Properties

Label 728.2.t.a.81.1
Level $728$
Weight $2$
Character 728.81
Analytic conductor $5.813$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(9,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.t (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 728.81
Dual form 728.2.t.a.9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +(-1.50000 - 2.59808i) q^{5} +(0.500000 - 2.59808i) q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +(-1.50000 - 2.59808i) q^{5} +(0.500000 - 2.59808i) q^{7} -2.00000 q^{9} -1.00000 q^{11} +(-1.00000 + 3.46410i) q^{13} +(1.50000 + 2.59808i) q^{15} +(1.00000 + 1.73205i) q^{17} -3.00000 q^{19} +(-0.500000 + 2.59808i) q^{21} +(-2.00000 + 3.46410i) q^{25} +5.00000 q^{27} +(4.50000 + 7.79423i) q^{29} +(-0.500000 + 0.866025i) q^{31} +1.00000 q^{33} +(-7.50000 + 2.59808i) q^{35} +(-5.00000 + 8.66025i) q^{37} +(1.00000 - 3.46410i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(-1.50000 + 2.59808i) q^{43} +(3.00000 + 5.19615i) q^{45} +(-5.50000 - 9.52628i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(-1.00000 - 1.73205i) q^{51} +(-1.50000 + 2.59808i) q^{53} +(1.50000 + 2.59808i) q^{55} +3.00000 q^{57} +(-6.00000 - 10.3923i) q^{59} -5.00000 q^{61} +(-1.00000 + 5.19615i) q^{63} +(10.5000 - 2.59808i) q^{65} -9.00000 q^{67} +(0.500000 - 0.866025i) q^{71} +(-5.50000 + 9.52628i) q^{73} +(2.00000 - 3.46410i) q^{75} +(-0.500000 + 2.59808i) q^{77} +(4.50000 + 7.79423i) q^{79} +1.00000 q^{81} -8.00000 q^{83} +(3.00000 - 5.19615i) q^{85} +(-4.50000 - 7.79423i) q^{87} +(5.00000 - 8.66025i) q^{89} +(8.50000 + 4.33013i) q^{91} +(0.500000 - 0.866025i) q^{93} +(4.50000 + 7.79423i) q^{95} +(6.50000 - 11.2583i) q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 3 q^{5} + q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 3 q^{5} + q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} + 3 q^{15} + 2 q^{17} - 6 q^{19} - q^{21} - 4 q^{25} + 10 q^{27} + 9 q^{29} - q^{31} + 2 q^{33} - 15 q^{35} - 10 q^{37} + 2 q^{39} - 3 q^{41} - 3 q^{43} + 6 q^{45} - 11 q^{47} - 13 q^{49} - 2 q^{51} - 3 q^{53} + 3 q^{55} + 6 q^{57} - 12 q^{59} - 10 q^{61} - 2 q^{63} + 21 q^{65} - 18 q^{67} + q^{71} - 11 q^{73} + 4 q^{75} - q^{77} + 9 q^{79} + 2 q^{81} - 16 q^{83} + 6 q^{85} - 9 q^{87} + 10 q^{89} + 17 q^{91} + q^{93} + 9 q^{95} + 13 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951757i \(-0.400725\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 1.50000 + 2.59808i 0.387298 + 0.670820i
\(16\) 0 0
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) 0 0
\(21\) −0.500000 + 2.59808i −0.109109 + 0.566947i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 4.50000 + 7.79423i 0.835629 + 1.44735i 0.893517 + 0.449029i \(0.148230\pi\)
−0.0578882 + 0.998323i \(0.518437\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −7.50000 + 2.59808i −1.26773 + 0.439155i
\(36\) 0 0
\(37\) −5.00000 + 8.66025i −0.821995 + 1.42374i 0.0821995 + 0.996616i \(0.473806\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 1.00000 3.46410i 0.160128 0.554700i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −1.50000 + 2.59808i −0.228748 + 0.396203i −0.957437 0.288641i \(-0.906796\pi\)
0.728689 + 0.684844i \(0.240130\pi\)
\(44\) 0 0
\(45\) 3.00000 + 5.19615i 0.447214 + 0.774597i
\(46\) 0 0
\(47\) −5.50000 9.52628i −0.802257 1.38955i −0.918127 0.396286i \(-0.870299\pi\)
0.115870 0.993264i \(-0.463035\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) −1.00000 1.73205i −0.140028 0.242536i
\(52\) 0 0
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) 1.50000 + 2.59808i 0.202260 + 0.350325i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) −6.00000 10.3923i −0.781133 1.35296i −0.931282 0.364299i \(-0.881308\pi\)
0.150148 0.988663i \(-0.452025\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) −1.00000 + 5.19615i −0.125988 + 0.654654i
\(64\) 0 0
\(65\) 10.5000 2.59808i 1.30236 0.322252i
\(66\) 0 0
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.500000 0.866025i 0.0593391 0.102778i −0.834830 0.550508i \(-0.814434\pi\)
0.894169 + 0.447730i \(0.147767\pi\)
\(72\) 0 0
\(73\) −5.50000 + 9.52628i −0.643726 + 1.11497i 0.340868 + 0.940111i \(0.389279\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 2.00000 3.46410i 0.230940 0.400000i
\(76\) 0 0
\(77\) −0.500000 + 2.59808i −0.0569803 + 0.296078i
\(78\) 0 0
\(79\) 4.50000 + 7.79423i 0.506290 + 0.876919i 0.999974 + 0.00727784i \(0.00231663\pi\)
−0.493684 + 0.869641i \(0.664350\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 0 0
\(87\) −4.50000 7.79423i −0.482451 0.835629i
\(88\) 0 0
\(89\) 5.00000 8.66025i 0.529999 0.917985i −0.469389 0.882992i \(-0.655526\pi\)
0.999388 0.0349934i \(-0.0111410\pi\)
\(90\) 0 0
\(91\) 8.50000 + 4.33013i 0.891042 + 0.453921i
\(92\) 0 0
\(93\) 0.500000 0.866025i 0.0518476 0.0898027i
\(94\) 0 0
\(95\) 4.50000 + 7.79423i 0.461690 + 0.799671i
\(96\) 0 0
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 11.0000 1.09454 0.547270 0.836956i \(-0.315667\pi\)
0.547270 + 0.836956i \(0.315667\pi\)
\(102\) 0 0
\(103\) −3.50000 6.06218i −0.344865 0.597324i 0.640464 0.767988i \(-0.278742\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 7.50000 2.59808i 0.731925 0.253546i
\(106\) 0 0
\(107\) 8.00000 13.8564i 0.773389 1.33955i −0.162306 0.986740i \(-0.551893\pi\)
0.935695 0.352809i \(-0.114773\pi\)
\(108\) 0 0
\(109\) −7.50000 + 12.9904i −0.718370 + 1.24425i 0.243276 + 0.969957i \(0.421778\pi\)
−0.961645 + 0.274296i \(0.911555\pi\)
\(110\) 0 0
\(111\) 5.00000 8.66025i 0.474579 0.821995i
\(112\) 0 0
\(113\) 0.500000 0.866025i 0.0470360 0.0814688i −0.841549 0.540181i \(-0.818356\pi\)
0.888585 + 0.458712i \(0.151689\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 6.92820i 0.184900 0.640513i
\(118\) 0 0
\(119\) 5.00000 1.73205i 0.458349 0.158777i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 1.50000 + 2.59808i 0.135250 + 0.234261i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 3.50000 + 6.06218i 0.310575 + 0.537931i 0.978487 0.206309i \(-0.0661452\pi\)
−0.667912 + 0.744240i \(0.732812\pi\)
\(128\) 0 0
\(129\) 1.50000 2.59808i 0.132068 0.228748i
\(130\) 0 0
\(131\) 8.50000 + 14.7224i 0.742648 + 1.28630i 0.951285 + 0.308312i \(0.0997640\pi\)
−0.208637 + 0.977993i \(0.566903\pi\)
\(132\) 0 0
\(133\) −1.50000 + 7.79423i −0.130066 + 0.675845i
\(134\) 0 0
\(135\) −7.50000 12.9904i −0.645497 1.11803i
\(136\) 0 0
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) −1.50000 + 2.59808i −0.127228 + 0.220366i −0.922602 0.385754i \(-0.873941\pi\)
0.795373 + 0.606120i \(0.207275\pi\)
\(140\) 0 0
\(141\) 5.50000 + 9.52628i 0.463184 + 0.802257i
\(142\) 0 0
\(143\) 1.00000 3.46410i 0.0836242 0.289683i
\(144\) 0 0
\(145\) 13.5000 23.3827i 1.12111 1.94183i
\(146\) 0 0
\(147\) 6.50000 + 2.59808i 0.536111 + 0.214286i
\(148\) 0 0
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) −0.500000 + 0.866025i −0.0406894 + 0.0704761i −0.885653 0.464348i \(-0.846289\pi\)
0.844963 + 0.534824i \(0.179622\pi\)
\(152\) 0 0
\(153\) −2.00000 3.46410i −0.161690 0.280056i
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) 2.50000 4.33013i 0.199522 0.345582i −0.748852 0.662738i \(-0.769394\pi\)
0.948373 + 0.317156i \(0.102728\pi\)
\(158\) 0 0
\(159\) 1.50000 2.59808i 0.118958 0.206041i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 21.0000 1.64485 0.822423 0.568876i \(-0.192621\pi\)
0.822423 + 0.568876i \(0.192621\pi\)
\(164\) 0 0
\(165\) −1.50000 2.59808i −0.116775 0.202260i
\(166\) 0 0
\(167\) −4.50000 7.79423i −0.348220 0.603136i 0.637713 0.770274i \(-0.279881\pi\)
−0.985933 + 0.167139i \(0.946547\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 0 0
\(175\) 8.00000 + 6.92820i 0.604743 + 0.523723i
\(176\) 0 0
\(177\) 6.00000 + 10.3923i 0.450988 + 0.781133i
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) 30.0000 2.20564
\(186\) 0 0
\(187\) −1.00000 1.73205i −0.0731272 0.126660i
\(188\) 0 0
\(189\) 2.50000 12.9904i 0.181848 0.944911i
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) −17.0000 −1.22369 −0.611843 0.790979i \(-0.709572\pi\)
−0.611843 + 0.790979i \(0.709572\pi\)
\(194\) 0 0
\(195\) −10.5000 + 2.59808i −0.751921 + 0.186052i
\(196\) 0 0
\(197\) −11.5000 19.9186i −0.819341 1.41914i −0.906168 0.422917i \(-0.861006\pi\)
0.0868274 0.996223i \(-0.472327\pi\)
\(198\) 0 0
\(199\) 2.00000 + 3.46410i 0.141776 + 0.245564i 0.928166 0.372168i \(-0.121385\pi\)
−0.786389 + 0.617731i \(0.788052\pi\)
\(200\) 0 0
\(201\) 9.00000 0.634811
\(202\) 0 0
\(203\) 22.5000 7.79423i 1.57919 0.547048i
\(204\) 0 0
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 0 0
\(213\) −0.500000 + 0.866025i −0.0342594 + 0.0593391i
\(214\) 0 0
\(215\) 9.00000 0.613795
\(216\) 0 0
\(217\) 2.00000 + 1.73205i 0.135769 + 0.117579i
\(218\) 0 0
\(219\) 5.50000 9.52628i 0.371656 0.643726i
\(220\) 0 0
\(221\) −7.00000 + 1.73205i −0.470871 + 0.116510i
\(222\) 0 0
\(223\) −10.5000 18.1865i −0.703132 1.21786i −0.967361 0.253401i \(-0.918451\pi\)
0.264229 0.964460i \(-0.414882\pi\)
\(224\) 0 0
\(225\) 4.00000 6.92820i 0.266667 0.461880i
\(226\) 0 0
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) 0 0
\(229\) 6.50000 + 11.2583i 0.429532 + 0.743971i 0.996832 0.0795401i \(-0.0253452\pi\)
−0.567300 + 0.823511i \(0.692012\pi\)
\(230\) 0 0
\(231\) 0.500000 2.59808i 0.0328976 0.170941i
\(232\) 0 0
\(233\) −1.50000 2.59808i −0.0982683 0.170206i 0.812700 0.582683i \(-0.197997\pi\)
−0.910968 + 0.412477i \(0.864664\pi\)
\(234\) 0 0
\(235\) −16.5000 + 28.5788i −1.07634 + 1.86428i
\(236\) 0 0
\(237\) −4.50000 7.79423i −0.292306 0.506290i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 5.00000 + 8.66025i 0.322078 + 0.557856i 0.980917 0.194429i \(-0.0622852\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 3.00000 + 20.7846i 0.191663 + 1.32788i
\(246\) 0 0
\(247\) 3.00000 10.3923i 0.190885 0.661247i
\(248\) 0 0
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) −1.50000 + 2.59808i −0.0946792 + 0.163989i −0.909475 0.415759i \(-0.863516\pi\)
0.814795 + 0.579748i \(0.196849\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.00000 + 5.19615i −0.187867 + 0.325396i
\(256\) 0 0
\(257\) −3.00000 + 5.19615i −0.187135 + 0.324127i −0.944294 0.329104i \(-0.893253\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(258\) 0 0
\(259\) 20.0000 + 17.3205i 1.24274 + 1.07624i
\(260\) 0 0
\(261\) −9.00000 15.5885i −0.557086 0.964901i
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −5.00000 + 8.66025i −0.305995 + 0.529999i
\(268\) 0 0
\(269\) −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i \(-0.265275\pi\)
−0.977229 + 0.212187i \(0.931941\pi\)
\(270\) 0 0
\(271\) −12.0000 + 20.7846i −0.728948 + 1.26258i 0.228380 + 0.973572i \(0.426657\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(272\) 0 0
\(273\) −8.50000 4.33013i −0.514443 0.262071i
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 0 0
\(279\) 1.00000 1.73205i 0.0598684 0.103695i
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 27.0000 1.60498 0.802492 0.596663i \(-0.203507\pi\)
0.802492 + 0.596663i \(0.203507\pi\)
\(284\) 0 0
\(285\) −4.50000 7.79423i −0.266557 0.461690i
\(286\) 0 0
\(287\) −7.50000 + 2.59808i −0.442711 + 0.153360i
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) −6.50000 + 11.2583i −0.381037 + 0.659975i
\(292\) 0 0
\(293\) −9.50000 + 16.4545i −0.554996 + 0.961281i 0.442908 + 0.896567i \(0.353947\pi\)
−0.997904 + 0.0647140i \(0.979386\pi\)
\(294\) 0 0
\(295\) −18.0000 + 31.1769i −1.04800 + 1.81519i
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 6.00000 + 5.19615i 0.345834 + 0.299501i
\(302\) 0 0
\(303\) −11.0000 −0.631933
\(304\) 0 0
\(305\) 7.50000 + 12.9904i 0.429449 + 0.743827i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 3.50000 + 6.06218i 0.199108 + 0.344865i
\(310\) 0 0
\(311\) −2.50000 + 4.33013i −0.141762 + 0.245539i −0.928160 0.372181i \(-0.878610\pi\)
0.786398 + 0.617720i \(0.211943\pi\)
\(312\) 0 0
\(313\) −5.50000 9.52628i −0.310878 0.538457i 0.667674 0.744453i \(-0.267290\pi\)
−0.978553 + 0.205996i \(0.933957\pi\)
\(314\) 0 0
\(315\) 15.0000 5.19615i 0.845154 0.292770i
\(316\) 0 0
\(317\) 0.500000 + 0.866025i 0.0280828 + 0.0486408i 0.879725 0.475482i \(-0.157726\pi\)
−0.851642 + 0.524123i \(0.824393\pi\)
\(318\) 0 0
\(319\) −4.50000 7.79423i −0.251952 0.436393i
\(320\) 0 0
\(321\) −8.00000 + 13.8564i −0.446516 + 0.773389i
\(322\) 0 0
\(323\) −3.00000 5.19615i −0.166924 0.289122i
\(324\) 0 0
\(325\) −10.0000 10.3923i −0.554700 0.576461i
\(326\) 0 0
\(327\) 7.50000 12.9904i 0.414751 0.718370i
\(328\) 0 0
\(329\) −27.5000 + 9.52628i −1.51612 + 0.525201i
\(330\) 0 0
\(331\) −23.0000 −1.26419 −0.632097 0.774889i \(-0.717806\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(332\) 0 0
\(333\) 10.0000 17.3205i 0.547997 0.949158i
\(334\) 0 0
\(335\) 13.5000 + 23.3827i 0.737584 + 1.27753i
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −0.500000 + 0.866025i −0.0271563 + 0.0470360i
\(340\) 0 0
\(341\) 0.500000 0.866025i 0.0270765 0.0468979i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) 12.5000 + 21.6506i 0.669110 + 1.15893i 0.978153 + 0.207884i \(0.0666577\pi\)
−0.309044 + 0.951048i \(0.600009\pi\)
\(350\) 0 0
\(351\) −5.00000 + 17.3205i −0.266880 + 0.924500i
\(352\) 0 0
\(353\) 15.0000 0.798369 0.399185 0.916871i \(-0.369293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 0 0
\(357\) −5.00000 + 1.73205i −0.264628 + 0.0916698i
\(358\) 0 0
\(359\) 14.5000 + 25.1147i 0.765281 + 1.32551i 0.940098 + 0.340904i \(0.110733\pi\)
−0.174817 + 0.984601i \(0.555933\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) −29.0000 −1.51379 −0.756894 0.653538i \(-0.773284\pi\)
−0.756894 + 0.653538i \(0.773284\pi\)
\(368\) 0 0
\(369\) 3.00000 + 5.19615i 0.156174 + 0.270501i
\(370\) 0 0
\(371\) 6.00000 + 5.19615i 0.311504 + 0.269771i
\(372\) 0 0
\(373\) −17.0000 −0.880227 −0.440113 0.897942i \(-0.645062\pi\)
−0.440113 + 0.897942i \(0.645062\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) −31.5000 + 7.79423i −1.62233 + 0.401423i
\(378\) 0 0
\(379\) 5.50000 + 9.52628i 0.282516 + 0.489332i 0.972004 0.234965i \(-0.0754976\pi\)
−0.689488 + 0.724297i \(0.742164\pi\)
\(380\) 0 0
\(381\) −3.50000 6.06218i −0.179310 0.310575i
\(382\) 0 0
\(383\) 17.0000 0.868659 0.434330 0.900754i \(-0.356985\pi\)
0.434330 + 0.900754i \(0.356985\pi\)
\(384\) 0 0
\(385\) 7.50000 2.59808i 0.382235 0.132410i
\(386\) 0 0
\(387\) 3.00000 5.19615i 0.152499 0.264135i
\(388\) 0 0
\(389\) 4.50000 7.79423i 0.228159 0.395183i −0.729103 0.684403i \(-0.760063\pi\)
0.957263 + 0.289220i \(0.0933960\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.50000 14.7224i −0.428768 0.742648i
\(394\) 0 0
\(395\) 13.5000 23.3827i 0.679259 1.17651i
\(396\) 0 0
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) 0 0
\(399\) 1.50000 7.79423i 0.0750939 0.390199i
\(400\) 0 0
\(401\) 5.00000 8.66025i 0.249688 0.432472i −0.713751 0.700399i \(-0.753005\pi\)
0.963439 + 0.267927i \(0.0863386\pi\)
\(402\) 0 0
\(403\) −2.50000 2.59808i −0.124534 0.129419i
\(404\) 0 0
\(405\) −1.50000 2.59808i −0.0745356 0.129099i
\(406\) 0 0
\(407\) 5.00000 8.66025i 0.247841 0.429273i
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 0 0
\(411\) −3.00000 5.19615i −0.147979 0.256307i
\(412\) 0 0
\(413\) −30.0000 + 10.3923i −1.47620 + 0.511372i
\(414\) 0 0
\(415\) 12.0000 + 20.7846i 0.589057 + 1.02028i
\(416\) 0 0
\(417\) 1.50000 2.59808i 0.0734553 0.127228i
\(418\) 0 0
\(419\) −14.5000 25.1147i −0.708371 1.22694i −0.965461 0.260548i \(-0.916097\pi\)
0.257090 0.966388i \(-0.417236\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 11.0000 + 19.0526i 0.534838 + 0.926367i
\(424\) 0 0
\(425\) −8.00000 −0.388057
\(426\) 0 0
\(427\) −2.50000 + 12.9904i −0.120983 + 0.628649i
\(428\) 0 0
\(429\) −1.00000 + 3.46410i −0.0482805 + 0.167248i
\(430\) 0 0
\(431\) 19.0000 0.915198 0.457599 0.889159i \(-0.348710\pi\)
0.457599 + 0.889159i \(0.348710\pi\)
\(432\) 0 0
\(433\) 14.5000 25.1147i 0.696826 1.20694i −0.272736 0.962089i \(-0.587929\pi\)
0.969561 0.244848i \(-0.0787382\pi\)
\(434\) 0 0
\(435\) −13.5000 + 23.3827i −0.647275 + 1.12111i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 13.0000 + 5.19615i 0.619048 + 0.247436i
\(442\) 0 0
\(443\) 16.5000 + 28.5788i 0.783939 + 1.35782i 0.929631 + 0.368492i \(0.120126\pi\)
−0.145692 + 0.989330i \(0.546541\pi\)
\(444\) 0 0
\(445\) −30.0000 −1.42214
\(446\) 0 0
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) 0.500000 0.866025i 0.0235965 0.0408703i −0.853986 0.520296i \(-0.825822\pi\)
0.877583 + 0.479426i \(0.159155\pi\)
\(450\) 0 0
\(451\) 1.50000 + 2.59808i 0.0706322 + 0.122339i
\(452\) 0 0
\(453\) 0.500000 0.866025i 0.0234920 0.0406894i
\(454\) 0 0
\(455\) −1.50000 28.5788i −0.0703211 1.33980i
\(456\) 0 0
\(457\) 1.00000 1.73205i 0.0467780 0.0810219i −0.841688 0.539964i \(-0.818438\pi\)
0.888466 + 0.458942i \(0.151771\pi\)
\(458\) 0 0
\(459\) 5.00000 + 8.66025i 0.233380 + 0.404226i
\(460\) 0 0
\(461\) −17.5000 + 30.3109i −0.815056 + 1.41172i 0.0942312 + 0.995550i \(0.469961\pi\)
−0.909288 + 0.416169i \(0.863373\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) −3.00000 −0.139122
\(466\) 0 0
\(467\) −13.5000 23.3827i −0.624705 1.08202i −0.988598 0.150581i \(-0.951886\pi\)
0.363892 0.931441i \(-0.381448\pi\)
\(468\) 0 0
\(469\) −4.50000 + 23.3827i −0.207791 + 1.07971i
\(470\) 0 0
\(471\) −2.50000 + 4.33013i −0.115194 + 0.199522i
\(472\) 0 0
\(473\) 1.50000 2.59808i 0.0689701 0.119460i
\(474\) 0 0
\(475\) 6.00000 10.3923i 0.275299 0.476832i
\(476\) 0 0
\(477\) 3.00000 5.19615i 0.137361 0.237915i
\(478\) 0 0
\(479\) −25.0000 −1.14228 −0.571140 0.820853i \(-0.693499\pi\)
−0.571140 + 0.820853i \(0.693499\pi\)
\(480\) 0 0
\(481\) −25.0000 25.9808i −1.13990 1.18462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −39.0000 −1.77090
\(486\) 0 0
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) 0 0
\(489\) −21.0000 −0.949653
\(490\) 0 0
\(491\) 17.5000 + 30.3109i 0.789764 + 1.36791i 0.926111 + 0.377250i \(0.123130\pi\)
−0.136347 + 0.990661i \(0.543536\pi\)
\(492\) 0 0
\(493\) −9.00000 + 15.5885i −0.405340 + 0.702069i
\(494\) 0 0
\(495\) −3.00000 5.19615i −0.134840 0.233550i
\(496\) 0 0
\(497\) −2.00000 1.73205i −0.0897123 0.0776931i
\(498\) 0 0
\(499\) −21.5000 37.2391i −0.962472 1.66705i −0.716258 0.697835i \(-0.754147\pi\)
−0.246214 0.969216i \(-0.579187\pi\)
\(500\) 0 0
\(501\) 4.50000 + 7.79423i 0.201045 + 0.348220i
\(502\) 0 0
\(503\) −5.50000 + 9.52628i −0.245233 + 0.424756i −0.962197 0.272354i \(-0.912198\pi\)
0.716964 + 0.697110i \(0.245531\pi\)
\(504\) 0 0
\(505\) −16.5000 28.5788i −0.734240 1.27174i
\(506\) 0 0
\(507\) 11.0000 + 6.92820i 0.488527 + 0.307692i
\(508\) 0 0
\(509\) 17.0000 29.4449i 0.753512 1.30512i −0.192599 0.981278i \(-0.561692\pi\)
0.946111 0.323843i \(-0.104975\pi\)
\(510\) 0 0
\(511\) 22.0000 + 19.0526i 0.973223 + 0.842836i
\(512\) 0 0
\(513\) −15.0000 −0.662266
\(514\) 0 0
\(515\) −10.5000 + 18.1865i −0.462685 + 0.801394i
\(516\) 0 0
\(517\) 5.50000 + 9.52628i 0.241890 + 0.418965i
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) 8.50000 14.7224i 0.372392 0.645001i −0.617541 0.786539i \(-0.711871\pi\)
0.989933 + 0.141537i \(0.0452044\pi\)
\(522\) 0 0
\(523\) −14.0000 + 24.2487i −0.612177 + 1.06032i 0.378695 + 0.925521i \(0.376373\pi\)
−0.990873 + 0.134801i \(0.956961\pi\)
\(524\) 0 0
\(525\) −8.00000 6.92820i −0.349149 0.302372i
\(526\) 0 0
\(527\) −2.00000 −0.0871214
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 12.0000 + 20.7846i 0.520756 + 0.901975i
\(532\) 0 0
\(533\) 10.5000 2.59808i 0.454805 0.112535i
\(534\) 0 0
\(535\) −48.0000 −2.07522
\(536\) 0 0
\(537\) 21.0000 0.906217
\(538\) 0 0
\(539\) 6.50000 + 2.59808i 0.279975 + 0.111907i
\(540\) 0 0
\(541\) 18.5000 + 32.0429i 0.795377 + 1.37763i 0.922599 + 0.385759i \(0.126061\pi\)
−0.127222 + 0.991874i \(0.540606\pi\)
\(542\) 0 0
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) 45.0000 1.92759
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) −13.5000 23.3827i −0.575119 0.996136i
\(552\) 0 0
\(553\) 22.5000 7.79423i 0.956797 0.331444i
\(554\) 0 0
\(555\) −30.0000 −1.27343
\(556\) 0 0
\(557\) 27.0000 1.14403 0.572013 0.820244i \(-0.306163\pi\)
0.572013 + 0.820244i \(0.306163\pi\)
\(558\) 0 0
\(559\) −7.50000 7.79423i −0.317216 0.329661i
\(560\) 0 0
\(561\) 1.00000 + 1.73205i 0.0422200 + 0.0731272i
\(562\) 0 0
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 0 0
\(565\) −3.00000 −0.126211
\(566\) 0 0
\(567\) 0.500000 2.59808i 0.0209980 0.109109i
\(568\) 0 0
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 0 0
\(571\) 7.50000 12.9904i 0.313865 0.543631i −0.665330 0.746549i \(-0.731709\pi\)
0.979196 + 0.202919i \(0.0650427\pi\)
\(572\) 0 0
\(573\) 3.00000 0.125327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.5000 + 19.9186i −0.478751 + 0.829222i −0.999703 0.0243645i \(-0.992244\pi\)
0.520952 + 0.853586i \(0.325577\pi\)
\(578\) 0 0
\(579\) 17.0000 0.706496
\(580\) 0 0
\(581\) −4.00000 + 20.7846i −0.165948 + 0.862291i
\(582\) 0 0
\(583\) 1.50000 2.59808i 0.0621237 0.107601i
\(584\) 0 0
\(585\) −21.0000 + 5.19615i −0.868243 + 0.214834i
\(586\) 0 0
\(587\) −22.5000 38.9711i −0.928674 1.60851i −0.785543 0.618808i \(-0.787616\pi\)
−0.143132 0.989704i \(-0.545717\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) 0 0
\(591\) 11.5000 + 19.9186i 0.473047 + 0.819341i
\(592\) 0 0
\(593\) 10.5000 + 18.1865i 0.431183 + 0.746831i 0.996976 0.0777165i \(-0.0247629\pi\)
−0.565792 + 0.824548i \(0.691430\pi\)
\(594\) 0 0
\(595\) −12.0000 10.3923i −0.491952 0.426043i
\(596\) 0 0
\(597\) −2.00000 3.46410i −0.0818546 0.141776i
\(598\) 0 0
\(599\) −2.50000 + 4.33013i −0.102147 + 0.176924i −0.912569 0.408923i \(-0.865905\pi\)
0.810422 + 0.585847i \(0.199238\pi\)
\(600\) 0 0
\(601\) 2.50000 + 4.33013i 0.101977 + 0.176630i 0.912499 0.409079i \(-0.134150\pi\)
−0.810522 + 0.585708i \(0.800816\pi\)
\(602\) 0 0
\(603\) 18.0000 0.733017
\(604\) 0 0
\(605\) 15.0000 + 25.9808i 0.609837 + 1.05627i
\(606\) 0 0
\(607\) −15.0000 −0.608831 −0.304416 0.952539i \(-0.598461\pi\)
−0.304416 + 0.952539i \(0.598461\pi\)
\(608\) 0 0
\(609\) −22.5000 + 7.79423i −0.911746 + 0.315838i
\(610\) 0 0
\(611\) 38.5000 9.52628i 1.55754 0.385392i
\(612\) 0 0
\(613\) 47.0000 1.89831 0.949156 0.314806i \(-0.101939\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) 0 0
\(615\) 4.50000 7.79423i 0.181458 0.314294i
\(616\) 0 0
\(617\) 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i \(-0.602078\pi\)
0.979484 0.201522i \(-0.0645887\pi\)
\(618\) 0 0
\(619\) 3.50000 6.06218i 0.140677 0.243659i −0.787075 0.616858i \(-0.788405\pi\)
0.927752 + 0.373198i \(0.121739\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.0000 17.3205i −0.801283 0.693932i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) −3.00000 −0.119808
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −21.5000 + 37.2391i −0.855901 + 1.48246i 0.0199047 + 0.999802i \(0.493664\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 2.50000 + 4.33013i 0.0993661 + 0.172107i
\(634\) 0 0
\(635\) 10.5000 18.1865i 0.416680 0.721711i
\(636\) 0 0
\(637\) 15.5000 19.9186i 0.614132 0.789203i
\(638\) 0 0
\(639\) −1.00000 + 1.73205i −0.0395594 + 0.0685189i
\(640\) 0 0
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 0 0
\(643\) 20.5000 35.5070i 0.808441 1.40026i −0.105502 0.994419i \(-0.533645\pi\)
0.913943 0.405842i \(-0.133022\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) 3.00000 0.117942 0.0589711 0.998260i \(-0.481218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(648\) 0 0
\(649\) 6.00000 + 10.3923i 0.235521 + 0.407934i
\(650\) 0 0
\(651\) −2.00000 1.73205i −0.0783862 0.0678844i
\(652\) 0 0
\(653\) 15.0000 25.9808i 0.586995 1.01671i −0.407628 0.913148i \(-0.633644\pi\)
0.994623 0.103558i \(-0.0330227\pi\)
\(654\) 0 0
\(655\) 25.5000 44.1673i 0.996367 1.72576i
\(656\) 0 0
\(657\) 11.0000 19.0526i 0.429151 0.743311i
\(658\) 0 0
\(659\) 0.500000 0.866025i 0.0194772 0.0337356i −0.856123 0.516773i \(-0.827133\pi\)
0.875600 + 0.483037i \(0.160466\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) 0 0
\(663\) 7.00000 1.73205i 0.271857 0.0672673i
\(664\) 0 0
\(665\) 22.5000 7.79423i 0.872513 0.302247i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 10.5000 + 18.1865i 0.405953 + 0.703132i
\(670\) 0 0
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) −11.5000 19.9186i −0.443292 0.767805i 0.554639 0.832091i \(-0.312856\pi\)
−0.997932 + 0.0642860i \(0.979523\pi\)
\(674\) 0 0
\(675\) −10.0000 + 17.3205i −0.384900 + 0.666667i
\(676\) 0 0
\(677\) 24.5000 + 42.4352i 0.941611 + 1.63092i 0.762398 + 0.647109i \(0.224022\pi\)
0.179214 + 0.983810i \(0.442645\pi\)
\(678\) 0 0
\(679\) −26.0000 22.5167i −0.997788 0.864110i
\(680\) 0 0
\(681\) 6.00000 + 10.3923i 0.229920 + 0.398234i
\(682\) 0 0
\(683\) −22.0000 38.1051i −0.841807 1.45805i −0.888366 0.459136i \(-0.848159\pi\)
0.0465592 0.998916i \(-0.485174\pi\)
\(684\) 0 0
\(685\) 9.00000 15.5885i 0.343872 0.595604i
\(686\) 0 0
\(687\) −6.50000 11.2583i −0.247990 0.429532i
\(688\) 0 0
\(689\) −7.50000 7.79423i −0.285727 0.296936i
\(690\) 0 0
\(691\) −6.00000 + 10.3923i −0.228251 + 0.395342i −0.957290 0.289130i \(-0.906634\pi\)
0.729039 + 0.684472i \(0.239967\pi\)
\(692\) 0 0
\(693\) 1.00000 5.19615i 0.0379869 0.197386i
\(694\) 0 0
\(695\) 9.00000 0.341389
\(696\) 0 0
\(697\) 3.00000 5.19615i 0.113633 0.196818i
\(698\) 0 0
\(699\) 1.50000 + 2.59808i 0.0567352 + 0.0982683i
\(700\) 0 0
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) 0 0
\(703\) 15.0000 25.9808i 0.565736 0.979883i
\(704\) 0 0
\(705\) 16.5000 28.5788i 0.621426 1.07634i
\(706\) 0 0
\(707\) 5.50000 28.5788i 0.206849 1.07482i
\(708\) 0 0
\(709\) 27.0000 1.01401 0.507003 0.861944i \(-0.330753\pi\)
0.507003 + 0.861944i \(0.330753\pi\)
\(710\) 0 0
\(711\) −9.00000 15.5885i −0.337526 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −10.5000 + 2.59808i −0.392678 + 0.0971625i
\(716\) 0 0
\(717\) −12.0000 −0.448148
\(718\) 0 0
\(719\) −3.00000 −0.111881 −0.0559406 0.998434i \(-0.517816\pi\)
−0.0559406 + 0.998434i \(0.517816\pi\)
\(720\) 0 0
\(721\) −17.5000 + 6.06218i −0.651734 + 0.225767i
\(722\) 0 0
\(723\) −5.00000 8.66025i −0.185952 0.322078i
\(724\) 0 0
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 0.500000 + 0.866025i 0.0184679 + 0.0319874i 0.875112 0.483921i \(-0.160788\pi\)
−0.856644 + 0.515908i \(0.827454\pi\)
\(734\) 0 0
\(735\) −3.00000 20.7846i −0.110657 0.766652i
\(736\) 0 0
\(737\) 9.00000 0.331519
\(738\) 0 0
\(739\) 19.0000 0.698926 0.349463 0.936950i \(-0.386364\pi\)
0.349463 + 0.936950i \(0.386364\pi\)
\(740\) 0 0
\(741\) −3.00000 + 10.3923i −0.110208 + 0.381771i
\(742\) 0 0
\(743\) −16.5000 28.5788i −0.605326 1.04846i −0.992000 0.126239i \(-0.959709\pi\)
0.386674 0.922217i \(-0.373624\pi\)
\(744\) 0 0
\(745\) 13.5000 + 23.3827i 0.494602 + 0.856675i
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) −32.0000 27.7128i −1.16925 1.01260i
\(750\) 0 0
\(751\) 18.0000 31.1769i 0.656829 1.13766i −0.324603 0.945851i \(-0.605231\pi\)
0.981432 0.191811i \(-0.0614361\pi\)
\(752\) 0 0
\(753\) 1.50000 2.59808i 0.0546630 0.0946792i
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) 2.50000 + 4.33013i 0.0908640 + 0.157381i 0.907875 0.419241i \(-0.137704\pi\)
−0.817011 + 0.576622i \(0.804370\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.0000 −0.906249 −0.453125 0.891447i \(-0.649691\pi\)
−0.453125 + 0.891447i \(0.649691\pi\)
\(762\) 0 0
\(763\) 30.0000 + 25.9808i 1.08607 + 0.940567i
\(764\) 0 0
\(765\) −6.00000 + 10.3923i −0.216930 + 0.375735i
\(766\) 0 0
\(767\) 42.0000 10.3923i 1.51653 0.375244i
\(768\) 0 0
\(769\) 10.5000 + 18.1865i 0.378640 + 0.655823i 0.990865 0.134860i \(-0.0430586\pi\)
−0.612225 + 0.790684i \(0.709725\pi\)
\(770\) 0 0
\(771\) 3.00000 5.19615i 0.108042 0.187135i
\(772\) 0 0
\(773\) 7.00000 + 12.1244i 0.251773 + 0.436083i 0.964014 0.265852i \(-0.0856532\pi\)
−0.712241 + 0.701935i \(0.752320\pi\)
\(774\) 0 0
\(775\) −2.00000 3.46410i −0.0718421 0.124434i
\(776\) 0 0
\(777\) −20.0000 17.3205i −0.717496 0.621370i
\(778\) 0 0
\(779\) 4.50000 + 7.79423i 0.161229 + 0.279257i
\(780\) 0 0
\(781\) −0.500000 + 0.866025i −0.0178914 + 0.0309888i
\(782\) 0 0
\(783\) 22.5000 + 38.9711i 0.804084 + 1.39272i
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) 9.00000