Properties

Label 729.2.c.e.487.4
Level $729$
Weight $2$
Character 729.487
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(244,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.244");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.4
Root \(0.500000 + 1.27297i\) of defining polynomial
Character \(\chi\) \(=\) 729.487
Dual form 729.2.c.e.244.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.400763 - 0.694143i) q^{2} +(0.678777 + 1.17568i) q^{4} +(1.37492 + 2.38143i) q^{5} +(-1.18842 + 2.05840i) q^{7} +2.69117 q^{8} +2.20407 q^{10} +(0.125079 - 0.216644i) q^{11} +(-1.30599 - 2.26204i) q^{13} +(0.952548 + 1.64986i) q^{14} +(-0.279032 + 0.483297i) q^{16} -0.293377 q^{17} -2.78475 q^{19} +(-1.86653 + 3.23292i) q^{20} +(-0.100255 - 0.173646i) q^{22} +(3.34492 + 5.79357i) q^{23} +(-1.28081 + 2.21843i) q^{25} -2.09357 q^{26} -3.22668 q^{28} +(0.177529 - 0.307488i) q^{29} +(-1.38273 - 2.39496i) q^{31} +(2.91482 + 5.04862i) q^{32} +(-0.117575 + 0.203645i) q^{34} -6.53592 q^{35} -6.99238 q^{37} +(-1.11602 + 1.93301i) q^{38} +(3.70015 + 6.40884i) q^{40} +(4.85880 + 8.41569i) q^{41} +(-0.130353 + 0.225778i) q^{43} +0.339604 q^{44} +5.36209 q^{46} +(5.71278 - 9.89482i) q^{47} +(0.675331 + 1.16971i) q^{49} +(1.02661 + 1.77813i) q^{50} +(1.77295 - 3.07085i) q^{52} +5.43137 q^{53} +0.687897 q^{55} +(-3.19823 + 5.53950i) q^{56} +(-0.142294 - 0.246460i) q^{58} +(-2.98846 - 5.17617i) q^{59} +(5.92338 - 10.2596i) q^{61} -2.21660 q^{62} +3.55649 q^{64} +(3.59127 - 6.22026i) q^{65} +(-0.905151 - 1.56777i) q^{67} +(-0.199138 - 0.344916i) q^{68} +(-2.61936 + 4.53686i) q^{70} -0.370510 q^{71} +5.02679 q^{73} +(-2.80229 + 4.85371i) q^{74} +(-1.89022 - 3.27396i) q^{76} +(0.297293 + 0.514927i) q^{77} +(-0.401411 + 0.695264i) q^{79} -1.53459 q^{80} +7.78892 q^{82} +(1.37783 - 2.38646i) q^{83} +(-0.403370 - 0.698657i) q^{85} +(0.104482 + 0.180967i) q^{86} +(0.336610 - 0.583026i) q^{88} +10.4507 q^{89} +6.20825 q^{91} +(-4.54091 + 7.86509i) q^{92} +(-4.57895 - 7.93097i) q^{94} +(-3.82880 - 6.63168i) q^{95} +(7.41730 - 12.8471i) q^{97} +1.08259 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{4} + 6 q^{5} - 12 q^{8} + 6 q^{10} + 12 q^{11} + 6 q^{14} + 3 q^{16} - 18 q^{17} + 6 q^{19} + 6 q^{20} - 6 q^{22} + 15 q^{23} + 6 q^{25} - 30 q^{26} - 12 q^{28} + 12 q^{29} - 24 q^{35}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.400763 0.694143i 0.283383 0.490833i −0.688833 0.724920i \(-0.741877\pi\)
0.972216 + 0.234087i \(0.0752101\pi\)
\(3\) 0 0
\(4\) 0.678777 + 1.17568i 0.339389 + 0.587838i
\(5\) 1.37492 + 2.38143i 0.614883 + 1.06501i 0.990405 + 0.138195i \(0.0441302\pi\)
−0.375522 + 0.926814i \(0.622536\pi\)
\(6\) 0 0
\(7\) −1.18842 + 2.05840i −0.449179 + 0.778001i −0.998333 0.0577201i \(-0.981617\pi\)
0.549153 + 0.835722i \(0.314950\pi\)
\(8\) 2.69117 0.951472
\(9\) 0 0
\(10\) 2.20407 0.696989
\(11\) 0.125079 0.216644i 0.0377129 0.0653206i −0.846553 0.532305i \(-0.821326\pi\)
0.884266 + 0.466984i \(0.154659\pi\)
\(12\) 0 0
\(13\) −1.30599 2.26204i −0.362217 0.627378i 0.626108 0.779736i \(-0.284647\pi\)
−0.988325 + 0.152358i \(0.951313\pi\)
\(14\) 0.952548 + 1.64986i 0.254579 + 0.440944i
\(15\) 0 0
\(16\) −0.279032 + 0.483297i −0.0697580 + 0.120824i
\(17\) −0.293377 −0.0711543 −0.0355772 0.999367i \(-0.511327\pi\)
−0.0355772 + 0.999367i \(0.511327\pi\)
\(18\) 0 0
\(19\) −2.78475 −0.638864 −0.319432 0.947609i \(-0.603492\pi\)
−0.319432 + 0.947609i \(0.603492\pi\)
\(20\) −1.86653 + 3.23292i −0.417369 + 0.722904i
\(21\) 0 0
\(22\) −0.100255 0.173646i −0.0213743 0.0370214i
\(23\) 3.34492 + 5.79357i 0.697464 + 1.20804i 0.969343 + 0.245712i \(0.0790217\pi\)
−0.271879 + 0.962332i \(0.587645\pi\)
\(24\) 0 0
\(25\) −1.28081 + 2.21843i −0.256163 + 0.443687i
\(26\) −2.09357 −0.410584
\(27\) 0 0
\(28\) −3.22668 −0.609786
\(29\) 0.177529 0.307488i 0.0329662 0.0570992i −0.849072 0.528278i \(-0.822838\pi\)
0.882038 + 0.471179i \(0.156171\pi\)
\(30\) 0 0
\(31\) −1.38273 2.39496i −0.248346 0.430148i 0.714721 0.699410i \(-0.246554\pi\)
−0.963067 + 0.269262i \(0.913220\pi\)
\(32\) 2.91482 + 5.04862i 0.515273 + 0.892478i
\(33\) 0 0
\(34\) −0.117575 + 0.203645i −0.0201639 + 0.0349249i
\(35\) −6.53592 −1.10477
\(36\) 0 0
\(37\) −6.99238 −1.14954 −0.574770 0.818315i \(-0.694909\pi\)
−0.574770 + 0.818315i \(0.694909\pi\)
\(38\) −1.11602 + 1.93301i −0.181043 + 0.313576i
\(39\) 0 0
\(40\) 3.70015 + 6.40884i 0.585044 + 1.01333i
\(41\) 4.85880 + 8.41569i 0.758818 + 1.31431i 0.943454 + 0.331504i \(0.107556\pi\)
−0.184636 + 0.982807i \(0.559111\pi\)
\(42\) 0 0
\(43\) −0.130353 + 0.225778i −0.0198787 + 0.0344309i −0.875794 0.482686i \(-0.839661\pi\)
0.855915 + 0.517117i \(0.172995\pi\)
\(44\) 0.339604 0.0511973
\(45\) 0 0
\(46\) 5.36209 0.790597
\(47\) 5.71278 9.89482i 0.833295 1.44331i −0.0621170 0.998069i \(-0.519785\pi\)
0.895411 0.445240i \(-0.146881\pi\)
\(48\) 0 0
\(49\) 0.675331 + 1.16971i 0.0964758 + 0.167101i
\(50\) 1.02661 + 1.77813i 0.145184 + 0.251466i
\(51\) 0 0
\(52\) 1.77295 3.07085i 0.245865 0.425850i
\(53\) 5.43137 0.746056 0.373028 0.927820i \(-0.378320\pi\)
0.373028 + 0.927820i \(0.378320\pi\)
\(54\) 0 0
\(55\) 0.687897 0.0927560
\(56\) −3.19823 + 5.53950i −0.427382 + 0.740247i
\(57\) 0 0
\(58\) −0.142294 0.246460i −0.0186841 0.0323618i
\(59\) −2.98846 5.17617i −0.389065 0.673880i 0.603259 0.797545i \(-0.293868\pi\)
−0.992324 + 0.123665i \(0.960535\pi\)
\(60\) 0 0
\(61\) 5.92338 10.2596i 0.758411 1.31361i −0.185249 0.982692i \(-0.559309\pi\)
0.943661 0.330915i \(-0.107357\pi\)
\(62\) −2.21660 −0.281508
\(63\) 0 0
\(64\) 3.55649 0.444561
\(65\) 3.59127 6.22026i 0.445442 0.771528i
\(66\) 0 0
\(67\) −0.905151 1.56777i −0.110582 0.191533i 0.805423 0.592700i \(-0.201938\pi\)
−0.916005 + 0.401167i \(0.868605\pi\)
\(68\) −0.199138 0.344916i −0.0241490 0.0418272i
\(69\) 0 0
\(70\) −2.61936 + 4.53686i −0.313073 + 0.542258i
\(71\) −0.370510 −0.0439714 −0.0219857 0.999758i \(-0.506999\pi\)
−0.0219857 + 0.999758i \(0.506999\pi\)
\(72\) 0 0
\(73\) 5.02679 0.588341 0.294171 0.955753i \(-0.404957\pi\)
0.294171 + 0.955753i \(0.404957\pi\)
\(74\) −2.80229 + 4.85371i −0.325760 + 0.564232i
\(75\) 0 0
\(76\) −1.89022 3.27396i −0.216823 0.375549i
\(77\) 0.297293 + 0.514927i 0.0338797 + 0.0586813i
\(78\) 0 0
\(79\) −0.401411 + 0.695264i −0.0451622 + 0.0782233i −0.887723 0.460378i \(-0.847714\pi\)
0.842561 + 0.538601i \(0.181047\pi\)
\(80\) −1.53459 −0.171572
\(81\) 0 0
\(82\) 7.78892 0.860143
\(83\) 1.37783 2.38646i 0.151236 0.261948i −0.780446 0.625223i \(-0.785008\pi\)
0.931682 + 0.363275i \(0.118341\pi\)
\(84\) 0 0
\(85\) −0.403370 0.698657i −0.0437516 0.0757800i
\(86\) 0.104482 + 0.180967i 0.0112665 + 0.0195142i
\(87\) 0 0
\(88\) 0.336610 0.583026i 0.0358828 0.0621508i
\(89\) 10.4507 1.10777 0.553884 0.832594i \(-0.313145\pi\)
0.553884 + 0.832594i \(0.313145\pi\)
\(90\) 0 0
\(91\) 6.20825 0.650801
\(92\) −4.54091 + 7.86509i −0.473423 + 0.819992i
\(93\) 0 0
\(94\) −4.57895 7.93097i −0.472282 0.818017i
\(95\) −3.82880 6.63168i −0.392827 0.680396i
\(96\) 0 0
\(97\) 7.41730 12.8471i 0.753113 1.30443i −0.193194 0.981161i \(-0.561885\pi\)
0.946307 0.323269i \(-0.104782\pi\)
\(98\) 1.08259 0.109358
\(99\) 0 0
\(100\) −3.47755 −0.347755
\(101\) −2.00266 + 3.46872i −0.199272 + 0.345150i −0.948293 0.317397i \(-0.897191\pi\)
0.749020 + 0.662547i \(0.230525\pi\)
\(102\) 0 0
\(103\) 2.95968 + 5.12632i 0.291626 + 0.505111i 0.974194 0.225711i \(-0.0724704\pi\)
−0.682568 + 0.730822i \(0.739137\pi\)
\(104\) −3.51465 6.08755i −0.344639 0.596933i
\(105\) 0 0
\(106\) 2.17669 3.77014i 0.211419 0.366189i
\(107\) −0.258978 −0.0250364 −0.0125182 0.999922i \(-0.503985\pi\)
−0.0125182 + 0.999922i \(0.503985\pi\)
\(108\) 0 0
\(109\) −8.55787 −0.819695 −0.409848 0.912154i \(-0.634418\pi\)
−0.409848 + 0.912154i \(0.634418\pi\)
\(110\) 0.275684 0.477499i 0.0262854 0.0455277i
\(111\) 0 0
\(112\) −0.663212 1.14872i −0.0626677 0.108544i
\(113\) 1.55959 + 2.70129i 0.146714 + 0.254116i 0.930011 0.367532i \(-0.119797\pi\)
−0.783297 + 0.621647i \(0.786464\pi\)
\(114\) 0 0
\(115\) −9.19800 + 15.9314i −0.857718 + 1.48561i
\(116\) 0.482009 0.0447534
\(117\) 0 0
\(118\) −4.79067 −0.441017
\(119\) 0.348654 0.603886i 0.0319611 0.0553582i
\(120\) 0 0
\(121\) 5.46871 + 9.47208i 0.497155 + 0.861099i
\(122\) −4.74775 8.22334i −0.429841 0.744506i
\(123\) 0 0
\(124\) 1.87714 3.25129i 0.168572 0.291975i
\(125\) 6.70514 0.599726
\(126\) 0 0
\(127\) −18.4545 −1.63757 −0.818787 0.574097i \(-0.805353\pi\)
−0.818787 + 0.574097i \(0.805353\pi\)
\(128\) −4.40433 + 7.62853i −0.389292 + 0.674273i
\(129\) 0 0
\(130\) −2.87850 4.98571i −0.252461 0.437275i
\(131\) −7.11274 12.3196i −0.621443 1.07637i −0.989217 0.146455i \(-0.953214\pi\)
0.367775 0.929915i \(-0.380120\pi\)
\(132\) 0 0
\(133\) 3.30944 5.73212i 0.286965 0.497037i
\(134\) −1.45101 −0.125348
\(135\) 0 0
\(136\) −0.789527 −0.0677014
\(137\) 9.84279 17.0482i 0.840926 1.45653i −0.0481859 0.998838i \(-0.515344\pi\)
0.889112 0.457689i \(-0.151323\pi\)
\(138\) 0 0
\(139\) 8.95548 + 15.5113i 0.759594 + 1.31565i 0.943058 + 0.332629i \(0.107936\pi\)
−0.183464 + 0.983026i \(0.558731\pi\)
\(140\) −4.43643 7.68412i −0.374947 0.649427i
\(141\) 0 0
\(142\) −0.148487 + 0.257187i −0.0124607 + 0.0215826i
\(143\) −0.653411 −0.0546410
\(144\) 0 0
\(145\) 0.976351 0.0810815
\(146\) 2.01455 3.48931i 0.166726 0.288777i
\(147\) 0 0
\(148\) −4.74627 8.22078i −0.390141 0.675744i
\(149\) −8.14473 14.1071i −0.667242 1.15570i −0.978672 0.205428i \(-0.934141\pi\)
0.311430 0.950269i \(-0.399192\pi\)
\(150\) 0 0
\(151\) −7.13743 + 12.3624i −0.580836 + 1.00604i 0.414544 + 0.910029i \(0.363941\pi\)
−0.995381 + 0.0960086i \(0.969392\pi\)
\(152\) −7.49422 −0.607862
\(153\) 0 0
\(154\) 0.476577 0.0384036
\(155\) 3.80230 6.58577i 0.305408 0.528982i
\(156\) 0 0
\(157\) −0.381677 0.661084i −0.0304612 0.0527603i 0.850393 0.526148i \(-0.176364\pi\)
−0.880854 + 0.473388i \(0.843031\pi\)
\(158\) 0.321742 + 0.557273i 0.0255964 + 0.0443342i
\(159\) 0 0
\(160\) −8.01530 + 13.8829i −0.633665 + 1.09754i
\(161\) −15.9006 −1.25315
\(162\) 0 0
\(163\) 5.12834 0.401682 0.200841 0.979624i \(-0.435632\pi\)
0.200841 + 0.979624i \(0.435632\pi\)
\(164\) −6.59609 + 11.4248i −0.515068 + 0.892124i
\(165\) 0 0
\(166\) −1.10436 1.91282i −0.0857153 0.148463i
\(167\) −4.45056 7.70860i −0.344395 0.596509i 0.640849 0.767667i \(-0.278583\pi\)
−0.985244 + 0.171158i \(0.945249\pi\)
\(168\) 0 0
\(169\) 3.08877 5.34991i 0.237598 0.411532i
\(170\) −0.646624 −0.0495938
\(171\) 0 0
\(172\) −0.353923 −0.0269864
\(173\) 3.40562 5.89870i 0.258924 0.448470i −0.707030 0.707184i \(-0.749965\pi\)
0.965954 + 0.258714i \(0.0832986\pi\)
\(174\) 0 0
\(175\) −3.04428 5.27285i −0.230126 0.398590i
\(176\) 0.0698023 + 0.120901i 0.00526155 + 0.00911326i
\(177\) 0 0
\(178\) 4.18825 7.25425i 0.313922 0.543729i
\(179\) −18.3476 −1.37137 −0.685684 0.727900i \(-0.740497\pi\)
−0.685684 + 0.727900i \(0.740497\pi\)
\(180\) 0 0
\(181\) 11.3256 0.841829 0.420914 0.907100i \(-0.361709\pi\)
0.420914 + 0.907100i \(0.361709\pi\)
\(182\) 2.48804 4.30941i 0.184426 0.319435i
\(183\) 0 0
\(184\) 9.00175 + 15.5915i 0.663618 + 1.14942i
\(185\) −9.61397 16.6519i −0.706833 1.22427i
\(186\) 0 0
\(187\) −0.0366954 + 0.0635583i −0.00268343 + 0.00464784i
\(188\) 15.5108 1.13124
\(189\) 0 0
\(190\) −6.13778 −0.445281
\(191\) −3.42921 + 5.93956i −0.248129 + 0.429771i −0.963007 0.269478i \(-0.913149\pi\)
0.714878 + 0.699249i \(0.246482\pi\)
\(192\) 0 0
\(193\) −10.2064 17.6780i −0.734673 1.27249i −0.954867 0.297034i \(-0.904002\pi\)
0.220194 0.975456i \(-0.429331\pi\)
\(194\) −5.94517 10.2973i −0.426838 0.739305i
\(195\) 0 0
\(196\) −0.916798 + 1.58794i −0.0654856 + 0.113424i
\(197\) 3.03573 0.216287 0.108143 0.994135i \(-0.465509\pi\)
0.108143 + 0.994135i \(0.465509\pi\)
\(198\) 0 0
\(199\) −2.26247 −0.160382 −0.0801912 0.996779i \(-0.525553\pi\)
−0.0801912 + 0.996779i \(0.525553\pi\)
\(200\) −3.44689 + 5.97018i −0.243732 + 0.422156i
\(201\) 0 0
\(202\) 1.60519 + 2.78027i 0.112941 + 0.195619i
\(203\) 0.421956 + 0.730849i 0.0296155 + 0.0512955i
\(204\) 0 0
\(205\) −13.3609 + 23.1418i −0.933168 + 1.61629i
\(206\) 4.74453 0.330567
\(207\) 0 0
\(208\) 1.45765 0.101070
\(209\) −0.348314 + 0.603298i −0.0240934 + 0.0417310i
\(210\) 0 0
\(211\) −12.7154 22.0237i −0.875364 1.51618i −0.856374 0.516356i \(-0.827288\pi\)
−0.0189904 0.999820i \(-0.506045\pi\)
\(212\) 3.68669 + 6.38553i 0.253203 + 0.438560i
\(213\) 0 0
\(214\) −0.103789 + 0.179768i −0.00709488 + 0.0122887i
\(215\) −0.716901 −0.0488923
\(216\) 0 0
\(217\) 6.57305 0.446208
\(218\) −3.42968 + 5.94038i −0.232287 + 0.402334i
\(219\) 0 0
\(220\) 0.466929 + 0.808745i 0.0314803 + 0.0545256i
\(221\) 0.383148 + 0.663631i 0.0257733 + 0.0446407i
\(222\) 0 0
\(223\) 1.91567 3.31804i 0.128283 0.222192i −0.794729 0.606965i \(-0.792387\pi\)
0.923011 + 0.384773i \(0.125720\pi\)
\(224\) −13.8561 −0.925799
\(225\) 0 0
\(226\) 2.50011 0.166305
\(227\) −1.25800 + 2.17891i −0.0834961 + 0.144619i −0.904749 0.425944i \(-0.859942\pi\)
0.821253 + 0.570564i \(0.193275\pi\)
\(228\) 0 0
\(229\) 7.96981 + 13.8041i 0.526660 + 0.912202i 0.999517 + 0.0310628i \(0.00988918\pi\)
−0.472858 + 0.881139i \(0.656777\pi\)
\(230\) 7.37245 + 12.7694i 0.486125 + 0.841993i
\(231\) 0 0
\(232\) 0.477760 0.827504i 0.0313665 0.0543283i
\(233\) 28.1283 1.84274 0.921372 0.388682i \(-0.127070\pi\)
0.921372 + 0.388682i \(0.127070\pi\)
\(234\) 0 0
\(235\) 31.4185 2.04952
\(236\) 4.05700 7.02693i 0.264088 0.457414i
\(237\) 0 0
\(238\) −0.279456 0.484031i −0.0181144 0.0313751i
\(239\) 7.35289 + 12.7356i 0.475619 + 0.823797i 0.999610 0.0279273i \(-0.00889069\pi\)
−0.523991 + 0.851724i \(0.675557\pi\)
\(240\) 0 0
\(241\) −4.22147 + 7.31181i −0.271929 + 0.470995i −0.969356 0.245661i \(-0.920995\pi\)
0.697427 + 0.716656i \(0.254328\pi\)
\(242\) 8.76664 0.563541
\(243\) 0 0
\(244\) 16.0826 1.02958
\(245\) −1.85705 + 3.21651i −0.118643 + 0.205495i
\(246\) 0 0
\(247\) 3.63685 + 6.29922i 0.231407 + 0.400809i
\(248\) −3.72117 6.44526i −0.236295 0.409274i
\(249\) 0 0
\(250\) 2.68718 4.65432i 0.169952 0.294365i
\(251\) −23.2205 −1.46566 −0.732832 0.680409i \(-0.761802\pi\)
−0.732832 + 0.680409i \(0.761802\pi\)
\(252\) 0 0
\(253\) 1.67352 0.105213
\(254\) −7.39590 + 12.8101i −0.464060 + 0.803775i
\(255\) 0 0
\(256\) 7.08668 + 12.2745i 0.442918 + 0.767156i
\(257\) −3.43260 5.94544i −0.214120 0.370866i 0.738880 0.673837i \(-0.235355\pi\)
−0.953000 + 0.302971i \(0.902022\pi\)
\(258\) 0 0
\(259\) 8.30986 14.3931i 0.516350 0.894344i
\(260\) 9.75069 0.604712
\(261\) 0 0
\(262\) −11.4021 −0.704424
\(263\) −1.67647 + 2.90373i −0.103376 + 0.179052i −0.913073 0.407795i \(-0.866298\pi\)
0.809698 + 0.586847i \(0.199631\pi\)
\(264\) 0 0
\(265\) 7.46770 + 12.9344i 0.458737 + 0.794556i
\(266\) −2.65260 4.59444i −0.162642 0.281703i
\(267\) 0 0
\(268\) 1.22879 2.12833i 0.0750604 0.130008i
\(269\) 12.7416 0.776869 0.388434 0.921476i \(-0.373016\pi\)
0.388434 + 0.921476i \(0.373016\pi\)
\(270\) 0 0
\(271\) −23.5566 −1.43096 −0.715481 0.698632i \(-0.753792\pi\)
−0.715481 + 0.698632i \(0.753792\pi\)
\(272\) 0.0818615 0.141788i 0.00496358 0.00859717i
\(273\) 0 0
\(274\) −7.88926 13.6646i −0.476608 0.825509i
\(275\) 0.320407 + 0.554961i 0.0193213 + 0.0334654i
\(276\) 0 0
\(277\) −2.09061 + 3.62104i −0.125613 + 0.217567i −0.921972 0.387256i \(-0.873423\pi\)
0.796360 + 0.604823i \(0.206756\pi\)
\(278\) 14.3561 0.861023
\(279\) 0 0
\(280\) −17.5893 −1.05116
\(281\) 10.8180 18.7373i 0.645348 1.11778i −0.338873 0.940832i \(-0.610046\pi\)
0.984221 0.176944i \(-0.0566211\pi\)
\(282\) 0 0
\(283\) −2.61367 4.52701i −0.155366 0.269103i 0.777826 0.628480i \(-0.216323\pi\)
−0.933192 + 0.359377i \(0.882989\pi\)
\(284\) −0.251494 0.435600i −0.0149234 0.0258481i
\(285\) 0 0
\(286\) −0.261863 + 0.453560i −0.0154843 + 0.0268196i
\(287\) −23.0971 −1.36338
\(288\) 0 0
\(289\) −16.9139 −0.994937
\(290\) 0.391286 0.677727i 0.0229771 0.0397975i
\(291\) 0 0
\(292\) 3.41207 + 5.90988i 0.199676 + 0.345849i
\(293\) 3.07108 + 5.31927i 0.179415 + 0.310755i 0.941680 0.336509i \(-0.109246\pi\)
−0.762266 + 0.647264i \(0.775913\pi\)
\(294\) 0 0
\(295\) 8.21780 14.2336i 0.478459 0.828715i
\(296\) −18.8177 −1.09376
\(297\) 0 0
\(298\) −13.0564 −0.756339
\(299\) 8.73688 15.1327i 0.505267 0.875147i
\(300\) 0 0
\(301\) −0.309828 0.536638i −0.0178582 0.0309313i
\(302\) 5.72085 + 9.90879i 0.329198 + 0.570187i
\(303\) 0 0
\(304\) 0.777033 1.34586i 0.0445659 0.0771904i
\(305\) 32.5767 1.86534
\(306\) 0 0
\(307\) 19.0039 1.08461 0.542304 0.840182i \(-0.317552\pi\)
0.542304 + 0.840182i \(0.317552\pi\)
\(308\) −0.403591 + 0.699041i −0.0229968 + 0.0398316i
\(309\) 0 0
\(310\) −3.04764 5.27867i −0.173094 0.299808i
\(311\) 10.7735 + 18.6602i 0.610907 + 1.05812i 0.991088 + 0.133209i \(0.0425283\pi\)
−0.380181 + 0.924912i \(0.624138\pi\)
\(312\) 0 0
\(313\) 1.90681 3.30269i 0.107779 0.186679i −0.807091 0.590427i \(-0.798959\pi\)
0.914870 + 0.403748i \(0.132293\pi\)
\(314\) −0.611849 −0.0345286
\(315\) 0 0
\(316\) −1.08987 −0.0613102
\(317\) −2.12724 + 3.68449i −0.119478 + 0.206942i −0.919561 0.392948i \(-0.871455\pi\)
0.800083 + 0.599889i \(0.204789\pi\)
\(318\) 0 0
\(319\) −0.0444103 0.0769210i −0.00248650 0.00430675i
\(320\) 4.88989 + 8.46954i 0.273353 + 0.473462i
\(321\) 0 0
\(322\) −6.37240 + 11.0373i −0.355120 + 0.615085i
\(323\) 0.816980 0.0454580
\(324\) 0 0
\(325\) 6.69092 0.371146
\(326\) 2.05525 3.55980i 0.113830 0.197159i
\(327\) 0 0
\(328\) 13.0759 + 22.6481i 0.721994 + 1.25053i
\(329\) 13.5783 + 23.5184i 0.748597 + 1.29661i
\(330\) 0 0
\(331\) 7.14690 12.3788i 0.392829 0.680400i −0.599993 0.800006i \(-0.704830\pi\)
0.992821 + 0.119606i \(0.0381631\pi\)
\(332\) 3.74095 0.205311
\(333\) 0 0
\(334\) −7.13449 −0.390382
\(335\) 2.48902 4.31111i 0.135990 0.235541i
\(336\) 0 0
\(337\) −17.8593 30.9331i −0.972855 1.68503i −0.686838 0.726810i \(-0.741002\pi\)
−0.286017 0.958224i \(-0.592331\pi\)
\(338\) −2.47573 4.28810i −0.134662 0.233242i
\(339\) 0 0
\(340\) 0.547597 0.948465i 0.0296976 0.0514377i
\(341\) −0.691806 −0.0374634
\(342\) 0 0
\(343\) −19.8481 −1.07170
\(344\) −0.350803 + 0.607608i −0.0189140 + 0.0327600i
\(345\) 0 0
\(346\) −2.72970 4.72797i −0.146749 0.254177i
\(347\) 9.72077 + 16.8369i 0.521838 + 0.903850i 0.999677 + 0.0254027i \(0.00808679\pi\)
−0.477839 + 0.878447i \(0.658580\pi\)
\(348\) 0 0
\(349\) 4.01035 6.94613i 0.214669 0.371818i −0.738501 0.674252i \(-0.764466\pi\)
0.953170 + 0.302434i \(0.0977993\pi\)
\(350\) −4.88014 −0.260855
\(351\) 0 0
\(352\) 1.45834 0.0777296
\(353\) −4.37691 + 7.58103i −0.232959 + 0.403497i −0.958678 0.284495i \(-0.908174\pi\)
0.725718 + 0.687992i \(0.241508\pi\)
\(354\) 0 0
\(355\) −0.509422 0.882344i −0.0270373 0.0468300i
\(356\) 7.09367 + 12.2866i 0.375964 + 0.651189i
\(357\) 0 0
\(358\) −7.35307 + 12.7359i −0.388622 + 0.673112i
\(359\) −8.27791 −0.436892 −0.218446 0.975849i \(-0.570099\pi\)
−0.218446 + 0.975849i \(0.570099\pi\)
\(360\) 0 0
\(361\) −11.2452 −0.591852
\(362\) 4.53891 7.86162i 0.238560 0.413197i
\(363\) 0 0
\(364\) 4.21402 + 7.29890i 0.220875 + 0.382566i
\(365\) 6.91143 + 11.9710i 0.361761 + 0.626588i
\(366\) 0 0
\(367\) 7.39993 12.8171i 0.386273 0.669045i −0.605672 0.795715i \(-0.707096\pi\)
0.991945 + 0.126670i \(0.0404289\pi\)
\(368\) −3.73336 −0.194615
\(369\) 0 0
\(370\) −15.4117 −0.801216
\(371\) −6.45473 + 11.1799i −0.335113 + 0.580433i
\(372\) 0 0
\(373\) −12.7667 22.1126i −0.661035 1.14495i −0.980344 0.197295i \(-0.936784\pi\)
0.319310 0.947650i \(-0.396549\pi\)
\(374\) 0.0294124 + 0.0509437i 0.00152088 + 0.00263424i
\(375\) 0 0
\(376\) 15.3741 26.6287i 0.792857 1.37327i
\(377\) −0.927403 −0.0477637
\(378\) 0 0
\(379\) 20.1244 1.03372 0.516861 0.856070i \(-0.327101\pi\)
0.516861 + 0.856070i \(0.327101\pi\)
\(380\) 5.19781 9.00287i 0.266642 0.461838i
\(381\) 0 0
\(382\) 2.74860 + 4.76072i 0.140631 + 0.243579i
\(383\) 11.9306 + 20.6645i 0.609627 + 1.05590i 0.991302 + 0.131608i \(0.0420139\pi\)
−0.381675 + 0.924296i \(0.624653\pi\)
\(384\) 0 0
\(385\) −0.817509 + 1.41597i −0.0416641 + 0.0721643i
\(386\) −16.3614 −0.832774
\(387\) 0 0
\(388\) 20.1388 1.02239
\(389\) −18.9867 + 32.8858i −0.962662 + 1.66738i −0.246891 + 0.969043i \(0.579409\pi\)
−0.715771 + 0.698335i \(0.753924\pi\)
\(390\) 0 0
\(391\) −0.981322 1.69970i −0.0496276 0.0859575i
\(392\) 1.81743 + 3.14788i 0.0917941 + 0.158992i
\(393\) 0 0
\(394\) 1.21661 2.10723i 0.0612919 0.106161i
\(395\) −2.20763 −0.111078
\(396\) 0 0
\(397\) 20.3493 1.02130 0.510651 0.859788i \(-0.329404\pi\)
0.510651 + 0.859788i \(0.329404\pi\)
\(398\) −0.906716 + 1.57048i −0.0454496 + 0.0787210i
\(399\) 0 0
\(400\) −0.714775 1.23803i −0.0357388 0.0619014i
\(401\) −3.47248 6.01452i −0.173408 0.300351i 0.766201 0.642600i \(-0.222144\pi\)
−0.939609 + 0.342250i \(0.888811\pi\)
\(402\) 0 0
\(403\) −3.61168 + 6.25561i −0.179910 + 0.311614i
\(404\) −5.43745 −0.270523
\(405\) 0 0
\(406\) 0.676418 0.0335701
\(407\) −0.874603 + 1.51486i −0.0433525 + 0.0750887i
\(408\) 0 0
\(409\) 5.45298 + 9.44483i 0.269632 + 0.467017i 0.968767 0.247973i \(-0.0797645\pi\)
−0.699135 + 0.714990i \(0.746431\pi\)
\(410\) 10.7092 + 18.5488i 0.528887 + 0.916060i
\(411\) 0 0
\(412\) −4.01793 + 6.95925i −0.197949 + 0.342858i
\(413\) 14.2062 0.699040
\(414\) 0 0
\(415\) 7.57760 0.371970
\(416\) 7.61347 13.1869i 0.373281 0.646541i
\(417\) 0 0
\(418\) 0.279183 + 0.483560i 0.0136553 + 0.0236517i
\(419\) 5.03459 + 8.72017i 0.245956 + 0.426008i 0.962400 0.271636i \(-0.0875648\pi\)
−0.716444 + 0.697645i \(0.754231\pi\)
\(420\) 0 0
\(421\) 1.55378 2.69123i 0.0757267 0.131163i −0.825675 0.564146i \(-0.809206\pi\)
0.901402 + 0.432983i \(0.142539\pi\)
\(422\) −20.3835 −0.992252
\(423\) 0 0
\(424\) 14.6167 0.709852
\(425\) 0.375761 0.650837i 0.0182271 0.0315702i
\(426\) 0 0
\(427\) 14.0789 + 24.3854i 0.681325 + 1.18009i
\(428\) −0.175789 0.304475i −0.00849707 0.0147174i
\(429\) 0 0
\(430\) −0.287308 + 0.497632i −0.0138552 + 0.0239979i
\(431\) −28.0701 −1.35209 −0.676044 0.736862i \(-0.736307\pi\)
−0.676044 + 0.736862i \(0.736307\pi\)
\(432\) 0 0
\(433\) 19.5251 0.938317 0.469158 0.883114i \(-0.344557\pi\)
0.469158 + 0.883114i \(0.344557\pi\)
\(434\) 2.63424 4.56264i 0.126448 0.219014i
\(435\) 0 0
\(436\) −5.80889 10.0613i −0.278195 0.481848i
\(437\) −9.31475 16.1336i −0.445585 0.771776i
\(438\) 0 0
\(439\) −7.31479 + 12.6696i −0.349116 + 0.604686i −0.986093 0.166197i \(-0.946851\pi\)
0.636977 + 0.770883i \(0.280185\pi\)
\(440\) 1.85125 0.0882548
\(441\) 0 0
\(442\) 0.614206 0.0292148
\(443\) −9.17797 + 15.8967i −0.436059 + 0.755276i −0.997381 0.0723212i \(-0.976959\pi\)
0.561323 + 0.827597i \(0.310293\pi\)
\(444\) 0 0
\(445\) 14.3688 + 24.8876i 0.681148 + 1.17978i
\(446\) −1.53546 2.65950i −0.0727061 0.125931i
\(447\) 0 0
\(448\) −4.22659 + 7.32067i −0.199688 + 0.345869i
\(449\) 13.8594 0.654065 0.327032 0.945013i \(-0.393951\pi\)
0.327032 + 0.945013i \(0.393951\pi\)
\(450\) 0 0
\(451\) 2.43095 0.114469
\(452\) −2.11723 + 3.66715i −0.0995860 + 0.172488i
\(453\) 0 0
\(454\) 1.00832 + 1.74646i 0.0473227 + 0.0819653i
\(455\) 8.53585 + 14.7845i 0.400167 + 0.693109i
\(456\) 0 0
\(457\) −8.82406 + 15.2837i −0.412772 + 0.714943i −0.995192 0.0979458i \(-0.968773\pi\)
0.582419 + 0.812888i \(0.302106\pi\)
\(458\) 12.7760 0.596985
\(459\) 0 0
\(460\) −24.9736 −1.16440
\(461\) −12.8190 + 22.2032i −0.597041 + 1.03411i 0.396214 + 0.918158i \(0.370324\pi\)
−0.993255 + 0.115947i \(0.963010\pi\)
\(462\) 0 0
\(463\) −9.17371 15.8893i −0.426339 0.738440i 0.570206 0.821502i \(-0.306863\pi\)
−0.996544 + 0.0830618i \(0.973530\pi\)
\(464\) 0.0990722 + 0.171598i 0.00459931 + 0.00796624i
\(465\) 0 0
\(466\) 11.2728 19.5250i 0.522201 0.904479i
\(467\) −16.2618 −0.752509 −0.376254 0.926516i \(-0.622788\pi\)
−0.376254 + 0.926516i \(0.622788\pi\)
\(468\) 0 0
\(469\) 4.30279 0.198684
\(470\) 12.5914 21.8089i 0.580797 1.00597i
\(471\) 0 0
\(472\) −8.04246 13.9300i −0.370184 0.641178i
\(473\) 0.0326090 + 0.0564805i 0.00149936 + 0.00259697i
\(474\) 0 0
\(475\) 3.56674 6.17777i 0.163653 0.283456i
\(476\) 0.946634 0.0433889
\(477\) 0 0
\(478\) 11.7871 0.539129
\(479\) 4.73585 8.20274i 0.216387 0.374793i −0.737314 0.675550i \(-0.763906\pi\)
0.953701 + 0.300757i \(0.0972395\pi\)
\(480\) 0 0
\(481\) 9.13199 + 15.8171i 0.416383 + 0.721196i
\(482\) 3.38362 + 5.86061i 0.154120 + 0.266943i
\(483\) 0 0
\(484\) −7.42407 + 12.8589i −0.337458 + 0.584494i
\(485\) 40.7928 1.85231
\(486\) 0 0
\(487\) −0.467564 −0.0211874 −0.0105937 0.999944i \(-0.503372\pi\)
−0.0105937 + 0.999944i \(0.503372\pi\)
\(488\) 15.9408 27.6103i 0.721607 1.24986i
\(489\) 0 0
\(490\) 1.48848 + 2.57812i 0.0672425 + 0.116467i
\(491\) −12.5235 21.6913i −0.565177 0.978916i −0.997033 0.0769733i \(-0.975474\pi\)
0.431856 0.901943i \(-0.357859\pi\)
\(492\) 0 0
\(493\) −0.0520828 + 0.0902100i −0.00234569 + 0.00406285i
\(494\) 5.83007 0.262307
\(495\) 0 0
\(496\) 1.54331 0.0692965
\(497\) 0.440320 0.762657i 0.0197511 0.0342098i
\(498\) 0 0
\(499\) 7.01708 + 12.1539i 0.314128 + 0.544085i 0.979252 0.202648i \(-0.0649547\pi\)
−0.665124 + 0.746733i \(0.731621\pi\)
\(500\) 4.55130 + 7.88308i 0.203540 + 0.352542i
\(501\) 0 0
\(502\) −9.30593 + 16.1183i −0.415344 + 0.719397i
\(503\) 28.3116 1.26235 0.631176 0.775640i \(-0.282573\pi\)
0.631176 + 0.775640i \(0.282573\pi\)
\(504\) 0 0
\(505\) −11.0140 −0.490117
\(506\) 0.670687 1.16166i 0.0298157 0.0516423i
\(507\) 0 0
\(508\) −12.5265 21.6966i −0.555774 0.962629i
\(509\) 14.3437 + 24.8441i 0.635774 + 1.10119i 0.986350 + 0.164659i \(0.0526525\pi\)
−0.350576 + 0.936534i \(0.614014\pi\)
\(510\) 0 0
\(511\) −5.97392 + 10.3471i −0.264271 + 0.457730i
\(512\) −6.25700 −0.276523
\(513\) 0 0
\(514\) −5.50264 −0.242711
\(515\) −8.13865 + 14.0966i −0.358632 + 0.621168i
\(516\) 0 0
\(517\) −1.42910 2.47528i −0.0628519 0.108863i
\(518\) −6.66058 11.5365i −0.292649 0.506883i
\(519\) 0 0
\(520\) 9.66472 16.7398i 0.423826 0.734088i
\(521\) −24.9096 −1.09131 −0.545655 0.838010i \(-0.683719\pi\)
−0.545655 + 0.838010i \(0.683719\pi\)
\(522\) 0 0
\(523\) −25.8648 −1.13099 −0.565494 0.824753i \(-0.691314\pi\)
−0.565494 + 0.824753i \(0.691314\pi\)
\(524\) 9.65593 16.7246i 0.421821 0.730616i
\(525\) 0 0
\(526\) 1.34374 + 2.32742i 0.0585896 + 0.101480i
\(527\) 0.405662 + 0.702627i 0.0176709 + 0.0306069i
\(528\) 0 0
\(529\) −10.8770 + 18.8395i −0.472913 + 0.819109i
\(530\) 11.9711 0.519992
\(531\) 0 0
\(532\) 8.98549 0.389570
\(533\) 12.6911 21.9817i 0.549713 0.952131i
\(534\) 0 0
\(535\) −0.356075 0.616740i −0.0153945 0.0266640i
\(536\) −2.43592 4.21913i −0.105216 0.182239i
\(537\) 0 0
\(538\) 5.10637 8.84448i 0.220151 0.381313i
\(539\) 0.337880 0.0145535
\(540\) 0 0
\(541\) −21.9158 −0.942232 −0.471116 0.882071i \(-0.656149\pi\)
−0.471116 + 0.882071i \(0.656149\pi\)
\(542\) −9.44063 + 16.3516i −0.405510 + 0.702363i
\(543\) 0 0
\(544\) −0.855141 1.48115i −0.0366639 0.0635037i
\(545\) −11.7664 20.3800i −0.504017 0.872983i
\(546\) 0 0
\(547\) 4.98802 8.63951i 0.213273 0.369399i −0.739464 0.673196i \(-0.764921\pi\)
0.952737 + 0.303797i \(0.0982544\pi\)
\(548\) 26.7243 1.14160
\(549\) 0 0
\(550\) 0.513629 0.0219012
\(551\) −0.494372 + 0.856277i −0.0210609 + 0.0364786i
\(552\) 0 0
\(553\) −0.954087 1.65253i −0.0405719 0.0702726i
\(554\) 1.67568 + 2.90236i 0.0711928 + 0.123310i
\(555\) 0 0
\(556\) −12.1576 + 21.0575i −0.515595 + 0.893037i
\(557\) −18.5330 −0.785268 −0.392634 0.919695i \(-0.628436\pi\)
−0.392634 + 0.919695i \(0.628436\pi\)
\(558\) 0 0
\(559\) 0.680961 0.0288016
\(560\) 1.82373 3.15879i 0.0770666 0.133483i
\(561\) 0 0
\(562\) −8.67092 15.0185i −0.365761 0.633516i
\(563\) −21.8415 37.8307i −0.920511 1.59437i −0.798625 0.601828i \(-0.794439\pi\)
−0.121886 0.992544i \(-0.538894\pi\)
\(564\) 0 0
\(565\) −4.28862 + 7.42811i −0.180424 + 0.312503i
\(566\) −4.18985 −0.176113
\(567\) 0 0
\(568\) −0.997105 −0.0418376
\(569\) −6.78334 + 11.7491i −0.284373 + 0.492548i −0.972457 0.233083i \(-0.925119\pi\)
0.688084 + 0.725631i \(0.258452\pi\)
\(570\) 0 0
\(571\) −11.8744 20.5670i −0.496926 0.860702i 0.503067 0.864247i \(-0.332205\pi\)
−0.999994 + 0.00354552i \(0.998871\pi\)
\(572\) −0.443520 0.768200i −0.0185445 0.0321200i
\(573\) 0 0
\(574\) −9.25649 + 16.0327i −0.386358 + 0.669192i
\(575\) −17.1369 −0.714657
\(576\) 0 0
\(577\) −8.11902 −0.337999 −0.169000 0.985616i \(-0.554054\pi\)
−0.169000 + 0.985616i \(0.554054\pi\)
\(578\) −6.77849 + 11.7407i −0.281948 + 0.488348i
\(579\) 0 0
\(580\) 0.662725 + 1.14787i 0.0275181 + 0.0476628i
\(581\) 3.27486 + 5.67223i 0.135864 + 0.235324i
\(582\) 0 0
\(583\) 0.679353 1.17667i 0.0281359 0.0487328i
\(584\) 13.5279 0.559790
\(585\) 0 0
\(586\) 4.92311 0.203372
\(587\) 1.84600 3.19736i 0.0761925 0.131969i −0.825412 0.564531i \(-0.809057\pi\)
0.901604 + 0.432562i \(0.142390\pi\)
\(588\) 0 0
\(589\) 3.85056 + 6.66936i 0.158660 + 0.274806i
\(590\) −6.58679 11.4087i −0.271174 0.469687i
\(591\) 0 0
\(592\) 1.95110 3.37940i 0.0801896 0.138892i
\(593\) 29.4590 1.20974 0.604869 0.796325i \(-0.293226\pi\)
0.604869 + 0.796325i \(0.293226\pi\)
\(594\) 0 0
\(595\) 1.91749 0.0786093
\(596\) 11.0569 19.1511i 0.452909 0.784461i
\(597\) 0 0
\(598\) −7.00284 12.1293i −0.286368 0.496003i
\(599\) 10.9377 + 18.9446i 0.446902 + 0.774057i 0.998183 0.0602628i \(-0.0191939\pi\)
−0.551280 + 0.834320i \(0.685861\pi\)
\(600\) 0 0
\(601\) −18.2603 + 31.6278i −0.744854 + 1.29013i 0.205408 + 0.978676i \(0.434148\pi\)
−0.950263 + 0.311449i \(0.899186\pi\)
\(602\) −0.496671 −0.0202428
\(603\) 0 0
\(604\) −19.3789 −0.788517
\(605\) −15.0381 + 26.0467i −0.611385 + 1.05895i
\(606\) 0 0
\(607\) 3.29041 + 5.69916i 0.133554 + 0.231322i 0.925044 0.379860i \(-0.124028\pi\)
−0.791490 + 0.611182i \(0.790694\pi\)
\(608\) −8.11704 14.0591i −0.329189 0.570173i
\(609\) 0 0
\(610\) 13.0556 22.6129i 0.528604 0.915569i
\(611\) −29.8434 −1.20733
\(612\) 0 0
\(613\) −7.14867 −0.288732 −0.144366 0.989524i \(-0.546114\pi\)
−0.144366 + 0.989524i \(0.546114\pi\)
\(614\) 7.61606 13.1914i 0.307359 0.532361i
\(615\) 0 0
\(616\) 0.800066 + 1.38576i 0.0322356 + 0.0558337i
\(617\) −8.26874 14.3219i −0.332887 0.576577i 0.650190 0.759772i \(-0.274689\pi\)
−0.983077 + 0.183195i \(0.941356\pi\)
\(618\) 0 0
\(619\) 0.749675 1.29848i 0.0301320 0.0521901i −0.850566 0.525868i \(-0.823741\pi\)
0.880698 + 0.473678i \(0.157074\pi\)
\(620\) 10.3236 0.414608
\(621\) 0 0
\(622\) 17.2704 0.692481
\(623\) −12.4197 + 21.5116i −0.497587 + 0.861845i
\(624\) 0 0
\(625\) 15.6231 + 27.0600i 0.624924 + 1.08240i
\(626\) −1.52836 2.64719i −0.0610855 0.105803i
\(627\) 0 0
\(628\) 0.518148 0.897458i 0.0206763 0.0358125i
\(629\) 2.05140 0.0817948
\(630\) 0 0
\(631\) −35.8913 −1.42881 −0.714404 0.699733i \(-0.753302\pi\)
−0.714404 + 0.699733i \(0.753302\pi\)
\(632\) −1.08026 + 1.87107i −0.0429706 + 0.0744273i
\(633\) 0 0
\(634\) 1.70504 + 2.95322i 0.0677159 + 0.117287i
\(635\) −25.3735 43.9482i −1.00692 1.74403i
\(636\) 0 0
\(637\) 1.76395 3.05525i 0.0698903 0.121054i
\(638\) −0.0711922 −0.00281852
\(639\) 0 0
\(640\) −24.2224 −0.957476
\(641\) −19.6140 + 33.9724i −0.774705 + 1.34183i 0.160255 + 0.987076i \(0.448769\pi\)
−0.934960 + 0.354753i \(0.884565\pi\)
\(642\) 0 0
\(643\) 5.20925 + 9.02269i 0.205433 + 0.355820i 0.950271 0.311426i \(-0.100806\pi\)
−0.744838 + 0.667246i \(0.767473\pi\)
\(644\) −10.7930 18.6940i −0.425304 0.736647i
\(645\) 0 0
\(646\) 0.327416 0.567100i 0.0128820 0.0223123i
\(647\) −39.1517 −1.53921 −0.769606 0.638519i \(-0.779547\pi\)
−0.769606 + 0.638519i \(0.779547\pi\)
\(648\) 0 0
\(649\) −1.49518 −0.0586910
\(650\) 2.68148 4.64446i 0.105176 0.182171i
\(651\) 0 0
\(652\) 3.48100 + 6.02927i 0.136326 + 0.236124i
\(653\) −16.4549 28.5008i −0.643932 1.11532i −0.984547 0.175120i \(-0.943969\pi\)
0.340615 0.940203i \(-0.389365\pi\)
\(654\) 0 0
\(655\) 19.5589 33.8770i 0.764229 1.32368i
\(656\) −5.42304 −0.211734
\(657\) 0 0
\(658\) 21.7668 0.848558
\(659\) 10.7842 18.6788i 0.420093 0.727623i −0.575855 0.817552i \(-0.695331\pi\)
0.995948 + 0.0899293i \(0.0286641\pi\)
\(660\) 0 0
\(661\) −13.1482 22.7733i −0.511405 0.885780i −0.999913 0.0132199i \(-0.995792\pi\)
0.488507 0.872560i \(-0.337541\pi\)
\(662\) −5.72843 9.92193i −0.222642 0.385627i
\(663\) 0 0
\(664\) 3.70796 6.42238i 0.143897 0.249237i
\(665\) 18.2009 0.705799
\(666\) 0 0
\(667\) 2.37528 0.0919710
\(668\) 6.04188 10.4648i 0.233767 0.404897i
\(669\) 0 0
\(670\) −1.99502 3.45547i −0.0770743 0.133497i
\(671\) −1.48179 2.56653i −0.0572037 0.0990797i
\(672\) 0 0
\(673\) −5.76106 + 9.97845i −0.222073 + 0.384641i −0.955437 0.295195i \(-0.904616\pi\)
0.733365 + 0.679836i \(0.237949\pi\)
\(674\) −28.6293 −1.10276
\(675\) 0 0
\(676\) 8.38635 0.322552
\(677\) 16.9625 29.3799i 0.651922 1.12916i −0.330734 0.943724i \(-0.607296\pi\)
0.982656 0.185438i \(-0.0593704\pi\)
\(678\) 0 0
\(679\) 17.6297 + 30.5355i 0.676566 + 1.17185i
\(680\) −1.08554 1.88021i −0.0416284 0.0721026i
\(681\) 0 0
\(682\) −0.277251 + 0.480212i −0.0106165 + 0.0183883i
\(683\) 36.7553 1.40640 0.703201 0.710991i \(-0.251753\pi\)
0.703201 + 0.710991i \(0.251753\pi\)
\(684\) 0 0
\(685\) 54.1322 2.06829
\(686\) −7.95441 + 13.7774i −0.303701 + 0.526025i
\(687\) 0 0
\(688\) −0.0727454 0.125999i −0.00277339 0.00480366i
\(689\) −7.09332 12.2860i −0.270234 0.468059i
\(690\) 0 0
\(691\) −6.68906 + 11.5858i −0.254464 + 0.440744i −0.964750 0.263169i \(-0.915232\pi\)
0.710286 + 0.703913i \(0.248566\pi\)
\(692\) 9.24663 0.351504
\(693\) 0 0
\(694\) 15.5829 0.591519
\(695\) −24.6261 + 42.6537i −0.934123 + 1.61795i
\(696\) 0 0
\(697\) −1.42546 2.46897i −0.0539932 0.0935189i
\(698\) −3.21441 5.56751i −0.121667 0.210733i
\(699\) 0 0
\(700\) 4.13278 7.15818i 0.156204 0.270554i
\(701\) 5.00452 0.189018 0.0945091 0.995524i \(-0.469872\pi\)
0.0945091 + 0.995524i \(0.469872\pi\)
\(702\) 0 0
\(703\) 19.4720 0.734400
\(704\) 0.444844 0.770492i 0.0167657 0.0290390i
\(705\) 0 0
\(706\) 3.50821 + 6.07640i 0.132033 + 0.228688i
\(707\) −4.76000 8.24456i −0.179018 0.310069i
\(708\) 0 0
\(709\) −8.57193 + 14.8470i −0.321925 + 0.557591i −0.980885 0.194587i \(-0.937663\pi\)
0.658960 + 0.752178i \(0.270997\pi\)
\(710\) −0.816630 −0.0306476
\(711\) 0 0
\(712\) 28.1245 1.05401
\(713\) 9.25026 16.0219i 0.346425 0.600026i
\(714\) 0 0
\(715\) −0.898388 1.55605i −0.0335978 0.0581931i
\(716\) −12.4540 21.5709i −0.465427 0.806143i
\(717\) 0 0
\(718\) −3.31748 + 5.74605i −0.123807 + 0.214441i
\(719\) −43.3519 −1.61675 −0.808377 0.588665i \(-0.799654\pi\)
−0.808377 + 0.588665i \(0.799654\pi\)
\(720\) 0 0
\(721\) −14.0693 −0.523969
\(722\) −4.50666 + 7.80577i −0.167721 + 0.290501i
\(723\) 0 0
\(724\) 7.68759 + 13.3153i 0.285707 + 0.494859i
\(725\) 0.454762 + 0.787671i 0.0168894 + 0.0292533i
\(726\) 0 0
\(727\) 18.1720 31.4747i 0.673960 1.16733i −0.302811 0.953051i \(-0.597925\pi\)
0.976772 0.214283i \(-0.0687415\pi\)
\(728\) 16.7075 0.619220
\(729\) 0 0
\(730\) 11.0794 0.410067
\(731\) 0.0382426 0.0662382i 0.00141445 0.00244991i
\(732\) 0 0
\(733\) −1.93780 3.35637i −0.0715744 0.123970i 0.828017 0.560703i \(-0.189469\pi\)
−0.899591 + 0.436732i \(0.856136\pi\)
\(734\) −5.93124 10.2732i −0.218926 0.379191i
\(735\) 0 0
\(736\) −19.4997 + 33.7745i −0.718768 + 1.24494i
\(737\) −0.452863 −0.0166814
\(738\) 0 0
\(739\) 26.4482 0.972913 0.486456 0.873705i \(-0.338289\pi\)
0.486456 + 0.873705i \(0.338289\pi\)
\(740\) 13.0515 22.6058i 0.479782 0.831007i
\(741\) 0 0
\(742\) 5.17364 + 8.96101i 0.189930 + 0.328969i
\(743\) 6.73168 + 11.6596i 0.246961 + 0.427750i 0.962681 0.270638i \(-0.0872346\pi\)
−0.715720 + 0.698387i \(0.753901\pi\)
\(744\) 0 0
\(745\) 22.3967 38.7922i 0.820552 1.42124i
\(746\) −20.4657 −0.749303
\(747\) 0 0
\(748\) −0.0996320 −0.00364291
\(749\) 0.307774 0.533081i 0.0112458 0.0194783i
\(750\) 0 0
\(751\) −1.88415 3.26345i −0.0687537 0.119085i 0.829599 0.558359i \(-0.188569\pi\)
−0.898353 + 0.439274i \(0.855236\pi\)
\(752\) 3.18809 + 5.52194i 0.116258 + 0.201364i
\(753\) 0 0
\(754\) −0.371669 + 0.643750i −0.0135354 + 0.0234440i
\(755\) −39.2536 −1.42859
\(756\) 0 0
\(757\) −33.7073 −1.22511 −0.612556 0.790427i \(-0.709859\pi\)
−0.612556 + 0.790427i \(0.709859\pi\)
\(758\) 8.06513 13.9692i 0.292939 0.507385i
\(759\) 0 0
\(760\) −10.3040 17.8470i −0.373764 0.647378i
\(761\) 4.82771 + 8.36185i 0.175005 + 0.303117i 0.940163 0.340725i \(-0.110673\pi\)
−0.765158 + 0.643842i \(0.777339\pi\)
\(762\) 0 0
\(763\) 10.1703 17.6155i 0.368190 0.637724i
\(764\) −9.31067 −0.336848
\(765\) 0 0
\(766\) 19.1254 0.691030
\(767\) −7.80582 + 13.5201i −0.281852 + 0.488181i
\(768\) 0 0
\(769\) −19.3555 33.5247i −0.697977 1.20893i −0.969167 0.246406i \(-0.920750\pi\)
0.271189 0.962526i \(-0.412583\pi\)
\(770\) 0.655255 + 1.13494i 0.0236138 + 0.0409002i
\(771\) 0 0
\(772\) 13.8557 23.9989i 0.498679 0.863738i
\(773\) 24.3039 0.874150 0.437075 0.899425i \(-0.356014\pi\)
0.437075 + 0.899425i \(0.356014\pi\)
\(774\) 0 0
\(775\) 7.08409 0.254468
\(776\) 19.9612 34.5739i 0.716566 1.24113i
\(777\) 0 0
\(778\) 15.2183 + 26.3589i 0.545603 + 0.945012i
\(779\) −13.5305 23.4356i −0.484782 0.839666i
\(780\) 0 0
\(781\) −0.0463432 + 0.0802687i −0.00165829 + 0.00287224i
\(782\) −1.57311 −0.0562544
\(783\) 0 0
\(784\) −0.753755 −0.0269198
\(785\) 1.04955 1.81788i 0.0374601 0.0648828i
\(786\) 0 0
\(787\) −10.4703 18.1351i −0.373226 0.646447i 0.616834 0.787094i \(-0.288415\pi\)
−0.990060 + 0.140647i \(0.955082\pi\)
\(788\) 2.06058 + 3.56904i 0.0734052 + 0.127142i
\(789\) 0 0
\(790\) −0.884738 + 1.53241i −0.0314776 + 0.0545208i
\(791\) −7.41377 −0.263603
\(792\) 0 0
\(793\) −30.9435 −1.09884
\(794\) 8.15526 14.1253i 0.289419 0.501289i
\(795\) 0 0
\(796\) −1.53571 2.65994i −0.0544320 0.0942789i
\(797\) −5.96838 10.3375i −0.211411 0.366174i 0.740745 0.671786i \(-0.234472\pi\)
−0.952156 + 0.305611i \(0.901139\pi\)
\(798\) 0 0
\(799\) −1.67600 + 2.90291i −0.0592925 + 0.102698i
\(800\) −14.9334 −0.527974
\(801\) 0 0
\(802\) −5.56658 −0.196563
\(803\) 0.628748 1.08902i 0.0221880 0.0384308i
\(804\) 0 0
\(805\) −21.8621 37.8663i −0.770538 1.33461i
\(806\) 2.89486 + 5.01404i 0.101967 + 0.176612i
\(807\) 0 0
\(808\) −5.38951 + 9.33490i −0.189602 + 0.328401i
\(809\) 8.60808 0.302644 0.151322 0.988485i \(-0.451647\pi\)
0.151322 + 0.988485i \(0.451647\pi\)
\(810\) 0 0
\(811\) 1.53770 0.0539958 0.0269979 0.999635i \(-0.491405\pi\)
0.0269979 + 0.999635i \(0.491405\pi\)
\(812\) −0.572828 + 0.992167i −0.0201023 + 0.0348182i
\(813\) 0 0
\(814\) 0.701018 + 1.21420i 0.0245707 + 0.0425576i
\(815\) 7.05106 + 12.2128i 0.246988 + 0.427795i
\(816\) 0 0
\(817\) 0.363001 0.628735i 0.0126998 0.0219967i
\(818\) 8.74141 0.305636
\(819\) 0 0
\(820\) −36.2764 −1.26683
\(821\) −14.4881 + 25.0942i −0.505639 + 0.875793i 0.494339 + 0.869269i \(0.335410\pi\)
−0.999979 + 0.00652409i \(0.997923\pi\)
\(822\) 0 0
\(823\) 5.62838 + 9.74865i 0.196193 + 0.339816i 0.947291 0.320374i \(-0.103809\pi\)
−0.751098 + 0.660191i \(0.770475\pi\)
\(824\) 7.96500 + 13.7958i 0.277474 + 0.480599i
\(825\) 0 0
\(826\) 5.69331 9.86110i 0.198096 0.343112i
\(827\) 30.9279 1.07547 0.537734 0.843114i \(-0.319280\pi\)
0.537734 + 0.843114i \(0.319280\pi\)
\(828\) 0 0
\(829\) −9.83524 −0.341592 −0.170796 0.985306i \(-0.554634\pi\)
−0.170796 + 0.985306i \(0.554634\pi\)
\(830\) 3.03683 5.25994i 0.105410 0.182575i
\(831\) 0 0
\(832\) −4.64474 8.04493i −0.161028 0.278908i
\(833\) −0.198126 0.343165i −0.00686467 0.0118900i
\(834\) 0 0
\(835\) 12.2383 21.1974i 0.423525 0.733567i
\(836\) −0.945711 −0.0327081
\(837\) 0 0
\(838\) 8.07072 0.278798
\(839\) 6.57160 11.3824i 0.226877 0.392962i −0.730004 0.683443i \(-0.760482\pi\)
0.956881 + 0.290481i \(0.0938151\pi\)
\(840\) 0 0
\(841\) 14.4370 + 25.0056i 0.497826 + 0.862261i
\(842\) −1.24540 2.15709i −0.0429193 0.0743383i
\(843\) 0 0
\(844\) 17.2619 29.8984i 0.594177 1.02915i
\(845\) 16.9873 0.584380
\(846\) 0 0
\(847\) −25.9964 −0.893248
\(848\) −1.51552 + 2.62497i −0.0520433 + 0.0901417i
\(849\) 0 0
\(850\) −0.301182 0.521663i −0.0103305 0.0178929i
\(851\) −23.3890 40.5109i −0.801763 1.38869i
\(852\) 0 0
\(853\) −7.72116 + 13.3734i −0.264368 + 0.457898i −0.967398 0.253262i \(-0.918497\pi\)
0.703030 + 0.711160i \(0.251830\pi\)
\(854\) 22.5692 0.772303
\(855\) 0 0
\(856\) −0.696955 −0.0238214
\(857\) −10.9914 + 19.0376i −0.375458 + 0.650312i −0.990395 0.138263i \(-0.955848\pi\)
0.614937 + 0.788576i \(0.289181\pi\)
\(858\) 0 0
\(859\) −9.78334 16.9452i −0.333803 0.578164i 0.649451 0.760403i \(-0.274999\pi\)
−0.983254 + 0.182239i \(0.941665\pi\)
\(860\) −0.486616 0.842844i −0.0165935 0.0287408i
\(861\) 0 0
\(862\) −11.2495 + 19.4846i −0.383158 + 0.663649i
\(863\) 21.8676 0.744383 0.372191 0.928156i \(-0.378607\pi\)
0.372191 + 0.928156i \(0.378607\pi\)
\(864\) 0 0
\(865\) 18.7298 0.636833
\(866\) 7.82495 13.5532i 0.265903 0.460557i
\(867\) 0 0
\(868\) 4.46164 + 7.72779i 0.151438 + 0.262298i
\(869\) 0.100416 + 0.173926i 0.00340640 + 0.00590005i
\(870\) 0 0
\(871\) −2.36424 + 4.09498i −0.0801092 + 0.138753i
\(872\) −23.0307 −0.779918
\(873\) 0 0
\(874\) −14.9320 −0.505084
\(875\) −7.96850 + 13.8019i −0.269385 + 0.466588i
\(876\) 0 0
\(877\) 19.5499 + 33.8615i 0.660155 + 1.14342i 0.980575 + 0.196146i \(0.0628426\pi\)
−0.320420 + 0.947276i \(0.603824\pi\)
\(878\) 5.86300 + 10.1550i 0.197867 + 0.342715i
\(879\) 0 0
\(880\) −0.191945 + 0.332459i −0.00647047 + 0.0112072i
\(881\) −7.30508 −0.246115 −0.123057 0.992400i \(-0.539270\pi\)
−0.123057 + 0.992400i \(0.539270\pi\)
\(882\) 0 0
\(883\) −3.49293 −0.117546 −0.0587732 0.998271i \(-0.518719\pi\)
−0.0587732 + 0.998271i \(0.518719\pi\)
\(884\) −0.520144 + 0.900916i −0.0174943 + 0.0303011i
\(885\) 0 0
\(886\) 7.35639 + 12.7416i 0.247143 + 0.428064i
\(887\) −14.2106 24.6136i −0.477147 0.826442i 0.522510 0.852633i \(-0.324996\pi\)
−0.999657 + 0.0261907i \(0.991662\pi\)
\(888\) 0 0
\(889\) 21.9317 37.9868i 0.735564 1.27404i
\(890\) 23.0340 0.772102
\(891\) 0 0
\(892\) 5.20125 0.174151
\(893\) −15.9086 + 27.5546i −0.532362 + 0.922078i
\(894\) 0 0
\(895\) −25.2266 43.6937i −0.843231 1.46052i
\(896\) −10.4684 18.1317i −0.349724 0.605739i
\(897\) 0 0
\(898\) 5.55434 9.62039i 0.185351 0.321037i
\(899\) −0.981898 −0.0327481
\(900\) 0 0
\(901\) −1.59344 −0.0530851
\(902\) 0.974234 1.68742i 0.0324384 0.0561850i
\(903\) 0 0
\(904\) 4.19712 + 7.26962i 0.139594 + 0.241784i
\(905\) 15.5719 + 26.9713i 0.517626 + 0.896555i
\(906\) 0 0
\(907\) −26.5583 + 46.0004i −0.881855 + 1.52742i −0.0325791 + 0.999469i \(0.510372\pi\)
−0.849276 + 0.527949i \(0.822961\pi\)
\(908\) −3.41560 −0.113351
\(909\) 0 0
\(910\) 13.6834 0.453601
\(911\) 4.03794 6.99392i 0.133783 0.231719i −0.791349 0.611365i \(-0.790621\pi\)
0.925132 + 0.379646i \(0.123954\pi\)
\(912\) 0 0
\(913\) −0.344675 0.596995i −0.0114071 0.0197577i
\(914\) 7.07273 + 12.2503i 0.233945 + 0.405205i
\(915\) 0 0
\(916\) −10.8195 + 18.7398i −0.357485 + 0.619182i
\(917\) 33.8116 1.11656
\(918\) 0 0
\(919\) −47.9961 −1.58325 −0.791623 0.611009i \(-0.790764\pi\)
−0.791623 + 0.611009i \(0.790764\pi\)
\(920\) −24.7534 + 42.8741i −0.816095 + 1.41352i
\(921\) 0 0
\(922\) 10.2748 + 17.7965i 0.338382 + 0.586095i
\(923\) 0.483883 + 0.838110i 0.0159272 + 0.0275867i
\(924\) 0 0
\(925\) 8.95593 15.5121i 0.294469 0.510036i
\(926\) −14.7060 −0.483268
\(927\) 0 0
\(928\) 2.06986 0.0679464
\(929\) 14.4970 25.1095i 0.475630 0.823815i −0.523980 0.851730i \(-0.675553\pi\)
0.999610 + 0.0279151i \(0.00888679\pi\)
\(930\) 0 0
\(931\) −1.88062 3.25734i −0.0616350 0.106755i
\(932\) 19.0928 + 33.0697i 0.625406 + 1.08324i
\(933\) 0 0
\(934\) −6.51715 + 11.2880i −0.213248 + 0.369356i
\(935\) −0.201813 −0.00659999
\(936\) 0 0
\(937\) 5.02850 0.164274 0.0821369 0.996621i \(-0.473826\pi\)
0.0821369 + 0.996621i \(0.473826\pi\)
\(938\) 1.72440 2.98675i 0.0563037 0.0975208i
\(939\) 0 0
\(940\) 21.3261 + 36.9380i 0.695582 + 1.20478i
\(941\) 27.9205 + 48.3598i 0.910183 + 1.57648i 0.813804 + 0.581139i \(0.197393\pi\)
0.0963791 + 0.995345i \(0.469274\pi\)
\(942\) 0 0
\(943\) −32.5046 + 56.2997i −1.05850 + 1.83337i
\(944\) 3.33551 0.108561
\(945\) 0 0
\(946\) 0.0522740 0.00169957
\(947\) −21.2647 + 36.8315i −0.691009 + 1.19686i 0.280498 + 0.959855i \(0.409500\pi\)
−0.971508 + 0.237009i \(0.923833\pi\)
\(948\) 0 0
\(949\) −6.56494 11.3708i −0.213107 0.369112i
\(950\) −2.85884 4.95165i −0.0927529 0.160653i
\(951\) 0 0
\(952\) 0.938287 1.62516i 0.0304101 0.0526718i
\(953\) 21.8148 0.706651 0.353325 0.935501i \(-0.385051\pi\)
0.353325 + 0.935501i \(0.385051\pi\)
\(954\) 0 0
\(955\) −18.8595 −0.610280
\(956\) −9.98196 + 17.2893i −0.322840 + 0.559174i
\(957\) 0 0
\(958\) −3.79592 6.57472i −0.122640 0.212419i
\(959\) 23.3947 + 40.5208i 0.755454 + 1.30848i
\(960\) 0 0
\(961\) 11.6761 20.2236i 0.376648 0.652374i
\(962\) 14.6391 0.471983
\(963\) 0 0
\(964\) −11.4618 −0.369158
\(965\) 28.0660 48.6117i 0.903476 1.56487i
\(966\) 0 0
\(967\) −2.31429 4.00847i −0.0744227 0.128904i 0.826412 0.563065i \(-0.190378\pi\)
−0.900835 + 0.434161i \(0.857045\pi\)
\(968\) 14.7172 + 25.4910i 0.473030 + 0.819312i
\(969\) 0 0
\(970\) 16.3483 28.3160i 0.524911 0.909173i
\(971\) −21.6509 −0.694809 −0.347405 0.937715i \(-0.612937\pi\)
−0.347405 + 0.937715i \(0.612937\pi\)
\(972\) 0 0
\(973\) −42.5714 −1.36478
\(974\) −0.187383 + 0.324556i −0.00600413 + 0.0103995i
\(975\) 0 0
\(976\) 3.30562 + 5.72551i 0.105810 + 0.183269i
\(977\) 11.0424 + 19.1260i 0.353278 + 0.611895i 0.986822 0.161812i \(-0.0517337\pi\)
−0.633544 + 0.773707i \(0.718400\pi\)
\(978\) 0 0
\(979\) 1.30716 2.26407i 0.0417771 0.0723601i
\(980\) −5.04210 −0.161064
\(981\) 0 0
\(982\) −20.0758 −0.640646
\(983\) 6.93152 12.0058i 0.221081 0.382924i −0.734055 0.679090i \(-0.762375\pi\)
0.955137 + 0.296166i \(0.0957081\pi\)
\(984\) 0 0
\(985\) 4.17389 + 7.22938i 0.132991 + 0.230347i
\(986\) 0.0417457 + 0.0723057i 0.00132946 + 0.00230268i
\(987\) 0 0
\(988\) −4.93723 + 8.55153i −0.157074 + 0.272060i
\(989\) −1.74408 −0.0554587
\(990\) 0 0
\(991\) 34.8224 1.10617 0.553084 0.833125i \(-0.313451\pi\)
0.553084 + 0.833125i \(0.313451\pi\)
\(992\) 8.06084 13.9618i 0.255932 0.443287i
\(993\) 0 0
\(994\) −0.352928 0.611290i −0.0111942 0.0193889i
\(995\) −3.11072 5.38792i −0.0986164 0.170809i
\(996\) 0 0
\(997\) 12.3749 21.4339i 0.391916 0.678819i −0.600786 0.799410i \(-0.705146\pi\)
0.992702 + 0.120591i \(0.0384789\pi\)
\(998\) 11.2488 0.356073
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.c.e.487.4 12
3.2 odd 2 729.2.c.b.487.3 12
9.2 odd 6 729.2.a.d.1.4 6
9.4 even 3 inner 729.2.c.e.244.4 12
9.5 odd 6 729.2.c.b.244.3 12
9.7 even 3 729.2.a.a.1.3 6
27.2 odd 18 243.2.e.a.109.2 12
27.4 even 9 27.2.e.a.7.2 yes 12
27.5 odd 18 243.2.e.a.136.2 12
27.7 even 9 243.2.e.c.28.1 12
27.11 odd 18 81.2.e.a.64.1 12
27.13 even 9 243.2.e.c.217.1 12
27.14 odd 18 243.2.e.b.217.2 12
27.16 even 9 27.2.e.a.4.2 12
27.20 odd 18 243.2.e.b.28.2 12
27.22 even 9 243.2.e.d.136.1 12
27.23 odd 18 81.2.e.a.19.1 12
27.25 even 9 243.2.e.d.109.1 12
108.31 odd 18 432.2.u.c.385.2 12
108.43 odd 18 432.2.u.c.193.2 12
135.4 even 18 675.2.l.c.601.1 12
135.43 odd 36 675.2.u.b.274.3 24
135.58 odd 36 675.2.u.b.574.2 24
135.97 odd 36 675.2.u.b.274.2 24
135.112 odd 36 675.2.u.b.574.3 24
135.124 even 18 675.2.l.c.301.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.4.2 12 27.16 even 9
27.2.e.a.7.2 yes 12 27.4 even 9
81.2.e.a.19.1 12 27.23 odd 18
81.2.e.a.64.1 12 27.11 odd 18
243.2.e.a.109.2 12 27.2 odd 18
243.2.e.a.136.2 12 27.5 odd 18
243.2.e.b.28.2 12 27.20 odd 18
243.2.e.b.217.2 12 27.14 odd 18
243.2.e.c.28.1 12 27.7 even 9
243.2.e.c.217.1 12 27.13 even 9
243.2.e.d.109.1 12 27.25 even 9
243.2.e.d.136.1 12 27.22 even 9
432.2.u.c.193.2 12 108.43 odd 18
432.2.u.c.385.2 12 108.31 odd 18
675.2.l.c.301.1 12 135.124 even 18
675.2.l.c.601.1 12 135.4 even 18
675.2.u.b.274.2 24 135.97 odd 36
675.2.u.b.274.3 24 135.43 odd 36
675.2.u.b.574.2 24 135.58 odd 36
675.2.u.b.574.3 24 135.112 odd 36
729.2.a.a.1.3 6 9.7 even 3
729.2.a.d.1.4 6 9.2 odd 6
729.2.c.b.244.3 12 9.5 odd 6
729.2.c.b.487.3 12 3.2 odd 2
729.2.c.e.244.4 12 9.4 even 3 inner
729.2.c.e.487.4 12 1.1 even 1 trivial