Defining parameters
| Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 729.e (of order \(9\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
| Character field: | \(\Q(\zeta_{9})\) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(162\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(729, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 594 | 234 | 360 |
| Cusp forms | 378 | 198 | 180 |
| Eisenstein series | 216 | 36 | 180 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(729, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(729, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(729, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)