) 7.00846 12.1390i 0.263023 0.455569i
\(711\) 0 0
\(712\) 48.4595 + 83.9343i 1.81610 + 3.14557i
\(713\) −35.7276 + 13.0038i −1.33801 + 0.486996i
\(714\) 0 0
\(715\) 2.43242 2.04104i 0.0909673 0.0763306i
\(716\) 17.1800 14.4158i 0.642048 0.538743i
\(717\) 0 0
\(718\) 4.55525 1.65798i 0.170001 0.0618752i
\(719\) −8.41622 14.5773i −0.313872 0.543642i 0.665325 0.746554i \(-0.268293\pi\)
−0.979197 + 0.202911i \(0.934960\pi\)
\(720\) 0 0
\(721\) 0.420807 0.728860i 0.0156717 0.0271442i
\(722\) 8.35339 47.3744i 0.310881 1.76309i
\(723\) 0 0
\(724\) −29.6425 10.7890i −1.10165 0.400969i
\(725\) 5.45786 + 30.9531i 0.202700 + 1.14957i
\(726\) 0 0
\(727\) 19.5817 + 16.4310i 0.726246 + 0.609393i 0.929105 0.369815i \(-0.120579\pi\)
−0.202860 + 0.979208i \(0.565023\pi\)
\(728\) −43.0455 −1.59537
\(729\) 0 0
\(730\) −9.75608 −0.361089
\(731\) 1.35251 + 1.13489i 0.0500244 + 0.0419755i
\(732\) 0 0
\(733\) −2.56964 14.5732i −0.0949118 0.538272i −0.994774 0.102098i \(-0.967444\pi\)
0.899862 0.436174i \(-0.143667\pi\)
\(734\) −63.9218 23.2656i −2.35940 0.858750i
\(735\) 0 0
\(736\) 4.87346 27.6387i 0.179638 1.01878i
\(737\) −15.5424 + 26.9202i −0.572510 + 0.991616i
\(738\) 0 0
\(739\) −4.59539 7.95945i −0.169044 0.292793i 0.769040 0.639201i \(-0.220735\pi\)
−0.938084 + 0.346408i \(0.887401\pi\)
\(740\) 6.97565 2.53893i 0.256430 0.0933329i
\(741\) 0 0
\(742\) −31.0317 + 26.0387i −1.13921 + 0.955910i
\(743\) −34.0501 + 28.5714i −1.24918 + 1.04818i −0.252428 + 0.967616i \(0.581229\pi\)
−0.996749 + 0.0805681i \(0.974327\pi\)
\(744\) 0 0
\(745\) 1.87046 0.680793i 0.0685284 0.0249423i
\(746\) 18.7883 + 32.5423i 0.687890 + 1.19146i
\(747\) 0 0
\(748\) 20.5535 35.5997i 0.751510 1.30165i
\(749\) 2.26470 12.8438i 0.0827503 0.469301i
\(750\) 0 0
\(751\) 33.6467 + 12.2464i 1.22778 + 0.446877i 0.872838 0.488010i \(-0.162277\pi\)
0.354946 + 0.934887i \(0.384499\pi\)
\(752\) 11.1356 + 63.1533i 0.406075 + 2.30296i
\(753\) 0 0
\(754\) −27.8594 23.3768i −1.01458 0.851333i
\(755\) −0.0632441 −0.00230169
\(756\) 0 0
\(757\) −45.8976 −1.66818 −0.834088 0.551632i \(-0.814005\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(758\) 65.5365 + 54.9916i 2.38039 + 1.99739i
\(759\) 0 0
\(760\) 0.0207824 + 0.117863i 0.000753857 + 0.00427534i
\(761\) −34.9521 12.7215i −1.26701 0.461155i −0.380896 0.924618i \(-0.624384\pi\)
−0.886116 + 0.463463i \(0.846607\pi\)
\(762\) 0 0
\(763\) 3.02775 17.1712i 0.109612 0.621640i
\(764\) −23.1819 + 40.1522i −0.838690 + 1.45265i
\(765\) 0 0
\(766\) 11.7476 + 20.3475i 0.424459 + 0.735185i
\(767\) 17.5167 6.37554i 0.632490 0.230208i
\(768\) 0 0
\(769\) −29.3653 + 24.6404i −1.05894 + 0.888556i −0.994005 0.109333i \(-0.965128\pi\)
−0.0649348 + 0.997890i \(0.520684\pi\)
\(770\) −9.09627 + 7.63267i −0.327807 + 0.275062i
\(771\) 0 0
\(772\) 42.0467 15.3037i 1.51329 0.550794i
\(773\) 26.4136 + 45.7497i 0.950031 + 1.64550i 0.745351 + 0.666673i \(0.232282\pi\)
0.204680 + 0.978829i \(0.434385\pi\)
\(774\) 0 0
\(775\) −14.8851 + 25.7817i −0.534687 + 0.926106i
\(776\) −19.7704 + 112.123i −0.709715 + 4.02500i
\(777\) 0 0
\(778\) 38.0194 + 13.8379i 1.36306 + 0.496113i
\(779\) −0.0560265 0.317742i −0.00200736 0.0113843i
\(780\) 0