Properties

Label 728.2.q.a.289.1
Level $728$
Weight $2$
Character 728.289
Analytic conductor $5.813$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(289,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 728.289
Dual form 728.2.q.a.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-1.50000 + 2.59808i) q^{5} +(2.00000 - 1.73205i) q^{7} +(1.00000 + 1.73205i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{3} +(-1.50000 + 2.59808i) q^{5} +(2.00000 - 1.73205i) q^{7} +(1.00000 + 1.73205i) q^{9} +(0.500000 - 0.866025i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(1.50000 + 2.59808i) q^{15} -2.00000 q^{17} +(1.50000 + 2.59808i) q^{19} +(-0.500000 - 2.59808i) q^{21} +(-2.00000 - 3.46410i) q^{25} +5.00000 q^{27} +(4.50000 + 7.79423i) q^{29} +(-0.500000 - 0.866025i) q^{31} +(-0.500000 - 0.866025i) q^{33} +(1.50000 + 7.79423i) q^{35} +10.0000 q^{37} +(2.50000 + 2.59808i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(-1.50000 + 2.59808i) q^{43} -6.00000 q^{45} +(-5.50000 + 9.52628i) q^{47} +(1.00000 - 6.92820i) q^{49} +(-1.00000 + 1.73205i) q^{51} +(-1.50000 - 2.59808i) q^{53} +(1.50000 + 2.59808i) q^{55} +3.00000 q^{57} +12.0000 q^{59} +(2.50000 + 4.33013i) q^{61} +(5.00000 + 1.73205i) q^{63} +(-7.50000 - 7.79423i) q^{65} +(4.50000 - 7.79423i) q^{67} +(0.500000 - 0.866025i) q^{71} +(-5.50000 - 9.52628i) q^{73} -4.00000 q^{75} +(-0.500000 - 2.59808i) q^{77} +(4.50000 - 7.79423i) q^{79} +(-0.500000 + 0.866025i) q^{81} -8.00000 q^{83} +(3.00000 - 5.19615i) q^{85} +9.00000 q^{87} -10.0000 q^{89} +(4.00000 + 8.66025i) q^{91} -1.00000 q^{93} -9.00000 q^{95} +(6.50000 - 11.2583i) q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 3 q^{5} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} - 3 q^{5} + 4 q^{7} + 2 q^{9} + q^{11} - 2 q^{13} + 3 q^{15} - 4 q^{17} + 3 q^{19} - q^{21} - 4 q^{25} + 10 q^{27} + 9 q^{29} - q^{31} - q^{33} + 3 q^{35} + 20 q^{37} + 5 q^{39} - 3 q^{41} - 3 q^{43} - 12 q^{45} - 11 q^{47} + 2 q^{49} - 2 q^{51} - 3 q^{53} + 3 q^{55} + 6 q^{57} + 24 q^{59} + 5 q^{61} + 10 q^{63} - 15 q^{65} + 9 q^{67} + q^{71} - 11 q^{73} - 8 q^{75} - q^{77} + 9 q^{79} - q^{81} - 16 q^{83} + 6 q^{85} + 18 q^{87} - 20 q^{89} + 8 q^{91} - 2 q^{93} - 18 q^{95} + 13 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 1.50000 + 2.59808i 0.387298 + 0.670820i
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 1.50000 + 2.59808i 0.344124 + 0.596040i 0.985194 0.171442i \(-0.0548427\pi\)
−0.641071 + 0.767482i \(0.721509\pi\)
\(20\) 0 0
\(21\) −0.500000 2.59808i −0.109109 0.566947i
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 4.50000 + 7.79423i 0.835629 + 1.44735i 0.893517 + 0.449029i \(0.148230\pi\)
−0.0578882 + 0.998323i \(0.518437\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.0898027 0.155543i 0.817625 0.575751i \(-0.195290\pi\)
−0.907428 + 0.420208i \(0.861957\pi\)
\(32\) 0 0
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) 0 0
\(35\) 1.50000 + 7.79423i 0.253546 + 1.31747i
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) −1.50000 + 2.59808i −0.228748 + 0.396203i −0.957437 0.288641i \(-0.906796\pi\)
0.728689 + 0.684844i \(0.240130\pi\)
\(44\) 0 0
\(45\) −6.00000 −0.894427
\(46\) 0 0
\(47\) −5.50000 + 9.52628i −0.802257 + 1.38955i 0.115870 + 0.993264i \(0.463035\pi\)
−0.918127 + 0.396286i \(0.870299\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) −1.00000 + 1.73205i −0.140028 + 0.242536i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 1.50000 + 2.59808i 0.202260 + 0.350325i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 0 0
\(63\) 5.00000 + 1.73205i 0.629941 + 0.218218i
\(64\) 0 0
\(65\) −7.50000 7.79423i −0.930261 0.966755i
\(66\) 0 0
\(67\) 4.50000 7.79423i 0.549762 0.952217i −0.448528 0.893769i \(-0.648052\pi\)
0.998290 0.0584478i \(-0.0186151\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.500000 0.866025i 0.0593391 0.102778i −0.834830 0.550508i \(-0.814434\pi\)
0.894169 + 0.447730i \(0.147767\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) −0.500000 2.59808i −0.0569803 0.296078i
\(78\) 0 0
\(79\) 4.50000 7.79423i 0.506290 0.876919i −0.493684 0.869641i \(-0.664350\pi\)
0.999974 0.00727784i \(-0.00231663\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 0 0
\(87\) 9.00000 0.964901
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 4.00000 + 8.66025i 0.419314 + 0.907841i
\(92\) 0 0
\(93\) −1.00000 −0.103695
\(94\) 0 0
\(95\) −9.00000 −0.923381
\(96\) 0 0
\(97\) 6.50000 11.2583i 0.659975 1.14311i −0.320647 0.947199i \(-0.603900\pi\)
0.980622 0.195911i \(-0.0627665\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −5.50000 + 9.52628i −0.547270 + 0.947900i 0.451190 + 0.892428i \(0.351000\pi\)
−0.998460 + 0.0554722i \(0.982334\pi\)
\(102\) 0 0
\(103\) −3.50000 + 6.06218i −0.344865 + 0.597324i −0.985329 0.170664i \(-0.945409\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 0 0
\(105\) 7.50000 + 2.59808i 0.731925 + 0.253546i
\(106\) 0 0
\(107\) −16.0000 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(108\) 0 0
\(109\) −7.50000 12.9904i −0.718370 1.24425i −0.961645 0.274296i \(-0.911555\pi\)
0.243276 0.969957i \(-0.421778\pi\)
\(110\) 0 0
\(111\) 5.00000 8.66025i 0.474579 0.821995i
\(112\) 0 0
\(113\) 0.500000 0.866025i 0.0470360 0.0814688i −0.841549 0.540181i \(-0.818356\pi\)
0.888585 + 0.458712i \(0.151689\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −7.00000 + 1.73205i −0.647150 + 0.160128i
\(118\) 0 0
\(119\) −4.00000 + 3.46410i −0.366679 + 0.317554i
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 0 0
\(123\) −3.00000 −0.270501
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 3.50000 + 6.06218i 0.310575 + 0.537931i 0.978487 0.206309i \(-0.0661452\pi\)
−0.667912 + 0.744240i \(0.732812\pi\)
\(128\) 0 0
\(129\) 1.50000 + 2.59808i 0.132068 + 0.228748i
\(130\) 0 0
\(131\) 8.50000 14.7224i 0.742648 1.28630i −0.208637 0.977993i \(-0.566903\pi\)
0.951285 0.308312i \(-0.0997640\pi\)
\(132\) 0 0
\(133\) 7.50000 + 2.59808i 0.650332 + 0.225282i
\(134\) 0 0
\(135\) −7.50000 + 12.9904i −0.645497 + 1.11803i
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −1.50000 + 2.59808i −0.127228 + 0.220366i −0.922602 0.385754i \(-0.873941\pi\)
0.795373 + 0.606120i \(0.207275\pi\)
\(140\) 0 0
\(141\) 5.50000 + 9.52628i 0.463184 + 0.802257i
\(142\) 0 0
\(143\) 2.50000 + 2.59808i 0.209061 + 0.217262i
\(144\) 0 0
\(145\) −27.0000 −2.24223
\(146\) 0 0
\(147\) −5.50000 4.33013i −0.453632 0.357143i
\(148\) 0 0
\(149\) 4.50000 + 7.79423i 0.368654 + 0.638528i 0.989355 0.145519i \(-0.0464853\pi\)
−0.620701 + 0.784047i \(0.713152\pi\)
\(150\) 0 0
\(151\) −0.500000 0.866025i −0.0406894 0.0704761i 0.844963 0.534824i \(-0.179622\pi\)
−0.885653 + 0.464348i \(0.846289\pi\)
\(152\) 0 0
\(153\) −2.00000 3.46410i −0.161690 0.280056i
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) 2.50000 + 4.33013i 0.199522 + 0.345582i 0.948373 0.317156i \(-0.102728\pi\)
−0.748852 + 0.662738i \(0.769394\pi\)
\(158\) 0 0
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.5000 18.1865i −0.822423 1.42448i −0.903873 0.427802i \(-0.859288\pi\)
0.0814491 0.996678i \(-0.474045\pi\)
\(164\) 0 0
\(165\) 3.00000 0.233550
\(166\) 0 0
\(167\) −4.50000 7.79423i −0.348220 0.603136i 0.637713 0.770274i \(-0.279881\pi\)
−0.985933 + 0.167139i \(0.946547\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) −3.00000 + 5.19615i −0.229416 + 0.397360i
\(172\) 0 0
\(173\) 6.50000 + 11.2583i 0.494186 + 0.855955i 0.999978 0.00670064i \(-0.00213290\pi\)
−0.505792 + 0.862656i \(0.668800\pi\)
\(174\) 0 0
\(175\) −10.0000 3.46410i −0.755929 0.261861i
\(176\) 0 0
\(177\) 6.00000 10.3923i 0.450988 0.781133i
\(178\) 0 0
\(179\) 10.5000 18.1865i 0.784807 1.35933i −0.144308 0.989533i \(-0.546095\pi\)
0.929114 0.369792i \(-0.120571\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) −15.0000 + 25.9808i −1.10282 + 1.91014i
\(186\) 0 0
\(187\) −1.00000 + 1.73205i −0.0731272 + 0.126660i
\(188\) 0 0
\(189\) 10.0000 8.66025i 0.727393 0.629941i
\(190\) 0 0
\(191\) 1.50000 + 2.59808i 0.108536 + 0.187990i 0.915177 0.403051i \(-0.132050\pi\)
−0.806641 + 0.591041i \(0.798717\pi\)
\(192\) 0 0
\(193\) 8.50000 14.7224i 0.611843 1.05974i −0.379086 0.925361i \(-0.623762\pi\)
0.990930 0.134382i \(-0.0429051\pi\)
\(194\) 0 0
\(195\) −10.5000 + 2.59808i −0.751921 + 0.186052i
\(196\) 0 0
\(197\) −11.5000 19.9186i −0.819341 1.41914i −0.906168 0.422917i \(-0.861006\pi\)
0.0868274 0.996223i \(-0.472327\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) −4.50000 7.79423i −0.317406 0.549762i
\(202\) 0 0
\(203\) 22.5000 + 7.79423i 1.57919 + 0.547048i
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 0 0
\(213\) −0.500000 0.866025i −0.0342594 0.0593391i
\(214\) 0 0
\(215\) −4.50000 7.79423i −0.306897 0.531562i
\(216\) 0 0
\(217\) −2.50000 0.866025i −0.169711 0.0587896i
\(218\) 0 0
\(219\) −11.0000 −0.743311
\(220\) 0 0
\(221\) 2.00000 6.92820i 0.134535 0.466041i
\(222\) 0 0
\(223\) −10.5000 18.1865i −0.703132 1.21786i −0.967361 0.253401i \(-0.918451\pi\)
0.264229 0.964460i \(-0.414882\pi\)
\(224\) 0 0
\(225\) 4.00000 6.92820i 0.266667 0.461880i
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) −2.50000 0.866025i −0.164488 0.0569803i
\(232\) 0 0
\(233\) −1.50000 + 2.59808i −0.0982683 + 0.170206i −0.910968 0.412477i \(-0.864664\pi\)
0.812700 + 0.582683i \(0.197997\pi\)
\(234\) 0 0
\(235\) −16.5000 28.5788i −1.07634 1.86428i
\(236\) 0 0
\(237\) −4.50000 7.79423i −0.292306 0.506290i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) 16.5000 + 12.9904i 1.05415 + 0.829925i
\(246\) 0 0
\(247\) −10.5000 + 2.59808i −0.668099 + 0.165312i
\(248\) 0 0
\(249\) −4.00000 + 6.92820i −0.253490 + 0.439057i
\(250\) 0 0
\(251\) −1.50000 + 2.59808i −0.0946792 + 0.163989i −0.909475 0.415759i \(-0.863516\pi\)
0.814795 + 0.579748i \(0.196849\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.00000 5.19615i −0.187867 0.325396i
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 20.0000 17.3205i 1.24274 1.07624i
\(260\) 0 0
\(261\) −9.00000 + 15.5885i −0.557086 + 0.964901i
\(262\) 0 0
\(263\) 4.50000 7.79423i 0.277482 0.480613i −0.693276 0.720672i \(-0.743833\pi\)
0.970758 + 0.240059i \(0.0771668\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −5.00000 + 8.66025i −0.305995 + 0.529999i
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 9.50000 + 0.866025i 0.574966 + 0.0524142i
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 1.00000 1.73205i 0.0598684 0.103695i
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −13.5000 + 23.3827i −0.802492 + 1.38996i 0.115480 + 0.993310i \(0.463159\pi\)
−0.917971 + 0.396647i \(0.870174\pi\)
\(284\) 0 0
\(285\) −4.50000 + 7.79423i −0.266557 + 0.461690i
\(286\) 0 0
\(287\) −7.50000 2.59808i −0.442711 0.153360i
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −6.50000 11.2583i −0.381037 0.659975i
\(292\) 0 0
\(293\) −9.50000 + 16.4545i −0.554996 + 0.961281i 0.442908 + 0.896567i \(0.353947\pi\)
−0.997904 + 0.0647140i \(0.979386\pi\)
\(294\) 0 0
\(295\) −18.0000 + 31.1769i −1.04800 + 1.81519i
\(296\) 0 0
\(297\) 2.50000 4.33013i 0.145065 0.251259i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.50000 + 7.79423i 0.0864586 + 0.449252i
\(302\) 0 0
\(303\) 5.50000 + 9.52628i 0.315967 + 0.547270i
\(304\) 0 0
\(305\) −15.0000 −0.858898
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 3.50000 + 6.06218i 0.199108 + 0.344865i
\(310\) 0 0
\(311\) −2.50000 4.33013i −0.141762 0.245539i 0.786398 0.617720i \(-0.211943\pi\)
−0.928160 + 0.372181i \(0.878610\pi\)
\(312\) 0 0
\(313\) −5.50000 + 9.52628i −0.310878 + 0.538457i −0.978553 0.205996i \(-0.933957\pi\)
0.667674 + 0.744453i \(0.267290\pi\)
\(314\) 0 0
\(315\) −12.0000 + 10.3923i −0.676123 + 0.585540i
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.0280828 0.0486408i −0.851642 0.524123i \(-0.824393\pi\)
0.879725 + 0.475482i \(0.157726\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0 0
\(321\) −8.00000 + 13.8564i −0.446516 + 0.773389i
\(322\) 0 0
\(323\) −3.00000 5.19615i −0.166924 0.289122i
\(324\) 0 0
\(325\) 14.0000 3.46410i 0.776580 0.192154i
\(326\) 0 0
\(327\) −15.0000 −0.829502
\(328\) 0 0
\(329\) 5.50000 + 28.5788i 0.303225 + 1.57560i
\(330\) 0 0
\(331\) 11.5000 + 19.9186i 0.632097 + 1.09482i 0.987122 + 0.159968i \(0.0511390\pi\)
−0.355025 + 0.934857i \(0.615528\pi\)
\(332\) 0 0
\(333\) 10.0000 + 17.3205i 0.547997 + 0.949158i
\(334\) 0 0
\(335\) 13.5000 + 23.3827i 0.737584 + 1.27753i
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −0.500000 0.866025i −0.0271563 0.0470360i
\(340\) 0 0
\(341\) −1.00000 −0.0541530
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) 0 0
\(349\) 12.5000 + 21.6506i 0.669110 + 1.15893i 0.978153 + 0.207884i \(0.0666577\pi\)
−0.309044 + 0.951048i \(0.600009\pi\)
\(350\) 0 0
\(351\) −5.00000 + 17.3205i −0.266880 + 0.924500i
\(352\) 0 0
\(353\) −7.50000 + 12.9904i −0.399185 + 0.691408i −0.993626 0.112731i \(-0.964040\pi\)
0.594441 + 0.804139i \(0.297373\pi\)
\(354\) 0 0
\(355\) 1.50000 + 2.59808i 0.0796117 + 0.137892i
\(356\) 0 0
\(357\) 1.00000 + 5.19615i 0.0529256 + 0.275010i
\(358\) 0 0
\(359\) 14.5000 25.1147i 0.765281 1.32551i −0.174817 0.984601i \(-0.555933\pi\)
0.940098 0.340904i \(-0.110733\pi\)
\(360\) 0 0
\(361\) 5.00000 8.66025i 0.263158 0.455803i
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) 14.5000 25.1147i 0.756894 1.31098i −0.187533 0.982258i \(-0.560049\pi\)
0.944427 0.328720i \(-0.106617\pi\)
\(368\) 0 0
\(369\) 3.00000 5.19615i 0.156174 0.270501i
\(370\) 0 0
\(371\) −7.50000 2.59808i −0.389381 0.134885i
\(372\) 0 0
\(373\) 8.50000 + 14.7224i 0.440113 + 0.762299i 0.997697 0.0678218i \(-0.0216049\pi\)
−0.557584 + 0.830120i \(0.688272\pi\)
\(374\) 0 0
\(375\) −1.50000 + 2.59808i −0.0774597 + 0.134164i
\(376\) 0 0
\(377\) −31.5000 + 7.79423i −1.62233 + 0.401423i
\(378\) 0 0
\(379\) 5.50000 + 9.52628i 0.282516 + 0.489332i 0.972004 0.234965i \(-0.0754976\pi\)
−0.689488 + 0.724297i \(0.742164\pi\)
\(380\) 0 0
\(381\) 7.00000 0.358621
\(382\) 0 0
\(383\) −8.50000 14.7224i −0.434330 0.752281i 0.562911 0.826518i \(-0.309681\pi\)
−0.997241 + 0.0742364i \(0.976348\pi\)
\(384\) 0 0
\(385\) 7.50000 + 2.59808i 0.382235 + 0.132410i
\(386\) 0 0
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) 4.50000 + 7.79423i 0.228159 + 0.395183i 0.957263 0.289220i \(-0.0933960\pi\)
−0.729103 + 0.684403i \(0.760063\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −8.50000 14.7224i −0.428768 0.742648i
\(394\) 0 0
\(395\) 13.5000 + 23.3827i 0.679259 + 1.17651i
\(396\) 0 0
\(397\) −7.50000 12.9904i −0.376414 0.651969i 0.614123 0.789210i \(-0.289510\pi\)
−0.990538 + 0.137241i \(0.956176\pi\)
\(398\) 0 0
\(399\) 6.00000 5.19615i 0.300376 0.260133i
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 3.50000 0.866025i 0.174347 0.0431398i
\(404\) 0 0
\(405\) −1.50000 2.59808i −0.0745356 0.129099i
\(406\) 0 0
\(407\) 5.00000 8.66025i 0.247841 0.429273i
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) −3.00000 + 5.19615i −0.147979 + 0.256307i
\(412\) 0 0
\(413\) 24.0000 20.7846i 1.18096 1.02274i
\(414\) 0 0
\(415\) 12.0000 20.7846i 0.589057 1.02028i
\(416\) 0 0
\(417\) 1.50000 + 2.59808i 0.0734553 + 0.127228i
\(418\) 0 0
\(419\) −14.5000 25.1147i −0.708371 1.22694i −0.965461 0.260548i \(-0.916097\pi\)
0.257090 0.966388i \(-0.417236\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) −22.0000 −1.06968
\(424\) 0 0
\(425\) 4.00000 + 6.92820i 0.194029 + 0.336067i
\(426\) 0 0
\(427\) 12.5000 + 4.33013i 0.604917 + 0.209550i
\(428\) 0 0
\(429\) 3.50000 0.866025i 0.168982 0.0418121i
\(430\) 0 0
\(431\) −9.50000 + 16.4545i −0.457599 + 0.792585i −0.998833 0.0482871i \(-0.984624\pi\)
0.541235 + 0.840872i \(0.317957\pi\)
\(432\) 0 0
\(433\) 14.5000 25.1147i 0.696826 1.20694i −0.272736 0.962089i \(-0.587929\pi\)
0.969561 0.244848i \(-0.0787382\pi\)
\(434\) 0 0
\(435\) −13.5000 + 23.3827i −0.647275 + 1.12111i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 13.0000 5.19615i 0.619048 0.247436i
\(442\) 0 0
\(443\) 16.5000 28.5788i 0.783939 1.35782i −0.145692 0.989330i \(-0.546541\pi\)
0.929631 0.368492i \(-0.120126\pi\)
\(444\) 0 0
\(445\) 15.0000 25.9808i 0.711068 1.23161i
\(446\) 0 0
\(447\) 9.00000 0.425685
\(448\) 0 0
\(449\) 0.500000 0.866025i 0.0235965 0.0408703i −0.853986 0.520296i \(-0.825822\pi\)
0.877583 + 0.479426i \(0.159155\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) 0 0
\(453\) −1.00000 −0.0469841
\(454\) 0 0
\(455\) −28.5000 2.59808i −1.33610 0.121800i
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 0 0
\(459\) −10.0000 −0.466760
\(460\) 0 0
\(461\) −17.5000 + 30.3109i −0.815056 + 1.41172i 0.0942312 + 0.995550i \(0.469961\pi\)
−0.909288 + 0.416169i \(0.863373\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) 0 0
\(465\) 1.50000 2.59808i 0.0695608 0.120483i
\(466\) 0 0
\(467\) −13.5000 + 23.3827i −0.624705 + 1.08202i 0.363892 + 0.931441i \(0.381448\pi\)
−0.988598 + 0.150581i \(0.951886\pi\)
\(468\) 0 0
\(469\) −4.50000 23.3827i −0.207791 1.07971i
\(470\) 0 0
\(471\) 5.00000 0.230388
\(472\) 0 0
\(473\) 1.50000 + 2.59808i 0.0689701 + 0.119460i
\(474\) 0 0
\(475\) 6.00000 10.3923i 0.275299 0.476832i
\(476\) 0 0
\(477\) 3.00000 5.19615i 0.137361 0.237915i
\(478\) 0 0
\(479\) 12.5000 21.6506i 0.571140 0.989243i −0.425310 0.905048i \(-0.639835\pi\)
0.996449 0.0841949i \(-0.0268318\pi\)
\(480\) 0 0
\(481\) −10.0000 + 34.6410i −0.455961 + 1.57949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.5000 + 33.7750i 0.885449 + 1.53364i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) −21.0000 −0.949653
\(490\) 0 0
\(491\) 17.5000 + 30.3109i 0.789764 + 1.36791i 0.926111 + 0.377250i \(0.123130\pi\)
−0.136347 + 0.990661i \(0.543536\pi\)
\(492\) 0 0
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) 0 0
\(495\) −3.00000 + 5.19615i −0.134840 + 0.233550i
\(496\) 0 0
\(497\) −0.500000 2.59808i −0.0224281 0.116540i
\(498\) 0 0
\(499\) −21.5000 + 37.2391i −0.962472 + 1.66705i −0.246214 + 0.969216i \(0.579187\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) −9.00000 −0.402090
\(502\) 0 0
\(503\) −5.50000 + 9.52628i −0.245233 + 0.424756i −0.962197 0.272354i \(-0.912198\pi\)
0.716964 + 0.697110i \(0.245531\pi\)
\(504\) 0 0
\(505\) −16.5000 28.5788i −0.734240 1.27174i
\(506\) 0 0
\(507\) −11.5000 + 6.06218i −0.510733 + 0.269231i
\(508\) 0 0
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) −27.5000 9.52628i −1.21653 0.421418i
\(512\) 0 0
\(513\) 7.50000 + 12.9904i 0.331133 + 0.573539i
\(514\) 0 0
\(515\) −10.5000 18.1865i −0.462685 0.801394i
\(516\) 0 0
\(517\) 5.50000 + 9.52628i 0.241890 + 0.418965i
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) 8.50000 + 14.7224i 0.372392 + 0.645001i 0.989933 0.141537i \(-0.0452044\pi\)
−0.617541 + 0.786539i \(0.711871\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) −8.00000 + 6.92820i −0.349149 + 0.302372i
\(526\) 0 0
\(527\) 1.00000 + 1.73205i 0.0435607 + 0.0754493i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 12.0000 + 20.7846i 0.520756 + 0.901975i
\(532\) 0 0
\(533\) 10.5000 2.59808i 0.454805 0.112535i
\(534\) 0 0
\(535\) 24.0000 41.5692i 1.03761 1.79719i
\(536\) 0 0
\(537\) −10.5000 18.1865i −0.453108 0.784807i
\(538\) 0 0
\(539\) −5.50000 4.33013i −0.236902 0.186512i
\(540\) 0 0
\(541\) 18.5000 32.0429i 0.795377 1.37763i −0.127222 0.991874i \(-0.540606\pi\)
0.922599 0.385759i \(-0.126061\pi\)
\(542\) 0 0
\(543\) −3.00000 + 5.19615i −0.128742 + 0.222988i
\(544\) 0 0
\(545\) 45.0000 1.92759
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) −5.00000 + 8.66025i −0.213395 + 0.369611i
\(550\) 0 0
\(551\) −13.5000 + 23.3827i −0.575119 + 0.996136i
\(552\) 0 0
\(553\) −4.50000 23.3827i −0.191359 0.994333i
\(554\) 0 0
\(555\) 15.0000 + 25.9808i 0.636715 + 1.10282i
\(556\) 0 0
\(557\) −13.5000 + 23.3827i −0.572013 + 0.990756i 0.424346 + 0.905500i \(0.360504\pi\)
−0.996359 + 0.0852559i \(0.972829\pi\)
\(558\) 0 0
\(559\) −7.50000 7.79423i −0.317216 0.329661i
\(560\) 0 0
\(561\) 1.00000 + 1.73205i 0.0422200 + 0.0731272i
\(562\) 0 0
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 1.50000 + 2.59808i 0.0631055 + 0.109302i
\(566\) 0 0
\(567\) 0.500000 + 2.59808i 0.0209980 + 0.109109i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 7.50000 + 12.9904i 0.313865 + 0.543631i 0.979196 0.202919i \(-0.0650427\pi\)
−0.665330 + 0.746549i \(0.731709\pi\)
\(572\) 0 0
\(573\) 3.00000 0.125327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.5000 19.9186i −0.478751 0.829222i 0.520952 0.853586i \(-0.325577\pi\)
−0.999703 + 0.0243645i \(0.992244\pi\)
\(578\) 0 0
\(579\) −8.50000 14.7224i −0.353248 0.611843i
\(580\) 0 0
\(581\) −16.0000 + 13.8564i −0.663792 + 0.574861i
\(582\) 0 0
\(583\) −3.00000 −0.124247
\(584\) 0 0
\(585\) 6.00000 20.7846i 0.248069 0.859338i
\(586\) 0 0
\(587\) −22.5000 38.9711i −0.928674 1.60851i −0.785543 0.618808i \(-0.787616\pi\)
−0.143132 0.989704i \(-0.545717\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) 0 0
\(591\) −23.0000 −0.946094
\(592\) 0 0
\(593\) 10.5000 18.1865i 0.431183 0.746831i −0.565792 0.824548i \(-0.691430\pi\)
0.996976 + 0.0777165i \(0.0247629\pi\)
\(594\) 0 0
\(595\) −3.00000 15.5885i −0.122988 0.639064i
\(596\) 0 0
\(597\) −2.00000 + 3.46410i −0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −2.50000 4.33013i −0.102147 0.176924i 0.810422 0.585847i \(-0.199238\pi\)
−0.912569 + 0.408923i \(0.865905\pi\)
\(600\) 0 0
\(601\) 2.50000 + 4.33013i 0.101977 + 0.176630i 0.912499 0.409079i \(-0.134150\pi\)
−0.810522 + 0.585708i \(0.800816\pi\)
\(602\) 0 0
\(603\) 18.0000 0.733017
\(604\) 0 0
\(605\) −30.0000 −1.21967
\(606\) 0 0
\(607\) 7.50000 + 12.9904i 0.304416 + 0.527263i 0.977131 0.212638i \(-0.0682055\pi\)
−0.672715 + 0.739901i \(0.734872\pi\)
\(608\) 0 0
\(609\) 18.0000 15.5885i 0.729397 0.631676i
\(610\) 0 0
\(611\) −27.5000 28.5788i −1.11253 1.15618i
\(612\) 0 0
\(613\) −23.5000 + 40.7032i −0.949156 + 1.64399i −0.201948 + 0.979396i \(0.564727\pi\)
−0.747208 + 0.664590i \(0.768606\pi\)
\(614\) 0 0
\(615\) 4.50000 7.79423i 0.181458 0.314294i
\(616\) 0 0
\(617\) 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i \(-0.602078\pi\)
0.979484 0.201522i \(-0.0645887\pi\)
\(618\) 0 0
\(619\) 3.50000 + 6.06218i 0.140677 + 0.243659i 0.927752 0.373198i \(-0.121739\pi\)
−0.787075 + 0.616858i \(0.788405\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.0000 + 17.3205i −0.801283 + 0.693932i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) 1.50000 2.59808i 0.0599042 0.103757i
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −21.5000 + 37.2391i −0.855901 + 1.48246i 0.0199047 + 0.999802i \(0.493664\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) −5.00000 −0.198732
\(634\) 0 0
\(635\) −21.0000 −0.833360
\(636\) 0 0
\(637\) 23.0000 + 10.3923i 0.911293 + 0.411758i
\(638\) 0 0
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 20.5000 35.5070i 0.808441 1.40026i −0.105502 0.994419i \(-0.533645\pi\)
0.913943 0.405842i \(-0.133022\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) −1.50000 + 2.59808i −0.0589711 + 0.102141i −0.894004 0.448059i \(-0.852115\pi\)
0.835033 + 0.550200i \(0.185449\pi\)
\(648\) 0 0
\(649\) 6.00000 10.3923i 0.235521 0.407934i
\(650\) 0 0
\(651\) −2.00000 + 1.73205i −0.0783862 + 0.0678844i
\(652\) 0 0
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) 0 0
\(655\) 25.5000 + 44.1673i 0.996367 + 1.72576i
\(656\) 0 0
\(657\) 11.0000 19.0526i 0.429151 0.743311i
\(658\) 0 0
\(659\) 0.500000 0.866025i 0.0194772 0.0337356i −0.856123 0.516773i \(-0.827133\pi\)
0.875600 + 0.483037i \(0.160466\pi\)
\(660\) 0 0
\(661\) −11.5000 + 19.9186i −0.447298 + 0.774743i −0.998209 0.0598209i \(-0.980947\pi\)
0.550911 + 0.834564i \(0.314280\pi\)
\(662\) 0 0
\(663\) −5.00000 5.19615i −0.194184 0.201802i
\(664\) 0 0
\(665\) −18.0000 + 15.5885i −0.698010 + 0.604494i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −21.0000 −0.811907
\(670\) 0 0
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) −11.5000 19.9186i −0.443292 0.767805i 0.554639 0.832091i \(-0.312856\pi\)
−0.997932 + 0.0642860i \(0.979523\pi\)
\(674\) 0 0
\(675\) −10.0000 17.3205i −0.384900 0.666667i
\(676\) 0 0
\(677\) 24.5000 42.4352i 0.941611 1.63092i 0.179214 0.983810i \(-0.442645\pi\)
0.762398 0.647109i \(-0.224022\pi\)
\(678\) 0 0
\(679\) −6.50000 33.7750i −0.249447 1.29617i
\(680\) 0 0
\(681\) 6.00000 10.3923i 0.229920 0.398234i
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) 9.00000 15.5885i 0.343872 0.595604i
\(686\) 0 0
\(687\) −6.50000 11.2583i −0.247990 0.429532i
\(688\) 0 0
\(689\) 10.5000 2.59808i 0.400018 0.0989788i
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 4.00000 3.46410i 0.151947 0.131590i
\(694\) 0 0
\(695\) −4.50000 7.79423i −0.170695 0.295652i
\(696\) 0 0
\(697\) 3.00000 + 5.19615i 0.113633 + 0.196818i
\(698\) 0 0
\(699\) 1.50000 + 2.59808i 0.0567352 + 0.0982683i
\(700\) 0 0
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) 0 0
\(703\) 15.0000 + 25.9808i 0.565736 + 0.979883i
\(704\) 0 0
\(705\) −33.0000 −1.24285
\(706\) 0 0
\(707\) 5.50000 + 28.5788i 0.206849 + 1.07482i
\(708\) 0 0
\(709\) −13.5000 23.3827i −0.507003 0.878155i −0.999967 0.00810550i \(-0.997420\pi\)
0.492964 0.870050i \(-0.335913\pi\)
\(710\) 0 0
\(711\) 18.0000 0.675053
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −10.5000 + 2.59808i −0.392678 + 0.0971625i
\(716\) 0 0
\(717\) 6.00000 10.3923i 0.224074 0.388108i
\(718\) 0 0
\(719\) 1.50000 + 2.59808i 0.0559406 + 0.0968919i 0.892640 0.450771i \(-0.148851\pi\)
−0.836699 + 0.547663i \(0.815518\pi\)
\(720\) 0 0
\(721\) 3.50000 + 18.1865i 0.130347 + 0.677302i
\(722\) 0 0
\(723\) −5.00000 + 8.66025i −0.185952 + 0.322078i
\(724\) 0 0
\(725\) 18.0000 31.1769i 0.668503 1.15788i
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 3.00000 5.19615i 0.110959 0.192187i
\(732\) 0 0
\(733\) 0.500000 0.866025i 0.0184679 0.0319874i −0.856644 0.515908i \(-0.827454\pi\)
0.875112 + 0.483921i \(0.160788\pi\)
\(734\) 0 0
\(735\) 19.5000 7.79423i 0.719268 0.287494i
\(736\) 0 0
\(737\) −4.50000 7.79423i −0.165760 0.287104i
\(738\) 0 0
\(739\) −9.50000 + 16.4545i −0.349463 + 0.605288i −0.986154 0.165831i \(-0.946969\pi\)
0.636691 + 0.771119i \(0.280303\pi\)
\(740\) 0 0
\(741\) −3.00000 + 10.3923i −0.110208 + 0.381771i
\(742\) 0 0
\(743\) −16.5000 28.5788i −0.605326 1.04846i −0.992000 0.126239i \(-0.959709\pi\)
0.386674 0.922217i \(-0.373624\pi\)
\(744\) 0 0
\(745\) −27.0000 −0.989203
\(746\) 0 0
\(747\) −8.00000 13.8564i −0.292705 0.506979i
\(748\) 0 0
\(749\) −32.0000 + 27.7128i −1.16925 + 1.01260i
\(750\) 0 0
\(751\) −36.0000 −1.31366 −0.656829 0.754039i \(-0.728103\pi\)
−0.656829 + 0.754039i \(0.728103\pi\)
\(752\) 0 0
\(753\) 1.50000 + 2.59808i 0.0546630 + 0.0946792i
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) 2.50000 + 4.33013i 0.0908640 + 0.157381i 0.907875 0.419241i \(-0.137704\pi\)
−0.817011 + 0.576622i \(0.804370\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.5000 + 21.6506i 0.453125 + 0.784835i 0.998578 0.0533061i \(-0.0169759\pi\)
−0.545454 + 0.838141i \(0.683643\pi\)
\(762\) 0 0
\(763\) −37.5000 12.9904i −1.35759 0.470283i
\(764\) 0 0
\(765\) 12.0000 0.433861
\(766\) 0 0
\(767\) −12.0000 + 41.5692i −0.433295 + 1.50098i
\(768\) 0 0
\(769\) 10.5000 + 18.1865i 0.378640 + 0.655823i 0.990865 0.134860i \(-0.0430586\pi\)
−0.612225 + 0.790684i \(0.709725\pi\)
\(770\) 0 0
\(771\) 3.00000 5.19615i 0.108042 0.187135i
\(772\) 0 0
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −2.00000 + 3.46410i −0.0718421 + 0.124434i
\(776\) 0 0
\(777\) −5.00000 25.9808i −0.179374 0.932055i
\(778\) 0 0
\(779\) 4.50000 7.79423i 0.161229 0.279257i
\(780\) 0 0
\(781\) −0.500000 0.866025i −0.0178914 0.0309888i
\(782\) 0 0
\(783\) 22.5000 + 38.9711i 0.804084 + 1.39272i
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) −4.50000 7.79423i −0.160204 0.277482i