Properties

Label 728.2.h.b.27.11
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(27,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1,0,1,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.11
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10110 - 0.887461i) q^{2} -0.140163i q^{3} +(0.424825 + 1.95436i) q^{4} +0.986963 q^{5} +(-0.124389 + 0.154333i) q^{6} +(1.39484 + 2.24820i) q^{7} +(1.26665 - 2.52895i) q^{8} +2.98035 q^{9} +(-1.08674 - 0.875891i) q^{10} -1.55783 q^{11} +(0.273929 - 0.0595448i) q^{12} +1.00000 q^{13} +(0.459336 - 3.71336i) q^{14} -0.138336i q^{15} +(-3.63905 + 1.66052i) q^{16} -4.36043i q^{17} +(-3.28166 - 2.64495i) q^{18} +7.69522i q^{19} +(0.419286 + 1.92888i) q^{20} +(0.315115 - 0.195505i) q^{21} +(1.71532 + 1.38251i) q^{22} +2.65380i q^{23} +(-0.354466 - 0.177537i) q^{24} -4.02591 q^{25} +(-1.10110 - 0.887461i) q^{26} -0.838225i q^{27} +(-3.80123 + 3.68112i) q^{28} +5.33662i q^{29} +(-0.122768 + 0.152321i) q^{30} +9.27964 q^{31} +(5.48059 + 1.40112i) q^{32} +0.218350i q^{33} +(-3.86972 + 4.80126i) q^{34} +(1.37666 + 2.21889i) q^{35} +(1.26613 + 5.82469i) q^{36} -0.0671212i q^{37} +(6.82921 - 8.47318i) q^{38} -0.140163i q^{39} +(1.25013 - 2.49598i) q^{40} -5.51713i q^{41} +(-0.520475 - 0.0643819i) q^{42} -5.43661 q^{43} +(-0.661805 - 3.04456i) q^{44} +2.94150 q^{45} +(2.35514 - 2.92208i) q^{46} +6.75979 q^{47} +(0.232744 + 0.510060i) q^{48} +(-3.10882 + 6.27178i) q^{49} +(4.43291 + 3.57283i) q^{50} -0.611172 q^{51} +(0.424825 + 1.95436i) q^{52} +3.62105i q^{53} +(-0.743892 + 0.922966i) q^{54} -1.53752 q^{55} +(7.45237 - 0.679819i) q^{56} +1.07859 q^{57} +(4.73604 - 5.87613i) q^{58} -4.10440i q^{59} +(0.270358 - 0.0587685i) q^{60} +8.11403 q^{61} +(-10.2178 - 8.23532i) q^{62} +(4.15713 + 6.70044i) q^{63} +(-4.79122 - 6.40658i) q^{64} +0.986963 q^{65} +(0.193777 - 0.240425i) q^{66} +5.12668 q^{67} +(8.52186 - 1.85242i) q^{68} +0.371964 q^{69} +(0.453347 - 3.66494i) q^{70} -1.96037i q^{71} +(3.77505 - 7.53718i) q^{72} -3.52622i q^{73} +(-0.0595674 + 0.0739068i) q^{74} +0.564283i q^{75} +(-15.0392 + 3.26912i) q^{76} +(-2.17293 - 3.50232i) q^{77} +(-0.124389 + 0.154333i) q^{78} +9.12508i q^{79} +(-3.59160 + 1.63887i) q^{80} +8.82357 q^{81} +(-4.89624 + 6.07490i) q^{82} -5.07705i q^{83} +(0.515957 + 0.532792i) q^{84} -4.30359i q^{85} +(5.98623 + 4.82478i) q^{86} +0.747996 q^{87} +(-1.97322 + 3.93968i) q^{88} -1.10613i q^{89} +(-3.23887 - 2.61047i) q^{90} +(1.39484 + 2.24820i) q^{91} +(-5.18647 + 1.12740i) q^{92} -1.30066i q^{93} +(-7.44317 - 5.99905i) q^{94} +7.59489i q^{95} +(0.196385 - 0.768176i) q^{96} -10.5990i q^{97} +(8.98908 - 4.14687i) q^{98} -4.64288 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10110 0.887461i −0.778592 0.627530i
\(3\) 0.140163i 0.0809232i −0.999181 0.0404616i \(-0.987117\pi\)
0.999181 0.0404616i \(-0.0128828\pi\)
\(4\) 0.424825 + 1.95436i 0.212413 + 0.977180i
\(5\) 0.986963 0.441383 0.220692 0.975344i \(-0.429169\pi\)
0.220692 + 0.975344i \(0.429169\pi\)
\(6\) −0.124389 + 0.154333i −0.0507817 + 0.0630062i
\(7\) 1.39484 + 2.24820i 0.527201 + 0.849741i
\(8\) 1.26665 2.52895i 0.447827 0.894120i
\(9\) 2.98035 0.993451
\(10\) −1.08674 0.875891i −0.343658 0.276981i
\(11\) −1.55783 −0.469703 −0.234852 0.972031i \(-0.575460\pi\)
−0.234852 + 0.972031i \(0.575460\pi\)
\(12\) 0.273929 0.0595448i 0.0790765 0.0171891i
\(13\) 1.00000 0.277350
\(14\) 0.459336 3.71336i 0.122763 0.992436i
\(15\) 0.138336i 0.0357181i
\(16\) −3.63905 + 1.66052i −0.909762 + 0.415131i
\(17\) 4.36043i 1.05756i −0.848759 0.528780i \(-0.822650\pi\)
0.848759 0.528780i \(-0.177350\pi\)
\(18\) −3.28166 2.64495i −0.773494 0.623420i
\(19\) 7.69522i 1.76540i 0.469933 + 0.882702i \(0.344278\pi\)
−0.469933 + 0.882702i \(0.655722\pi\)
\(20\) 0.419286 + 1.92888i 0.0937553 + 0.431311i
\(21\) 0.315115 0.195505i 0.0687637 0.0426628i
\(22\) 1.71532 + 1.38251i 0.365708 + 0.294753i
\(23\) 2.65380i 0.553355i 0.960963 + 0.276677i \(0.0892333\pi\)
−0.960963 + 0.276677i \(0.910767\pi\)
\(24\) −0.354466 0.177537i −0.0723551 0.0362396i
\(25\) −4.02591 −0.805181
\(26\) −1.10110 0.887461i −0.215943 0.174045i
\(27\) 0.838225i 0.161316i
\(28\) −3.80123 + 3.68112i −0.718365 + 0.695666i
\(29\) 5.33662i 0.990985i 0.868612 + 0.495492i \(0.165012\pi\)
−0.868612 + 0.495492i \(0.834988\pi\)
\(30\) −0.122768 + 0.152321i −0.0224142 + 0.0278099i
\(31\) 9.27964 1.66667 0.833336 0.552767i \(-0.186428\pi\)
0.833336 + 0.552767i \(0.186428\pi\)
\(32\) 5.48059 + 1.40112i 0.968841 + 0.247685i
\(33\) 0.218350i 0.0380099i
\(34\) −3.86972 + 4.80126i −0.663651 + 0.823409i
\(35\) 1.37666 + 2.21889i 0.232698 + 0.375061i
\(36\) 1.26613 + 5.82469i 0.211022 + 0.970781i
\(37\) 0.0671212i 0.0110347i −0.999985 0.00551733i \(-0.998244\pi\)
0.999985 0.00551733i \(-0.00175623\pi\)
\(38\) 6.82921 8.47318i 1.10784 1.37453i
\(39\) 0.140163i 0.0224441i
\(40\) 1.25013 2.49598i 0.197663 0.394650i
\(41\) 5.51713i 0.861632i −0.902440 0.430816i \(-0.858226\pi\)
0.902440 0.430816i \(-0.141774\pi\)
\(42\) −0.520475 0.0643819i −0.0803111 0.00993435i
\(43\) −5.43661 −0.829075 −0.414538 0.910032i \(-0.636057\pi\)
−0.414538 + 0.910032i \(0.636057\pi\)
\(44\) −0.661805 3.04456i −0.0997709 0.458985i
\(45\) 2.94150 0.438493
\(46\) 2.35514 2.92208i 0.347246 0.430838i
\(47\) 6.75979 0.986016 0.493008 0.870025i \(-0.335897\pi\)
0.493008 + 0.870025i \(0.335897\pi\)
\(48\) 0.232744 + 0.510060i 0.0335937 + 0.0736208i
\(49\) −3.10882 + 6.27178i −0.444118 + 0.895968i
\(50\) 4.43291 + 3.57283i 0.626908 + 0.505275i
\(51\) −0.611172 −0.0855812
\(52\) 0.424825 + 1.95436i 0.0589126 + 0.271021i
\(53\) 3.62105i 0.497389i 0.968582 + 0.248695i \(0.0800016\pi\)
−0.968582 + 0.248695i \(0.919998\pi\)
\(54\) −0.743892 + 0.922966i −0.101231 + 0.125600i
\(55\) −1.53752 −0.207319
\(56\) 7.45237 0.679819i 0.995865 0.0908446i
\(57\) 1.07859 0.142862
\(58\) 4.73604 5.87613i 0.621872 0.771573i
\(59\) 4.10440i 0.534347i −0.963648 0.267173i \(-0.913910\pi\)
0.963648 0.267173i \(-0.0860897\pi\)
\(60\) 0.270358 0.0587685i 0.0349030 0.00758698i
\(61\) 8.11403 1.03890 0.519448 0.854502i \(-0.326138\pi\)
0.519448 + 0.854502i \(0.326138\pi\)
\(62\) −10.2178 8.23532i −1.29766 1.04589i
\(63\) 4.15713 + 6.70044i 0.523749 + 0.844176i
\(64\) −4.79122 6.40658i −0.598902 0.800822i
\(65\) 0.986963 0.122418
\(66\) 0.193777 0.240425i 0.0238523 0.0295942i
\(67\) 5.12668 0.626324 0.313162 0.949700i \(-0.398612\pi\)
0.313162 + 0.949700i \(0.398612\pi\)
\(68\) 8.52186 1.85242i 1.03343 0.224639i
\(69\) 0.371964 0.0447792
\(70\) 0.453347 3.66494i 0.0541854 0.438044i
\(71\) 1.96037i 0.232653i −0.993211 0.116327i \(-0.962888\pi\)
0.993211 0.116327i \(-0.0371119\pi\)
\(72\) 3.77505 7.53718i 0.444894 0.888265i
\(73\) 3.52622i 0.412712i −0.978477 0.206356i \(-0.933839\pi\)
0.978477 0.206356i \(-0.0661605\pi\)
\(74\) −0.0595674 + 0.0739068i −0.00692457 + 0.00859150i
\(75\) 0.564283i 0.0651578i
\(76\) −15.0392 + 3.26912i −1.72512 + 0.374994i
\(77\) −2.17293 3.50232i −0.247628 0.399126i
\(78\) −0.124389 + 0.154333i −0.0140843 + 0.0174748i
\(79\) 9.12508i 1.02665i 0.858194 + 0.513326i \(0.171587\pi\)
−0.858194 + 0.513326i \(0.828413\pi\)
\(80\) −3.59160 + 1.63887i −0.401553 + 0.183232i
\(81\) 8.82357 0.980397
\(82\) −4.89624 + 6.07490i −0.540700 + 0.670860i
\(83\) 5.07705i 0.557279i −0.960396 0.278640i \(-0.910117\pi\)
0.960396 0.278640i \(-0.0898835\pi\)
\(84\) 0.515957 + 0.532792i 0.0562955 + 0.0581324i
\(85\) 4.30359i 0.466789i
\(86\) 5.98623 + 4.82478i 0.645512 + 0.520269i
\(87\) 0.747996 0.0801936
\(88\) −1.97322 + 3.93968i −0.210346 + 0.419971i
\(89\) 1.10613i 0.117250i −0.998280 0.0586248i \(-0.981328\pi\)
0.998280 0.0586248i \(-0.0186715\pi\)
\(90\) −3.23887 2.61047i −0.341407 0.275167i
\(91\) 1.39484 + 2.24820i 0.146219 + 0.235676i
\(92\) −5.18647 + 1.12740i −0.540727 + 0.117539i
\(93\) 1.30066i 0.134872i
\(94\) −7.44317 5.99905i −0.767705 0.618755i
\(95\) 7.59489i 0.779220i
\(96\) 0.196385 0.768176i 0.0200435 0.0784017i
\(97\) 10.5990i 1.07616i −0.842893 0.538081i \(-0.819150\pi\)
0.842893 0.538081i \(-0.180850\pi\)
\(98\) 8.98908 4.14687i 0.908034 0.418897i
\(99\) −4.64288 −0.466627
\(100\) −1.71031 7.86807i −0.171031 0.786807i
\(101\) 0.348577 0.0346847 0.0173424 0.999850i \(-0.494479\pi\)
0.0173424 + 0.999850i \(0.494479\pi\)
\(102\) 0.672959 + 0.542391i 0.0666329 + 0.0537047i
\(103\) 10.3076 1.01564 0.507821 0.861463i \(-0.330451\pi\)
0.507821 + 0.861463i \(0.330451\pi\)
\(104\) 1.26665 2.52895i 0.124205 0.247984i
\(105\) 0.311007 0.192957i 0.0303511 0.0188306i
\(106\) 3.21354 3.98712i 0.312127 0.387264i
\(107\) −6.29550 −0.608609 −0.304304 0.952575i \(-0.598424\pi\)
−0.304304 + 0.952575i \(0.598424\pi\)
\(108\) 1.63819 0.356099i 0.157635 0.0342656i
\(109\) 9.07535i 0.869261i −0.900609 0.434631i \(-0.856879\pi\)
0.900609 0.434631i \(-0.143121\pi\)
\(110\) 1.69296 + 1.36449i 0.161417 + 0.130099i
\(111\) −0.00940791 −0.000892959
\(112\) −8.80909 5.86515i −0.832381 0.554204i
\(113\) 13.6413 1.28326 0.641632 0.767013i \(-0.278258\pi\)
0.641632 + 0.767013i \(0.278258\pi\)
\(114\) −1.18763 0.957203i −0.111231 0.0896503i
\(115\) 2.61920i 0.244241i
\(116\) −10.4297 + 2.26713i −0.968370 + 0.210498i
\(117\) 2.98035 0.275534
\(118\) −3.64249 + 4.51933i −0.335319 + 0.416038i
\(119\) 9.80314 6.08212i 0.898652 0.557547i
\(120\) −0.349845 0.175222i −0.0319363 0.0159955i
\(121\) −8.57317 −0.779379
\(122\) −8.93433 7.20089i −0.808876 0.651938i
\(123\) −0.773299 −0.0697260
\(124\) 3.94222 + 18.1358i 0.354022 + 1.62864i
\(125\) −8.90823 −0.796776
\(126\) 1.36898 11.0671i 0.121959 0.985937i
\(127\) 10.7964i 0.958027i 0.877808 + 0.479013i \(0.159005\pi\)
−0.877808 + 0.479013i \(0.840995\pi\)
\(128\) −0.409999 + 11.3063i −0.0362392 + 0.999343i
\(129\) 0.762012i 0.0670914i
\(130\) −1.08674 0.875891i −0.0953134 0.0768207i
\(131\) 16.0674i 1.40382i 0.712267 + 0.701908i \(0.247668\pi\)
−0.712267 + 0.701908i \(0.752332\pi\)
\(132\) −0.426735 + 0.0927606i −0.0371425 + 0.00807378i
\(133\) −17.3004 + 10.7336i −1.50014 + 0.930723i
\(134\) −5.64497 4.54973i −0.487651 0.393037i
\(135\) 0.827296i 0.0712023i
\(136\) −11.0273 5.52313i −0.945587 0.473604i
\(137\) 2.68339 0.229257 0.114629 0.993408i \(-0.463432\pi\)
0.114629 + 0.993408i \(0.463432\pi\)
\(138\) −0.409568 0.330104i −0.0348648 0.0281003i
\(139\) 6.13776i 0.520598i 0.965528 + 0.260299i \(0.0838212\pi\)
−0.965528 + 0.260299i \(0.916179\pi\)
\(140\) −3.75167 + 3.63313i −0.317074 + 0.307055i
\(141\) 0.947472i 0.0797916i
\(142\) −1.73975 + 2.15856i −0.145997 + 0.181142i
\(143\) −1.55783 −0.130272
\(144\) −10.8457 + 4.94894i −0.903804 + 0.412412i
\(145\) 5.26704i 0.437404i
\(146\) −3.12938 + 3.88270i −0.258989 + 0.321335i
\(147\) 0.879072 + 0.435742i 0.0725046 + 0.0359394i
\(148\) 0.131179 0.0285148i 0.0107828 0.00234390i
\(149\) 1.69559i 0.138908i −0.997585 0.0694539i \(-0.977874\pi\)
0.997585 0.0694539i \(-0.0221257\pi\)
\(150\) 0.500779 0.621330i 0.0408885 0.0507314i
\(151\) 12.7033i 1.03378i −0.856052 0.516889i \(-0.827090\pi\)
0.856052 0.516889i \(-0.172910\pi\)
\(152\) 19.4609 + 9.74712i 1.57848 + 0.790596i
\(153\) 12.9956i 1.05064i
\(154\) −0.715567 + 5.78478i −0.0576620 + 0.466151i
\(155\) 9.15866 0.735641
\(156\) 0.273929 0.0595448i 0.0219319 0.00476740i
\(157\) −21.5064 −1.71640 −0.858201 0.513314i \(-0.828417\pi\)
−0.858201 + 0.513314i \(0.828417\pi\)
\(158\) 8.09815 10.0476i 0.644254 0.799343i
\(159\) 0.507537 0.0402503
\(160\) 5.40914 + 1.38285i 0.427630 + 0.109324i
\(161\) −5.96627 + 3.70163i −0.470208 + 0.291729i
\(162\) −9.71560 7.83058i −0.763330 0.615229i
\(163\) −6.62347 −0.518791 −0.259395 0.965771i \(-0.583523\pi\)
−0.259395 + 0.965771i \(0.583523\pi\)
\(164\) 10.7825 2.34382i 0.841969 0.183021i
\(165\) 0.215503i 0.0167769i
\(166\) −4.50569 + 5.59032i −0.349709 + 0.433893i
\(167\) 0.155425 0.0120271 0.00601357 0.999982i \(-0.498086\pi\)
0.00601357 + 0.999982i \(0.498086\pi\)
\(168\) −0.0952855 1.04455i −0.00735143 0.0805886i
\(169\) 1.00000 0.0769231
\(170\) −3.81927 + 4.73866i −0.292924 + 0.363439i
\(171\) 22.9345i 1.75384i
\(172\) −2.30961 10.6251i −0.176106 0.810156i
\(173\) −0.303425 −0.0230690 −0.0115345 0.999933i \(-0.503672\pi\)
−0.0115345 + 0.999933i \(0.503672\pi\)
\(174\) −0.823616 0.663818i −0.0624382 0.0503239i
\(175\) −5.61551 9.05105i −0.424492 0.684195i
\(176\) 5.66902 2.58681i 0.427318 0.194988i
\(177\) −0.575285 −0.0432411
\(178\) −0.981647 + 1.21796i −0.0735776 + 0.0912896i
\(179\) −17.1546 −1.28219 −0.641096 0.767460i \(-0.721520\pi\)
−0.641096 + 0.767460i \(0.721520\pi\)
\(180\) 1.24962 + 5.74875i 0.0931413 + 0.428486i
\(181\) −15.0801 −1.12090 −0.560448 0.828190i \(-0.689371\pi\)
−0.560448 + 0.828190i \(0.689371\pi\)
\(182\) 0.459336 3.71336i 0.0340482 0.275252i
\(183\) 1.13729i 0.0840707i
\(184\) 6.71133 + 3.36142i 0.494765 + 0.247807i
\(185\) 0.0662461i 0.00487051i
\(186\) −1.15429 + 1.43215i −0.0846365 + 0.105011i
\(187\) 6.79282i 0.496740i
\(188\) 2.87173 + 13.2111i 0.209442 + 0.963515i
\(189\) 1.88450 1.16919i 0.137077 0.0850462i
\(190\) 6.74017 8.36271i 0.488984 0.606695i
\(191\) 16.3488i 1.18296i −0.806319 0.591480i \(-0.798544\pi\)
0.806319 0.591480i \(-0.201456\pi\)
\(192\) −0.897966 + 0.671552i −0.0648051 + 0.0484651i
\(193\) −2.82671 −0.203471 −0.101736 0.994811i \(-0.532440\pi\)
−0.101736 + 0.994811i \(0.532440\pi\)
\(194\) −9.40616 + 11.6705i −0.675323 + 0.837891i
\(195\) 0.138336i 0.00990642i
\(196\) −13.5780 3.41135i −0.969859 0.243668i
\(197\) 21.2411i 1.51337i −0.653780 0.756684i \(-0.726818\pi\)
0.653780 0.756684i \(-0.273182\pi\)
\(198\) 5.11226 + 4.12038i 0.363313 + 0.292823i
\(199\) −21.0288 −1.49070 −0.745348 0.666676i \(-0.767716\pi\)
−0.745348 + 0.666676i \(0.767716\pi\)
\(200\) −5.09940 + 10.1813i −0.360582 + 0.719929i
\(201\) 0.718571i 0.0506841i
\(202\) −0.383817 0.309349i −0.0270053 0.0217657i
\(203\) −11.9978 + 7.44374i −0.842080 + 0.522448i
\(204\) −0.259641 1.19445i −0.0181785 0.0836282i
\(205\) 5.44521i 0.380310i
\(206\) −11.3497 9.14763i −0.790771 0.637345i
\(207\) 7.90925i 0.549731i
\(208\) −3.63905 + 1.66052i −0.252323 + 0.115137i
\(209\) 11.9878i 0.829216i
\(210\) −0.513690 0.0635425i −0.0354480 0.00438485i
\(211\) −18.8736 −1.29931 −0.649656 0.760228i \(-0.725087\pi\)
−0.649656 + 0.760228i \(0.725087\pi\)
\(212\) −7.07683 + 1.53831i −0.486039 + 0.105652i
\(213\) −0.274772 −0.0188270
\(214\) 6.93195 + 5.58701i 0.473858 + 0.381920i
\(215\) −5.36573 −0.365940
\(216\) −2.11983 1.06173i −0.144236 0.0722418i
\(217\) 12.9436 + 20.8625i 0.878672 + 1.41624i
\(218\) −8.05402 + 9.99284i −0.545487 + 0.676800i
\(219\) −0.494245 −0.0333980
\(220\) −0.653177 3.00487i −0.0440372 0.202588i
\(221\) 4.36043i 0.293315i
\(222\) 0.0103590 + 0.00834915i 0.000695251 + 0.000560358i
\(223\) −1.38884 −0.0930038 −0.0465019 0.998918i \(-0.514807\pi\)
−0.0465019 + 0.998918i \(0.514807\pi\)
\(224\) 4.49457 + 14.2758i 0.300306 + 0.953843i
\(225\) −11.9986 −0.799908
\(226\) −15.0204 12.1061i −0.999139 0.805286i
\(227\) 3.80506i 0.252550i 0.991995 + 0.126275i \(0.0403022\pi\)
−0.991995 + 0.126275i \(0.959698\pi\)
\(228\) 0.458210 + 2.10794i 0.0303457 + 0.139602i
\(229\) 21.9736 1.45206 0.726028 0.687666i \(-0.241364\pi\)
0.726028 + 0.687666i \(0.241364\pi\)
\(230\) 2.32444 2.88399i 0.153269 0.190164i
\(231\) −0.490895 + 0.304564i −0.0322985 + 0.0200389i
\(232\) 13.4961 + 6.75960i 0.886059 + 0.443790i
\(233\) 28.8013 1.88684 0.943419 0.331603i \(-0.107589\pi\)
0.943419 + 0.331603i \(0.107589\pi\)
\(234\) −3.28166 2.64495i −0.214529 0.172906i
\(235\) 6.67166 0.435211
\(236\) 8.02147 1.74365i 0.522153 0.113502i
\(237\) 1.27900 0.0830799
\(238\) −16.1918 2.00290i −1.04956 0.129829i
\(239\) 12.5308i 0.810549i 0.914195 + 0.405274i \(0.132824\pi\)
−0.914195 + 0.405274i \(0.867176\pi\)
\(240\) 0.229709 + 0.503410i 0.0148277 + 0.0324950i
\(241\) 5.64814i 0.363829i 0.983314 + 0.181914i \(0.0582294\pi\)
−0.983314 + 0.181914i \(0.941771\pi\)
\(242\) 9.43988 + 7.60835i 0.606818 + 0.489083i
\(243\) 3.75141i 0.240653i
\(244\) 3.44704 + 15.8577i 0.220674 + 1.01519i
\(245\) −3.06829 + 6.19001i −0.196026 + 0.395465i
\(246\) 0.851476 + 0.686272i 0.0542881 + 0.0437551i
\(247\) 7.69522i 0.489635i
\(248\) 11.7540 23.4678i 0.746381 1.49021i
\(249\) −0.711615 −0.0450968
\(250\) 9.80882 + 7.90571i 0.620364 + 0.500001i
\(251\) 21.4858i 1.35617i −0.734982 0.678087i \(-0.762809\pi\)
0.734982 0.678087i \(-0.237191\pi\)
\(252\) −11.3290 + 10.9710i −0.713661 + 0.691110i
\(253\) 4.13416i 0.259912i
\(254\) 9.58140 11.8879i 0.601190 0.745912i
\(255\) −0.603204 −0.0377741
\(256\) 10.4853 12.0854i 0.655333 0.755340i
\(257\) 26.5474i 1.65598i −0.560741 0.827991i \(-0.689484\pi\)
0.560741 0.827991i \(-0.310516\pi\)
\(258\) 0.676256 0.839048i 0.0421019 0.0522369i
\(259\) 0.150902 0.0936235i 0.00937659 0.00581748i
\(260\) 0.419286 + 1.92888i 0.0260030 + 0.119624i
\(261\) 15.9050i 0.984495i
\(262\) 14.2592 17.6918i 0.880937 1.09300i
\(263\) 5.05439i 0.311667i −0.987783 0.155834i \(-0.950194\pi\)
0.987783 0.155834i \(-0.0498064\pi\)
\(264\) 0.552198 + 0.276572i 0.0339854 + 0.0170219i
\(265\) 3.57384i 0.219539i
\(266\) 28.5751 + 3.53469i 1.75205 + 0.216726i
\(267\) −0.155039 −0.00948820
\(268\) 2.17794 + 10.0194i 0.133039 + 0.612031i
\(269\) −5.06872 −0.309045 −0.154523 0.987989i \(-0.549384\pi\)
−0.154523 + 0.987989i \(0.549384\pi\)
\(270\) −0.734194 + 0.910933i −0.0446816 + 0.0554376i
\(271\) −20.2952 −1.23285 −0.616424 0.787415i \(-0.711419\pi\)
−0.616424 + 0.787415i \(0.711419\pi\)
\(272\) 7.24060 + 15.8678i 0.439026 + 0.962128i
\(273\) 0.315115 0.195505i 0.0190716 0.0118325i
\(274\) −2.95467 2.38140i −0.178498 0.143866i
\(275\) 6.27167 0.378196
\(276\) 0.158020 + 0.726952i 0.00951166 + 0.0437574i
\(277\) 2.57962i 0.154995i −0.996993 0.0774973i \(-0.975307\pi\)
0.996993 0.0774973i \(-0.0246929\pi\)
\(278\) 5.44703 6.75827i 0.326691 0.405334i
\(279\) 27.6566 1.65576
\(280\) 7.35521 0.670956i 0.439558 0.0400973i
\(281\) −20.2368 −1.20723 −0.603613 0.797277i \(-0.706273\pi\)
−0.603613 + 0.797277i \(0.706273\pi\)
\(282\) −0.840845 + 1.04326i −0.0500716 + 0.0621251i
\(283\) 21.8971i 1.30165i −0.759228 0.650825i \(-0.774423\pi\)
0.759228 0.650825i \(-0.225577\pi\)
\(284\) 3.83127 0.832815i 0.227344 0.0494185i
\(285\) 1.06452 0.0630569
\(286\) 1.71532 + 1.38251i 0.101429 + 0.0817497i
\(287\) 12.4036 7.69554i 0.732163 0.454253i
\(288\) 16.3341 + 4.17583i 0.962496 + 0.246063i
\(289\) −2.01339 −0.118435
\(290\) 4.67429 5.79952i 0.274484 0.340559i
\(291\) −1.48558 −0.0870864
\(292\) 6.89149 1.49802i 0.403294 0.0876653i
\(293\) −6.13771 −0.358569 −0.179285 0.983797i \(-0.557378\pi\)
−0.179285 + 0.983797i \(0.557378\pi\)
\(294\) −0.581238 1.25994i −0.0338985 0.0734810i
\(295\) 4.05089i 0.235852i
\(296\) −0.169746 0.0850187i −0.00986630 0.00494161i
\(297\) 1.30581i 0.0757709i
\(298\) −1.50477 + 1.86700i −0.0871688 + 0.108153i
\(299\) 2.65380i 0.153473i
\(300\) −1.10281 + 0.239722i −0.0636709 + 0.0138403i
\(301\) −7.58322 12.2226i −0.437089 0.704499i
\(302\) −11.2737 + 13.9875i −0.648727 + 0.804892i
\(303\) 0.0488577i 0.00280680i
\(304\) −12.7781 28.0033i −0.732873 1.60610i
\(305\) 8.00825 0.458551
\(306\) −11.5331 + 14.3094i −0.659305 + 0.818017i
\(307\) 29.4120i 1.67863i −0.543644 0.839316i \(-0.682956\pi\)
0.543644 0.839316i \(-0.317044\pi\)
\(308\) 5.92167 5.73456i 0.337419 0.326757i
\(309\) 1.44475i 0.0821889i
\(310\) −10.0846 8.12795i −0.572764 0.461637i
\(311\) −33.2593 −1.88596 −0.942982 0.332844i \(-0.891992\pi\)
−0.942982 + 0.332844i \(0.891992\pi\)
\(312\) −0.354466 0.177537i −0.0200677 0.0100511i
\(313\) 12.7334i 0.719734i −0.933004 0.359867i \(-0.882822\pi\)
0.933004 0.359867i \(-0.117178\pi\)
\(314\) 23.6807 + 19.0861i 1.33638 + 1.07709i
\(315\) 4.10293 + 6.61308i 0.231174 + 0.372605i
\(316\) −17.8337 + 3.87656i −1.00322 + 0.218074i
\(317\) 12.4765i 0.700751i 0.936609 + 0.350375i \(0.113946\pi\)
−0.936609 + 0.350375i \(0.886054\pi\)
\(318\) −0.558847 0.450420i −0.0313386 0.0252583i
\(319\) 8.31354i 0.465469i
\(320\) −4.72875 6.32305i −0.264345 0.353469i
\(321\) 0.882396i 0.0492505i
\(322\) 9.85449 + 1.21898i 0.549169 + 0.0679313i
\(323\) 33.5545 1.86702
\(324\) 3.74848 + 17.2444i 0.208249 + 0.958025i
\(325\) −4.02591 −0.223317
\(326\) 7.29308 + 5.87808i 0.403926 + 0.325557i
\(327\) −1.27203 −0.0703434
\(328\) −13.9526 6.98826i −0.770402 0.385862i
\(329\) 9.42884 + 15.1974i 0.519829 + 0.837858i
\(330\) 0.191251 0.237290i 0.0105280 0.0130624i
\(331\) 30.4522 1.67380 0.836902 0.547353i \(-0.184364\pi\)
0.836902 + 0.547353i \(0.184364\pi\)
\(332\) 9.92239 2.15686i 0.544562 0.118373i
\(333\) 0.200045i 0.0109624i
\(334\) −0.171138 0.137933i −0.00936424 0.00754739i
\(335\) 5.05984 0.276449
\(336\) −0.822077 + 1.23471i −0.0448480 + 0.0673589i
\(337\) 9.55314 0.520393 0.260196 0.965556i \(-0.416213\pi\)
0.260196 + 0.965556i \(0.416213\pi\)
\(338\) −1.10110 0.887461i −0.0598917 0.0482715i
\(339\) 1.91200i 0.103846i
\(340\) 8.41076 1.82827i 0.456137 0.0991519i
\(341\) −14.4561 −0.782842
\(342\) 20.3535 25.2531i 1.10059 1.36553i
\(343\) −18.4365 + 1.75888i −0.995480 + 0.0949707i
\(344\) −6.88626 + 13.7489i −0.371282 + 0.741293i
\(345\) 0.367115 0.0197648
\(346\) 0.334100 + 0.269278i 0.0179613 + 0.0144765i
\(347\) 24.0005 1.28842 0.644208 0.764850i \(-0.277187\pi\)
0.644208 + 0.764850i \(0.277187\pi\)
\(348\) 0.317768 + 1.46185i 0.0170341 + 0.0783636i
\(349\) 21.0382 1.12615 0.563076 0.826405i \(-0.309618\pi\)
0.563076 + 0.826405i \(0.309618\pi\)
\(350\) −1.84924 + 14.9496i −0.0988462 + 0.799091i
\(351\) 0.838225i 0.0447411i
\(352\) −8.53783 2.18270i −0.455068 0.116339i
\(353\) 36.6708i 1.95179i −0.218247 0.975894i \(-0.570034\pi\)
0.218247 0.975894i \(-0.429966\pi\)
\(354\) 0.633444 + 0.510543i 0.0336672 + 0.0271351i
\(355\) 1.93481i 0.102689i
\(356\) 2.16178 0.469912i 0.114574 0.0249053i
\(357\) −0.852489 1.37404i −0.0451185 0.0727218i
\(358\) 18.8888 + 15.2240i 0.998306 + 0.804614i
\(359\) 7.72010i 0.407451i 0.979028 + 0.203726i \(0.0653050\pi\)
−0.979028 + 0.203726i \(0.934695\pi\)
\(360\) 3.72584 7.43891i 0.196369 0.392065i
\(361\) −40.2164 −2.11665
\(362\) 16.6046 + 13.3830i 0.872721 + 0.703395i
\(363\) 1.20164i 0.0630698i
\(364\) −3.80123 + 3.68112i −0.199239 + 0.192943i
\(365\) 3.48024i 0.182164i
\(366\) −1.00930 + 1.25226i −0.0527569 + 0.0654568i
\(367\) 9.67998 0.505291 0.252645 0.967559i \(-0.418699\pi\)
0.252645 + 0.967559i \(0.418699\pi\)
\(368\) −4.40669 9.65729i −0.229714 0.503421i
\(369\) 16.4430i 0.855989i
\(370\) −0.0587908 + 0.0729433i −0.00305639 + 0.00379214i
\(371\) −8.14085 + 5.05080i −0.422652 + 0.262224i
\(372\) 2.54196 0.552554i 0.131795 0.0286486i
\(373\) 34.0083i 1.76088i −0.474155 0.880441i \(-0.657246\pi\)
0.474155 0.880441i \(-0.342754\pi\)
\(374\) 6.02836 7.47954i 0.311719 0.386758i
\(375\) 1.24860i 0.0644777i
\(376\) 8.56226 17.0952i 0.441565 0.881617i
\(377\) 5.33662i 0.274850i
\(378\) −3.11263 0.385027i −0.160096 0.0198036i
\(379\) −9.16549 −0.470799 −0.235400 0.971899i \(-0.575640\pi\)
−0.235400 + 0.971899i \(0.575640\pi\)
\(380\) −14.8432 + 3.22650i −0.761438 + 0.165516i
\(381\) 1.51326 0.0775266
\(382\) −14.5090 + 18.0016i −0.742343 + 0.921044i
\(383\) −6.02966 −0.308101 −0.154051 0.988063i \(-0.549232\pi\)
−0.154051 + 0.988063i \(0.549232\pi\)
\(384\) 1.58472 + 0.0574667i 0.0808700 + 0.00293259i
\(385\) −2.14460 3.45665i −0.109299 0.176167i
\(386\) 3.11248 + 2.50860i 0.158421 + 0.127684i
\(387\) −16.2030 −0.823646
\(388\) 20.7142 4.50270i 1.05160 0.228590i
\(389\) 28.5586i 1.44798i 0.689812 + 0.723988i \(0.257693\pi\)
−0.689812 + 0.723988i \(0.742307\pi\)
\(390\) −0.122768 + 0.152321i −0.00621658 + 0.00771307i
\(391\) 11.5717 0.585206
\(392\) 11.9233 + 15.8062i 0.602216 + 0.798334i
\(393\) 2.25206 0.113601
\(394\) −18.8507 + 23.3885i −0.949684 + 1.17830i
\(395\) 9.00611i 0.453146i
\(396\) −1.97241 9.07387i −0.0991175 0.455979i
\(397\) 21.7880 1.09351 0.546755 0.837293i \(-0.315863\pi\)
0.546755 + 0.837293i \(0.315863\pi\)
\(398\) 23.1548 + 18.6623i 1.16064 + 0.935456i
\(399\) 1.50446 + 2.42488i 0.0753171 + 0.121396i
\(400\) 14.6505 6.68511i 0.732523 0.334255i
\(401\) −0.960806 −0.0479804 −0.0239902 0.999712i \(-0.507637\pi\)
−0.0239902 + 0.999712i \(0.507637\pi\)
\(402\) −0.637704 + 0.791216i −0.0318058 + 0.0394623i
\(403\) 9.27964 0.462252
\(404\) 0.148084 + 0.681246i 0.00736747 + 0.0338932i
\(405\) 8.70854 0.432731
\(406\) 19.8168 + 2.45130i 0.983489 + 0.121656i
\(407\) 0.104563i 0.00518301i
\(408\) −0.774138 + 1.54563i −0.0383256 + 0.0765199i
\(409\) 31.0748i 1.53655i 0.640120 + 0.768275i \(0.278884\pi\)
−0.640120 + 0.768275i \(0.721116\pi\)
\(410\) −4.83241 + 5.99569i −0.238656 + 0.296106i
\(411\) 0.376112i 0.0185522i
\(412\) 4.37894 + 20.1448i 0.215735 + 0.992465i
\(413\) 9.22751 5.72499i 0.454056 0.281708i
\(414\) 7.01915 8.70884i 0.344973 0.428016i
\(415\) 5.01086i 0.245974i
\(416\) 5.48059 + 1.40112i 0.268708 + 0.0686955i
\(417\) 0.860288 0.0421285
\(418\) −10.6387 + 13.1998i −0.520358 + 0.645622i
\(419\) 40.3155i 1.96954i −0.173861 0.984770i \(-0.555624\pi\)
0.173861 0.984770i \(-0.444376\pi\)
\(420\) 0.509230 + 0.525846i 0.0248479 + 0.0256587i
\(421\) 8.13838i 0.396641i 0.980137 + 0.198320i \(0.0635486\pi\)
−0.980137 + 0.198320i \(0.936451\pi\)
\(422\) 20.7817 + 16.7496i 1.01164 + 0.815358i
\(423\) 20.1466 0.979559
\(424\) 9.15747 + 4.58659i 0.444726 + 0.222744i
\(425\) 17.5547i 0.851528i
\(426\) 0.302550 + 0.243849i 0.0146586 + 0.0118145i
\(427\) 11.3178 + 18.2420i 0.547707 + 0.882792i
\(428\) −2.67448 12.3037i −0.129276 0.594720i
\(429\) 0.218350i 0.0105420i
\(430\) 5.90818 + 4.76188i 0.284918 + 0.229638i
\(431\) 15.0621i 0.725514i 0.931884 + 0.362757i \(0.118165\pi\)
−0.931884 + 0.362757i \(0.881835\pi\)
\(432\) 1.39189 + 3.05034i 0.0669674 + 0.146760i
\(433\) 2.94876i 0.141709i 0.997487 + 0.0708543i \(0.0225725\pi\)
−0.997487 + 0.0708543i \(0.977427\pi\)
\(434\) 4.26247 34.4586i 0.204605 1.65407i
\(435\) 0.738244 0.0353961
\(436\) 17.7365 3.85544i 0.849425 0.184642i
\(437\) −20.4215 −0.976895
\(438\) 0.544211 + 0.438623i 0.0260034 + 0.0209582i
\(439\) −17.1352 −0.817821 −0.408910 0.912575i \(-0.634091\pi\)
−0.408910 + 0.912575i \(0.634091\pi\)
\(440\) −1.94749 + 3.88832i −0.0928431 + 0.185368i
\(441\) −9.26540 + 18.6921i −0.441210 + 0.890101i
\(442\) −3.86972 + 4.80126i −0.184064 + 0.228373i
\(443\) −22.7343 −1.08014 −0.540070 0.841620i \(-0.681602\pi\)
−0.540070 + 0.841620i \(0.681602\pi\)
\(444\) −0.00399671 0.0183864i −0.000189676 0.000872582i
\(445\) 1.09171i 0.0517520i
\(446\) 1.52925 + 1.23254i 0.0724120 + 0.0583626i
\(447\) −0.237659 −0.0112409
\(448\) 7.72028 19.7078i 0.364749 0.931106i
\(449\) 30.2983 1.42987 0.714933 0.699193i \(-0.246457\pi\)
0.714933 + 0.699193i \(0.246457\pi\)
\(450\) 13.2116 + 10.6483i 0.622803 + 0.501966i
\(451\) 8.59476i 0.404711i
\(452\) 5.79516 + 26.6600i 0.272581 + 1.25398i
\(453\) −1.78053 −0.0836566
\(454\) 3.37684 4.18973i 0.158483 0.196634i
\(455\) 1.37666 + 2.21889i 0.0645387 + 0.104023i
\(456\) 1.36619 2.72769i 0.0639775 0.127736i
\(457\) −18.5612 −0.868255 −0.434128 0.900851i \(-0.642943\pi\)
−0.434128 + 0.900851i \(0.642943\pi\)
\(458\) −24.1950 19.5007i −1.13056 0.911208i
\(459\) −3.65502 −0.170602
\(460\) −5.11885 + 1.11270i −0.238668 + 0.0518799i
\(461\) −32.3108 −1.50486 −0.752432 0.658670i \(-0.771119\pi\)
−0.752432 + 0.658670i \(0.771119\pi\)
\(462\) 0.810812 + 0.100296i 0.0377224 + 0.00466620i
\(463\) 11.9232i 0.554120i −0.960853 0.277060i \(-0.910640\pi\)
0.960853 0.277060i \(-0.0893600\pi\)
\(464\) −8.86157 19.4202i −0.411388 0.901560i
\(465\) 1.28371i 0.0595304i
\(466\) −31.7130 25.5601i −1.46908 1.18405i
\(467\) 19.4513i 0.900099i 0.893004 + 0.450049i \(0.148594\pi\)
−0.893004 + 0.450049i \(0.851406\pi\)
\(468\) 1.26613 + 5.82469i 0.0585268 + 0.269246i
\(469\) 7.15092 + 11.5258i 0.330199 + 0.532213i
\(470\) −7.34613 5.92084i −0.338852 0.273108i
\(471\) 3.01441i 0.138897i
\(472\) −10.3798 5.19882i −0.477770 0.239295i
\(473\) 8.46931 0.389419
\(474\) −1.40830 1.13506i −0.0646854 0.0521351i
\(475\) 30.9802i 1.42147i
\(476\) 16.0513 + 16.5750i 0.735709 + 0.759715i
\(477\) 10.7920i 0.494132i
\(478\) 11.1206 13.7976i 0.508643 0.631087i
\(479\) −12.7948 −0.584608 −0.292304 0.956325i \(-0.594422\pi\)
−0.292304 + 0.956325i \(0.594422\pi\)
\(480\) 0.193825 0.758161i 0.00884685 0.0346052i
\(481\) 0.0671212i 0.00306046i
\(482\) 5.01251 6.21915i 0.228313 0.283274i
\(483\) 0.518832 + 0.836250i 0.0236077 + 0.0380507i
\(484\) −3.64210 16.7551i −0.165550 0.761593i
\(485\) 10.4608i 0.474999i
\(486\) −3.32923 + 4.13067i −0.151017 + 0.187371i
\(487\) 16.6594i 0.754909i 0.926028 + 0.377454i \(0.123200\pi\)
−0.926028 + 0.377454i \(0.876800\pi\)
\(488\) 10.2776 20.5200i 0.465245 0.928897i
\(489\) 0.928366i 0.0419822i
\(490\) 8.87188 4.09280i 0.400791 0.184894i
\(491\) −38.6473 −1.74413 −0.872064 0.489392i \(-0.837219\pi\)
−0.872064 + 0.489392i \(0.837219\pi\)
\(492\) −0.328517 1.51130i −0.0148107 0.0681348i
\(493\) 23.2700 1.04803
\(494\) 6.82921 8.47318i 0.307261 0.381226i
\(495\) −4.58235 −0.205961
\(496\) −33.7690 + 15.4090i −1.51627 + 0.691887i
\(497\) 4.40731 2.73441i 0.197695 0.122655i
\(498\) 0.783557 + 0.631531i 0.0351120 + 0.0282996i
\(499\) 13.7537 0.615702 0.307851 0.951435i \(-0.400390\pi\)
0.307851 + 0.951435i \(0.400390\pi\)
\(500\) −3.78444 17.4099i −0.169245 0.778594i
\(501\) 0.0217848i 0.000973274i
\(502\) −19.0678 + 23.6580i −0.851039 + 1.05591i
\(503\) 30.4143 1.35611 0.678053 0.735013i \(-0.262824\pi\)
0.678053 + 0.735013i \(0.262824\pi\)
\(504\) 22.2107 2.02610i 0.989344 0.0902497i
\(505\) 0.344033 0.0153093
\(506\) −3.66891 + 4.55211i −0.163103 + 0.202366i
\(507\) 0.140163i 0.00622486i
\(508\) −21.1001 + 4.58659i −0.936165 + 0.203497i
\(509\) 9.88923 0.438332 0.219166 0.975688i \(-0.429666\pi\)
0.219166 + 0.975688i \(0.429666\pi\)
\(510\) 0.664185 + 0.535320i 0.0294106 + 0.0237044i
\(511\) 7.92764 4.91852i 0.350698 0.217582i
\(512\) −22.2707 + 4.00190i −0.984236 + 0.176861i
\(513\) 6.45032 0.284789
\(514\) −23.5598 + 29.2313i −1.03918 + 1.28934i
\(515\) 10.1733 0.448287
\(516\) −1.48925 + 0.323722i −0.0655604 + 0.0142511i
\(517\) −10.5306 −0.463135
\(518\) −0.249245 0.0308312i −0.0109512 0.00135464i
\(519\) 0.0425290i 0.00186682i
\(520\) 1.25013 2.49598i 0.0548219 0.109456i
\(521\) 31.0780i 1.36155i 0.732491 + 0.680777i \(0.238358\pi\)
−0.732491 + 0.680777i \(0.761642\pi\)
\(522\) 14.1151 17.5129i 0.617800 0.766520i
\(523\) 4.85018i 0.212083i 0.994362 + 0.106042i \(0.0338177\pi\)
−0.994362 + 0.106042i \(0.966182\pi\)
\(524\) −31.4015 + 6.82584i −1.37178 + 0.298188i
\(525\) −1.26862 + 0.787087i −0.0553672 + 0.0343513i
\(526\) −4.48558 + 5.56537i −0.195580 + 0.242662i
\(527\) 40.4633i 1.76261i
\(528\) −0.362575 0.794587i −0.0157791 0.0345799i
\(529\) 15.9574 0.693799
\(530\) 3.17164 3.93514i 0.137767 0.170932i
\(531\) 12.2326i 0.530848i
\(532\) −28.3270 29.2513i −1.22813 1.26821i
\(533\) 5.51713i 0.238974i
\(534\) 0.170712 + 0.137591i 0.00738744 + 0.00595413i
\(535\) −6.21342 −0.268630
\(536\) 6.49369 12.9651i 0.280485 0.560009i
\(537\) 2.40444i 0.103759i
\(538\) 5.58115 + 4.49829i 0.240620 + 0.193935i
\(539\) 4.84302 9.77036i 0.208604 0.420839i
\(540\) 1.61684 0.351456i 0.0695775 0.0151243i
\(541\) 6.42601i 0.276276i 0.990413 + 0.138138i \(0.0441117\pi\)
−0.990413 + 0.138138i \(0.955888\pi\)
\(542\) 22.3470 + 18.0112i 0.959886 + 0.773649i
\(543\) 2.11367i 0.0907064i
\(544\) 6.10949 23.8978i 0.261942 1.02461i
\(545\) 8.95703i 0.383677i
\(546\) −0.520475 0.0643819i −0.0222743 0.00275529i
\(547\) 8.44150 0.360933 0.180466 0.983581i \(-0.442239\pi\)
0.180466 + 0.983581i \(0.442239\pi\)
\(548\) 1.13997 + 5.24431i 0.0486972 + 0.224026i
\(549\) 24.1827 1.03209
\(550\) −6.90572 5.56587i −0.294461 0.237329i
\(551\) −41.0664 −1.74949
\(552\) 0.471147 0.940680i 0.0200533 0.0400380i
\(553\) −20.5150 + 12.7281i −0.872387 + 0.541252i
\(554\) −2.28932 + 2.84041i −0.0972637 + 0.120678i
\(555\) −0.00928525 −0.000394137
\(556\) −11.9954 + 2.60748i −0.508718 + 0.110582i
\(557\) 38.6239i 1.63655i −0.574829 0.818274i \(-0.694931\pi\)
0.574829 0.818274i \(-0.305069\pi\)
\(558\) −30.4526 24.5442i −1.28916 1.03904i
\(559\) −5.43661 −0.229944
\(560\) −8.69424 5.78868i −0.367399 0.244616i
\(561\) 0.952102 0.0401978
\(562\) 22.2827 + 17.9594i 0.939938 + 0.757571i
\(563\) 5.24596i 0.221091i 0.993871 + 0.110545i \(0.0352597\pi\)
−0.993871 + 0.110545i \(0.964740\pi\)
\(564\) 1.85170 0.402510i 0.0779707 0.0169487i
\(565\) 13.4634 0.566411
\(566\) −19.4329 + 24.1108i −0.816824 + 1.01345i
\(567\) 12.3075 + 19.8372i 0.516867 + 0.833083i
\(568\) −4.95769 2.48310i −0.208020 0.104188i
\(569\) −45.6714 −1.91464 −0.957322 0.289023i \(-0.906670\pi\)
−0.957322 + 0.289023i \(0.906670\pi\)
\(570\) −1.17214 0.944723i −0.0490957 0.0395701i
\(571\) −2.25685 −0.0944463 −0.0472231 0.998884i \(-0.515037\pi\)
−0.0472231 + 0.998884i \(0.515037\pi\)
\(572\) −0.661805 3.04456i −0.0276715 0.127299i
\(573\) −2.29150 −0.0957289
\(574\) −20.4871 2.53422i −0.855114 0.105776i
\(575\) 10.6839i 0.445551i
\(576\) −14.2795 19.0939i −0.594980 0.795578i
\(577\) 4.65138i 0.193640i −0.995302 0.0968198i \(-0.969133\pi\)
0.995302 0.0968198i \(-0.0308670\pi\)
\(578\) 2.21694 + 1.78681i 0.0922124 + 0.0743214i
\(579\) 0.396201i 0.0164656i
\(580\) −10.2937 + 2.23757i −0.427422 + 0.0929100i
\(581\) 11.4142 7.08169i 0.473543 0.293798i
\(582\) 1.63577 + 1.31840i 0.0678048 + 0.0546493i
\(583\) 5.64098i 0.233625i
\(584\) −8.91764 4.46647i −0.369014 0.184824i
\(585\) 2.94150 0.121616
\(586\) 6.75821 + 5.44698i 0.279179 + 0.225013i
\(587\) 29.4108i 1.21391i −0.794735 0.606957i \(-0.792390\pi\)
0.794735 0.606957i \(-0.207610\pi\)
\(588\) −0.478146 + 1.90314i −0.0197184 + 0.0784840i
\(589\) 71.4089i 2.94235i
\(590\) −3.59500 + 4.46041i −0.148004 + 0.183632i
\(591\) −2.97722 −0.122467
\(592\) 0.111456 + 0.244257i 0.00458082 + 0.0100389i
\(593\) 12.5658i 0.516016i −0.966143 0.258008i \(-0.916934\pi\)
0.966143 0.258008i \(-0.0830660\pi\)
\(594\) 1.15886 1.43782i 0.0475485 0.0589946i
\(595\) 9.67533 6.00283i 0.396650 0.246092i
\(596\) 3.31379 0.720328i 0.135738 0.0295058i
\(597\) 2.94747i 0.120632i
\(598\) 2.35514 2.92208i 0.0963088 0.119493i
\(599\) 48.7560i 1.99212i −0.0887057 0.996058i \(-0.528273\pi\)
0.0887057 0.996058i \(-0.471727\pi\)
\(600\) 1.42705 + 0.714747i 0.0582589 + 0.0291794i
\(601\) 28.5353i 1.16398i 0.813197 + 0.581989i \(0.197725\pi\)
−0.813197 + 0.581989i \(0.802275\pi\)
\(602\) −2.49723 + 20.1881i −0.101779 + 0.822804i
\(603\) 15.2793 0.622222
\(604\) 24.8268 5.39667i 1.01019 0.219587i
\(605\) −8.46139 −0.344005
\(606\) −0.0433593 + 0.0537970i −0.00176135 + 0.00218535i
\(607\) −33.9673 −1.37869 −0.689345 0.724433i \(-0.742102\pi\)
−0.689345 + 0.724433i \(0.742102\pi\)
\(608\) −10.7819 + 42.1743i −0.437265 + 1.71040i
\(609\) 1.04334 + 1.68165i 0.0422782 + 0.0681438i
\(610\) −8.81785 7.10701i −0.357024 0.287754i
\(611\) 6.75979 0.273472
\(612\) 25.3982 5.52087i 1.02666 0.223168i
\(613\) 39.6378i 1.60096i 0.599362 + 0.800478i \(0.295421\pi\)
−0.599362 + 0.800478i \(0.704579\pi\)
\(614\) −26.1020 + 32.3854i −1.05339 + 1.30697i
\(615\) −0.763217 −0.0307759
\(616\) −11.6095 + 1.05904i −0.467761 + 0.0426700i
\(617\) −28.4014 −1.14340 −0.571699 0.820464i \(-0.693715\pi\)
−0.571699 + 0.820464i \(0.693715\pi\)
\(618\) −1.28216 + 1.59081i −0.0515760 + 0.0639917i
\(619\) 4.13135i 0.166053i 0.996547 + 0.0830266i \(0.0264586\pi\)
−0.996547 + 0.0830266i \(0.973541\pi\)
\(620\) 3.89083 + 17.8993i 0.156259 + 0.718854i
\(621\) 2.22448 0.0892652
\(622\) 36.6217 + 29.5164i 1.46840 + 1.18350i
\(623\) 2.48680 1.54288i 0.0996317 0.0618141i
\(624\) 0.232744 + 0.510060i 0.00931721 + 0.0204187i
\(625\) 11.3374 0.453497
\(626\) −11.3004 + 14.0207i −0.451655 + 0.560380i
\(627\) −1.68025 −0.0671028
\(628\) −9.13648 42.0313i −0.364585 1.67723i
\(629\) −0.292677 −0.0116698
\(630\) 1.35114 10.9228i 0.0538305 0.435176i
\(631\) 28.0677i 1.11736i −0.829384 0.558678i \(-0.811309\pi\)
0.829384 0.558678i \(-0.188691\pi\)
\(632\) 23.0769 + 11.5582i 0.917950 + 0.459762i
\(633\) 2.64538i 0.105145i
\(634\) 11.0724 13.7378i 0.439742 0.545599i
\(635\) 10.6557i 0.422857i
\(636\) 0.215615 + 0.991911i 0.00854967 + 0.0393318i
\(637\) −3.10882 + 6.27178i −0.123176 + 0.248497i
\(638\) −7.37794 + 9.15400i −0.292096 + 0.362410i
\(639\) 5.84260i 0.231130i
\(640\) −0.404654 + 11.1589i −0.0159953 + 0.441093i
\(641\) 18.5418 0.732356 0.366178 0.930545i \(-0.380666\pi\)
0.366178 + 0.930545i \(0.380666\pi\)
\(642\) 0.783092 0.971603i 0.0309062 0.0383461i
\(643\) 25.8643i 1.01999i 0.860178 + 0.509993i \(0.170352\pi\)
−0.860178 + 0.509993i \(0.829648\pi\)
\(644\) −9.76893 10.0877i −0.384950 0.397511i
\(645\) 0.752077i 0.0296130i
\(646\) −36.9467 29.7783i −1.45365 1.17161i
\(647\) −37.0538 −1.45673 −0.728367 0.685187i \(-0.759720\pi\)
−0.728367 + 0.685187i \(0.759720\pi\)
\(648\) 11.1763 22.3144i 0.439048 0.876593i
\(649\) 6.39395i 0.250985i
\(650\) 4.43291 + 3.57283i 0.173873 + 0.140138i
\(651\) 2.92415 1.81422i 0.114607 0.0711049i
\(652\) −2.81382 12.9447i −0.110198 0.506952i
\(653\) 21.6335i 0.846584i 0.905993 + 0.423292i \(0.139126\pi\)
−0.905993 + 0.423292i \(0.860874\pi\)
\(654\) 1.40063 + 1.12888i 0.0547688 + 0.0441426i
\(655\) 15.8579i 0.619621i
\(656\) 9.16133 + 20.0771i 0.357690 + 0.783880i
\(657\) 10.5094i 0.410010i
\(658\) 3.10501 25.1015i 0.121046 0.978558i
\(659\) 23.6060 0.919559 0.459780 0.888033i \(-0.347928\pi\)
0.459780 + 0.888033i \(0.347928\pi\)
\(660\) −0.421171 + 0.0915513i −0.0163941 + 0.00356363i
\(661\) 22.7740 0.885806 0.442903 0.896570i \(-0.353949\pi\)
0.442903 + 0.896570i \(0.353949\pi\)
\(662\) −33.5308 27.0251i −1.30321 1.05036i
\(663\) −0.611172 −0.0237359
\(664\) −12.8396 6.43083i −0.498275 0.249565i
\(665\) −17.0749 + 10.5937i −0.662134 + 0.410805i
\(666\) −0.177532 + 0.220269i −0.00687923 + 0.00853523i
\(667\) −14.1623 −0.548366
\(668\) 0.0660284 + 0.303756i 0.00255471 + 0.0117527i
\(669\) 0.194664i 0.00752616i
\(670\) −5.57137 4.49041i −0.215241 0.173480i
\(671\) −12.6403 −0.487973
\(672\) 2.00094 0.629972i 0.0771880 0.0243017i
\(673\) −17.0579 −0.657535 −0.328767 0.944411i \(-0.606633\pi\)
−0.328767 + 0.944411i \(0.606633\pi\)
\(674\) −10.5189 8.47805i −0.405174 0.326562i
\(675\) 3.37461i 0.129889i
\(676\) 0.424825 + 1.95436i 0.0163394 + 0.0751677i
\(677\) 15.2323 0.585424 0.292712 0.956201i \(-0.405442\pi\)
0.292712 + 0.956201i \(0.405442\pi\)
\(678\) −1.69683 + 2.10530i −0.0651663 + 0.0808535i
\(679\) 23.8286 14.7839i 0.914458 0.567353i
\(680\) −10.8836 5.45112i −0.417366 0.209041i
\(681\) 0.533328 0.0204372
\(682\) 15.9176 + 12.8292i 0.609515 + 0.491256i
\(683\) −41.3628 −1.58271 −0.791353 0.611360i \(-0.790623\pi\)
−0.791353 + 0.611360i \(0.790623\pi\)
\(684\) −44.8222 + 9.74314i −1.71382 + 0.372538i
\(685\) 2.64840 0.101190
\(686\) 21.8614 + 14.4250i 0.834670 + 0.550750i
\(687\) 3.07988i 0.117505i
\(688\) 19.7841 9.02761i 0.754261 0.344174i
\(689\) 3.62105i 0.137951i
\(690\) −0.404228 0.325800i −0.0153887 0.0124030i
\(691\) 30.9788i 1.17849i −0.807954 0.589245i \(-0.799425\pi\)
0.807954 0.589245i \(-0.200575\pi\)
\(692\) −0.128903 0.593002i −0.00490014 0.0225426i
\(693\) −6.47610 10.4381i −0.246007 0.396512i
\(694\) −26.4269 21.2996i −1.00315 0.808520i
\(695\) 6.05774i 0.229783i
\(696\) 0.947446 1.89165i 0.0359129 0.0717027i
\(697\) −24.0571 −0.911228
\(698\) −23.1651 18.6706i −0.876813 0.706693i
\(699\) 4.03688i 0.152689i
\(700\) 15.3034 14.8198i 0.578414 0.560137i
\(701\) 14.6981i 0.555139i −0.960706 0.277570i \(-0.910471\pi\)
0.960706 0.277570i \(-0.0895289\pi\)
\(702\) −0.743892 + 0.922966i −0.0280764 + 0.0348351i
\(703\) 0.516512 0.0194806
\(704\) 7.46390 + 9.98036i 0.281306 + 0.376149i
\(705\) 0.935120i 0.0352186i
\(706\) −32.5439 + 40.3780i −1.22480 + 1.51965i
\(707\) 0.486211 + 0.783672i 0.0182858 + 0.0294730i
\(708\) −0.244395 1.12431i −0.00918494 0.0422543i
\(709\) 40.4972i 1.52090i 0.649394 + 0.760452i \(0.275022\pi\)
−0.649394 + 0.760452i \(0.724978\pi\)
\(710\) −1.71707 + 2.13041i −0.0644405 + 0.0799530i
\(711\) 27.1960i 1.01993i
\(712\) −2.79735 1.40107i −0.104835 0.0525075i
\(713\) 24.6263i 0.922261i
\(714\) −0.280733 + 2.26950i −0.0105062 + 0.0849338i
\(715\) −1.53752 −0.0575000
\(716\) −7.28769 33.5262i −0.272354 1.25293i
\(717\) 1.75635 0.0655922
\(718\) 6.85129 8.50057i 0.255688 0.317238i
\(719\) 8.67917 0.323678 0.161839 0.986817i \(-0.448257\pi\)
0.161839 + 0.986817i \(0.448257\pi\)
\(720\) −10.7043 + 4.88442i −0.398924 + 0.182032i
\(721\) 14.3775 + 23.1736i 0.535447 + 0.863032i
\(722\) 44.2821 + 35.6905i 1.64801 + 1.32826i
\(723\) 0.791661 0.0294422
\(724\) −6.40641 29.4720i −0.238092 1.09532i
\(725\) 21.4847i 0.797922i
\(726\) 1.06641 1.32312i 0.0395782 0.0491057i
\(727\) 35.9939 1.33494 0.667469 0.744637i \(-0.267378\pi\)
0.667469 + 0.744637i \(0.267378\pi\)
\(728\) 7.45237 0.679819i 0.276203 0.0251958i
\(729\) 25.9449 0.960923
\(730\) −3.08858 + 3.83208i −0.114313 + 0.141832i
\(731\) 23.7060i 0.876797i
\(732\) 2.22267 0.483148i 0.0821522 0.0178577i
\(733\) 26.3045 0.971580 0.485790 0.874076i \(-0.338532\pi\)
0.485790 + 0.874076i \(0.338532\pi\)
\(734\) −10.6586 8.59061i −0.393416 0.317085i
\(735\) 0.867611 + 0.430061i 0.0320023 + 0.0158631i
\(736\) −3.71828 + 14.5444i −0.137058 + 0.536112i
\(737\) −7.98650 −0.294186
\(738\) −14.5925 + 18.1053i −0.537159 + 0.666467i
\(739\) −21.8481 −0.803696 −0.401848 0.915706i \(-0.631632\pi\)
−0.401848 + 0.915706i \(0.631632\pi\)
\(740\) 0.129469 0.0281430i 0.00475936 0.00103456i
\(741\) 1.07859 0.0396228
\(742\) 13.4462 + 1.66328i 0.493627 + 0.0610608i
\(743\) 24.1041i 0.884295i 0.896942 + 0.442148i \(0.145783\pi\)
−0.896942 + 0.442148i \(0.854217\pi\)
\(744\) −3.28932 1.64748i −0.120592 0.0603995i
\(745\) 1.67348i 0.0613116i
\(746\) −30.1810 + 37.4464i −1.10501 + 1.37101i
\(747\) 15.1314i 0.553630i
\(748\) −13.2756 + 2.88576i −0.485404 + 0.105514i
\(749\) −8.78123 14.1535i −0.320859 0.517159i
\(750\) 1.10809 1.37483i 0.0404617 0.0502018i
\(751\) 14.4698i 0.528011i 0.964521 + 0.264005i \(0.0850437\pi\)
−0.964521 + 0.264005i \(0.914956\pi\)
\(752\) −24.5992 + 11.2248i −0.897040 + 0.409326i
\(753\) −3.01152 −0.109746
\(754\) 4.73604 5.87613i 0.172476 0.213996i
\(755\) 12.5377i 0.456292i
\(756\) 3.08560 + 3.18629i 0.112222 + 0.115884i
\(757\) 1.74116i 0.0632836i −0.999499 0.0316418i \(-0.989926\pi\)
0.999499 0.0316418i \(-0.0100736\pi\)
\(758\) 10.0921 + 8.13401i 0.366561 + 0.295441i
\(759\) −0.579457 −0.0210329
\(760\) 19.2071 + 9.62004i 0.696716 + 0.348956i
\(761\) 15.9959i 0.579853i 0.957049 + 0.289926i \(0.0936308\pi\)
−0.957049 + 0.289926i \(0.906369\pi\)
\(762\) −1.66624 1.34296i −0.0603616 0.0486502i
\(763\) 20.4032 12.6587i 0.738646 0.458276i
\(764\) 31.9515 6.94540i 1.15597 0.251276i
\(765\) 12.8262i 0.463733i
\(766\) 6.63924 + 5.35109i 0.239885 + 0.193343i
\(767\) 4.10440i 0.148201i
\(768\) −1.69393 1.46966i −0.0611245 0.0530316i
\(769\) 37.7860i 1.36260i 0.732005 + 0.681300i \(0.238585\pi\)
−0.732005 + 0.681300i \(0.761415\pi\)
\(770\) −0.706238 + 5.70936i −0.0254510 + 0.205751i
\(771\) −3.72097 −0.134007
\(772\) −1.20086 5.52442i −0.0432199 0.198828i
\(773\) 36.6959 1.31986 0.659930 0.751327i \(-0.270586\pi\)
0.659930 + 0.751327i \(0.270586\pi\)
\(774\) 17.8411 + 14.3796i 0.641285 + 0.516862i
\(775\) −37.3589 −1.34197
\(776\) −26.8043 13.4251i −0.962217 0.481934i
\(777\) −0.0131226 0.0211509i −0.000470769 0.000758783i
\(778\) 25.3446 31.4457i 0.908649 1.12738i
\(779\) 42.4556 1.52113
\(780\) 0.270358 0.0587685i 0.00968036 0.00210425i
\(781\) 3.05392i 0.109278i
\(782\) −12.7416 10.2694i −0.455637 0.367234i
\(783\) 4.47328 0.159862
\(784\) 0.898733 27.9856i 0.0320976 0.999485i
\(785\) −21.2261 −0.757590
\(786\) −2.47973 1.99861i −0.0884491 0.0712882i
\(787\) 13.5707i 0.483743i −0.970308 0.241871i \(-0.922239\pi\)
0.970308 0.241871i \(-0.0777612\pi\)
\(788\) 41.5128 9.02377i 1.47883 0.321458i
\(789\) −0.708439 −0.0252211
\(790\) 7.99257 9.91659i 0.284363 0.352816i
\(791\) 19.0274 + 30.6684i 0.676538 + 1.09044i
\(792\) −5.88089 + 11.7416i −0.208968 + 0.417221i
\(793\) 8.11403 0.288138
\(794\) −23.9907 19.3360i −0.851399 0.686210i
\(795\) 0.500920 0.0177658
\(796\) −8.93358 41.0979i −0.316642 1.45668i
\(797\) −15.5920 −0.552297 −0.276148 0.961115i \(-0.589058\pi\)
−0.276148 + 0.961115i \(0.589058\pi\)
\(798\) 0.495433 4.00517i 0.0175381 0.141782i
\(799\) 29.4756i 1.04277i
\(800\) −22.0643 5.64077i −0.780092 0.199431i
\(801\) 3.29666i 0.116482i
\(802\) 1.05794 + 0.852678i 0.0373572 + 0.0301091i
\(803\) 5.49324i 0.193852i
\(804\) 1.40435 0.305267i 0.0495275 0.0107659i
\(805\) −5.88848 + 3.65337i −0.207542 + 0.128764i
\(806\) −10.2178 8.23532i −0.359906 0.290077i
\(807\) 0.710447i 0.0250089i
\(808\) 0.441524 0.881536i 0.0155328 0.0310123i
\(809\) −8.37400 −0.294414 −0.147207 0.989106i \(-0.547028\pi\)
−0.147207 + 0.989106i \(0.547028\pi\)
\(810\) −9.58894 7.72849i −0.336921 0.271551i
\(811\) 0.777328i 0.0272957i −0.999907 0.0136478i \(-0.995656\pi\)
0.999907 0.0136478i \(-0.00434438\pi\)
\(812\) −19.6447 20.2857i −0.689394 0.711889i
\(813\) 2.84464i 0.0997659i
\(814\) 0.0927959 0.115134i 0.00325250 0.00403545i
\(815\) −6.53712 −0.228985
\(816\) 2.22408 1.01486i 0.0778585 0.0355274i
\(817\) 41.8359i 1.46365i
\(818\) 27.5777 34.2163i 0.964231 1.19635i
\(819\) 4.15713 + 6.70044i 0.145262 + 0.234132i
\(820\) 10.6419 2.31326i 0.371631 0.0807825i
\(821\) 19.9805i 0.697326i −0.937248 0.348663i \(-0.886636\pi\)
0.937248 0.348663i \(-0.113364\pi\)
\(822\) −0.333785 + 0.414136i −0.0116421 + 0.0144446i
\(823\) 10.8575i 0.378469i −0.981932 0.189234i \(-0.939399\pi\)
0.981932 0.189234i \(-0.0606006\pi\)
\(824\) 13.0561 26.0675i 0.454832 0.908106i
\(825\) 0.879057i 0.0306048i
\(826\) −15.2411 1.88530i −0.530305 0.0655979i
\(827\) −5.75544 −0.200136 −0.100068 0.994981i \(-0.531906\pi\)
−0.100068 + 0.994981i \(0.531906\pi\)
\(828\) −15.4575 + 3.36005i −0.537186 + 0.116770i
\(829\) 46.6460 1.62008 0.810042 0.586372i \(-0.199444\pi\)
0.810042 + 0.586372i \(0.199444\pi\)
\(830\) −4.44695 + 5.51744i −0.154356 + 0.191513i
\(831\) −0.361568 −0.0125427
\(832\) −4.79122 6.40658i −0.166106 0.222108i
\(833\) 27.3477 + 13.5558i 0.947541 + 0.469682i
\(834\) −0.947259 0.763472i −0.0328009 0.0264369i
\(835\) 0.153398 0.00530857
\(836\) 23.4286 5.09274i 0.810294 0.176136i
\(837\) 7.77842i 0.268862i
\(838\) −35.7784 + 44.3912i −1.23595 + 1.53347i
\(839\) 39.1501 1.35161 0.675805 0.737080i \(-0.263796\pi\)
0.675805 + 0.737080i \(0.263796\pi\)
\(840\) −0.0940432 1.03093i −0.00324480 0.0355704i
\(841\) 0.520537 0.0179496
\(842\) 7.22250 8.96114i 0.248904 0.308821i
\(843\) 2.83645i 0.0976926i
\(844\) −8.01798 36.8858i −0.275990 1.26966i
\(845\) 0.986963 0.0339525
\(846\) −22.1833 17.8793i −0.762678 0.614703i
\(847\) −11.9582 19.2742i −0.410889 0.662270i
\(848\) −6.01283 13.1772i −0.206482 0.452506i
\(849\) −3.06917 −0.105334
\(850\) 15.5791 19.3294i 0.534359 0.662993i
\(851\) 0.178126 0.00610607
\(852\) −0.116730 0.537003i −0.00399910 0.0183974i
\(853\) 39.1802 1.34151 0.670753 0.741681i \(-0.265971\pi\)
0.670753 + 0.741681i \(0.265971\pi\)
\(854\) 3.72707 30.1303i 0.127538 1.03104i
\(855\) 22.6355i 0.774117i
\(856\) −7.97416 + 15.9210i −0.272551 + 0.544169i
\(857\) 36.4665i 1.24567i 0.782352 + 0.622836i \(0.214020\pi\)
−0.782352 + 0.622836i \(0.785980\pi\)
\(858\) 0.193777 0.240425i 0.00661545 0.00820796i
\(859\) 27.9827i 0.954757i −0.878698 0.477379i \(-0.841587\pi\)
0.878698 0.477379i \(-0.158413\pi\)
\(860\) −2.27950 10.4866i −0.0777302 0.357589i
\(861\) −1.07863 1.73853i −0.0367596 0.0592490i
\(862\) 13.3670 16.5848i 0.455282 0.564880i
\(863\) 51.1854i 1.74237i 0.490955 + 0.871185i \(0.336648\pi\)
−0.490955 + 0.871185i \(0.663352\pi\)
\(864\) 1.17445 4.59397i 0.0399557 0.156290i
\(865\) −0.299469 −0.0101823
\(866\) 2.61691 3.24687i 0.0889263 0.110333i
\(867\) 0.282203i 0.00958412i
\(868\) −35.2741 + 34.1595i −1.19728 + 1.15945i
\(869\) 14.2153i 0.482222i
\(870\) −0.812878 0.655163i −0.0275591 0.0222121i
\(871\) 5.12668 0.173711
\(872\) −22.9512 11.4953i −0.777224 0.389279i
\(873\) 31.5886i 1.06911i
\(874\) 22.4861 + 18.1233i 0.760603 + 0.613031i
\(875\) −12.4256 20.0275i −0.420061 0.677053i
\(876\) −0.209968 0.965933i −0.00709415 0.0326359i
\(877\) 4.87247i 0.164532i 0.996610 + 0.0822658i \(0.0262156\pi\)
−0.996610 + 0.0822658i \(0.973784\pi\)
\(878\) 18.8676 + 15.2069i 0.636749 + 0.513207i
\(879\) 0.860281i 0.0290166i
\(880\) 5.59511 2.55309i 0.188611 0.0860645i
\(881\) 52.8322i 1.77996i −0.455998 0.889981i \(-0.650718\pi\)
0.455998 0.889981i \(-0.349282\pi\)
\(882\) 26.7906 12.3591i 0.902087 0.416154i
\(883\) 38.1741 1.28466 0.642330 0.766428i \(-0.277968\pi\)
0.642330 + 0.766428i \(0.277968\pi\)
\(884\) 8.52186 1.85242i 0.286621 0.0623037i
\(885\) −0.567785 −0.0190859
\(886\) 25.0326 + 20.1758i 0.840988 + 0.677820i
\(887\) −0.0103911 −0.000348898 −0.000174449 1.00000i \(-0.500056\pi\)
−0.000174449 1.00000i \(0.500056\pi\)
\(888\) −0.0119165 + 0.0237922i −0.000399891 + 0.000798413i
\(889\) −24.2725 + 15.0593i −0.814074 + 0.505073i
\(890\) −0.968849 + 1.20208i −0.0324759 + 0.0402937i
\(891\) −13.7456 −0.460496
\(892\) −0.590015 2.71430i −0.0197552 0.0908814i
\(893\) 52.0180i 1.74072i
\(894\) 0.261685 + 0.210913i 0.00875205 + 0.00705398i
\(895\) −16.9309 −0.565938
\(896\) −25.9907 + 14.8487i −0.868288 + 0.496061i
\(897\) 0.371964 0.0124195
\(898\) −33.3614 26.8886i −1.11328 0.897284i
\(899\) 49.5219i 1.65165i
\(900\) −5.09732 23.4496i −0.169911 0.781654i
\(901\) 15.7893 0.526019
\(902\) 7.62751 9.46365i 0.253968 0.315105i
\(903\) −1.71316 + 1.06289i −0.0570103 + 0.0353707i
\(904\) 17.2787 34.4982i 0.574680 1.14739i
\(905\) −14.8835 −0.494744
\(906\) 1.96054 + 1.58015i 0.0651344 + 0.0524970i
\(907\) 42.1808 1.40059 0.700295 0.713854i \(-0.253052\pi\)
0.700295 + 0.713854i \(0.253052\pi\)
\(908\) −7.43645 + 1.61648i −0.246787 + 0.0536449i
\(909\) 1.03888 0.0344576
\(910\) 0.453347 3.66494i 0.0150283 0.121492i
\(911\) 14.7988i 0.490305i 0.969485 + 0.245153i \(0.0788381\pi\)
−0.969485 + 0.245153i \(0.921162\pi\)
\(912\) −3.92502 + 1.79102i −0.129971 + 0.0593064i
\(913\) 7.90919i 0.261756i
\(914\) 20.4376 + 16.4723i 0.676017 + 0.544856i
\(915\) 1.12246i 0.0371074i
\(916\) 9.33493 + 42.9443i 0.308435 + 1.41892i
\(917\) −36.1228 + 22.4115i −1.19288 + 0.740094i
\(918\) 4.02453 + 3.24369i 0.132829 + 0.107058i
\(919\) 16.6672i 0.549801i 0.961473 + 0.274901i \(0.0886449\pi\)
−0.961473 + 0.274901i \(0.911355\pi\)
\(920\) 6.62383 + 3.31759i 0.218381 + 0.109378i
\(921\) −4.12248 −0.135840
\(922\) 35.5773 + 28.6746i 1.17168 + 0.944347i
\(923\) 1.96037i 0.0645264i
\(924\) −0.803773 0.830000i −0.0264422 0.0273050i
\(925\) 0.270223i 0.00888489i
\(926\) −10.5814 + 13.1286i −0.347727 + 0.431434i
\(927\) 30.7204 1.00899
\(928\) −7.47723 + 29.2478i −0.245452 + 0.960106i
\(929\) 44.7600i 1.46853i −0.678863 0.734265i \(-0.737527\pi\)
0.678863 0.734265i \(-0.262473\pi\)
\(930\) −1.13924 + 1.41348i −0.0373571 + 0.0463499i
\(931\) −48.2627 23.9231i −1.58175 0.784048i
\(932\) 12.2355 + 56.2882i 0.400788 + 1.84378i
\(933\) 4.66173i 0.152618i
\(934\) 17.2623 21.4177i 0.564839 0.700810i
\(935\) 6.70425i 0.219253i
\(936\) 3.77505 7.53718i 0.123391 0.246360i
\(937\) 47.4249i 1.54930i 0.632389 + 0.774651i \(0.282075\pi\)
−0.632389 + 0.774651i \(0.717925\pi\)
\(938\) 2.35487 19.0372i 0.0768892 0.621586i
\(939\) −1.78475 −0.0582432
\(940\) 2.83429 + 13.0388i 0.0924442 + 0.425279i
\(941\) −39.1107 −1.27497 −0.637486 0.770462i \(-0.720025\pi\)
−0.637486 + 0.770462i \(0.720025\pi\)
\(942\) 2.67517 3.31915i 0.0871618 0.108144i
\(943\) 14.6413 0.476788
\(944\) 6.81544 + 14.9361i 0.221824 + 0.486128i
\(945\) 1.85993 1.15395i 0.0605035 0.0375380i
\(946\) −9.32553 7.51619i −0.303199 0.244372i
\(947\) 18.4246 0.598719 0.299359 0.954140i \(-0.403227\pi\)
0.299359 + 0.954140i \(0.403227\pi\)
\(948\) 0.543351 + 2.49962i 0.0176472 + 0.0811840i
\(949\) 3.52622i 0.114466i
\(950\) −27.4937 + 34.1122i −0.892015 + 1.10675i
\(951\) 1.74875 0.0567070
\(952\) −2.96431 32.4956i −0.0960737 1.05319i
\(953\) −35.0327 −1.13482 −0.567410 0.823436i \(-0.692054\pi\)
−0.567410 + 0.823436i \(0.692054\pi\)
\(954\) 9.57749 11.8830i 0.310083 0.384728i
\(955\) 16.1357i 0.522139i
\(956\) −24.4897 + 5.32339i −0.792052 + 0.172171i
\(957\) −1.16525 −0.0376672
\(958\) 14.0883 + 11.3549i 0.455171 + 0.366859i
\(959\) 3.74291 + 6.03280i 0.120865 + 0.194809i
\(960\) −0.886258 + 0.662796i −0.0286039 + 0.0213917i
\(961\) 55.1117 1.77780
\(962\) −0.0595674 + 0.0739068i −0.00192053 + 0.00238285i
\(963\) −18.7628 −0.604623
\(964\) −11.0385 + 2.39947i −0.355526 + 0.0772818i
\(965\) −2.78986 −0.0898088
\(966\) 0.170856 1.38123i 0.00549722 0.0444405i
\(967\) 24.3665i 0.783574i 0.920056 + 0.391787i \(0.128143\pi\)
−0.920056 + 0.391787i \(0.871857\pi\)
\(968\) −10.8592 + 21.6811i −0.349027 + 0.696858i
\(969\) 4.70310i 0.151085i
\(970\) −9.28353 + 11.5183i −0.298076 + 0.369831i
\(971\) 52.6513i 1.68966i 0.535033 + 0.844831i \(0.320299\pi\)
−0.535033 + 0.844831i \(0.679701\pi\)
\(972\) 7.33161 1.59369i 0.235162 0.0511178i
\(973\) −13.7989 + 8.56122i −0.442374 + 0.274460i
\(974\) 14.7846 18.3436i 0.473728 0.587766i
\(975\) 0.564283i 0.0180715i
\(976\) −29.5273 + 13.4735i −0.945147 + 0.431277i
\(977\) −18.3841 −0.588160 −0.294080 0.955781i \(-0.595013\pi\)
−0.294080 + 0.955781i \(0.595013\pi\)
\(978\) 0.823889 1.02222i 0.0263451 0.0326870i
\(979\) 1.72316i 0.0550725i
\(980\) −13.4010 3.36688i −0.428079 0.107551i
\(981\) 27.0478i 0.863569i
\(982\) 42.5544 + 34.2980i 1.35796 + 1.09449i
\(983\) 15.4501 0.492782 0.246391 0.969170i \(-0.420755\pi\)
0.246391 + 0.969170i \(0.420755\pi\)
\(984\) −0.979495 + 1.95564i −0.0312252 + 0.0623434i
\(985\) 20.9642i 0.667975i
\(986\) −25.6225 20.6512i −0.815985 0.657668i
\(987\) 2.13011 1.32158i 0.0678021 0.0420662i
\(988\) −15.0392 + 3.26912i −0.478462 + 0.104005i
\(989\) 14.4276i 0.458773i
\(990\) 5.04561 + 4.06666i 0.160360 + 0.129247i
\(991\) 51.7005i 1.64232i −0.570697 0.821161i \(-0.693327\pi\)
0.570697 0.821161i \(-0.306673\pi\)
\(992\) 50.8579 + 13.0019i 1.61474 + 0.412810i
\(993\) 4.26827i 0.135450i
\(994\) −7.27955 0.900469i −0.230893 0.0285611i
\(995\) −20.7547 −0.657968
\(996\) −0.302312 1.39075i −0.00957912 0.0440677i
\(997\) 6.68172 0.211612 0.105806 0.994387i \(-0.466258\pi\)
0.105806 + 0.994387i \(0.466258\pi\)
\(998\) −15.1442 12.2059i −0.479381 0.386371i
\(999\) −0.0562626 −0.00178007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.11 yes 48
4.3 odd 2 2912.2.h.b.2575.25 48
7.6 odd 2 728.2.h.a.27.11 48
8.3 odd 2 728.2.h.a.27.12 yes 48
8.5 even 2 2912.2.h.a.2575.25 48
28.27 even 2 2912.2.h.a.2575.24 48
56.13 odd 2 2912.2.h.b.2575.24 48
56.27 even 2 inner 728.2.h.b.27.12 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.11 48 7.6 odd 2
728.2.h.a.27.12 yes 48 8.3 odd 2
728.2.h.b.27.11 yes 48 1.1 even 1 trivial
728.2.h.b.27.12 yes 48 56.27 even 2 inner
2912.2.h.a.2575.24 48 28.27 even 2
2912.2.h.a.2575.25 48 8.5 even 2
2912.2.h.b.2575.24 48 56.13 odd 2
2912.2.h.b.2575.25 48 4.3 odd 2