Properties

Label 728.2.t.a.9.1
Level $728$
Weight $2$
Character 728.9
Analytic conductor $5.813$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(9,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.t (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 728.9
Dual form 728.2.t.a.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(-1.50000 + 2.59808i) q^{5} +(0.500000 + 2.59808i) q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +(-1.50000 + 2.59808i) q^{5} +(0.500000 + 2.59808i) q^{7} -2.00000 q^{9} -1.00000 q^{11} +(-1.00000 - 3.46410i) q^{13} +(1.50000 - 2.59808i) q^{15} +(1.00000 - 1.73205i) q^{17} -3.00000 q^{19} +(-0.500000 - 2.59808i) q^{21} +(-2.00000 - 3.46410i) q^{25} +5.00000 q^{27} +(4.50000 - 7.79423i) q^{29} +(-0.500000 - 0.866025i) q^{31} +1.00000 q^{33} +(-7.50000 - 2.59808i) q^{35} +(-5.00000 - 8.66025i) q^{37} +(1.00000 + 3.46410i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(-1.50000 - 2.59808i) q^{43} +(3.00000 - 5.19615i) q^{45} +(-5.50000 + 9.52628i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(-1.00000 + 1.73205i) q^{51} +(-1.50000 - 2.59808i) q^{53} +(1.50000 - 2.59808i) q^{55} +3.00000 q^{57} +(-6.00000 + 10.3923i) q^{59} -5.00000 q^{61} +(-1.00000 - 5.19615i) q^{63} +(10.5000 + 2.59808i) q^{65} -9.00000 q^{67} +(0.500000 + 0.866025i) q^{71} +(-5.50000 - 9.52628i) q^{73} +(2.00000 + 3.46410i) q^{75} +(-0.500000 - 2.59808i) q^{77} +(4.50000 - 7.79423i) q^{79} +1.00000 q^{81} -8.00000 q^{83} +(3.00000 + 5.19615i) q^{85} +(-4.50000 + 7.79423i) q^{87} +(5.00000 + 8.66025i) q^{89} +(8.50000 - 4.33013i) q^{91} +(0.500000 + 0.866025i) q^{93} +(4.50000 - 7.79423i) q^{95} +(6.50000 + 11.2583i) q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 3 q^{5} + q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 3 q^{5} + q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} + 3 q^{15} + 2 q^{17} - 6 q^{19} - q^{21} - 4 q^{25} + 10 q^{27} + 9 q^{29} - q^{31} + 2 q^{33} - 15 q^{35} - 10 q^{37} + 2 q^{39} - 3 q^{41} - 3 q^{43} + 6 q^{45} - 11 q^{47} - 13 q^{49} - 2 q^{51} - 3 q^{53} + 3 q^{55} + 6 q^{57} - 12 q^{59} - 10 q^{61} - 2 q^{63} + 21 q^{65} - 18 q^{67} + q^{71} - 11 q^{73} + 4 q^{75} - q^{77} + 9 q^{79} + 2 q^{81} - 16 q^{83} + 6 q^{85} - 9 q^{87} + 10 q^{89} + 17 q^{91} + q^{93} + 9 q^{95} + 13 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 3.46410i −0.277350 0.960769i
\(14\) 0 0
\(15\) 1.50000 2.59808i 0.387298 0.670820i
\(16\) 0 0
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) −0.500000 2.59808i −0.109109 0.566947i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 4.50000 7.79423i 0.835629 1.44735i −0.0578882 0.998323i \(-0.518437\pi\)
0.893517 0.449029i \(-0.148230\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.0898027 0.155543i 0.817625 0.575751i \(-0.195290\pi\)
−0.907428 + 0.420208i \(0.861957\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −7.50000 2.59808i −1.26773 0.439155i
\(36\) 0 0
\(37\) −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i \(-0.859528\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) 0 0
\(39\) 1.00000 + 3.46410i 0.160128 + 0.554700i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) −1.50000 2.59808i −0.228748 0.396203i 0.728689 0.684844i \(-0.240130\pi\)
−0.957437 + 0.288641i \(0.906796\pi\)
\(44\) 0 0
\(45\) 3.00000 5.19615i 0.447214 0.774597i
\(46\) 0 0
\(47\) −5.50000 + 9.52628i −0.802257 + 1.38955i 0.115870 + 0.993264i \(0.463035\pi\)
−0.918127 + 0.396286i \(0.870299\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0 0
\(51\) −1.00000 + 1.73205i −0.140028 + 0.242536i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 1.50000 2.59808i 0.202260 0.350325i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −6.00000 + 10.3923i −0.781133 + 1.35296i 0.150148 + 0.988663i \(0.452025\pi\)
−0.931282 + 0.364299i \(0.881308\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) −1.00000 5.19615i −0.125988 0.654654i
\(64\) 0 0
\(65\) 10.5000 + 2.59808i 1.30236 + 0.322252i
\(66\) 0 0
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.500000 + 0.866025i 0.0593391 + 0.102778i 0.894169 0.447730i \(-0.147767\pi\)
−0.834830 + 0.550508i \(0.814434\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) 0 0
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 0 0
\(77\) −0.500000 2.59808i −0.0569803 0.296078i
\(78\) 0 0
\(79\) 4.50000 7.79423i 0.506290 0.876919i −0.493684 0.869641i \(-0.664350\pi\)
0.999974 0.00727784i \(-0.00231663\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 0 0
\(87\) −4.50000 + 7.79423i −0.482451 + 0.835629i
\(88\) 0 0
\(89\) 5.00000 + 8.66025i 0.529999 + 0.917985i 0.999388 + 0.0349934i \(0.0111410\pi\)
−0.469389 + 0.882992i \(0.655526\pi\)
\(90\) 0 0
\(91\) 8.50000 4.33013i 0.891042 0.453921i
\(92\) 0 0
\(93\) 0.500000 + 0.866025i 0.0518476 + 0.0898027i
\(94\) 0 0
\(95\) 4.50000 7.79423i 0.461690 0.799671i
\(96\) 0 0
\(97\) 6.50000 + 11.2583i 0.659975 + 1.14311i 0.980622 + 0.195911i \(0.0627665\pi\)
−0.320647 + 0.947199i \(0.603900\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) −3.50000 + 6.06218i −0.344865 + 0.597324i −0.985329 0.170664i \(-0.945409\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) 7.50000 + 2.59808i 0.731925 + 0.253546i
\(106\) 0 0
\(107\) 8.00000 + 13.8564i 0.773389 + 1.33955i 0.935695 + 0.352809i \(0.114773\pi\)
−0.162306 + 0.986740i \(0.551893\pi\)
\(108\) 0 0
\(109\) −7.50000 12.9904i −0.718370 1.24425i −0.961645 0.274296i \(-0.911555\pi\)
0.243276 0.969957i \(-0.421778\pi\)
\(110\) 0 0
\(111\) 5.00000 + 8.66025i 0.474579 + 0.821995i
\(112\) 0 0
\(113\) 0.500000 + 0.866025i 0.0470360 + 0.0814688i 0.888585 0.458712i \(-0.151689\pi\)
−0.841549 + 0.540181i \(0.818356\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 + 6.92820i 0.184900 + 0.640513i
\(118\) 0 0
\(119\) 5.00000 + 1.73205i 0.458349 + 0.158777i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 3.50000 6.06218i 0.310575 0.537931i −0.667912 0.744240i \(-0.732812\pi\)
0.978487 + 0.206309i \(0.0661452\pi\)
\(128\) 0 0
\(129\) 1.50000 + 2.59808i 0.132068 + 0.228748i
\(130\) 0 0
\(131\) 8.50000 14.7224i 0.742648 1.28630i −0.208637 0.977993i \(-0.566903\pi\)
0.951285 0.308312i \(-0.0997640\pi\)
\(132\) 0 0
\(133\) −1.50000 7.79423i −0.130066 0.675845i
\(134\) 0 0
\(135\) −7.50000 + 12.9904i −0.645497 + 1.11803i
\(136\) 0 0
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) −1.50000 2.59808i −0.127228 0.220366i 0.795373 0.606120i \(-0.207275\pi\)
−0.922602 + 0.385754i \(0.873941\pi\)
\(140\) 0 0
\(141\) 5.50000 9.52628i 0.463184 0.802257i
\(142\) 0 0
\(143\) 1.00000 + 3.46410i 0.0836242 + 0.289683i
\(144\) 0 0
\(145\) 13.5000 + 23.3827i 1.12111 + 1.94183i
\(146\) 0 0
\(147\) 6.50000 2.59808i 0.536111 0.214286i
\(148\) 0 0
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) −0.500000 0.866025i −0.0406894 0.0704761i 0.844963 0.534824i \(-0.179622\pi\)
−0.885653 + 0.464348i \(0.846289\pi\)
\(152\) 0 0
\(153\) −2.00000 + 3.46410i −0.161690 + 0.280056i
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) 2.50000 + 4.33013i 0.199522 + 0.345582i 0.948373 0.317156i \(-0.102728\pi\)
−0.748852 + 0.662738i \(0.769394\pi\)
\(158\) 0 0
\(159\) 1.50000 + 2.59808i 0.118958 + 0.206041i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 21.0000 1.64485 0.822423 0.568876i \(-0.192621\pi\)
0.822423 + 0.568876i \(0.192621\pi\)
\(164\) 0 0
\(165\) −1.50000 + 2.59808i −0.116775 + 0.202260i
\(166\) 0 0
\(167\) −4.50000 + 7.79423i −0.348220 + 0.603136i −0.985933 0.167139i \(-0.946547\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 0 0
\(175\) 8.00000 6.92820i 0.604743 0.523723i
\(176\) 0 0
\(177\) 6.00000 10.3923i 0.450988 0.781133i
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) 30.0000 2.20564
\(186\) 0 0
\(187\) −1.00000 + 1.73205i −0.0731272 + 0.126660i
\(188\) 0 0
\(189\) 2.50000 + 12.9904i 0.181848 + 0.944911i
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) −17.0000 −1.22369 −0.611843 0.790979i \(-0.709572\pi\)
−0.611843 + 0.790979i \(0.709572\pi\)
\(194\) 0 0
\(195\) −10.5000 2.59808i −0.751921 0.186052i
\(196\) 0 0
\(197\) −11.5000 + 19.9186i −0.819341 + 1.41914i 0.0868274 + 0.996223i \(0.472327\pi\)
−0.906168 + 0.422917i \(0.861006\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) 0 0
\(201\) 9.00000 0.634811
\(202\) 0 0
\(203\) 22.5000 + 7.79423i 1.57919 + 0.547048i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) 0 0
\(213\) −0.500000 0.866025i −0.0342594 0.0593391i
\(214\) 0 0
\(215\) 9.00000 0.613795
\(216\) 0 0
\(217\) 2.00000 1.73205i 0.135769 0.117579i
\(218\) 0 0
\(219\) 5.50000 + 9.52628i 0.371656 + 0.643726i
\(220\) 0 0
\(221\) −7.00000 1.73205i −0.470871 0.116510i
\(222\) 0 0
\(223\) −10.5000 + 18.1865i −0.703132 + 1.21786i 0.264229 + 0.964460i \(0.414882\pi\)
−0.967361 + 0.253401i \(0.918451\pi\)
\(224\) 0 0
\(225\) 4.00000 + 6.92820i 0.266667 + 0.461880i
\(226\) 0 0
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 0.500000 + 2.59808i 0.0328976 + 0.170941i
\(232\) 0 0
\(233\) −1.50000 + 2.59808i −0.0982683 + 0.170206i −0.910968 0.412477i \(-0.864664\pi\)
0.812700 + 0.582683i \(0.197997\pi\)
\(234\) 0 0
\(235\) −16.5000 28.5788i −1.07634 1.86428i
\(236\) 0 0
\(237\) −4.50000 + 7.79423i −0.292306 + 0.506290i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i \(-0.728952\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 3.00000 20.7846i 0.191663 1.32788i
\(246\) 0 0
\(247\) 3.00000 + 10.3923i 0.190885 + 0.661247i
\(248\) 0 0
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) −1.50000 2.59808i −0.0946792 0.163989i 0.814795 0.579748i \(-0.196849\pi\)
−0.909475 + 0.415759i \(0.863516\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.00000 5.19615i −0.187867 0.325396i
\(256\) 0 0
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 0 0
\(259\) 20.0000 17.3205i 1.24274 1.07624i
\(260\) 0 0
\(261\) −9.00000 + 15.5885i −0.557086 + 0.964901i
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −5.00000 8.66025i −0.305995 0.529999i
\(268\) 0 0
\(269\) −5.00000 + 8.66025i −0.304855 + 0.528025i −0.977229 0.212187i \(-0.931941\pi\)
0.672374 + 0.740212i \(0.265275\pi\)
\(270\) 0 0
\(271\) −12.0000 20.7846i −0.728948 1.26258i −0.957328 0.289003i \(-0.906676\pi\)
0.228380 0.973572i \(-0.426657\pi\)
\(272\) 0 0
\(273\) −8.50000 + 4.33013i −0.514443 + 0.262071i
\(274\) 0 0
\(275\) 2.00000 + 3.46410i 0.120605 + 0.208893i
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) 0 0
\(279\) 1.00000 + 1.73205i 0.0598684 + 0.103695i
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 27.0000 1.60498 0.802492 0.596663i \(-0.203507\pi\)
0.802492 + 0.596663i \(0.203507\pi\)
\(284\) 0 0
\(285\) −4.50000 + 7.79423i −0.266557 + 0.461690i
\(286\) 0 0
\(287\) −7.50000 2.59808i −0.442711 0.153360i
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) −6.50000 11.2583i −0.381037 0.659975i
\(292\) 0 0
\(293\) −9.50000 16.4545i −0.554996 0.961281i −0.997904 0.0647140i \(-0.979386\pi\)
0.442908 0.896567i \(-0.353947\pi\)
\(294\) 0 0
\(295\) −18.0000 31.1769i −1.04800 1.81519i
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.00000 5.19615i 0.345834 0.299501i
\(302\) 0 0
\(303\) −11.0000 −0.631933
\(304\) 0 0
\(305\) 7.50000 12.9904i 0.429449 0.743827i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 3.50000 6.06218i 0.199108 0.344865i
\(310\) 0 0
\(311\) −2.50000 4.33013i −0.141762 0.245539i 0.786398 0.617720i \(-0.211943\pi\)
−0.928160 + 0.372181i \(0.878610\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) 0 0
\(315\) 15.0000 + 5.19615i 0.845154 + 0.292770i
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.0280828 0.0486408i −0.851642 0.524123i \(-0.824393\pi\)
0.879725 + 0.475482i \(0.157726\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) 0 0
\(321\) −8.00000 13.8564i −0.446516 0.773389i
\(322\) 0 0
\(323\) −3.00000 + 5.19615i −0.166924 + 0.289122i
\(324\) 0 0
\(325\) −10.0000 + 10.3923i −0.554700 + 0.576461i
\(326\) 0 0
\(327\) 7.50000 + 12.9904i 0.414751 + 0.718370i
\(328\) 0 0
\(329\) −27.5000 9.52628i −1.51612 0.525201i
\(330\) 0 0
\(331\) −23.0000 −1.26419 −0.632097 0.774889i \(-0.717806\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(332\) 0 0
\(333\) 10.0000 + 17.3205i 0.547997 + 0.949158i
\(334\) 0 0
\(335\) 13.5000 23.3827i 0.737584 1.27753i
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −0.500000 0.866025i −0.0271563 0.0470360i
\(340\) 0 0
\(341\) 0.500000 + 0.866025i 0.0270765 + 0.0468979i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 + 13.8564i −0.429463 + 0.743851i −0.996826 0.0796169i \(-0.974630\pi\)
0.567363 + 0.823468i \(0.307964\pi\)
\(348\) 0 0
\(349\) 12.5000 21.6506i 0.669110 1.15893i −0.309044 0.951048i \(-0.600009\pi\)
0.978153 0.207884i \(-0.0666577\pi\)
\(350\) 0 0
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 0 0
\(353\) 15.0000 0.798369 0.399185 0.916871i \(-0.369293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 0 0
\(357\) −5.00000 1.73205i −0.264628 0.0916698i
\(358\) 0 0
\(359\) 14.5000 25.1147i 0.765281 1.32551i −0.174817 0.984601i \(-0.555933\pi\)
0.940098 0.340904i \(-0.110733\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) −29.0000 −1.51379 −0.756894 0.653538i \(-0.773284\pi\)
−0.756894 + 0.653538i \(0.773284\pi\)
\(368\) 0 0
\(369\) 3.00000 5.19615i 0.156174 0.270501i
\(370\) 0 0
\(371\) 6.00000 5.19615i 0.311504 0.269771i
\(372\) 0 0
\(373\) −17.0000 −0.880227 −0.440113 0.897942i \(-0.645062\pi\)
−0.440113 + 0.897942i \(0.645062\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) −31.5000 7.79423i −1.62233 0.401423i
\(378\) 0 0
\(379\) 5.50000 9.52628i 0.282516 0.489332i −0.689488 0.724297i \(-0.742164\pi\)
0.972004 + 0.234965i \(0.0754976\pi\)
\(380\) 0 0
\(381\) −3.50000 + 6.06218i −0.179310 + 0.310575i
\(382\) 0 0
\(383\) 17.0000 0.868659 0.434330 0.900754i \(-0.356985\pi\)
0.434330 + 0.900754i \(0.356985\pi\)
\(384\) 0 0
\(385\) 7.50000 + 2.59808i 0.382235 + 0.132410i
\(386\) 0 0
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) 0 0
\(389\) 4.50000 + 7.79423i 0.228159 + 0.395183i 0.957263 0.289220i \(-0.0933960\pi\)
−0.729103 + 0.684403i \(0.760063\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.50000 + 14.7224i −0.428768 + 0.742648i
\(394\) 0 0
\(395\) 13.5000 + 23.3827i 0.679259 + 1.17651i
\(396\) 0 0
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) 0 0
\(399\) 1.50000 + 7.79423i 0.0750939 + 0.390199i
\(400\) 0 0
\(401\) 5.00000 + 8.66025i 0.249688 + 0.432472i 0.963439 0.267927i \(-0.0863386\pi\)
−0.713751 + 0.700399i \(0.753005\pi\)
\(402\) 0 0
\(403\) −2.50000 + 2.59808i −0.124534 + 0.129419i
\(404\) 0 0
\(405\) −1.50000 + 2.59808i −0.0745356 + 0.129099i
\(406\) 0 0
\(407\) 5.00000 + 8.66025i 0.247841 + 0.429273i
\(408\) 0 0
\(409\) −11.0000 + 19.0526i −0.543915 + 0.942088i 0.454759 + 0.890614i \(0.349725\pi\)
−0.998674 + 0.0514740i \(0.983608\pi\)
\(410\) 0 0
\(411\) −3.00000 + 5.19615i −0.147979 + 0.256307i
\(412\) 0 0
\(413\) −30.0000 10.3923i −1.47620 0.511372i
\(414\) 0 0
\(415\) 12.0000 20.7846i 0.589057 1.02028i
\(416\) 0 0
\(417\) 1.50000 + 2.59808i 0.0734553 + 0.127228i
\(418\) 0 0
\(419\) −14.5000 + 25.1147i −0.708371 + 1.22694i 0.257090 + 0.966388i \(0.417236\pi\)
−0.965461 + 0.260548i \(0.916097\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 11.0000 19.0526i 0.534838 0.926367i
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) −2.50000 12.9904i −0.120983 0.628649i
\(428\) 0 0
\(429\) −1.00000 3.46410i −0.0482805 0.167248i
\(430\) 0 0
\(431\) 19.0000 0.915198 0.457599 0.889159i \(-0.348710\pi\)
0.457599 + 0.889159i \(0.348710\pi\)
\(432\) 0 0
\(433\) 14.5000 + 25.1147i 0.696826 + 1.20694i 0.969561 + 0.244848i \(0.0787382\pi\)
−0.272736 + 0.962089i \(0.587929\pi\)
\(434\) 0 0
\(435\) −13.5000 23.3827i −0.647275 1.12111i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) 0 0
\(441\) 13.0000 5.19615i 0.619048 0.247436i
\(442\) 0 0
\(443\) 16.5000 28.5788i 0.783939 1.35782i −0.145692 0.989330i \(-0.546541\pi\)
0.929631 0.368492i \(-0.120126\pi\)
\(444\) 0 0
\(445\) −30.0000 −1.42214
\(446\) 0 0
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) 0.500000 + 0.866025i 0.0235965 + 0.0408703i 0.877583 0.479426i \(-0.159155\pi\)
−0.853986 + 0.520296i \(0.825822\pi\)
\(450\) 0 0
\(451\) 1.50000 2.59808i 0.0706322 0.122339i
\(452\) 0 0
\(453\) 0.500000 + 0.866025i 0.0234920 + 0.0406894i
\(454\) 0 0
\(455\) −1.50000 + 28.5788i −0.0703211 + 1.33980i
\(456\) 0 0
\(457\) 1.00000 + 1.73205i 0.0467780 + 0.0810219i 0.888466 0.458942i \(-0.151771\pi\)
−0.841688 + 0.539964i \(0.818438\pi\)
\(458\) 0 0
\(459\) 5.00000 8.66025i 0.233380 0.404226i
\(460\) 0 0
\(461\) −17.5000 30.3109i −0.815056 1.41172i −0.909288 0.416169i \(-0.863373\pi\)
0.0942312 0.995550i \(-0.469961\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) −3.00000 −0.139122
\(466\) 0 0
\(467\) −13.5000 + 23.3827i −0.624705 + 1.08202i 0.363892 + 0.931441i \(0.381448\pi\)
−0.988598 + 0.150581i \(0.951886\pi\)
\(468\) 0 0
\(469\) −4.50000 23.3827i −0.207791 1.07971i
\(470\) 0 0
\(471\) −2.50000 4.33013i −0.115194 0.199522i
\(472\) 0 0
\(473\) 1.50000 + 2.59808i 0.0689701 + 0.119460i
\(474\) 0 0
\(475\) 6.00000 + 10.3923i 0.275299 + 0.476832i
\(476\) 0 0
\(477\) 3.00000 + 5.19615i 0.137361 + 0.237915i
\(478\) 0 0
\(479\) −25.0000 −1.14228 −0.571140 0.820853i \(-0.693499\pi\)
−0.571140 + 0.820853i \(0.693499\pi\)
\(480\) 0 0
\(481\) −25.0000 + 25.9808i −1.13990 + 1.18462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −39.0000 −1.77090
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) 0 0
\(489\) −21.0000 −0.949653
\(490\) 0 0
\(491\) 17.5000 30.3109i 0.789764 1.36791i −0.136347 0.990661i \(-0.543536\pi\)
0.926111 0.377250i \(-0.123130\pi\)
\(492\) 0 0
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) 0 0
\(495\) −3.00000 + 5.19615i −0.134840 + 0.233550i
\(496\) 0 0
\(497\) −2.00000 + 1.73205i −0.0897123 + 0.0776931i
\(498\) 0 0
\(499\) −21.5000 + 37.2391i −0.962472 + 1.66705i −0.246214 + 0.969216i \(0.579187\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 4.50000 7.79423i 0.201045 0.348220i
\(502\) 0 0
\(503\) −5.50000 9.52628i −0.245233 0.424756i 0.716964 0.697110i \(-0.245531\pi\)
−0.962197 + 0.272354i \(0.912198\pi\)
\(504\) 0 0
\(505\) −16.5000 + 28.5788i −0.734240 + 1.27174i
\(506\) 0 0
\(507\) 11.0000 6.92820i 0.488527 0.307692i
\(508\) 0 0
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) 22.0000 19.0526i 0.973223 0.842836i
\(512\) 0 0
\(513\) −15.0000 −0.662266
\(514\) 0 0
\(515\) −10.5000 18.1865i −0.462685 0.801394i
\(516\) 0 0
\(517\) 5.50000 9.52628i 0.241890 0.418965i
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) 8.50000 + 14.7224i 0.372392 + 0.645001i 0.989933 0.141537i \(-0.0452044\pi\)
−0.617541 + 0.786539i \(0.711871\pi\)
\(522\) 0 0
\(523\) −14.0000 24.2487i −0.612177 1.06032i −0.990873 0.134801i \(-0.956961\pi\)
0.378695 0.925521i \(-0.376373\pi\)
\(524\) 0 0
\(525\) −8.00000 + 6.92820i −0.349149 + 0.302372i
\(526\) 0 0
\(527\) −2.00000 −0.0871214
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 12.0000 20.7846i 0.520756 0.901975i
\(532\) 0 0
\(533\) 10.5000 + 2.59808i 0.454805 + 0.112535i
\(534\) 0 0
\(535\) −48.0000 −2.07522
\(536\) 0 0
\(537\) 21.0000 0.906217
\(538\) 0 0
\(539\) 6.50000 2.59808i 0.279975 0.111907i
\(540\) 0 0
\(541\) 18.5000 32.0429i 0.795377 1.37763i −0.127222 0.991874i \(-0.540606\pi\)
0.922599 0.385759i \(-0.126061\pi\)
\(542\) 0 0
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) 45.0000 1.92759
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) −13.5000 + 23.3827i −0.575119 + 0.996136i
\(552\) 0 0
\(553\) 22.5000 + 7.79423i 0.956797 + 0.331444i
\(554\) 0 0
\(555\) −30.0000 −1.27343
\(556\) 0 0
\(557\) 27.0000 1.14403 0.572013 0.820244i \(-0.306163\pi\)
0.572013 + 0.820244i \(0.306163\pi\)
\(558\) 0 0
\(559\) −7.50000 + 7.79423i −0.317216 + 0.329661i
\(560\) 0 0
\(561\) 1.00000 1.73205i 0.0422200 0.0731272i
\(562\) 0 0
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 0 0
\(565\) −3.00000 −0.126211
\(566\) 0 0
\(567\) 0.500000 + 2.59808i 0.0209980 + 0.109109i
\(568\) 0 0
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) 7.50000 + 12.9904i 0.313865 + 0.543631i 0.979196 0.202919i \(-0.0650427\pi\)
−0.665330 + 0.746549i \(0.731709\pi\)
\(572\) 0 0
\(573\) 3.00000 0.125327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.5000 19.9186i −0.478751 0.829222i 0.520952 0.853586i \(-0.325577\pi\)
−0.999703 + 0.0243645i \(0.992244\pi\)
\(578\) 0 0
\(579\) 17.0000 0.706496
\(580\) 0 0
\(581\) −4.00000 20.7846i −0.165948 0.862291i
\(582\) 0 0
\(583\) 1.50000 + 2.59808i 0.0621237 + 0.107601i
\(584\) 0 0
\(585\) −21.0000 5.19615i −0.868243 0.214834i
\(586\) 0 0
\(587\) −22.5000 + 38.9711i −0.928674 + 1.60851i −0.143132 + 0.989704i \(0.545717\pi\)
−0.785543 + 0.618808i \(0.787616\pi\)
\(588\) 0 0
\(589\) 1.50000 + 2.59808i 0.0618064 + 0.107052i
\(590\) 0 0
\(591\) 11.5000 19.9186i 0.473047 0.819341i
\(592\) 0 0
\(593\) 10.5000 18.1865i 0.431183 0.746831i −0.565792 0.824548i \(-0.691430\pi\)
0.996976 + 0.0777165i \(0.0247629\pi\)
\(594\) 0 0
\(595\) −12.0000 + 10.3923i −0.491952 + 0.426043i
\(596\) 0 0
\(597\) −2.00000 + 3.46410i −0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −2.50000 4.33013i −0.102147 0.176924i 0.810422 0.585847i \(-0.199238\pi\)
−0.912569 + 0.408923i \(0.865905\pi\)
\(600\) 0 0
\(601\) 2.50000 4.33013i 0.101977 0.176630i −0.810522 0.585708i \(-0.800816\pi\)
0.912499 + 0.409079i \(0.134150\pi\)
\(602\) 0 0
\(603\) 18.0000 0.733017
\(604\) 0 0
\(605\) 15.0000 25.9808i 0.609837 1.05627i
\(606\) 0 0
\(607\) −15.0000 −0.608831 −0.304416 0.952539i \(-0.598461\pi\)
−0.304416 + 0.952539i \(0.598461\pi\)
\(608\) 0 0
\(609\) −22.5000 7.79423i −0.911746 0.315838i
\(610\) 0 0
\(611\) 38.5000 + 9.52628i 1.55754 + 0.385392i
\(612\) 0 0
\(613\) 47.0000 1.89831 0.949156 0.314806i \(-0.101939\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 0 0
\(615\) 4.50000 + 7.79423i 0.181458 + 0.314294i
\(616\) 0 0
\(617\) 16.5000 + 28.5788i 0.664265 + 1.15054i 0.979484 + 0.201522i \(0.0645887\pi\)
−0.315219 + 0.949019i \(0.602078\pi\)
\(618\) 0 0
\(619\) 3.50000 + 6.06218i 0.140677 + 0.243659i 0.927752 0.373198i \(-0.121739\pi\)
−0.787075 + 0.616858i \(0.788405\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.0000 + 17.3205i −0.801283 + 0.693932i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) −3.00000 −0.119808
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −21.5000 37.2391i −0.855901 1.48246i −0.875806 0.482663i \(-0.839670\pi\)
0.0199047 0.999802i \(-0.493664\pi\)
\(632\) 0 0
\(633\) 2.50000 4.33013i 0.0993661 0.172107i
\(634\) 0 0
\(635\) 10.5000 + 18.1865i 0.416680 + 0.721711i
\(636\) 0 0
\(637\) 15.5000 + 19.9186i 0.614132 + 0.789203i
\(638\) 0 0
\(639\) −1.00000 1.73205i −0.0395594 0.0685189i
\(640\) 0 0
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) 0 0
\(643\) 20.5000 + 35.5070i 0.808441 + 1.40026i 0.913943 + 0.405842i \(0.133022\pi\)
−0.105502 + 0.994419i \(0.533645\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) 3.00000 0.117942 0.0589711 0.998260i \(-0.481218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(648\) 0 0
\(649\) 6.00000 10.3923i 0.235521 0.407934i
\(650\) 0 0
\(651\) −2.00000 + 1.73205i −0.0783862 + 0.0678844i
\(652\) 0 0
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 0 0
\(655\) 25.5000 + 44.1673i 0.996367 + 1.72576i
\(656\) 0 0
\(657\) 11.0000 + 19.0526i 0.429151 + 0.743311i
\(658\) 0 0
\(659\) 0.500000 + 0.866025i 0.0194772 + 0.0337356i 0.875600 0.483037i \(-0.160466\pi\)
−0.856123 + 0.516773i \(0.827133\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) 0 0
\(663\) 7.00000 + 1.73205i 0.271857 + 0.0672673i
\(664\) 0 0
\(665\) 22.5000 + 7.79423i 0.872513 + 0.302247i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 10.5000 18.1865i 0.405953 0.703132i
\(670\) 0 0
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) −11.5000 + 19.9186i −0.443292 + 0.767805i −0.997932 0.0642860i \(-0.979523\pi\)
0.554639 + 0.832091i \(0.312856\pi\)
\(674\) 0 0
\(675\) −10.0000 17.3205i −0.384900 0.666667i
\(676\) 0 0
\(677\) 24.5000 42.4352i 0.941611 1.63092i 0.179214 0.983810i \(-0.442645\pi\)
0.762398 0.647109i \(-0.224022\pi\)
\(678\) 0 0
\(679\) −26.0000 + 22.5167i −0.997788 + 0.864110i
\(680\) 0 0
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) 0 0
\(683\) −22.0000 + 38.1051i −0.841807 + 1.45805i 0.0465592 + 0.998916i \(0.485174\pi\)
−0.888366 + 0.459136i \(0.848159\pi\)
\(684\) 0 0
\(685\) 9.00000 + 15.5885i 0.343872 + 0.595604i
\(686\) 0 0
\(687\) −6.50000 + 11.2583i −0.247990 + 0.429532i
\(688\) 0 0
\(689\) −7.50000 + 7.79423i −0.285727 + 0.296936i
\(690\) 0 0
\(691\) −6.00000 10.3923i −0.228251 0.395342i 0.729039 0.684472i \(-0.239967\pi\)
−0.957290 + 0.289130i \(0.906634\pi\)
\(692\) 0 0
\(693\) 1.00000 + 5.19615i 0.0379869 + 0.197386i
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) 3.00000 + 5.19615i 0.113633 + 0.196818i
\(698\) 0 0
\(699\) 1.50000 2.59808i 0.0567352 0.0982683i
\(700\) 0 0
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) 0 0
\(703\) 15.0000 + 25.9808i 0.565736 + 0.979883i
\(704\) 0 0
\(705\) 16.5000 + 28.5788i 0.621426 + 1.07634i
\(706\) 0 0
\(707\) 5.50000 + 28.5788i 0.206849 + 1.07482i
\(708\) 0 0
\(709\) 27.0000 1.01401 0.507003 0.861944i \(-0.330753\pi\)
0.507003 + 0.861944i \(0.330753\pi\)
\(710\) 0 0
\(711\) −9.00000 + 15.5885i −0.337526 + 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −10.5000 2.59808i −0.392678 0.0971625i
\(716\) 0 0
\(717\) −12.0000 −0.448148
\(718\) 0 0
\(719\) −3.00000 −0.111881 −0.0559406 0.998434i \(-0.517816\pi\)
−0.0559406 + 0.998434i \(0.517816\pi\)
\(720\) 0 0
\(721\) −17.5000 6.06218i −0.651734 0.225767i
\(722\) 0 0
\(723\) −5.00000 + 8.66025i −0.185952 + 0.322078i
\(724\) 0 0
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 0.500000 0.866025i 0.0184679 0.0319874i −0.856644 0.515908i \(-0.827454\pi\)
0.875112 + 0.483921i \(0.160788\pi\)
\(734\) 0 0
\(735\) −3.00000 + 20.7846i −0.110657 + 0.766652i
\(736\) 0 0
\(737\) 9.00000 0.331519
\(738\) 0 0
\(739\) 19.0000 0.698926 0.349463 0.936950i \(-0.386364\pi\)
0.349463 + 0.936950i \(0.386364\pi\)
\(740\) 0 0
\(741\) −3.00000 10.3923i −0.110208 0.381771i
\(742\) 0 0
\(743\) −16.5000 + 28.5788i −0.605326 + 1.04846i 0.386674 + 0.922217i \(0.373624\pi\)
−0.992000 + 0.126239i \(0.959709\pi\)
\(744\) 0 0
\(745\) 13.5000 23.3827i 0.494602 0.856675i
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) −32.0000 + 27.7128i −1.16925 + 1.01260i
\(750\) 0 0
\(751\) 18.0000 + 31.1769i 0.656829 + 1.13766i 0.981432 + 0.191811i \(0.0614361\pi\)
−0.324603 + 0.945851i \(0.605231\pi\)
\(752\) 0 0
\(753\) 1.50000 + 2.59808i 0.0546630 + 0.0946792i
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) 2.50000 4.33013i 0.0908640 0.157381i −0.817011 0.576622i \(-0.804370\pi\)
0.907875 + 0.419241i \(0.137704\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.0000 −0.906249 −0.453125 0.891447i \(-0.649691\pi\)
−0.453125 + 0.891447i \(0.649691\pi\)
\(762\) 0 0
\(763\) 30.0000 25.9808i 1.08607 0.940567i
\(764\) 0 0
\(765\) −6.00000 10.3923i −0.216930 0.375735i
\(766\) 0 0
\(767\) 42.0000 + 10.3923i 1.51653 + 0.375244i
\(768\) 0 0
\(769\) 10.5000 18.1865i 0.378640 0.655823i −0.612225 0.790684i \(-0.709725\pi\)
0.990865 + 0.134860i \(0.0430586\pi\)
\(770\) 0 0
\(771\) 3.00000 + 5.19615i 0.108042 + 0.187135i
\(772\) 0 0
\(773\) 7.00000 12.1244i 0.251773 0.436083i −0.712241 0.701935i \(-0.752320\pi\)
0.964014 + 0.265852i \(0.0856532\pi\)
\(774\) 0 0
\(775\) −2.00000 + 3.46410i −0.0718421 + 0.124434i
\(776\) 0 0
\(777\) −20.0000 + 17.3205i −0.717496 + 0.621370i
\(778\) 0 0
\(779\) 4.50000 7.79423i 0.161229 0.279257i
\(780\) 0 0
\(781\) −0.500000 0.866025i −0.0178914 0.0309888i
\(782\) 0 0
\(783\) 22.5000 38.9711i 0.804084 1.39272i
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 0 0
\(789\) 9.00000 0.320408