Defining parameters
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(729))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 99 | 42 | 57 |
Cusp forms | 64 | 30 | 34 |
Eisenstein series | 35 | 12 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(12\) |
\(-\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(729))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
729.2.a.a | $6$ | $5.821$ | 6.6.1397493.1 | None | \(-3\) | \(0\) | \(-6\) | \(0\) | $+$ | \(q+(-\beta _{1}-\beta _{5})q^{2}+(\beta _{1}-\beta _{2}-\beta _{3})q^{4}+\cdots\) | |
729.2.a.b | $6$ | $5.821$ | 6.6.7459857.1 | None | \(-3\) | \(0\) | \(3\) | \(6\) | $-$ | \(q+(-\beta _{1}-\beta _{3})q^{2}+(1+\beta _{1}+\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\) | |
729.2.a.c | $6$ | $5.821$ | \(\Q(\zeta_{36})^+\) | None | \(0\) | \(0\) | \(0\) | \(-12\) | $+$ | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{3})q^{5}+\cdots\) | |
729.2.a.d | $6$ | $5.821$ | 6.6.1397493.1 | None | \(3\) | \(0\) | \(6\) | \(0\) | $-$ | \(q+(\beta _{1}+\beta _{5})q^{2}+(\beta _{1}-\beta _{2}-\beta _{3})q^{4}+\cdots\) | |
729.2.a.e | $6$ | $5.821$ | 6.6.7459857.1 | None | \(3\) | \(0\) | \(-3\) | \(6\) | $-$ | \(q+(\beta _{1}+\beta _{3})q^{2}+(1+\beta _{1}+\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(729))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(729)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(243))\)\(^{\oplus 2}\)