Properties

Label 729.2.c.a.487.2
Level $729$
Weight $2$
Character 729.487
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(244,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.244");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.2
Root \(1.13697i\) of defining polynomial
Character \(\chi\) \(=\) 729.487
Dual form 729.2.c.a.244.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06251 + 1.84033i) q^{2} +(-1.25787 - 2.17870i) q^{4} +(-1.03547 - 1.79349i) q^{5} +(-2.42434 + 4.19907i) q^{7} +1.09598 q^{8} +O(q^{10})\) \(q+(-1.06251 + 1.84033i) q^{2} +(-1.25787 - 2.17870i) q^{4} +(-1.03547 - 1.79349i) q^{5} +(-2.42434 + 4.19907i) q^{7} +1.09598 q^{8} +4.40081 q^{10} +(2.07474 - 3.59356i) q^{11} +(0.608008 + 1.05310i) q^{13} +(-5.15178 - 8.92315i) q^{14} +(1.35126 - 2.34044i) q^{16} -2.36364 q^{17} -1.83801 q^{19} +(-2.60498 + 4.51196i) q^{20} +(4.40889 + 7.63642i) q^{22} +(-2.15178 - 3.72700i) q^{23} +(0.355603 - 0.615922i) q^{25} -2.58407 q^{26} +12.1980 q^{28} +(1.49091 - 2.58233i) q^{29} +(-0.736793 - 1.27616i) q^{31} +(3.96743 + 6.87180i) q^{32} +(2.51140 - 4.34987i) q^{34} +10.0413 q^{35} +8.97108 q^{37} +(1.95291 - 3.38254i) q^{38} +(-1.13485 - 1.96562i) q^{40} +(1.13026 + 1.95767i) q^{41} +(2.74243 - 4.75003i) q^{43} -10.4391 q^{44} +9.14521 q^{46} +(3.59157 - 6.22077i) q^{47} +(-8.25481 - 14.2978i) q^{49} +(0.755667 + 1.30885i) q^{50} +(1.52959 - 2.64933i) q^{52} +6.32803 q^{53} -8.59334 q^{55} +(-2.65702 + 4.60209i) q^{56} +(3.16823 + 5.48753i) q^{58} +(0.131128 + 0.227121i) q^{59} +(2.22780 - 3.85867i) q^{61} +3.13141 q^{62} -11.4568 q^{64} +(1.25915 - 2.18091i) q^{65} +(-2.06555 - 3.57764i) q^{67} +(2.97316 + 5.14966i) q^{68} +(-10.6690 + 18.4793i) q^{70} -3.08551 q^{71} +12.7601 q^{73} +(-9.53190 + 16.5097i) q^{74} +(2.31198 + 4.00447i) q^{76} +(10.0598 + 17.4240i) q^{77} +(-2.27620 + 3.94250i) q^{79} -5.59674 q^{80} -4.80368 q^{82} +(-4.22653 + 7.32056i) q^{83} +(2.44748 + 4.23915i) q^{85} +(5.82774 + 10.0939i) q^{86} +(2.27387 - 3.93846i) q^{88} -16.9632 q^{89} -5.89606 q^{91} +(-5.41335 + 9.37619i) q^{92} +(7.63218 + 13.2193i) q^{94} +(1.90320 + 3.29644i) q^{95} +(2.55489 - 4.42519i) q^{97} +35.0834 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} - 9 q^{4} + 3 q^{5} - 6 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 3 q^{2} - 9 q^{4} + 3 q^{5} - 6 q^{7} + 12 q^{8} + 12 q^{10} + 6 q^{11} - 6 q^{13} - 24 q^{14} - 15 q^{16} - 18 q^{17} + 24 q^{19} + 21 q^{20} - 3 q^{22} + 12 q^{23} - 9 q^{25} + 48 q^{26} + 6 q^{28} - 21 q^{29} - 15 q^{31} + 60 q^{35} + 6 q^{37} - 15 q^{38} - 3 q^{40} + 12 q^{41} - 6 q^{43} - 66 q^{44} - 6 q^{46} + 15 q^{47} - 12 q^{49} + 24 q^{50} - 3 q^{52} - 18 q^{53} + 30 q^{55} - 12 q^{56} + 15 q^{58} - 6 q^{59} - 24 q^{61} - 60 q^{62} + 12 q^{64} + 15 q^{65} - 15 q^{67} - 36 q^{68} + 15 q^{70} + 24 q^{73} - 24 q^{74} - 9 q^{76} - 15 q^{77} - 24 q^{79} - 42 q^{80} - 42 q^{82} + 6 q^{83} + 18 q^{85} + 30 q^{86} + 21 q^{88} - 18 q^{89} + 36 q^{91} - 6 q^{92} + 6 q^{94} + 33 q^{95} + 21 q^{97} + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06251 + 1.84033i −0.751311 + 1.30131i 0.195876 + 0.980629i \(0.437245\pi\)
−0.947187 + 0.320680i \(0.896088\pi\)
\(3\) 0 0
\(4\) −1.25787 2.17870i −0.628937 1.08935i
\(5\) −1.03547 1.79349i −0.463076 0.802072i 0.536036 0.844195i \(-0.319921\pi\)
−0.999112 + 0.0421233i \(0.986588\pi\)
\(6\) 0 0
\(7\) −2.42434 + 4.19907i −0.916313 + 1.58710i −0.111346 + 0.993782i \(0.535516\pi\)
−0.804967 + 0.593319i \(0.797817\pi\)
\(8\) 1.09598 0.387487
\(9\) 0 0
\(10\) 4.40081 1.39166
\(11\) 2.07474 3.59356i 0.625559 1.08350i −0.362874 0.931838i \(-0.618204\pi\)
0.988432 0.151662i \(-0.0484624\pi\)
\(12\) 0 0
\(13\) 0.608008 + 1.05310i 0.168631 + 0.292077i 0.937939 0.346801i \(-0.112732\pi\)
−0.769308 + 0.638878i \(0.779399\pi\)
\(14\) −5.15178 8.92315i −1.37687 2.38481i
\(15\) 0 0
\(16\) 1.35126 2.34044i 0.337814 0.585111i
\(17\) −2.36364 −0.573266 −0.286633 0.958040i \(-0.592536\pi\)
−0.286633 + 0.958040i \(0.592536\pi\)
\(18\) 0 0
\(19\) −1.83801 −0.421668 −0.210834 0.977522i \(-0.567618\pi\)
−0.210834 + 0.977522i \(0.567618\pi\)
\(20\) −2.60498 + 4.51196i −0.582491 + 1.00890i
\(21\) 0 0
\(22\) 4.40889 + 7.63642i 0.939979 + 1.62809i
\(23\) −2.15178 3.72700i −0.448678 0.777133i 0.549622 0.835413i \(-0.314772\pi\)
−0.998300 + 0.0582801i \(0.981438\pi\)
\(24\) 0 0
\(25\) 0.355603 0.615922i 0.0711206 0.123184i
\(26\) −2.58407 −0.506777
\(27\) 0 0
\(28\) 12.1980 2.30521
\(29\) 1.49091 2.58233i 0.276855 0.479527i −0.693746 0.720219i \(-0.744041\pi\)
0.970601 + 0.240692i \(0.0773745\pi\)
\(30\) 0 0
\(31\) −0.736793 1.27616i −0.132332 0.229206i 0.792243 0.610206i \(-0.208913\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) 3.96743 + 6.87180i 0.701350 + 1.21477i
\(33\) 0 0
\(34\) 2.51140 4.34987i 0.430701 0.745997i
\(35\) 10.0413 1.69729
\(36\) 0 0
\(37\) 8.97108 1.47484 0.737418 0.675436i \(-0.236045\pi\)
0.737418 + 0.675436i \(0.236045\pi\)
\(38\) 1.95291 3.38254i 0.316804 0.548720i
\(39\) 0 0
\(40\) −1.13485 1.96562i −0.179436 0.310792i
\(41\) 1.13026 + 1.95767i 0.176517 + 0.305737i 0.940685 0.339280i \(-0.110184\pi\)
−0.764168 + 0.645017i \(0.776850\pi\)
\(42\) 0 0
\(43\) 2.74243 4.75003i 0.418216 0.724372i −0.577544 0.816360i \(-0.695989\pi\)
0.995760 + 0.0919876i \(0.0293220\pi\)
\(44\) −10.4391 −1.57375
\(45\) 0 0
\(46\) 9.14521 1.34839
\(47\) 3.59157 6.22077i 0.523884 0.907393i −0.475730 0.879591i \(-0.657816\pi\)
0.999613 0.0278017i \(-0.00885069\pi\)
\(48\) 0 0
\(49\) −8.25481 14.2978i −1.17926 2.04254i
\(50\) 0.755667 + 1.30885i 0.106867 + 0.185100i
\(51\) 0 0
\(52\) 1.52959 2.64933i 0.212116 0.367396i
\(53\) 6.32803 0.869222 0.434611 0.900618i \(-0.356886\pi\)
0.434611 + 0.900618i \(0.356886\pi\)
\(54\) 0 0
\(55\) −8.59334 −1.15873
\(56\) −2.65702 + 4.60209i −0.355059 + 0.614980i
\(57\) 0 0
\(58\) 3.16823 + 5.48753i 0.416009 + 0.720548i
\(59\) 0.131128 + 0.227121i 0.0170715 + 0.0295686i 0.874435 0.485143i \(-0.161232\pi\)
−0.857363 + 0.514711i \(0.827899\pi\)
\(60\) 0 0
\(61\) 2.22780 3.85867i 0.285241 0.494052i −0.687427 0.726254i \(-0.741260\pi\)
0.972668 + 0.232202i \(0.0745931\pi\)
\(62\) 3.13141 0.397690
\(63\) 0 0
\(64\) −11.4568 −1.43210
\(65\) 1.25915 2.18091i 0.156178 0.270508i
\(66\) 0 0
\(67\) −2.06555 3.57764i −0.252347 0.437078i 0.711824 0.702358i \(-0.247869\pi\)
−0.964172 + 0.265279i \(0.914536\pi\)
\(68\) 2.97316 + 5.14966i 0.360548 + 0.624488i
\(69\) 0 0
\(70\) −10.6690 + 18.4793i −1.27519 + 2.20870i
\(71\) −3.08551 −0.366183 −0.183091 0.983096i \(-0.558610\pi\)
−0.183091 + 0.983096i \(0.558610\pi\)
\(72\) 0 0
\(73\) 12.7601 1.49345 0.746726 0.665132i \(-0.231625\pi\)
0.746726 + 0.665132i \(0.231625\pi\)
\(74\) −9.53190 + 16.5097i −1.10806 + 1.91922i
\(75\) 0 0
\(76\) 2.31198 + 4.00447i 0.265202 + 0.459344i
\(77\) 10.0598 + 17.4240i 1.14642 + 1.98565i
\(78\) 0 0
\(79\) −2.27620 + 3.94250i −0.256093 + 0.443566i −0.965192 0.261543i \(-0.915769\pi\)
0.709099 + 0.705109i \(0.249102\pi\)
\(80\) −5.59674 −0.625734
\(81\) 0 0
\(82\) −4.80368 −0.530478
\(83\) −4.22653 + 7.32056i −0.463922 + 0.803536i −0.999152 0.0411700i \(-0.986891\pi\)
0.535230 + 0.844706i \(0.320225\pi\)
\(84\) 0 0
\(85\) 2.44748 + 4.23915i 0.265466 + 0.459801i
\(86\) 5.82774 + 10.0939i 0.628421 + 1.08846i
\(87\) 0 0
\(88\) 2.27387 3.93846i 0.242396 0.419842i
\(89\) −16.9632 −1.79809 −0.899046 0.437854i \(-0.855739\pi\)
−0.899046 + 0.437854i \(0.855739\pi\)
\(90\) 0 0
\(91\) −5.89606 −0.618075
\(92\) −5.41335 + 9.37619i −0.564380 + 0.977535i
\(93\) 0 0
\(94\) 7.63218 + 13.2193i 0.787199 + 1.36347i
\(95\) 1.90320 + 3.29644i 0.195264 + 0.338208i
\(96\) 0 0
\(97\) 2.55489 4.42519i 0.259409 0.449310i −0.706674 0.707539i \(-0.749805\pi\)
0.966084 + 0.258229i \(0.0831388\pi\)
\(98\) 35.0834 3.54396
\(99\) 0 0
\(100\) −1.78921 −0.178921
\(101\) 9.28994 16.0906i 0.924384 1.60108i 0.131834 0.991272i \(-0.457913\pi\)
0.792550 0.609808i \(-0.208753\pi\)
\(102\) 0 0
\(103\) −4.50288 7.79923i −0.443682 0.768481i 0.554277 0.832332i \(-0.312995\pi\)
−0.997959 + 0.0638518i \(0.979662\pi\)
\(104\) 0.666363 + 1.15417i 0.0653422 + 0.113176i
\(105\) 0 0
\(106\) −6.72362 + 11.6457i −0.653056 + 1.13113i
\(107\) −7.42680 −0.717976 −0.358988 0.933342i \(-0.616878\pi\)
−0.358988 + 0.933342i \(0.616878\pi\)
\(108\) 0 0
\(109\) −5.62396 −0.538678 −0.269339 0.963045i \(-0.586805\pi\)
−0.269339 + 0.963045i \(0.586805\pi\)
\(110\) 9.13055 15.8146i 0.870564 1.50786i
\(111\) 0 0
\(112\) 6.55179 + 11.3480i 0.619086 + 1.07229i
\(113\) −1.20133 2.08077i −0.113012 0.195743i 0.803971 0.594668i \(-0.202717\pi\)
−0.916983 + 0.398926i \(0.869383\pi\)
\(114\) 0 0
\(115\) −4.45622 + 7.71839i −0.415544 + 0.719744i
\(116\) −7.50150 −0.696497
\(117\) 0 0
\(118\) −0.557303 −0.0513039
\(119\) 5.73025 9.92509i 0.525292 0.909832i
\(120\) 0 0
\(121\) −3.10913 5.38517i −0.282648 0.489561i
\(122\) 4.73415 + 8.19978i 0.428609 + 0.742373i
\(123\) 0 0
\(124\) −1.85359 + 3.21050i −0.166457 + 0.288312i
\(125\) −11.8276 −1.05789
\(126\) 0 0
\(127\) −9.23469 −0.819447 −0.409723 0.912210i \(-0.634375\pi\)
−0.409723 + 0.912210i \(0.634375\pi\)
\(128\) 4.23815 7.34069i 0.374603 0.648831i
\(129\) 0 0
\(130\) 2.67572 + 4.63449i 0.234677 + 0.406472i
\(131\) −7.66950 13.2840i −0.670088 1.16063i −0.977879 0.209172i \(-0.932923\pi\)
0.307791 0.951454i \(-0.400410\pi\)
\(132\) 0 0
\(133\) 4.45595 7.71792i 0.386380 0.669229i
\(134\) 8.77871 0.758365
\(135\) 0 0
\(136\) −2.59049 −0.222133
\(137\) −1.82198 + 3.15577i −0.155663 + 0.269616i −0.933300 0.359097i \(-0.883085\pi\)
0.777637 + 0.628713i \(0.216418\pi\)
\(138\) 0 0
\(139\) −6.63777 11.4970i −0.563008 0.975159i −0.997232 0.0743538i \(-0.976311\pi\)
0.434224 0.900805i \(-0.357023\pi\)
\(140\) −12.6307 21.8770i −1.06749 1.84895i
\(141\) 0 0
\(142\) 3.27840 5.67835i 0.275117 0.476517i
\(143\) 5.04584 0.421954
\(144\) 0 0
\(145\) −6.17517 −0.512820
\(146\) −13.5577 + 23.4827i −1.12205 + 1.94344i
\(147\) 0 0
\(148\) −11.2845 19.5453i −0.927579 1.60661i
\(149\) 4.45549 + 7.71714i 0.365008 + 0.632213i 0.988777 0.149396i \(-0.0477329\pi\)
−0.623769 + 0.781608i \(0.714400\pi\)
\(150\) 0 0
\(151\) 0.356202 0.616960i 0.0289873 0.0502075i −0.851168 0.524894i \(-0.824105\pi\)
0.880155 + 0.474686i \(0.157438\pi\)
\(152\) −2.01441 −0.163391
\(153\) 0 0
\(154\) −42.7545 −3.44526
\(155\) −1.52585 + 2.64286i −0.122560 + 0.212279i
\(156\) 0 0
\(157\) 6.90903 + 11.9668i 0.551400 + 0.955054i 0.998174 + 0.0604064i \(0.0192397\pi\)
−0.446773 + 0.894647i \(0.647427\pi\)
\(158\) −4.83700 8.37793i −0.384811 0.666512i
\(159\) 0 0
\(160\) 8.21632 14.2311i 0.649557 1.12507i
\(161\) 20.8666 1.64452
\(162\) 0 0
\(163\) −1.19321 −0.0934597 −0.0467298 0.998908i \(-0.514880\pi\)
−0.0467298 + 0.998908i \(0.514880\pi\)
\(164\) 2.84345 4.92501i 0.222036 0.384578i
\(165\) 0 0
\(166\) −8.98150 15.5564i −0.697099 1.20741i
\(167\) −11.9682 20.7295i −0.926124 1.60409i −0.789743 0.613437i \(-0.789786\pi\)
−0.136381 0.990657i \(-0.543547\pi\)
\(168\) 0 0
\(169\) 5.76065 9.97774i 0.443127 0.767519i
\(170\) −10.4019 −0.797791
\(171\) 0 0
\(172\) −13.7985 −1.05213
\(173\) −4.57000 + 7.91547i −0.347451 + 0.601802i −0.985796 0.167948i \(-0.946286\pi\)
0.638345 + 0.769750i \(0.279619\pi\)
\(174\) 0 0
\(175\) 1.72420 + 2.98641i 0.130337 + 0.225751i
\(176\) −5.60702 9.71164i −0.422645 0.732043i
\(177\) 0 0
\(178\) 18.0236 31.2178i 1.35093 2.33987i
\(179\) −10.6008 −0.792337 −0.396169 0.918178i \(-0.629660\pi\)
−0.396169 + 0.918178i \(0.629660\pi\)
\(180\) 0 0
\(181\) −1.46292 −0.108738 −0.0543690 0.998521i \(-0.517315\pi\)
−0.0543690 + 0.998521i \(0.517315\pi\)
\(182\) 6.26465 10.8507i 0.464367 0.804307i
\(183\) 0 0
\(184\) −2.35831 4.08471i −0.173857 0.301129i
\(185\) −9.28929 16.0895i −0.682962 1.18292i
\(186\) 0 0
\(187\) −4.90395 + 8.49388i −0.358612 + 0.621134i
\(188\) −18.0709 −1.31796
\(189\) 0 0
\(190\) −8.08871 −0.586817
\(191\) 6.21114 10.7580i 0.449422 0.778422i −0.548926 0.835871i \(-0.684963\pi\)
0.998348 + 0.0574488i \(0.0182966\pi\)
\(192\) 0 0
\(193\) −10.3867 17.9902i −0.747647 1.29496i −0.948948 0.315434i \(-0.897850\pi\)
0.201300 0.979530i \(-0.435483\pi\)
\(194\) 5.42921 + 9.40366i 0.389794 + 0.675143i
\(195\) 0 0
\(196\) −20.7670 + 35.9695i −1.48336 + 2.56925i
\(197\) 14.1887 1.01090 0.505450 0.862856i \(-0.331326\pi\)
0.505450 + 0.862856i \(0.331326\pi\)
\(198\) 0 0
\(199\) 20.3286 1.44106 0.720529 0.693424i \(-0.243899\pi\)
0.720529 + 0.693424i \(0.243899\pi\)
\(200\) 0.389733 0.675037i 0.0275583 0.0477323i
\(201\) 0 0
\(202\) 19.7414 + 34.1931i 1.38900 + 2.40582i
\(203\) 7.22893 + 12.5209i 0.507372 + 0.878794i
\(204\) 0 0
\(205\) 2.34071 4.05422i 0.163482 0.283159i
\(206\) 19.1375 1.33337
\(207\) 0 0
\(208\) 3.28629 0.227864
\(209\) −3.81339 + 6.60499i −0.263778 + 0.456877i
\(210\) 0 0
\(211\) 4.93166 + 8.54189i 0.339509 + 0.588048i 0.984341 0.176278i \(-0.0564056\pi\)
−0.644831 + 0.764325i \(0.723072\pi\)
\(212\) −7.95986 13.7869i −0.546685 0.946887i
\(213\) 0 0
\(214\) 7.89109 13.6678i 0.539424 0.934309i
\(215\) −11.3588 −0.774665
\(216\) 0 0
\(217\) 7.14494 0.485030
\(218\) 5.97554 10.3499i 0.404715 0.700986i
\(219\) 0 0
\(220\) 10.8093 + 18.7223i 0.728766 + 1.26226i
\(221\) −1.43711 2.48915i −0.0966705 0.167438i
\(222\) 0 0
\(223\) −7.53569 + 13.0522i −0.504627 + 0.874040i 0.495358 + 0.868689i \(0.335037\pi\)
−0.999986 + 0.00535136i \(0.998297\pi\)
\(224\) −38.4736 −2.57062
\(225\) 0 0
\(226\) 5.10574 0.339629
\(227\) −11.3463 + 19.6523i −0.753079 + 1.30437i 0.193245 + 0.981151i \(0.438099\pi\)
−0.946324 + 0.323221i \(0.895234\pi\)
\(228\) 0 0
\(229\) −4.35835 7.54888i −0.288008 0.498844i 0.685326 0.728236i \(-0.259660\pi\)
−0.973334 + 0.229392i \(0.926326\pi\)
\(230\) −9.46959 16.4018i −0.624406 1.08150i
\(231\) 0 0
\(232\) 1.63400 2.83018i 0.107278 0.185810i
\(233\) 23.5890 1.54536 0.772682 0.634793i \(-0.218915\pi\)
0.772682 + 0.634793i \(0.218915\pi\)
\(234\) 0 0
\(235\) −14.8758 −0.970393
\(236\) 0.329886 0.571379i 0.0214737 0.0371936i
\(237\) 0 0
\(238\) 12.1770 + 21.0911i 0.789315 + 1.36713i
\(239\) 4.97726 + 8.62086i 0.321952 + 0.557637i 0.980891 0.194559i \(-0.0623277\pi\)
−0.658939 + 0.752197i \(0.728994\pi\)
\(240\) 0 0
\(241\) −2.85672 + 4.94799i −0.184018 + 0.318728i −0.943245 0.332097i \(-0.892244\pi\)
0.759227 + 0.650826i \(0.225577\pi\)
\(242\) 13.2140 0.849427
\(243\) 0 0
\(244\) −11.2092 −0.717594
\(245\) −17.0952 + 29.6098i −1.09217 + 1.89170i
\(246\) 0 0
\(247\) −1.11752 1.93560i −0.0711062 0.123160i
\(248\) −0.807509 1.39865i −0.0512769 0.0888141i
\(249\) 0 0
\(250\) 12.5670 21.7666i 0.794804 1.37664i
\(251\) 7.28966 0.460120 0.230060 0.973176i \(-0.426108\pi\)
0.230060 + 0.973176i \(0.426108\pi\)
\(252\) 0 0
\(253\) −17.8576 −1.12270
\(254\) 9.81199 16.9949i 0.615659 1.06635i
\(255\) 0 0
\(256\) −2.45062 4.24459i −0.153163 0.265287i
\(257\) −11.6215 20.1291i −0.724932 1.25562i −0.959002 0.283399i \(-0.908538\pi\)
0.234071 0.972220i \(-0.424795\pi\)
\(258\) 0 0
\(259\) −21.7489 + 37.6702i −1.35141 + 2.34071i
\(260\) −6.33539 −0.392904
\(261\) 0 0
\(262\) 32.5958 2.01378
\(263\) −13.6998 + 23.7288i −0.844766 + 1.46318i 0.0410581 + 0.999157i \(0.486927\pi\)
−0.885824 + 0.464021i \(0.846406\pi\)
\(264\) 0 0
\(265\) −6.55249 11.3492i −0.402516 0.697178i
\(266\) 9.46901 + 16.4008i 0.580582 + 1.00560i
\(267\) 0 0
\(268\) −5.19641 + 9.00044i −0.317421 + 0.549789i
\(269\) −9.41973 −0.574331 −0.287166 0.957881i \(-0.592713\pi\)
−0.287166 + 0.957881i \(0.592713\pi\)
\(270\) 0 0
\(271\) 26.2797 1.59638 0.798189 0.602408i \(-0.205792\pi\)
0.798189 + 0.602408i \(0.205792\pi\)
\(272\) −3.19388 + 5.53196i −0.193657 + 0.335424i
\(273\) 0 0
\(274\) −3.87177 6.70610i −0.233902 0.405131i
\(275\) −1.47557 2.55576i −0.0889803 0.154118i
\(276\) 0 0
\(277\) −0.187406 + 0.324597i −0.0112601 + 0.0195031i −0.871601 0.490217i \(-0.836918\pi\)
0.860340 + 0.509720i \(0.170251\pi\)
\(278\) 28.2109 1.69198
\(279\) 0 0
\(280\) 11.0051 0.657678
\(281\) 6.99079 12.1084i 0.417036 0.722327i −0.578604 0.815609i \(-0.696402\pi\)
0.995640 + 0.0932815i \(0.0297357\pi\)
\(282\) 0 0
\(283\) −7.78094 13.4770i −0.462529 0.801124i 0.536557 0.843864i \(-0.319725\pi\)
−0.999086 + 0.0427401i \(0.986391\pi\)
\(284\) 3.88118 + 6.72240i 0.230306 + 0.398901i
\(285\) 0 0
\(286\) −5.36128 + 9.28601i −0.317019 + 0.549093i
\(287\) −10.9605 −0.646980
\(288\) 0 0
\(289\) −11.4132 −0.671366
\(290\) 6.56121 11.3643i 0.385287 0.667337i
\(291\) 0 0
\(292\) −16.0505 27.8004i −0.939287 1.62689i
\(293\) 12.3121 + 21.3252i 0.719281 + 1.24583i 0.961285 + 0.275556i \(0.0888621\pi\)
−0.242004 + 0.970275i \(0.577805\pi\)
\(294\) 0 0
\(295\) 0.271559 0.470354i 0.0158108 0.0273851i
\(296\) 9.83210 0.571479
\(297\) 0 0
\(298\) −18.9361 −1.09694
\(299\) 2.61660 4.53209i 0.151322 0.262097i
\(300\) 0 0
\(301\) 13.2971 + 23.0313i 0.766434 + 1.32750i
\(302\) 0.756939 + 1.31106i 0.0435570 + 0.0754429i
\(303\) 0 0
\(304\) −2.48362 + 4.30175i −0.142445 + 0.246722i
\(305\) −9.22729 −0.528353
\(306\) 0 0
\(307\) −20.3912 −1.16379 −0.581893 0.813265i \(-0.697688\pi\)
−0.581893 + 0.813265i \(0.697688\pi\)
\(308\) 25.3078 43.8344i 1.44205 2.49770i
\(309\) 0 0
\(310\) −3.24249 5.61615i −0.184161 0.318976i
\(311\) 11.0895 + 19.2076i 0.628828 + 1.08916i 0.987787 + 0.155809i \(0.0497986\pi\)
−0.358959 + 0.933353i \(0.616868\pi\)
\(312\) 0 0
\(313\) 5.58602 9.67527i 0.315740 0.546879i −0.663854 0.747862i \(-0.731080\pi\)
0.979595 + 0.200984i \(0.0644138\pi\)
\(314\) −29.3638 −1.65709
\(315\) 0 0
\(316\) 11.4527 0.644265
\(317\) 12.6083 21.8383i 0.708154 1.22656i −0.257387 0.966309i \(-0.582861\pi\)
0.965541 0.260251i \(-0.0838053\pi\)
\(318\) 0 0
\(319\) −6.18651 10.7154i −0.346378 0.599945i
\(320\) 11.8632 + 20.5476i 0.663172 + 1.14865i
\(321\) 0 0
\(322\) −22.1711 + 38.4014i −1.23554 + 2.14003i
\(323\) 4.34438 0.241728
\(324\) 0 0
\(325\) 0.864837 0.0479725
\(326\) 1.26781 2.19591i 0.0702173 0.121620i
\(327\) 0 0
\(328\) 1.23874 + 2.14556i 0.0683981 + 0.118469i
\(329\) 17.4143 + 30.1625i 0.960083 + 1.66291i
\(330\) 0 0
\(331\) 13.0828 22.6602i 0.719098 1.24551i −0.242259 0.970212i \(-0.577888\pi\)
0.961357 0.275303i \(-0.0887782\pi\)
\(332\) 21.2658 1.16711
\(333\) 0 0
\(334\) 50.8654 2.78323
\(335\) −4.27763 + 7.40908i −0.233712 + 0.404801i
\(336\) 0 0
\(337\) −5.47302 9.47956i −0.298135 0.516384i 0.677575 0.735454i \(-0.263031\pi\)
−0.975709 + 0.219070i \(0.929698\pi\)
\(338\) 12.2416 + 21.2030i 0.665853 + 1.15329i
\(339\) 0 0
\(340\) 6.15723 10.6646i 0.333923 0.578371i
\(341\) −6.11463 −0.331126
\(342\) 0 0
\(343\) 46.1091 2.48966
\(344\) 3.00564 5.20592i 0.162053 0.280684i
\(345\) 0 0
\(346\) −9.71138 16.8206i −0.522087 0.904282i
\(347\) 1.75669 + 3.04268i 0.0943040 + 0.163339i 0.909318 0.416102i \(-0.136604\pi\)
−0.815014 + 0.579441i \(0.803271\pi\)
\(348\) 0 0
\(349\) 14.5984 25.2852i 0.781436 1.35349i −0.149670 0.988736i \(-0.547821\pi\)
0.931105 0.364750i \(-0.118846\pi\)
\(350\) −7.32796 −0.391696
\(351\) 0 0
\(352\) 32.9256 1.75494
\(353\) −12.5384 + 21.7172i −0.667352 + 1.15589i 0.311290 + 0.950315i \(0.399239\pi\)
−0.978642 + 0.205573i \(0.934094\pi\)
\(354\) 0 0
\(355\) 3.19495 + 5.53382i 0.169571 + 0.293705i
\(356\) 21.3375 + 36.9577i 1.13089 + 1.95875i
\(357\) 0 0
\(358\) 11.2635 19.5089i 0.595292 1.03108i
\(359\) −4.20724 −0.222050 −0.111025 0.993818i \(-0.535413\pi\)
−0.111025 + 0.993818i \(0.535413\pi\)
\(360\) 0 0
\(361\) −15.6217 −0.822196
\(362\) 1.55437 2.69225i 0.0816961 0.141502i
\(363\) 0 0
\(364\) 7.41650 + 12.8458i 0.388730 + 0.673300i
\(365\) −13.2127 22.8850i −0.691582 1.19786i
\(366\) 0 0
\(367\) −8.74832 + 15.1525i −0.456658 + 0.790956i −0.998782 0.0493433i \(-0.984287\pi\)
0.542123 + 0.840299i \(0.317620\pi\)
\(368\) −11.6304 −0.606279
\(369\) 0 0
\(370\) 39.4800 2.05247
\(371\) −15.3413 + 26.5719i −0.796479 + 1.37954i
\(372\) 0 0
\(373\) 14.8273 + 25.6816i 0.767728 + 1.32974i 0.938792 + 0.344483i \(0.111946\pi\)
−0.171065 + 0.985260i \(0.554721\pi\)
\(374\) −10.4210 18.0497i −0.538858 0.933330i
\(375\) 0 0
\(376\) 3.93627 6.81783i 0.202998 0.351603i
\(377\) 3.62594 0.186745
\(378\) 0 0
\(379\) 20.9523 1.07625 0.538124 0.842865i \(-0.319133\pi\)
0.538124 + 0.842865i \(0.319133\pi\)
\(380\) 4.78797 8.29301i 0.245618 0.425422i
\(381\) 0 0
\(382\) 13.1988 + 22.8611i 0.675312 + 1.16967i
\(383\) 4.94839 + 8.57086i 0.252851 + 0.437950i 0.964310 0.264777i \(-0.0852985\pi\)
−0.711459 + 0.702728i \(0.751965\pi\)
\(384\) 0 0
\(385\) 20.8332 36.0841i 1.06176 1.83902i
\(386\) 44.1439 2.24686
\(387\) 0 0
\(388\) −12.8549 −0.652608
\(389\) −10.5574 + 18.2859i −0.535281 + 0.927133i 0.463869 + 0.885904i \(0.346461\pi\)
−0.999150 + 0.0412294i \(0.986873\pi\)
\(390\) 0 0
\(391\) 5.08604 + 8.80928i 0.257212 + 0.445504i
\(392\) −9.04709 15.6700i −0.456947 0.791455i
\(393\) 0 0
\(394\) −15.0757 + 26.1118i −0.759501 + 1.31549i
\(395\) 9.42776 0.474362
\(396\) 0 0
\(397\) −9.77909 −0.490799 −0.245399 0.969422i \(-0.578919\pi\)
−0.245399 + 0.969422i \(0.578919\pi\)
\(398\) −21.5995 + 37.4114i −1.08268 + 1.87526i
\(399\) 0 0
\(400\) −0.961021 1.66454i −0.0480510 0.0832268i
\(401\) −9.56967 16.5752i −0.477886 0.827724i 0.521792 0.853073i \(-0.325264\pi\)
−0.999679 + 0.0253491i \(0.991930\pi\)
\(402\) 0 0
\(403\) 0.895952 1.55183i 0.0446305 0.0773024i
\(404\) −46.7423 −2.32552
\(405\) 0 0
\(406\) −30.7234 −1.52478
\(407\) 18.6127 32.2381i 0.922597 1.59799i
\(408\) 0 0
\(409\) −7.49778 12.9865i −0.370741 0.642143i 0.618938 0.785439i \(-0.287563\pi\)
−0.989680 + 0.143297i \(0.954230\pi\)
\(410\) 4.97407 + 8.61534i 0.245652 + 0.425481i
\(411\) 0 0
\(412\) −11.3281 + 19.6209i −0.558096 + 0.966651i
\(413\) −1.27160 −0.0625712
\(414\) 0 0
\(415\) 17.5058 0.859325
\(416\) −4.82446 + 8.35621i −0.236539 + 0.409697i
\(417\) 0 0
\(418\) −8.10357 14.0358i −0.396359 0.686513i
\(419\) 2.90590 + 5.03317i 0.141963 + 0.245886i 0.928236 0.371993i \(-0.121325\pi\)
−0.786273 + 0.617879i \(0.787992\pi\)
\(420\) 0 0
\(421\) 6.65676 11.5298i 0.324431 0.561930i −0.656966 0.753920i \(-0.728161\pi\)
0.981397 + 0.191990i \(0.0614940\pi\)
\(422\) −20.9598 −1.02031
\(423\) 0 0
\(424\) 6.93538 0.336812
\(425\) −0.840517 + 1.45582i −0.0407711 + 0.0706175i
\(426\) 0 0
\(427\) 10.8019 + 18.7094i 0.522740 + 0.905412i
\(428\) 9.34198 + 16.1808i 0.451562 + 0.782128i
\(429\) 0 0
\(430\) 12.0689 20.9040i 0.582014 1.00808i
\(431\) 36.4166 1.75413 0.877064 0.480374i \(-0.159499\pi\)
0.877064 + 0.480374i \(0.159499\pi\)
\(432\) 0 0
\(433\) −10.8761 −0.522674 −0.261337 0.965248i \(-0.584163\pi\)
−0.261337 + 0.965248i \(0.584163\pi\)
\(434\) −7.59160 + 13.1490i −0.364408 + 0.631174i
\(435\) 0 0
\(436\) 7.07423 + 12.2529i 0.338794 + 0.586809i
\(437\) 3.95499 + 6.85025i 0.189193 + 0.327692i
\(438\) 0 0
\(439\) −4.72663 + 8.18677i −0.225590 + 0.390733i −0.956496 0.291745i \(-0.905764\pi\)
0.730906 + 0.682478i \(0.239098\pi\)
\(440\) −9.41811 −0.448991
\(441\) 0 0
\(442\) 6.10780 0.290518
\(443\) 8.26196 14.3101i 0.392537 0.679895i −0.600246 0.799815i \(-0.704931\pi\)
0.992783 + 0.119921i \(0.0382640\pi\)
\(444\) 0 0
\(445\) 17.5649 + 30.4232i 0.832654 + 1.44220i
\(446\) −16.0136 27.7363i −0.758264 1.31335i
\(447\) 0 0
\(448\) 27.7751 48.1080i 1.31225 2.27289i
\(449\) 4.74362 0.223865 0.111933 0.993716i \(-0.464296\pi\)
0.111933 + 0.993716i \(0.464296\pi\)
\(450\) 0 0
\(451\) 9.38002 0.441688
\(452\) −3.02225 + 5.23470i −0.142155 + 0.246219i
\(453\) 0 0
\(454\) −24.1112 41.7618i −1.13159 1.95998i
\(455\) 6.10519 + 10.5745i 0.286216 + 0.495741i
\(456\) 0 0
\(457\) 11.2043 19.4064i 0.524114 0.907792i −0.475492 0.879720i \(-0.657730\pi\)
0.999606 0.0280718i \(-0.00893670\pi\)
\(458\) 18.5232 0.865534
\(459\) 0 0
\(460\) 22.4214 1.04540
\(461\) −7.46113 + 12.9231i −0.347499 + 0.601887i −0.985805 0.167897i \(-0.946302\pi\)
0.638305 + 0.769783i \(0.279636\pi\)
\(462\) 0 0
\(463\) 7.42359 + 12.8580i 0.345003 + 0.597563i 0.985354 0.170519i \(-0.0545444\pi\)
−0.640351 + 0.768082i \(0.721211\pi\)
\(464\) −4.02920 6.97878i −0.187051 0.323982i
\(465\) 0 0
\(466\) −25.0636 + 43.4114i −1.16105 + 2.01100i
\(467\) 15.3514 0.710379 0.355190 0.934794i \(-0.384416\pi\)
0.355190 + 0.934794i \(0.384416\pi\)
\(468\) 0 0
\(469\) 20.0304 0.924917
\(470\) 15.8058 27.3764i 0.729067 1.26278i
\(471\) 0 0
\(472\) 0.143714 + 0.248920i 0.00661496 + 0.0114574i
\(473\) −11.3797 19.7102i −0.523238 0.906275i
\(474\) 0 0
\(475\) −0.653601 + 1.13207i −0.0299893 + 0.0519429i
\(476\) −28.8317 −1.32150
\(477\) 0 0
\(478\) −21.1536 −0.967545
\(479\) 5.22430 9.04876i 0.238705 0.413448i −0.721638 0.692270i \(-0.756611\pi\)
0.960343 + 0.278822i \(0.0899439\pi\)
\(480\) 0 0
\(481\) 5.45449 + 9.44745i 0.248703 + 0.430766i
\(482\) −6.07062 10.5146i −0.276509 0.478928i
\(483\) 0 0
\(484\) −7.82178 + 13.5477i −0.355536 + 0.615806i
\(485\) −10.5820 −0.480505
\(486\) 0 0
\(487\) −16.1649 −0.732500 −0.366250 0.930516i \(-0.619359\pi\)
−0.366250 + 0.930516i \(0.619359\pi\)
\(488\) 2.44162 4.22901i 0.110527 0.191438i
\(489\) 0 0
\(490\) −36.3278 62.9217i −1.64112 2.84251i
\(491\) −5.38867 9.33345i −0.243187 0.421213i 0.718433 0.695596i \(-0.244860\pi\)
−0.961620 + 0.274383i \(0.911526\pi\)
\(492\) 0 0
\(493\) −3.52397 + 6.10370i −0.158712 + 0.274897i
\(494\) 4.74953 0.213692
\(495\) 0 0
\(496\) −3.98238 −0.178814
\(497\) 7.48032 12.9563i 0.335538 0.581169i
\(498\) 0 0
\(499\) 9.59359 + 16.6166i 0.429468 + 0.743861i 0.996826 0.0796106i \(-0.0253677\pi\)
−0.567358 + 0.823471i \(0.692034\pi\)
\(500\) 14.8776 + 25.7687i 0.665346 + 1.15241i
\(501\) 0 0
\(502\) −7.74537 + 13.4154i −0.345693 + 0.598758i
\(503\) 12.0251 0.536171 0.268086 0.963395i \(-0.413609\pi\)
0.268086 + 0.963395i \(0.413609\pi\)
\(504\) 0 0
\(505\) −38.4778 −1.71224
\(506\) 18.9740 32.8639i 0.843496 1.46098i
\(507\) 0 0
\(508\) 11.6161 + 20.1196i 0.515380 + 0.892664i
\(509\) −7.47651 12.9497i −0.331391 0.573985i 0.651394 0.758739i \(-0.274184\pi\)
−0.982785 + 0.184754i \(0.940851\pi\)
\(510\) 0 0
\(511\) −30.9347 + 53.5804i −1.36847 + 2.37026i
\(512\) 27.3678 1.20950
\(513\) 0 0
\(514\) 49.3922 2.17860
\(515\) −9.32521 + 16.1517i −0.410918 + 0.711730i
\(516\) 0 0
\(517\) −14.9032 25.8130i −0.655440 1.13526i
\(518\) −46.2171 80.0503i −2.03066 3.51721i
\(519\) 0 0
\(520\) 1.38000 2.39023i 0.0605169 0.104818i
\(521\) −37.4188 −1.63935 −0.819673 0.572832i \(-0.805845\pi\)
−0.819673 + 0.572832i \(0.805845\pi\)
\(522\) 0 0
\(523\) −8.44979 −0.369483 −0.184742 0.982787i \(-0.559145\pi\)
−0.184742 + 0.982787i \(0.559145\pi\)
\(524\) −19.2945 + 33.4191i −0.842885 + 1.45992i
\(525\) 0 0
\(526\) −29.1125 50.4243i −1.26936 2.19860i
\(527\) 1.74151 + 3.01639i 0.0758615 + 0.131396i
\(528\) 0 0
\(529\) 2.23965 3.87918i 0.0973760 0.168660i
\(530\) 27.8484 1.20966
\(531\) 0 0
\(532\) −22.4201 −0.972033
\(533\) −1.37442 + 2.38056i −0.0595326 + 0.103113i
\(534\) 0 0
\(535\) 7.69023 + 13.3199i 0.332478 + 0.575868i
\(536\) −2.26380 3.92101i −0.0977812 0.169362i
\(537\) 0 0
\(538\) 10.0086 17.3354i 0.431501 0.747382i
\(539\) −68.5065 −2.95078
\(540\) 0 0
\(541\) 12.6259 0.542828 0.271414 0.962463i \(-0.412509\pi\)
0.271414 + 0.962463i \(0.412509\pi\)
\(542\) −27.9225 + 48.3633i −1.19938 + 2.07738i
\(543\) 0 0
\(544\) −9.37758 16.2424i −0.402060 0.696389i
\(545\) 5.82345 + 10.0865i 0.249449 + 0.432058i
\(546\) 0 0
\(547\) −15.6975 + 27.1889i −0.671178 + 1.16251i 0.306393 + 0.951905i \(0.400878\pi\)
−0.977570 + 0.210609i \(0.932455\pi\)
\(548\) 9.16731 0.391608
\(549\) 0 0
\(550\) 6.27126 0.267407
\(551\) −2.74030 + 4.74634i −0.116741 + 0.202201i
\(552\) 0 0
\(553\) −11.0366 19.1159i −0.469322 0.812890i
\(554\) −0.398243 0.689777i −0.0169197 0.0293058i
\(555\) 0 0
\(556\) −16.6989 + 28.9234i −0.708193 + 1.22663i
\(557\) 15.9303 0.674988 0.337494 0.941328i \(-0.390421\pi\)
0.337494 + 0.941328i \(0.390421\pi\)
\(558\) 0 0
\(559\) 6.66967 0.282097
\(560\) 13.5684 23.5011i 0.573369 0.993103i
\(561\) 0 0
\(562\) 14.8556 + 25.7307i 0.626647 + 1.08538i
\(563\) −12.4304 21.5301i −0.523880 0.907387i −0.999614 0.0277973i \(-0.991151\pi\)
0.475734 0.879589i \(-0.342183\pi\)
\(564\) 0 0
\(565\) −2.48789 + 4.30915i −0.104666 + 0.181287i
\(566\) 33.0695 1.39001
\(567\) 0 0
\(568\) −3.38165 −0.141891
\(569\) 9.59500 16.6190i 0.402243 0.696706i −0.591753 0.806119i \(-0.701564\pi\)
0.993996 + 0.109413i \(0.0348972\pi\)
\(570\) 0 0
\(571\) 10.1896 + 17.6489i 0.426422 + 0.738585i 0.996552 0.0829696i \(-0.0264404\pi\)
−0.570130 + 0.821555i \(0.693107\pi\)
\(572\) −6.34703 10.9934i −0.265383 0.459656i
\(573\) 0 0
\(574\) 11.6457 20.1710i 0.486084 0.841921i
\(575\) −3.06072 −0.127641
\(576\) 0 0
\(577\) 23.2991 0.969953 0.484976 0.874527i \(-0.338828\pi\)
0.484976 + 0.874527i \(0.338828\pi\)
\(578\) 12.1267 21.0041i 0.504404 0.873654i
\(579\) 0 0
\(580\) 7.76758 + 13.4539i 0.322531 + 0.558641i
\(581\) −20.4931 35.4950i −0.850195 1.47258i
\(582\) 0 0
\(583\) 13.1290 22.7402i 0.543749 0.941802i
\(584\) 13.9847 0.578693
\(585\) 0 0
\(586\) −52.3272 −2.16162
\(587\) −18.4546 + 31.9644i −0.761704 + 1.31931i 0.180267 + 0.983618i \(0.442304\pi\)
−0.941971 + 0.335693i \(0.891030\pi\)
\(588\) 0 0
\(589\) 1.35423 + 2.34560i 0.0558001 + 0.0966486i
\(590\) 0.577071 + 0.999516i 0.0237576 + 0.0411494i
\(591\) 0 0
\(592\) 12.1222 20.9963i 0.498220 0.862943i
\(593\) −4.36830 −0.179385 −0.0896923 0.995970i \(-0.528588\pi\)
−0.0896923 + 0.995970i \(0.528588\pi\)
\(594\) 0 0
\(595\) −23.7340 −0.973000
\(596\) 11.2089 19.4144i 0.459134 0.795244i
\(597\) 0 0
\(598\) 5.56036 + 9.63082i 0.227380 + 0.393833i
\(599\) −15.6028 27.0249i −0.637513 1.10421i −0.985977 0.166883i \(-0.946630\pi\)
0.348463 0.937322i \(-0.386704\pi\)
\(600\) 0 0
\(601\) −21.9686 + 38.0507i −0.896116 + 1.55212i −0.0636987 + 0.997969i \(0.520290\pi\)
−0.832417 + 0.554149i \(0.813044\pi\)
\(602\) −56.5136 −2.30332
\(603\) 0 0
\(604\) −1.79223 −0.0729247
\(605\) −6.43882 + 11.1524i −0.261775 + 0.453408i
\(606\) 0 0
\(607\) −8.67933 15.0330i −0.352283 0.610172i 0.634366 0.773033i \(-0.281261\pi\)
−0.986649 + 0.162861i \(0.947928\pi\)
\(608\) −7.29217 12.6304i −0.295736 0.512231i
\(609\) 0 0
\(610\) 9.80413 16.9813i 0.396958 0.687551i
\(611\) 8.73480 0.353372
\(612\) 0 0
\(613\) −1.19805 −0.0483887 −0.0241944 0.999707i \(-0.507702\pi\)
−0.0241944 + 0.999707i \(0.507702\pi\)
\(614\) 21.6659 37.5265i 0.874365 1.51444i
\(615\) 0 0
\(616\) 11.0253 + 19.0963i 0.444221 + 0.769413i
\(617\) 13.0069 + 22.5285i 0.523636 + 0.906965i 0.999621 + 0.0275115i \(0.00875828\pi\)
−0.475985 + 0.879453i \(0.657908\pi\)
\(618\) 0 0
\(619\) −4.81567 + 8.34099i −0.193558 + 0.335253i −0.946427 0.322918i \(-0.895336\pi\)
0.752869 + 0.658171i \(0.228670\pi\)
\(620\) 7.67733 0.308329
\(621\) 0 0
\(622\) −47.1311 −1.88978
\(623\) 41.1244 71.2296i 1.64762 2.85375i
\(624\) 0 0
\(625\) 10.4691 + 18.1330i 0.418763 + 0.725319i
\(626\) 11.8705 + 20.5602i 0.474439 + 0.821752i
\(627\) 0 0
\(628\) 17.3814 30.1054i 0.693592 1.20134i
\(629\) −21.2044 −0.845474
\(630\) 0 0
\(631\) −14.1673 −0.563992 −0.281996 0.959416i \(-0.590997\pi\)
−0.281996 + 0.959416i \(0.590997\pi\)
\(632\) −2.49467 + 4.32089i −0.0992325 + 0.171876i
\(633\) 0 0
\(634\) 26.7931 + 46.4069i 1.06409 + 1.84306i
\(635\) 9.56225 + 16.5623i 0.379466 + 0.657255i
\(636\) 0 0
\(637\) 10.0380 17.3863i 0.397719 0.688870i
\(638\) 26.2930 1.04095
\(639\) 0 0
\(640\) −17.5539 −0.693879
\(641\) 11.1005 19.2266i 0.438442 0.759403i −0.559128 0.829081i \(-0.688864\pi\)
0.997570 + 0.0696782i \(0.0221973\pi\)
\(642\) 0 0
\(643\) −10.7684 18.6514i −0.424664 0.735540i 0.571725 0.820445i \(-0.306274\pi\)
−0.996389 + 0.0849056i \(0.972941\pi\)
\(644\) −26.2475 45.4621i −1.03430 1.79146i
\(645\) 0 0
\(646\) −4.61597 + 7.99509i −0.181613 + 0.314563i
\(647\) −13.4037 −0.526952 −0.263476 0.964666i \(-0.584869\pi\)
−0.263476 + 0.964666i \(0.584869\pi\)
\(648\) 0 0
\(649\) 1.08823 0.0427168
\(650\) −0.918902 + 1.59159i −0.0360423 + 0.0624271i
\(651\) 0 0
\(652\) 1.50091 + 2.59966i 0.0587802 + 0.101810i
\(653\) −9.45543 16.3773i −0.370020 0.640893i 0.619548 0.784958i \(-0.287316\pi\)
−0.989568 + 0.144066i \(0.953982\pi\)
\(654\) 0 0
\(655\) −15.8831 + 27.5103i −0.620603 + 1.07492i
\(656\) 6.10909 0.238520
\(657\) 0 0
\(658\) −74.0119 −2.88528
\(659\) −0.0140907 + 0.0244058i −0.000548897 + 0.000950717i −0.866300 0.499525i \(-0.833508\pi\)
0.865751 + 0.500475i \(0.166841\pi\)
\(660\) 0 0
\(661\) 22.5209 + 39.0073i 0.875960 + 1.51721i 0.855736 + 0.517412i \(0.173105\pi\)
0.0202238 + 0.999795i \(0.493562\pi\)
\(662\) 27.8014 + 48.1535i 1.08053 + 1.87154i
\(663\) 0 0
\(664\) −4.63218 + 8.02317i −0.179763 + 0.311359i
\(665\) −18.4560 −0.715693
\(666\) 0 0
\(667\) −12.8325 −0.496875
\(668\) −30.1089 + 52.1501i −1.16495 + 2.01775i
\(669\) 0 0
\(670\) −9.09010 15.7445i −0.351181 0.608263i
\(671\) −9.24424 16.0115i −0.356870 0.618117i
\(672\) 0 0
\(673\) 4.87984 8.45214i 0.188104 0.325806i −0.756514 0.653978i \(-0.773099\pi\)
0.944618 + 0.328172i \(0.106432\pi\)
\(674\) 23.2607 0.895968
\(675\) 0 0
\(676\) −28.9847 −1.11480
\(677\) 20.4404 35.4038i 0.785588 1.36068i −0.143060 0.989714i \(-0.545694\pi\)
0.928647 0.370964i \(-0.120973\pi\)
\(678\) 0 0
\(679\) 12.3878 + 21.4563i 0.475400 + 0.823417i
\(680\) 2.68238 + 4.64602i 0.102865 + 0.178167i
\(681\) 0 0
\(682\) 6.49688 11.2529i 0.248779 0.430897i
\(683\) 44.0251 1.68457 0.842287 0.539029i \(-0.181209\pi\)
0.842287 + 0.539029i \(0.181209\pi\)
\(684\) 0 0
\(685\) 7.54644 0.288335
\(686\) −48.9916 + 84.8559i −1.87051 + 3.23981i
\(687\) 0 0
\(688\) −7.41144 12.8370i −0.282559 0.489406i
\(689\) 3.84749 + 6.66405i 0.146578 + 0.253880i
\(690\) 0 0
\(691\) −10.7758 + 18.6642i −0.409931 + 0.710021i −0.994882 0.101048i \(-0.967781\pi\)
0.584951 + 0.811069i \(0.301114\pi\)
\(692\) 22.9939 0.874098
\(693\) 0 0
\(694\) −7.46603 −0.283407
\(695\) −13.7464 + 23.8095i −0.521432 + 0.903146i
\(696\) 0 0
\(697\) −2.67153 4.62723i −0.101191 0.175269i
\(698\) 31.0221 + 53.7318i 1.17420 + 2.03378i
\(699\) 0 0
\(700\) 4.33766 7.51304i 0.163948 0.283966i
\(701\) 12.8521 0.485419 0.242709 0.970099i \(-0.421964\pi\)
0.242709 + 0.970099i \(0.421964\pi\)
\(702\) 0 0
\(703\) −16.4889 −0.621891
\(704\) −23.7699 + 41.1707i −0.895863 + 1.55168i
\(705\) 0 0
\(706\) −26.6445 46.1496i −1.00278 1.73686i
\(707\) 45.0439 + 78.0183i 1.69405 + 2.93418i
\(708\) 0 0
\(709\) 24.8559 43.0516i 0.933481 1.61684i 0.156161 0.987732i \(-0.450088\pi\)
0.777320 0.629105i \(-0.216578\pi\)
\(710\) −13.5787 −0.509601
\(711\) 0 0
\(712\) −18.5912 −0.696737
\(713\) −3.17084 + 5.49206i −0.118749 + 0.205679i
\(714\) 0 0
\(715\) −5.22482 9.04965i −0.195397 0.338438i
\(716\) 13.3344 + 23.0959i 0.498330 + 0.863133i
\(717\) 0 0
\(718\) 4.47026 7.74271i 0.166828 0.288955i
\(719\) 5.63745 0.210242 0.105121 0.994459i \(-0.466477\pi\)
0.105121 + 0.994459i \(0.466477\pi\)
\(720\) 0 0
\(721\) 43.6660 1.62621
\(722\) 16.5983 28.7491i 0.617725 1.06993i
\(723\) 0 0
\(724\) 1.84017 + 3.18727i 0.0683893 + 0.118454i
\(725\) −1.06034 1.83657i −0.0393802 0.0682085i
\(726\) 0 0
\(727\) 22.7071 39.3299i 0.842161 1.45867i −0.0459026 0.998946i \(-0.514616\pi\)
0.888064 0.459720i \(-0.152050\pi\)
\(728\) −6.46195 −0.239496
\(729\) 0 0
\(730\) 56.1546 2.07837
\(731\) −6.48211 + 11.2273i −0.239749 + 0.415258i
\(732\) 0 0
\(733\) 12.8334 + 22.2281i 0.474013 + 0.821015i 0.999557 0.0297511i \(-0.00947148\pi\)
−0.525544 + 0.850766i \(0.676138\pi\)
\(734\) −18.5904 32.1996i −0.686185 1.18851i
\(735\) 0 0
\(736\) 17.0741 29.5733i 0.629361 1.09008i
\(737\) −17.1420 −0.631433
\(738\) 0 0
\(739\) −14.4553 −0.531745 −0.265873 0.964008i \(-0.585660\pi\)
−0.265873 + 0.964008i \(0.585660\pi\)
\(740\) −23.3695 + 40.4772i −0.859080 + 1.48797i
\(741\) 0 0
\(742\) −32.6006 56.4660i −1.19681 2.07293i
\(743\) 17.3969 + 30.1323i 0.638229 + 1.10545i 0.985821 + 0.167799i \(0.0536661\pi\)
−0.347592 + 0.937646i \(0.613001\pi\)
\(744\) 0 0
\(745\) 9.22706 15.9817i 0.338053 0.585525i
\(746\) −63.0168 −2.30721
\(747\) 0 0
\(748\) 24.6742 0.902177
\(749\) 18.0051 31.1857i 0.657891 1.13950i
\(750\) 0 0
\(751\) −9.05922 15.6910i −0.330576 0.572574i 0.652049 0.758177i \(-0.273910\pi\)
−0.982625 + 0.185603i \(0.940576\pi\)
\(752\) −9.70624 16.8117i −0.353950 0.613060i
\(753\) 0 0
\(754\) −3.85261 + 6.67292i −0.140304 + 0.243013i
\(755\) −1.47535 −0.0536933
\(756\) 0 0
\(757\) −37.0045 −1.34495 −0.672475 0.740120i \(-0.734769\pi\)
−0.672475 + 0.740120i \(0.734769\pi\)
\(758\) −22.2621 + 38.5592i −0.808598 + 1.40053i
\(759\) 0 0
\(760\) 2.08587 + 3.61282i 0.0756623 + 0.131051i
\(761\) −6.22221 10.7772i −0.225555 0.390673i 0.730931 0.682452i \(-0.239086\pi\)
−0.956486 + 0.291779i \(0.905753\pi\)
\(762\) 0 0
\(763\) 13.6344 23.6154i 0.493598 0.854936i
\(764\) −31.2513 −1.13063
\(765\) 0 0
\(766\) −21.0309 −0.759878
\(767\) −0.159454 + 0.276183i −0.00575755 + 0.00997238i
\(768\) 0 0
\(769\) 20.4428 + 35.4079i 0.737186 + 1.27684i 0.953758 + 0.300576i \(0.0971790\pi\)
−0.216572 + 0.976267i \(0.569488\pi\)
\(770\) 44.2711 + 76.6797i 1.59542 + 2.76335i
\(771\) 0 0
\(772\) −26.1302 + 45.2588i −0.940446 + 1.62890i
\(773\) 36.4162 1.30980 0.654900 0.755716i \(-0.272711\pi\)
0.654900 + 0.755716i \(0.272711\pi\)
\(774\) 0 0
\(775\) −1.04802 −0.0376461
\(776\) 2.80010 4.84991i 0.100518 0.174102i
\(777\) 0 0
\(778\) −22.4347 38.8581i −0.804324 1.39313i
\(779\) −2.07743 3.59821i −0.0744316 0.128919i
\(780\) 0 0
\(781\) −6.40165 + 11.0880i −0.229069 + 0.396759i
\(782\) −21.6160 −0.772985
\(783\) 0 0
\(784\) −44.6174 −1.59348
\(785\) 14.3082 24.7825i