Properties

Label 728.2.t
Level $728$
Weight $2$
Character orbit 728.t
Rep. character $\chi_{728}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $56$
Newform subspaces $5$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.t (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).

Total New Old
Modular forms 240 56 184
Cusp forms 208 56 152
Eisenstein series 32 0 32

Trace form

\( 56 q + 8 q^{3} - 4 q^{7} + 56 q^{9} + O(q^{10}) \) \( 56 q + 8 q^{3} - 4 q^{7} + 56 q^{9} - 4 q^{11} + 2 q^{13} + 8 q^{15} + 6 q^{17} - 12 q^{19} + 4 q^{21} - 4 q^{23} - 28 q^{25} + 44 q^{27} - 2 q^{29} - 8 q^{31} - 8 q^{33} + 10 q^{35} + 4 q^{37} + 24 q^{39} + 12 q^{41} - 12 q^{43} + 6 q^{47} - 2 q^{49} + 2 q^{51} + 2 q^{53} - 32 q^{57} + 8 q^{59} - 44 q^{61} + 12 q^{63} - 22 q^{65} + 44 q^{67} + 4 q^{69} + 20 q^{71} - 18 q^{73} - 8 q^{75} - 16 q^{77} - 14 q^{79} + 40 q^{81} - 8 q^{83} + 24 q^{85} - 4 q^{87} + 12 q^{89} + 20 q^{91} - 22 q^{93} - 8 q^{95} + 10 q^{97} - 44 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
728.2.t.a 728.t 91.g $2$ $5.813$ \(\Q(\sqrt{-3}) \) None 728.2.q.a \(0\) \(-2\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{3}+(-3+3\zeta_{6})q^{5}+(-1+3\zeta_{6})q^{7}+\cdots\)
728.2.t.b 728.t 91.g $6$ $5.813$ 6.0.1156923.1 None 728.2.q.b \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}-\beta _{2}q^{5}+(-\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\)
728.2.t.c 728.t 91.g $8$ $5.813$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 728.2.q.c \(0\) \(6\) \(1\) \(-16\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(-3+\cdots)q^{7}+\cdots\)
728.2.t.d 728.t 91.g $18$ $5.813$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 728.2.q.d \(0\) \(0\) \(4\) \(14\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{3}+(-\beta _{4}-\beta _{12})q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\)
728.2.t.e 728.t 91.g $22$ $5.813$ None 728.2.q.e \(0\) \(4\) \(-5\) \(-3\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(728, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 2}\)