# Properties

 Label 7280.2 Level 7280 Weight 2 Dimension 752996 Nonzero newspaces 260 Sturm bound 6193152

## Defining parameters

 Level: $$N$$ = $$7280 = 2^{4} \cdot 5 \cdot 7 \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$260$$ Sturm bound: $$6193152$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(7280))$$.

Total New Old
Modular forms 1564416 758932 805484
Cusp forms 1532161 752996 779165
Eisenstein series 32255 5936 26319

## Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(7280))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
7280.2.a $$\chi_{7280}(1, \cdot)$$ 7280.2.a.a 1 1
7280.2.a.b 1
7280.2.a.c 1
7280.2.a.d 1
7280.2.a.e 1
7280.2.a.f 1
7280.2.a.g 1
7280.2.a.h 1
7280.2.a.i 1
7280.2.a.j 1
7280.2.a.k 1
7280.2.a.l 1
7280.2.a.m 1
7280.2.a.n 1
7280.2.a.o 1
7280.2.a.p 1
7280.2.a.q 1
7280.2.a.r 1
7280.2.a.s 1
7280.2.a.t 1
7280.2.a.u 1
7280.2.a.v 1
7280.2.a.w 1
7280.2.a.x 2
7280.2.a.y 2
7280.2.a.z 2
7280.2.a.ba 2
7280.2.a.bb 2
7280.2.a.bc 2
7280.2.a.bd 2
7280.2.a.be 2
7280.2.a.bf 2
7280.2.a.bg 2
7280.2.a.bh 2
7280.2.a.bi 2
7280.2.a.bj 2
7280.2.a.bk 2
7280.2.a.bl 3
7280.2.a.bm 3
7280.2.a.bn 3
7280.2.a.bo 3
7280.2.a.bp 3
7280.2.a.bq 4
7280.2.a.br 4
7280.2.a.bs 4
7280.2.a.bt 4
7280.2.a.bu 4
7280.2.a.bv 4
7280.2.a.bw 4
7280.2.a.bx 4
7280.2.a.by 4
7280.2.a.bz 4
7280.2.a.ca 4
7280.2.a.cb 4
7280.2.a.cc 5
7280.2.a.cd 5
7280.2.a.ce 6
7280.2.a.cf 7
7280.2.a.cg 7
7280.2.b $$\chi_{7280}(3249, \cdot)$$ n/a 252 1
7280.2.d $$\chi_{7280}(6551, \cdot)$$ None 0 1
7280.2.g $$\chi_{7280}(3641, \cdot)$$ None 0 1
7280.2.i $$\chi_{7280}(1119, \cdot)$$ n/a 288 1
7280.2.j $$\chi_{7280}(391, \cdot)$$ None 0 1
7280.2.l $$\chi_{7280}(4369, \cdot)$$ n/a 216 1
7280.2.o $$\chi_{7280}(7279, \cdot)$$ n/a 336 1
7280.2.q $$\chi_{7280}(2521, \cdot)$$ None 0 1
7280.2.r $$\chi_{7280}(729, \cdot)$$ None 0 1
7280.2.t $$\chi_{7280}(4031, \cdot)$$ n/a 192 1
7280.2.w $$\chi_{7280}(6161, \cdot)$$ n/a 168 1
7280.2.y $$\chi_{7280}(3639, \cdot)$$ None 0 1
7280.2.z $$\chi_{7280}(2911, \cdot)$$ n/a 224 1
7280.2.bb $$\chi_{7280}(6889, \cdot)$$ None 0 1
7280.2.be $$\chi_{7280}(4759, \cdot)$$ None 0 1
7280.2.bg $$\chi_{7280}(1121, \cdot)$$ n/a 336 2
7280.2.bh $$\chi_{7280}(2081, \cdot)$$ n/a 384 2
7280.2.bi $$\chi_{7280}(3201, \cdot)$$ n/a 448 2
7280.2.bj $$\chi_{7280}(81, \cdot)$$ n/a 448 2
7280.2.bl $$\chi_{7280}(83, \cdot)$$ n/a 2672 2
7280.2.bm $$\chi_{7280}(1373, \cdot)$$ n/a 2016 2
7280.2.bq $$\chi_{7280}(489, \cdot)$$ None 0 2
7280.2.br $$\chi_{7280}(3151, \cdot)$$ n/a 336 2
7280.2.bt $$\chi_{7280}(547, \cdot)$$ n/a 1728 2
7280.2.bu $$\chi_{7280}(4213, \cdot)$$ n/a 2304 2
7280.2.bw $$\chi_{7280}(3093, \cdot)$$ n/a 2672 2
7280.2.bz $$\chi_{7280}(4523, \cdot)$$ n/a 2016 2
7280.2.ca $$\chi_{7280}(3879, \cdot)$$ None 0 2
7280.2.cb $$\chi_{7280}(5361, \cdot)$$ n/a 448 2
7280.2.cf $$\chi_{7280}(3557, \cdot)$$ n/a 2016 2
7280.2.cg $$\chi_{7280}(1763, \cdot)$$ n/a 2672 2
7280.2.ci $$\chi_{7280}(1331, \cdot)$$ n/a 1344 2
7280.2.ck $$\chi_{7280}(629, \cdot)$$ n/a 2672 2
7280.2.cn $$\chi_{7280}(3457, \cdot)$$ n/a 664 2
7280.2.co $$\chi_{7280}(937, \cdot)$$ None 0 2
7280.2.cr $$\chi_{7280}(2367, \cdot)$$ n/a 432 2
7280.2.cs $$\chi_{7280}(4887, \cdot)$$ None 0 2
7280.2.cv $$\chi_{7280}(3739, \cdot)$$ n/a 2016 2
7280.2.cx $$\chi_{7280}(1581, \cdot)$$ n/a 1792 2
7280.2.dc $$\chi_{7280}(1091, \cdot)$$ n/a 1792 2
7280.2.dd $$\chi_{7280}(1429, \cdot)$$ n/a 2016 2
7280.2.de $$\chi_{7280}(2549, \cdot)$$ n/a 1728 2
7280.2.df $$\chi_{7280}(2211, \cdot)$$ n/a 1536 2
7280.2.dg $$\chi_{7280}(447, \cdot)$$ n/a 672 2
7280.2.dj $$\chi_{7280}(5153, \cdot)$$ n/a 504 2
7280.2.dk $$\chi_{7280}(3697, \cdot)$$ n/a 504 2
7280.2.dn $$\chi_{7280}(1903, \cdot)$$ n/a 672 2
7280.2.dp $$\chi_{7280}(1513, \cdot)$$ None 0 2
7280.2.dq $$\chi_{7280}(4087, \cdot)$$ None 0 2
7280.2.dt $$\chi_{7280}(5543, \cdot)$$ None 0 2
7280.2.du $$\chi_{7280}(57, \cdot)$$ None 0 2
7280.2.dw $$\chi_{7280}(1819, \cdot)$$ n/a 2672 2
7280.2.dx $$\chi_{7280}(701, \cdot)$$ n/a 1344 2
7280.2.dy $$\chi_{7280}(1821, \cdot)$$ n/a 1152 2
7280.2.dz $$\chi_{7280}(2939, \cdot)$$ n/a 2304 2
7280.2.ee $$\chi_{7280}(2309, \cdot)$$ n/a 2672 2
7280.2.eg $$\chi_{7280}(3011, \cdot)$$ n/a 1344 2
7280.2.ei $$\chi_{7280}(1247, \cdot)$$ n/a 504 2
7280.2.el $$\chi_{7280}(183, \cdot)$$ None 0 2
7280.2.em $$\chi_{7280}(4577, \cdot)$$ n/a 576 2
7280.2.ep $$\chi_{7280}(1273, \cdot)$$ None 0 2
7280.2.er $$\chi_{7280}(5221, \cdot)$$ n/a 1792 2
7280.2.et $$\chi_{7280}(99, \cdot)$$ n/a 2016 2
7280.2.eu $$\chi_{7280}(5403, \cdot)$$ n/a 2672 2
7280.2.ex $$\chi_{7280}(3333, \cdot)$$ n/a 2016 2
7280.2.fa $$\chi_{7280}(1191, \cdot)$$ None 0 2
7280.2.fb $$\chi_{7280}(2449, \cdot)$$ n/a 664 2
7280.2.fc $$\chi_{7280}(2003, \cdot)$$ n/a 1728 2
7280.2.ff $$\chi_{7280}(573, \cdot)$$ n/a 2304 2
7280.2.fh $$\chi_{7280}(1637, \cdot)$$ n/a 2672 2
7280.2.fi $$\chi_{7280}(883, \cdot)$$ n/a 2016 2
7280.2.fk $$\chi_{7280}(1721, \cdot)$$ None 0 2
7280.2.fl $$\chi_{7280}(239, \cdot)$$ n/a 504 2
7280.2.fo $$\chi_{7280}(5013, \cdot)$$ n/a 2016 2
7280.2.fr $$\chi_{7280}(307, \cdot)$$ n/a 2672 2
7280.2.fs $$\chi_{7280}(2921, \cdot)$$ None 0 2
7280.2.fu $$\chi_{7280}(3279, \cdot)$$ n/a 672 2
7280.2.fx $$\chi_{7280}(849, \cdot)$$ n/a 664 2
7280.2.fz $$\chi_{7280}(6471, \cdot)$$ None 0 2
7280.2.ga $$\chi_{7280}(719, \cdot)$$ n/a 672 2
7280.2.gc $$\chi_{7280}(121, \cdot)$$ None 0 2
7280.2.gf $$\chi_{7280}(2551, \cdot)$$ None 0 2
7280.2.gh $$\chi_{7280}(3649, \cdot)$$ n/a 664 2
7280.2.gi $$\chi_{7280}(569, \cdot)$$ None 0 2
7280.2.gk $$\chi_{7280}(6751, \cdot)$$ n/a 448 2
7280.2.go $$\chi_{7280}(2679, \cdot)$$ None 0 2
7280.2.gp $$\chi_{7280}(1959, \cdot)$$ None 0 2
7280.2.gu $$\chi_{7280}(1689, \cdot)$$ None 0 2
7280.2.gv $$\chi_{7280}(2409, \cdot)$$ None 0 2
7280.2.gy $$\chi_{7280}(1791, \cdot)$$ n/a 448 2
7280.2.gz $$\chi_{7280}(831, \cdot)$$ n/a 448 2
7280.2.hc $$\chi_{7280}(2999, \cdot)$$ None 0 2
7280.2.hd $$\chi_{7280}(2271, \cdot)$$ n/a 448 2
7280.2.hf $$\chi_{7280}(3929, \cdot)$$ None 0 2
7280.2.hh $$\chi_{7280}(1559, \cdot)$$ None 0 2
7280.2.hi $$\chi_{7280}(2519, \cdot)$$ None 0 2
7280.2.hl $$\chi_{7280}(1681, \cdot)$$ n/a 336 2
7280.2.hm $$\chi_{7280}(961, \cdot)$$ n/a 448 2
7280.2.hr $$\chi_{7280}(1231, \cdot)$$ n/a 448 2
7280.2.hs $$\chi_{7280}(1951, \cdot)$$ n/a 384 2
7280.2.hv $$\chi_{7280}(2809, \cdot)$$ None 0 2
7280.2.hw $$\chi_{7280}(1849, \cdot)$$ None 0 2
7280.2.hy $$\chi_{7280}(199, \cdot)$$ None 0 2
7280.2.ia $$\chi_{7280}(641, \cdot)$$ n/a 448 2
7280.2.ib $$\chi_{7280}(289, \cdot)$$ n/a 664 2
7280.2.id $$\chi_{7280}(5911, \cdot)$$ None 0 2
7280.2.if $$\chi_{7280}(1481, \cdot)$$ None 0 2
7280.2.ig $$\chi_{7280}(1401, \cdot)$$ None 0 2
7280.2.ij $$\chi_{7280}(2799, \cdot)$$ n/a 672 2
7280.2.ik $$\chi_{7280}(1039, \cdot)$$ n/a 672 2
7280.2.ip $$\chi_{7280}(1569, \cdot)$$ n/a 504 2
7280.2.iq $$\chi_{7280}(3329, \cdot)$$ n/a 576 2
7280.2.it $$\chi_{7280}(1431, \cdot)$$ None 0 2
7280.2.iu $$\chi_{7280}(1511, \cdot)$$ None 0 2
7280.2.iw $$\chi_{7280}(3481, \cdot)$$ None 0 2
7280.2.iy $$\chi_{7280}(3839, \cdot)$$ n/a 672 2
7280.2.iz $$\chi_{7280}(3111, \cdot)$$ None 0 2
7280.2.jb $$\chi_{7280}(4209, \cdot)$$ n/a 664 2
7280.2.jd $$\chi_{7280}(2239, \cdot)$$ n/a 672 2
7280.2.je $$\chi_{7280}(2159, \cdot)$$ n/a 576 2
7280.2.jh $$\chi_{7280}(2601, \cdot)$$ None 0 2
7280.2.ji $$\chi_{7280}(841, \cdot)$$ None 0 2
7280.2.jn $$\chi_{7280}(311, \cdot)$$ None 0 2
7280.2.jo $$\chi_{7280}(2071, \cdot)$$ None 0 2
7280.2.jr $$\chi_{7280}(2129, \cdot)$$ n/a 504 2
7280.2.js $$\chi_{7280}(2209, \cdot)$$ n/a 664 2
7280.2.ju $$\chi_{7280}(159, \cdot)$$ n/a 672 2
7280.2.jw $$\chi_{7280}(6841, \cdot)$$ None 0 2
7280.2.jx $$\chi_{7280}(3761, \cdot)$$ n/a 448 2
7280.2.jz $$\chi_{7280}(3559, \cdot)$$ None 0 2
7280.2.kc $$\chi_{7280}(9, \cdot)$$ None 0 2
7280.2.ke $$\chi_{7280}(6191, \cdot)$$ n/a 448 2
7280.2.kf $$\chi_{7280}(6919, \cdot)$$ None 0 2
7280.2.kj $$\chi_{7280}(2831, \cdot)$$ n/a 448 2
7280.2.kl $$\chi_{7280}(4489, \cdot)$$ None 0 2
7280.2.km $$\chi_{7280}(1307, \cdot)$$ n/a 5344 4
7280.2.kp $$\chi_{7280}(2013, \cdot)$$ n/a 5344 4
7280.2.ks $$\chi_{7280}(2481, \cdot)$$ n/a 896 4
7280.2.kt $$\chi_{7280}(1159, \cdot)$$ None 0 4
7280.2.ku $$\chi_{7280}(2123, \cdot)$$ n/a 5344 4
7280.2.kx $$\chi_{7280}(3013, \cdot)$$ n/a 5344 4
7280.2.kz $$\chi_{7280}(1277, \cdot)$$ n/a 5344 4
7280.2.la $$\chi_{7280}(627, \cdot)$$ n/a 5344 4
7280.2.lc $$\chi_{7280}(431, \cdot)$$ n/a 896 4
7280.2.ld $$\chi_{7280}(3209, \cdot)$$ None 0 4
7280.2.lg $$\chi_{7280}(2333, \cdot)$$ n/a 5344 4
7280.2.lj $$\chi_{7280}(747, \cdot)$$ n/a 5344 4
7280.2.lk $$\chi_{7280}(1347, \cdot)$$ n/a 5344 4
7280.2.ln $$\chi_{7280}(787, \cdot)$$ n/a 5344 4
7280.2.lp $$\chi_{7280}(1987, \cdot)$$ n/a 5344 4
7280.2.lq $$\chi_{7280}(3837, \cdot)$$ n/a 4032 4
7280.2.ls $$\chi_{7280}(1493, \cdot)$$ n/a 5344 4
7280.2.lv $$\chi_{7280}(317, \cdot)$$ n/a 5344 4
7280.2.ly $$\chi_{7280}(3729, \cdot)$$ n/a 1328 4
7280.2.lz $$\chi_{7280}(4951, \cdot)$$ None 0 4
7280.2.me $$\chi_{7280}(1321, \cdot)$$ None 0 4
7280.2.mf $$\chi_{7280}(799, \cdot)$$ n/a 1008 4
7280.2.mg $$\chi_{7280}(41, \cdot)$$ None 0 4
7280.2.mh $$\chi_{7280}(879, \cdot)$$ n/a 1344 4
7280.2.mi $$\chi_{7280}(1693, \cdot)$$ n/a 5344 4
7280.2.ml $$\chi_{7280}(1387, \cdot)$$ n/a 4032 4
7280.2.mn $$\chi_{7280}(493, \cdot)$$ n/a 5344 4
7280.2.mo $$\chi_{7280}(2027, \cdot)$$ n/a 5344 4
7280.2.mr $$\chi_{7280}(1843, \cdot)$$ n/a 5344 4
7280.2.ms $$\chi_{7280}(3293, \cdot)$$ n/a 5344 4
7280.2.mu $$\chi_{7280}(997, \cdot)$$ n/a 5344 4
7280.2.mx $$\chi_{7280}(107, \cdot)$$ n/a 5344 4
7280.2.my $$\chi_{7280}(963, \cdot)$$ n/a 4608 4
7280.2.nb $$\chi_{7280}(677, \cdot)$$ n/a 4608 4
7280.2.nd $$\chi_{7280}(1947, \cdot)$$ n/a 4032 4
7280.2.ne $$\chi_{7280}(517, \cdot)$$ n/a 5344 4
7280.2.ng $$\chi_{7280}(151, \cdot)$$ None 0 4
7280.2.nh $$\chi_{7280}(769, \cdot)$$ n/a 1328 4
7280.2.ni $$\chi_{7280}(71, \cdot)$$ None 0 4
7280.2.nj $$\chi_{7280}(369, \cdot)$$ n/a 1328 4
7280.2.no $$\chi_{7280}(319, \cdot)$$ n/a 1344 4
7280.2.np $$\chi_{7280}(3001, \cdot)$$ None 0 4
7280.2.nt $$\chi_{7280}(2853, \cdot)$$ n/a 5344 4
7280.2.nv $$\chi_{7280}(1597, \cdot)$$ n/a 4032 4
7280.2.nw $$\chi_{7280}(1997, \cdot)$$ n/a 5344 4
7280.2.nz $$\chi_{7280}(3323, \cdot)$$ n/a 5344 4
7280.2.oa $$\chi_{7280}(4227, \cdot)$$ n/a 5344 4
7280.2.oc $$\chi_{7280}(227, \cdot)$$ n/a 5344 4
7280.2.oe $$\chi_{7280}(1059, \cdot)$$ n/a 5344 4
7280.2.og $$\chi_{7280}(2021, \cdot)$$ n/a 3584 4
7280.2.oj $$\chi_{7280}(3097, \cdot)$$ None 0 4
7280.2.ok $$\chi_{7280}(3377, \cdot)$$ n/a 1328 4
7280.2.on $$\chi_{7280}(2487, \cdot)$$ None 0 4
7280.2.oo $$\chi_{7280}(1647, \cdot)$$ n/a 1344 4
7280.2.or $$\chi_{7280}(11, \cdot)$$ n/a 3584 4
7280.2.ot $$\chi_{7280}(1389, \cdot)$$ n/a 5344 4
7280.2.oy $$\chi_{7280}(1459, \cdot)$$ n/a 5344 4
7280.2.oz $$\chi_{7280}(1101, \cdot)$$ n/a 3584 4
7280.2.pa $$\chi_{7280}(1941, \cdot)$$ n/a 3584 4
7280.2.pb $$\chi_{7280}(1739, \cdot)$$ n/a 5344 4
7280.2.pd $$\chi_{7280}(2567, \cdot)$$ None 0 4
7280.2.pe $$\chi_{7280}(2377, \cdot)$$ None 0 4
7280.2.ph $$\chi_{7280}(2697, \cdot)$$ None 0 4
7280.2.pi $$\chi_{7280}(1207, \cdot)$$ None 0 4
7280.2.pk $$\chi_{7280}(513, \cdot)$$ n/a 1328 4
7280.2.pn $$\chi_{7280}(943, \cdot)$$ n/a 1344 4
7280.2.po $$\chi_{7280}(383, \cdot)$$ n/a 1344 4
7280.2.pr $$\chi_{7280}(193, \cdot)$$ n/a 1328 4
7280.2.ps $$\chi_{7280}(731, \cdot)$$ n/a 3584 4
7280.2.pt $$\chi_{7280}(1829, \cdot)$$ n/a 5344 4
7280.2.pu $$\chi_{7280}(2669, \cdot)$$ n/a 5344 4
7280.2.pv $$\chi_{7280}(1011, \cdot)$$ n/a 3584 4
7280.2.qa $$\chi_{7280}(661, \cdot)$$ n/a 3584 4
7280.2.qc $$\chi_{7280}(739, \cdot)$$ n/a 5344 4
7280.2.qe $$\chi_{7280}(263, \cdot)$$ None 0 4
7280.2.qh $$\chi_{7280}(303, \cdot)$$ n/a 1344 4
7280.2.qi $$\chi_{7280}(537, \cdot)$$ None 0 4
7280.2.ql $$\chi_{7280}(913, \cdot)$$ n/a 1328 4
7280.2.qn $$\chi_{7280}(2749, \cdot)$$ n/a 5344 4
7280.2.qp $$\chi_{7280}(331, \cdot)$$ n/a 3584 4
7280.2.qq $$\chi_{7280}(1411, \cdot)$$ n/a 3584 4
7280.2.qs $$\chi_{7280}(509, \cdot)$$ n/a 5344 4
7280.2.qu $$\chi_{7280}(379, \cdot)$$ n/a 4032 4
7280.2.qv $$\chi_{7280}(1019, \cdot)$$ n/a 5344 4
7280.2.qy $$\chi_{7280}(941, \cdot)$$ n/a 3584 4
7280.2.qz $$\chi_{7280}(461, \cdot)$$ n/a 3584 4
7280.2.rc $$\chi_{7280}(2497, \cdot)$$ n/a 1152 4
7280.2.re $$\chi_{7280}(3657, \cdot)$$ None 0 4
7280.2.rg $$\chi_{7280}(153, \cdot)$$ None 0 4
7280.2.rj $$\chi_{7280}(1777, \cdot)$$ n/a 1328 4
7280.2.rl $$\chi_{7280}(2817, \cdot)$$ n/a 1328 4
7280.2.rn $$\chi_{7280}(857, \cdot)$$ None 0 4
7280.2.ro $$\chi_{7280}(207, \cdot)$$ n/a 1344 4
7280.2.rq $$\chi_{7280}(1303, \cdot)$$ None 0 4
7280.2.rs $$\chi_{7280}(1927, \cdot)$$ None 0 4
7280.2.rv $$\chi_{7280}(2207, \cdot)$$ n/a 1344 4
7280.2.rx $$\chi_{7280}(127, \cdot)$$ n/a 1008 4
7280.2.rz $$\chi_{7280}(807, \cdot)$$ None 0 4
7280.2.sc $$\chi_{7280}(2451, \cdot)$$ n/a 2688 4
7280.2.sd $$\chi_{7280}(1971, \cdot)$$ n/a 3584 4
7280.2.sg $$\chi_{7280}(229, \cdot)$$ n/a 5344 4
7280.2.sh $$\chi_{7280}(1749, \cdot)$$ n/a 5344 4
7280.2.sj $$\chi_{7280}(1579, \cdot)$$ n/a 5344 4
7280.2.sl $$\chi_{7280}(1501, \cdot)$$ n/a 3584 4
7280.2.sq $$\chi_{7280}(451, \cdot)$$ n/a 3584 4
7280.2.sr $$\chi_{7280}(2109, \cdot)$$ n/a 5344 4
7280.2.ss $$\chi_{7280}(2389, \cdot)$$ n/a 5344 4
7280.2.st $$\chi_{7280}(1291, \cdot)$$ n/a 3584 4
7280.2.tc $$\chi_{7280}(3221, \cdot)$$ n/a 2688 4
7280.2.td $$\chi_{7280}(699, \cdot)$$ n/a 5344 4
7280.2.te $$\chi_{7280}(261, \cdot)$$ n/a 3072 4
7280.2.tf $$\chi_{7280}(339, \cdot)$$ n/a 4608 4
7280.2.tg $$\chi_{7280}(2859, \cdot)$$ n/a 5344 4
7280.2.th $$\chi_{7280}(2781, \cdot)$$ n/a 3584 4
7280.2.ti $$\chi_{7280}(139, \cdot)$$ n/a 5344 4
7280.2.tj $$\chi_{7280}(2661, \cdot)$$ n/a 2688 4
7280.2.tk $$\chi_{7280}(47, \cdot)$$ n/a 1344 4
7280.2.tn $$\chi_{7280}(1633, \cdot)$$ n/a 1328 4
7280.2.to $$\chi_{7280}(177, \cdot)$$ n/a 1328 4
7280.2.tr $$\chi_{7280}(1487, \cdot)$$ n/a 1344 4
7280.2.ts $$\chi_{7280}(1783, \cdot)$$ None 0 4
7280.2.tu $$\chi_{7280}(617, \cdot)$$ None 0 4
7280.2.tx $$\chi_{7280}(167, \cdot)$$ None 0 4
7280.2.tz $$\chi_{7280}(457, \cdot)$$ None 0 4
7280.2.ua $$\chi_{7280}(137, \cdot)$$ None 0 4
7280.2.uc $$\chi_{7280}(1623, \cdot)$$ None 0 4
7280.2.uf $$\chi_{7280}(1177, \cdot)$$ None 0 4
7280.2.uh $$\chi_{7280}(327, \cdot)$$ None 0 4
7280.2.uj $$\chi_{7280}(3217, \cdot)$$ n/a 1328 4
7280.2.ul $$\chi_{7280}(223, \cdot)$$ n/a 1344 4
7280.2.um $$\chi_{7280}(1233, \cdot)$$ n/a 1008 4
7280.2.uo $$\chi_{7280}(1727, \cdot)$$ n/a 1344 4
7280.2.ur $$\chi_{7280}(2047, \cdot)$$ n/a 1344 4
7280.2.ut $$\chi_{7280}(3473, \cdot)$$ n/a 1008 4
7280.2.uu $$\chi_{7280}(1007, \cdot)$$ n/a 1344 4
7280.2.uw $$\chi_{7280}(1857, \cdot)$$ n/a 1328 4
7280.2.uz $$\chi_{7280}(2137, \cdot)$$ None 0 4
7280.2.va $$\chi_{7280}(3463, \cdot)$$ None 0 4
7280.2.vd $$\chi_{7280}(983, \cdot)$$ None 0 4
7280.2.ve $$\chi_{7280}(473, \cdot)$$ None 0 4
7280.2.vg $$\chi_{7280}(309, \cdot)$$ n/a 4032 4
7280.2.vh $$\chi_{7280}(251, \cdot)$$ n/a 3584 4
7280.2.vi $$\chi_{7280}(989, \cdot)$$ n/a 4608 4
7280.2.vj $$\chi_{7280}(131, \cdot)$$ n/a 3072 4
7280.2.vk $$\chi_{7280}(2131, \cdot)$$ n/a 3584 4
7280.2.vl $$\chi_{7280}(389, \cdot)$$ n/a 5344 4
7280.2.vm $$\chi_{7280}(3051, \cdot)$$ n/a 3584 4
7280.2.vn $$\chi_{7280}(29, \cdot)$$ n/a 4032 4
7280.2.vw $$\chi_{7280}(1179, \cdot)$$ n/a 5344 4
7280.2.vx $$\chi_{7280}(1381, \cdot)$$ n/a 3584 4
7280.2.vy $$\chi_{7280}(1661, \cdot)$$ n/a 3584 4
7280.2.vz $$\chi_{7280}(2019, \cdot)$$ n/a 5344 4
7280.2.we $$\chi_{7280}(2229, \cdot)$$ n/a 5344 4
7280.2.wg $$\chi_{7280}(851, \cdot)$$ n/a 3584 4
7280.2.wi $$\chi_{7280}(1461, \cdot)$$ n/a 3584 4
7280.2.wj $$\chi_{7280}(1021, \cdot)$$ n/a 3584 4
7280.2.wm $$\chi_{7280}(3179, \cdot)$$ n/a 4032 4
7280.2.wn $$\chi_{7280}(499, \cdot)$$ n/a 5344 4
7280.2.wr $$\chi_{7280}(1327, \cdot)$$ n/a 1152 4
7280.2.wt $$\chi_{7280}(23, \cdot)$$ None 0 4
7280.2.wv $$\chi_{7280}(407, \cdot)$$ None 0 4
7280.2.ww $$\chi_{7280}(1023, \cdot)$$ n/a 1008 4
7280.2.wy $$\chi_{7280}(5567, \cdot)$$ n/a 1344 4
7280.2.xa $$\chi_{7280}(1143, \cdot)$$ None 0 4
7280.2.xd $$\chi_{7280}(1377, \cdot)$$ n/a 1328 4
7280.2.xf $$\chi_{7280}(2057, \cdot)$$ None 0 4
7280.2.xh $$\chi_{7280}(633, \cdot)$$ None 0 4
7280.2.xi $$\chi_{7280}(17, \cdot)$$ n/a 1328 4
7280.2.xk $$\chi_{7280}(433, \cdot)$$ n/a 1328 4
7280.2.xm $$\chi_{7280}(313, \cdot)$$ None 0 4
7280.2.xq $$\chi_{7280}(1669, \cdot)$$ n/a 5344 4
7280.2.xr $$\chi_{7280}(349, \cdot)$$ n/a 5344 4
7280.2.xu $$\chi_{7280}(1051, \cdot)$$ n/a 2688 4
7280.2.xv $$\chi_{7280}(291, \cdot)$$ n/a 3584 4
7280.2.xx $$\chi_{7280}(1181, \cdot)$$ n/a 3584 4
7280.2.xz $$\chi_{7280}(219, \cdot)$$ n/a 5344 4
7280.2.ya $$\chi_{7280}(587, \cdot)$$ n/a 5344 4
7280.2.yc $$\chi_{7280}(1363, \cdot)$$ n/a 5344 4
7280.2.yf $$\chi_{7280}(187, \cdot)$$ n/a 5344 4
7280.2.yg $$\chi_{7280}(1773, \cdot)$$ n/a 5344 4
7280.2.yj $$\chi_{7280}(37, \cdot)$$ n/a 5344 4
7280.2.yl $$\chi_{7280}(253, \cdot)$$ n/a 4032 4
7280.2.yo $$\chi_{7280}(1311, \cdot)$$ n/a 896 4
7280.2.yp $$\chi_{7280}(89, \cdot)$$ None 0 4
7280.2.yu $$\chi_{7280}(359, \cdot)$$ None 0 4
7280.2.yv $$\chi_{7280}(1441, \cdot)$$ n/a 896 4
7280.2.yw $$\chi_{7280}(2199, \cdot)$$ None 0 4
7280.2.yx $$\chi_{7280}(801, \cdot)$$ n/a 896 4
7280.2.yz $$\chi_{7280}(237, \cdot)$$ n/a 5344 4
7280.2.za $$\chi_{7280}(1667, \cdot)$$ n/a 4032 4
7280.2.zc $$\chi_{7280}(387, \cdot)$$ n/a 5344 4
7280.2.zf $$\chi_{7280}(1837, \cdot)$$ n/a 5344 4
7280.2.zg $$\chi_{7280}(1013, \cdot)$$ n/a 5344 4
7280.2.zj $$\chi_{7280}(1507, \cdot)$$ n/a 5344 4
7280.2.zl $$\chi_{7280}(443, \cdot)$$ n/a 4608 4
7280.2.zm $$\chi_{7280}(157, \cdot)$$ n/a 4608 4
7280.2.zp $$\chi_{7280}(2453, \cdot)$$ n/a 5344 4
7280.2.zq $$\chi_{7280}(1563, \cdot)$$ n/a 5344 4
7280.2.zs $$\chi_{7280}(43, \cdot)$$ n/a 4032 4
7280.2.zv $$\chi_{7280}(797, \cdot)$$ n/a 5344 4
7280.2.zw $$\chi_{7280}(1529, \cdot)$$ None 0 4
7280.2.zx $$\chi_{7280}(1471, \cdot)$$ n/a 672 4
7280.2.zy $$\chi_{7280}(2169, \cdot)$$ None 0 4
7280.2.zz $$\chi_{7280}(2111, \cdot)$$ n/a 896 4
7280.2.bae $$\chi_{7280}(241, \cdot)$$ n/a 896 4
7280.2.baf $$\chi_{7280}(2039, \cdot)$$ None 0 4
7280.2.baj $$\chi_{7280}(333, \cdot)$$ n/a 5344 4
7280.2.bak $$\chi_{7280}(197, \cdot)$$ n/a 4032 4
7280.2.bam $$\chi_{7280}(1397, \cdot)$$ n/a 5344 4
7280.2.bap $$\chi_{7280}(1683, \cdot)$$ n/a 5344 4
7280.2.bar $$\chi_{7280}(643, \cdot)$$ n/a 5344 4
7280.2.bas $$\chi_{7280}(1123, \cdot)$$ n/a 5344 4
7280.2.bav $$\chi_{7280}(843, \cdot)$$ n/a 5344 4
7280.2.baw $$\chi_{7280}(557, \cdot)$$ n/a 5344 4
7280.2.bba $$\chi_{7280}(2559, \cdot)$$ n/a 1344 4
7280.2.bbb $$\chi_{7280}(201, \cdot)$$ None 0 4
7280.2.bbd $$\chi_{7280}(667, \cdot)$$ n/a 5344 4
7280.2.bbe $$\chi_{7280}(173, \cdot)$$ n/a 5344 4
7280.2.bbg $$\chi_{7280}(2733, \cdot)$$ n/a 5344 4
7280.2.bbj $$\chi_{7280}(1283, \cdot)$$ n/a 5344 4
7280.2.bbk $$\chi_{7280}(929, \cdot)$$ n/a 1328 4
7280.2.bbl $$\chi_{7280}(1831, \cdot)$$ None 0 4
7280.2.bbp $$\chi_{7280}(877, \cdot)$$ n/a 5344 4
7280.2.bbq $$\chi_{7280}(2203, \cdot)$$ n/a 5344 4

"n/a" means that newforms for that character have not been added to the database yet

## Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(7280))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(7280)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 20}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(14))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(16))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(20))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(26))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(28))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(35))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(40))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(52))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(56))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(65))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(70))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(80))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(91))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(104))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(112))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(130))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(140))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(182))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(208))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(260))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(280))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(364))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(455))$$$$^{\oplus 5}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(520))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(560))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(728))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(910))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1040))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1456))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1820))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3640))$$$$^{\oplus 2}$$