Properties

Label 728.2.t.a
Level $728$
Weight $2$
Character orbit 728.t
Analytic conductor $5.813$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(9,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.t (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + (3 \zeta_{6} - 3) q^{5} + (3 \zeta_{6} - 1) q^{7} - 2 q^{9} - q^{11} + ( - 4 \zeta_{6} + 1) q^{13} + ( - 3 \zeta_{6} + 3) q^{15} + ( - 2 \zeta_{6} + 2) q^{17} - 3 q^{19} + ( - 3 \zeta_{6} + 1) q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 3 q^{5} + q^{7} - 4 q^{9} - 2 q^{11} - 2 q^{13} + 3 q^{15} + 2 q^{17} - 6 q^{19} - q^{21} - 4 q^{25} + 10 q^{27} + 9 q^{29} - q^{31} + 2 q^{33} - 15 q^{35} - 10 q^{37} + 2 q^{39} - 3 q^{41}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.00000 0 −1.50000 + 2.59808i 0 0.500000 + 2.59808i 0 −2.00000 0
81.1 0 −1.00000 0 −1.50000 2.59808i 0 0.500000 2.59808i 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.2.t.a yes 2
7.c even 3 1 728.2.q.a 2
13.c even 3 1 728.2.q.a 2
91.g even 3 1 inner 728.2.t.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.q.a 2 7.c even 3 1
728.2.q.a 2 13.c even 3 1
728.2.t.a yes 2 1.a even 1 1 trivial
728.2.t.a yes 2 91.g even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 7 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( (T + 3)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$41$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$47$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$61$ \( (T + 5)^{2} \) Copy content Toggle raw display
$67$ \( (T + 9)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$73$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$83$ \( (T + 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$97$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
show more
show less