Defining parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.t (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 56 | 184 |
Cusp forms | 208 | 56 | 152 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
728.2.t.a | $2$ | $5.813$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-2\) | \(-3\) | \(1\) | \(q-q^{3}+(-3+3\zeta_{6})q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\) |
728.2.t.b | $6$ | $5.813$ | 6.0.1156923.1 | None | \(0\) | \(0\) | \(3\) | \(0\) | \(q-\beta _{1}q^{3}-\beta _{2}q^{5}+(-\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\) |
728.2.t.c | $8$ | $5.813$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(6\) | \(1\) | \(-16\) | \(q+(1-\beta _{4})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(-3+\cdots)q^{7}+\cdots\) |
728.2.t.d | $18$ | $5.813$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(4\) | \(14\) | \(q+\beta _{2}q^{3}+(-\beta _{4}-\beta _{12})q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\) |
728.2.t.e | $22$ | $5.813$ | None | \(0\) | \(4\) | \(-5\) | \(-3\) |
Decomposition of \(S_{2}^{\mathrm{old}}(728, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 2}\)